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Abstract
Quantum software systems represent a new realm in software engineering, utilizing 
quantum bits (Qubits) and quantum gates (Qgates) to solve the complex problems 
more efficiently than classical counterparts. Agile software development approaches 
are considered to address many inherent challenges in quantum software develop-
ment, but their effective integration remains unexplored. This study investigates key 
causes of challenges that could hinders the adoption of traditional agile approaches 
in quantum software projects and develop an Agile-Quantum Software Project Suc-
cess Prediction Model (AQSSPM). Firstly, we identified 19 causes of challenging 
factors discussed in our previous study, which are potentially impacting agile-quan-
tum project success. Secondly, a survey was conducted to collect expert opinions 
on these causes and applied Genetic Algorithm (GA) with Naive Bayes Classifier 
(NBC) and Logistic Regression (LR) to develop the AQSSPM. Utilizing GA with 
NBC, project success probability improved from 53.17 to 99.68%, with cost reduc-
tions from 0.463 to 0.403%. Similarly, GA with LR increased success rates from 
55.52 to 98.99%, and costs decreased from 0.496 to 0.409% after 100 iterations. 
Both methods result showed a strong positive correlation (rs = 0.955) in causes rank-
ing, with no significant difference between them (t = 1.195, p = 0.240 > 0.05). The 
AQSSPM highlights critical focus areas for efficiently and successfully implement-
ing agile-quantum projects considering the cost factor of a particular project.
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1 Introduction

Quantum Computing (QC) has emerged as a significant area of interest for indus-
trial practitioners and academic researchers worldwide. Its potential to bring 
transformative changes across various industries is undeniable (Zhao 2007). This 
potential is evident in the investments and efforts of technology leaders such as 
IBM (2021), Google (2022), and Microsoft (2021), who are actively working 
to harness QC for solving complex computational challenges. However, as QC 
machines operate on the principles of quantum mechanics, the development of 
software applications for them presents unique challenges (Akbar et  al. 2211). 
Literature suggests that the development process for QC applications closely mir-
rors traditional software development (Zhao 2007), underscoring the importance 
of a well-structured engineering process to address the complexities of QC (Zhao 
2007). Therefore, refined Software Engineering (SE) methodologies are neces-
sary to fully realize the benefits of QC (Zhao 2007; Akbar et al. 2211; Khan et al. 
2023).

A key component in operationalizing QC systems is quantum software (Ali et al. 
2022). This software, requiring comprehensive stack support and innovative tools 
and techniques, demands specific processes and methods tailored to create software 
systems based on quantum mechanics principles (Ali et al. 2022). However, the field 
of Quantum Software Engineering (QSE) is still evolving. Currently, it primarily 
relies on hybrid (quantum and classical) processes, tools, and methods, necessitat-
ing careful coordination between classical and quantum systems. In this regard, 
we previously conducted an empirical study introducing the idea of utilizing tradi-
tional (classical) iterative and agile methodologies for developing quantum software 
(Khan, et al. 2023, 2022). These agile methods, which promote team collaboration, 
quick iterations, and continuous delivery, could significantly benefit QSE activities 
(Khan, et al. 2023; Beck, et al. 2001; Fitzgerald et al. 2006). Nevertheless, more evi-
dence is needed to directly connect agile methods to quantum software development.

Drawing from our previous research, where we interviewed 26 software profes-
sionals from 10 different countries (Khan, et  al. 2023), we found that many view 
existing traditional agile methods as well-suited for quantum software development. 
They also identified potential challenges perceived to hinder scaling traditional agile 
methods in the quantum domain. These challenges fall into four main categories: (1) 
Knowledge and awareness, offering practitioners a deeper understanding of potential 
changes that might impede the successful adoption of agile methodologies in quan-
tum software development; (2) Sustainable scaling, involving challenges related to 
scaling software sustainably and ethically; (3) Quantum-aware tools and technolo-
gies, encompassing challenges related to technological infrastructure that could sup-
port customizing, automating, and tailoring agile practices for developing quantum 
software; and (4) Standards and specifications, providing insights into challenges 
related to the lack of standards, frameworks, and common rules for adopting exist-
ing agile approaches in the quantum software domain.

With these findings, this paper aims to extend the previous study (Khan, 
et  al. 2023) by exploring more in-depth the causes behind these challenges and 
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providing effective best practices to mitigate them. Based on the study results, 
we will introduce a model to predict the costs and efforts required for scaling 
agile methods in the quantum software development domain. This model utilizes 
a nature-inspired optimization algorithm, the Genetic Algorithm (GA) (Mirjalili 
and Mirjalili 2019), to evaluate the likelihood of success in terms of cost. Within 
the GA, we designed a measure called the fitness function, aiming for the highest 
success rate of agile quantum software projects while considering costs. We tested 
this optimization model using two prediction models: the Naive Bayes Classifier 
(NBC) and Logistic Regression (LR). Through this comprehensive approach, we 
aim to provide a roadmap for both researchers and practitioners in the quantum 
software development field, emphasizing the integration of agile practices.

2  Background

In the rapidly evolving world of technological advancements, QC has emerged as 
a pivotal innovation (Zhao 2007). Based on the principles of quantum mechanics, 
such as quantum superposition and entanglement, QC platforms offer a new com-
putational paradigm. Unlike traditional binary digits, which strictly adhere to a 0 or 
1 state, QC operates based on Qubits that can simultaneously exist in a superposi-
tion of both states, represented as |0 and |1 (Zhao 2007; Rieffel and Polak 2011). 
This shift from classical bits to Qubits signifies a profound transformation in the 
landscape of computing, pushing the boundaries of what is achievable with compu-
tational processes (Zhao 2007).

To navigate this quantum realm effectively, software developers are required to 
be familiar with quantum-age algorithms and programming languages like Micro-
soft Q# (2021), IBM Qiskit (2021), and Google Cirq (2022). However, there is a 
lack of a holistic engineering approach integral for quantum software development, 
e.g., quantum software requirements engineering, quantum software design, mainte-
nance, evolution, and information simulation (Khan, et al. 2022; Ahmad et al. 2022). 
This gap underscores the importance of Quantum Software Engineering (QSE), as 
highlighted in a national agenda for software engineering research and development 
presented by SEI-Carnegie Mellon University (Carleton et al. 2022): “the develop-
ment of Quantum Computing Software Systems is considered a pivotal future focus 
area. The objectives of this research area are initially focused on facilitating the 
development of quantum software for existing quantum computers and then enable 
increasing abstraction as larger, fully fault-tolerant quantum computing systems 
become available. A key challenge is to eventually, fully integrate these types of sys-
tems into a unified classical and quantum software development life cycle.” As the 
most novel field, QSE seeks to leverage the best practices from traditional software 
engineering, such as robust engineering processes, architectures, and patterns, facili-
tating the development of quantum-intensive software solutions. There is no existing 
quantum-specific process model for QSE available, except for a few research studies 
which focused on defining the fundamental engineering activities for a structured 
QSE approach (Khan, et al. 2022; Ahmad et al. 2022; Weder et al. 2022).
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In the seek for structure and a robust QSE process, the agile approach from 
traditional software engineering presents itself as a promising contender. Track-
ing the evolution of traditional software programming, which began with a 
strong focus on hardware in the 1950s and later shifted to today’s agile practices 
(Moguel et al. 2020; Piattini et al. 2021), opens the door for the novel QSE field 
to adopt traditional agile methods over time. However, given the unique chal-
lenges of quantum software development, such as qubit entanglement and super-
position, it is increasingly compelling to examine the suitability of traditional 
agile approaches in line with the characteristics of quantum software develop-
ment (Stefano et  al. 2022; Wang et  al. 2021, 2022). For example, composing, 
designing, testing, and maintaining quantum programs would be challenging due 
to switching to an entirely different mindset, examining the superposition states 
of quantum variables, and interpreting multi-dimensional quantum states.

In traditional software development, the above-mentioned activities are 
addressed by using agile and iterative approaches. Agile methods, in contrast to 
traditional models such as Waterfall, are considered best suited to propose prac-
tices and principles such as active user involvement, iterative development, fre-
quent releases, continuous integration, and deployment (Beck, et al. 2001). How-
ever, the QSE field is still in its infancy, and the process of creating quantum 
software can be made simpler by embracing agile methods, as recommended by 
Piattini et al. (Piattini et al. 2021) and Khan et al. (Khan, et al. 2023).

Following this, we previously conducted an empirical study to evaluate the 
suitability of the traditional agile approaches and identify the challenges that 
could be potential barriers for agile-based quantum software development (Khan, 
et al. 2023). In our prior study, we reached the conclusion that agile approaches 
are the preferred choice for developing quantum software. The study also brought 
to light a range of challenges that could be potential barriers to adopting agile 
practices. Based on our earlier work, this research aims to investigate deeper into 
the causes of these challenges and best practices in-depth to formulate a predic-
tive model that will estimate the chances of success when traditional agile tech-
niques are used in quantum software projects.

No previous research has been conducted on developing a prediction model 
to aid decision-making about the use of agile practices in the quantum software 
domain. We have set out to address this gap by proposing a model that we name 
AQSSPM. This proposed model will serve as a tool for organizations that are 
considering the adoption of agile methods for quantum software development, 
highlighting the most significant key areas that can predict the success of their 
endeavors in this new and complex field.

For the creation of this model, we have incorporated not just the findings from 
our previous studies (Khan, et al. 2023), but also an expanded investigation into 
the causes behind these challenges and the most effective practices to address 
them. An industrial survey was conducted to gather practitioners’ views on the 
challenges, causes, and best practices in quantum software development as identi-
fied in our previous research. The feedback obtained from this survey has been 
crucial in applying genetic algorithms to develop the proposed model—AQSSPM.
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3  Research methodology

In this study we used the survey questionnaire approach to collect the data from 
industrial practitioners to evaluate the causes of the identified challenges. Based 
on the collected data, we trained the GA with NBC and LR to estimate the suc-
cess probability of agile-quantum software projects. The details are provided in 
the following sections.

3.1  Designing the questionnaire

To collect the training data, we initiated data collection process through unstruc-
tured interviews with 13 experts in the domains of quantum computing and agile 
software development. These conversations, facilitated via digital meeting plat-
forms like Google Meet and Zoom, spanned an average of 25 min each. Build-
ing upon the insights derived from these interactions, we constructed a detailed, 
closed-ended survey. The questionnaire survey allowed us to pinpoint 19 causes 
contributing to the challenges faced in agile-quantum software development. We 
used the questionnaire survey methodology to collect the data from a broad and 
varied group, working in agile-quantum paradigm.

The survey was divided into two sections. The first section describes the demo-
graphic details of participants, while the subsequent part contains closed-ended 
questions centered around the core variables (causes). To assess the feedback, 
we used a 9-point likert scale, range from extremely low (EL) to extremely high 
(EH). Using surveys for data collection, especially when observational techniques 
fall short, is a best suited approach, as evidenced in different other studies (What 
is sustainable software development 2023; Khan et al. 2017).

3.2  Pilot assessment of the questionnaire

To enhance the accuracy and consistency of our survey insturment, we conducted 
a pilot assessment of the questionnaire. As highlighted in existing studies, such 
pre-tests are important to refine the survey structure and ensure relevant feedback 
(Khan et al. 2021; Failed 2023). For this early assessment, we involved ten spe-
cialists, of which six participated in our prior informal discussions and four were 
new contributors. These specialists were associated with research institutions, 
including the University of Oulu in Finland, Norwegian University of Science 
and Technology in Norway, and Aligarh Muslim University in India.

Based on the feedback received, we updated the questionnaire structure by 
classifying it into three sections: demographic details, specific questions about 
identified causes of agile-quantum project, and cost-related data for tackling the 
identified causes. We also adjusted the wording of the survey items for clarity. 
One expert suggested presenting the questions in a tabular format, and other 
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asked to improve the understandability of each question. The refined question-
naire can be accessed at: https:// tinyu rl. com/ 43r7u xx6.

3.3  Process of predictive model development

The presented study seeks to understand the impact of pinpointed causes by identify-
ing the scale at which the project has the highest likelihood of success. This insight 
will guide software professionals to prioritize critical elements in the agile-quantum 
workflow, ensuring its optimal operation. To achieve this, we employed Genetic 
Algorithms (GA) (Mirjalili and Mirjalili 2019) aiming to optimize the chances of 
project success while restricting the related costs. GA works by generating factor 
states, determining success probabilities with predictive models, and simultaneously 
evaluating the balance between success likelihood and cost, thereby pinpointing 
feasible factor scales. The efficiency of GA hinges on three main components: (1) 
Predictive models based on Naive-Bayes and logistic regression, which inform GA 
of the success probability aligned with specific risk factor values; (2) The expense 
linked to each risk factor’s scale value; (3) A function grounded in success prob-
ability and cost, guiding GA about the merit of a certain set of feature values. In this 
context, once the predictive models are adequately trained, they provide GA with the 
necessary probability, with our primary focus on the Naive Bayes algorithms. The 
cost metrics for different process areas, derived from expert opinions, are detailed 
in Table 1. Lastly, an efficiency function is crafted to meet the third component’s 
needs, taking into account both success probability and cost.

3.4  Predictive models

In our research, we employed predictive models grounded in Naive Bayes and Logis-
tic Regression methodologies. These models produce the likelihood of a class vari-
able reaching a particular outcome, representing success or failure in our context.

3.5  Naive bayes classifier (NBC)

The NBC model estimates the probability of a specific result for a class variable, 
like success or failure. Bayesian Networks offer an array of classifiers rooted in 
probability (Kotsiantis et  al. 2006). Notably, the Naive Bayes Classifier (NBC) is 
distinguished by its straightforwardness and efficacy (Berrar 2018).

The NBC presumes that, given the class, the predictors or attributes function 
independently. In this framework, every independent variable possesses a sole par-
ent: the class or outcome variable. Because of its robust mathematical underpinning, 
the NBC algorithm is renowned for its rapidity, simplicity in execution, and adapt-
ability to manage datasets with vast dimensions. Such effectiveness stems mainly 
from NBC approach of determining the probability for each attribute autonomously 
(Berrar 2018; Cerpa et al. 2016).

https://tinyurl.com/43r7uxx6
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Equation  1 depicts the computation of the maximum posterior probability for 
the target variable T in relation to the attributes F of the observation, grounded in 
Bayes’ theorem:

NBC considers that all the elements of F = {f1,  f2,…,fn}, given T, are condition-
ally independent, and therefore, the probability described in Eq. 1 can be computed 
according to Eq. 2.

Equation 2 can be rewritten as Eq. 3 in its extended form:

For categorization endeavors, Eq. 3 often suffices to pinpoint the likeliest state 
of the target variable based on a defined set of factors. Yet, in our study, we harness 
the Naive Bayes methodology, utilizing input values from diverse factors to forecast 
the project’s success probability. After the model’s training phase, it’s equipped to 
gauge the potential for a positive result.

3.6  Logistic regression (LR)

In our study, we additionally utilize logistic regression (LR) as a forecasting tool, 
mainly to determine the likelihood of a binary outcome (Cerpa et  al. 2016). This 
is perceived as an evolution of regression methods tailored for predicting continu-
ous outcome variables. A drawback with conventional regression techniques is that 
they can produce predicted values for the outcome variable that fall outside the (0,1) 
range, with 0 representing a negative outcome (Failure, False, or No) and 1 a posi-
tive outcome (Success, True, or Yes) (Wolpert and Macready 1997). To address this 
challenge, logistic regression employs a logistic function, as presented in Eq. (4):

Initially, a function is defined based on independent variables as follows:

In Eq. (5), βi denotes the significance of attribute fi. The core goal of the Logis-
tic Regression (LR) algorithm is to determine the best-fit values for each βi. Using 
Eq. (6), LR produces probabilistic estimates, categorizing the binary target variable 
T into either 1 or 0.

(1)Prob(T|F) = Prob(T) ∗ Prob(F|T)
Prob(F)

(2)Prob(T�F) =
Prob(T)

∏n

i=1
Prob(fi�T)

Prob(F)

(3)Prob
(
T|f1, f2,… fn

)
=

Prob(T) ∗ Prob
(
f1|T

)
∗ Prob

(
f2|T

)
⋯ ∗ Prob(fn|T)

Prob(F)

(4)S(x) =
1

1 + e−x

(5)func(F) = �0 + �1f1 + . . . + �nfn
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Equation (7) can be used to calculate the probability (T =  = 0):

The LR algorithm executes a series of procedures to refine the βi values accord-
ing to Eqs. (5) and (6) until a state of relative balance is achieved, where the βi val-
ues remain largely consistent. At this stage, the LR algorithm integrates the attrib-
utes to optimize the likelihood of discerning the state of T in terms of probability. In 
our research context, we employed both NBC and LR models. These models intake 
the input values from diverse factors to forecast the likelihood of project success. 
Once honed, these models are adept at gauging the potential for a favorable result.

3.7  Optimization problem

This segment exmined the mathematical framing of the optimization challenge, pav-
ing the way for the implementation of the Genetic Algorithm (GA). The predictive 
models are primed to compute probability figures using the supplied data. Defini-
tions for both probability and cost will be established, and from these metrics, an 
effectiveness function will be subsequently formulated.

3.8  Probability of success

Based on a given set of attributes, a project’s probability of success can be expressed 
as follows:

Prob (S) takes in a prospective solution S and evaluates its success probability p, 
ranging between 0 and 1. The set S can be articulated as follows:

In Eq. 9, the variable  s1 represents the scale of the  ith factor, with n indicating 
the aggregate count of factors being examined. Here,  si can take on values from 1 
through 9, and n matches the count of these factors. Equation 10 showcases a par-
ticular example of the solution set S, denoted as S (n = 19).

In this case, S’ represents a solution set in which the first factor has a scale value 
of 6, the second factor holds a value of 5, and so on. Introducing S’ as an input into 
the model produces the associated probability, given that the predictive models have 
been previously trained.

(6)Prob(T = 1) =
1

1 + e−func(F)

(7)Prob(T = 0) = 1− Prob(T = 1)

(8)Prob(S) = p

(9)S =
{
s1, s2, … , si, … , sn

}

(10)S� = {6, 5, 4, 2, 3, 7, 1, 3, 8, 2, 6, 1, 9, 6, 8}1
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3.9  Cost calculation

An important section of defining the problem is identifying the costs tied to each 
factor’s scale. These costs have been determined manually by domain experts. The 
objective is to amplify the likelihood of project success while constraining the over-
all expenses. The variable  cij represents the cost associated with the  jth scale value of 
variable i. The cumulative cost for the solution S can be determined through Eq. 11.

Table  1 outlines the expenses linked to different scales of factors. Whenever 
a fresh instance of S is produced, the overall project cost is ascertained based on 
Table 1 in conjunction with Eq. (11).

3.10  Efficacy

A project’s effectiveness is determined by evaluating its likelihood of success along-
side its associated cost, see Eq. 12. This challenge can be perceived as a dual-objec-
tive optimization task, striving to enhance the probability of project success while 
simultaneously curbing associated expenditures. To merge these two objectives into 
one optimization dilemma, an effectiveness function was crafted, as detailed below:

One practical approach to gauge the effectiveness of a particular instance S is 
by determining "the disparity between the success probability and its cost." This 
straightforward method integrates both parameters into a singular function. Yet, as 
illustrated in Eq. 8, the cost C often dominates, given that the probability Prob con-
sistently lies between [0,1], whereas C might attain a peak value of max(C) when 
all factors are scaled at 9. To address this discrepancy, the normalized cost, as pre-
sented in Eq. 13, can be utilized.

In Eq. 13, C denotes the cost awaiting normalization, while min(C) and max(C) 
represent the minimum and maximum costs for a project, respectively. In the context 
of our problem, there are 19 causes (meaning, n = 19). As such, max (C) is 126, and 
min (C) stands at 19 (assuming all factors are scaled at 1). Utilizing Eq. 13, we con-
fine the cost within the range (0,1), guaranteeing it doesn’t solely influence Eq. 12. 
The consequent effectiveness of S is then determined using Eq. 14.

It’s pertinent to mention that various approaches exist to integrate the cost into 
the problem formulation. One approach is to treat both cost and success probability 

(11)C(S) =

n∑

i=1

cij

(12)E = Prob − C

(13)norm(C) =
C − min(C)

max(C) − min(C)

(14)E(S) = Prob(S) − norm(C(S)
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as separate objectives, which would morph the present issue into a multi-objective 
optimization challenge. Another perspective would be to perceive the cost as a con-
straint rather than a component of the fitness function. In this scenario, the aim 
would be to identify a solution with the utmost success probability, given that the 
cost remains below a predetermined maximum allowable expense, represented as 
 Cmax. However, for its straightforwardness and lucidity, this research opted to use 
Eq. 14 as the guiding objective function.

3.11  Mathematical modeling of the optimization problem

After detailing the essential components of the problem in the previous sections, we 
now present the optimization challenge and its corresponding mathematical repre-
sentation, which is to be maximized.

where S = {s1,  s2, …,si, …,sn}. Given:  smin <  =  si <  =  smax.
In the given equation,  Smax and  Smin denote the maximum and minimum scale 

values, respectively. From Eq. 15, it is evident that our goal is to identify an instance 
S that yields the optimal effectiveness value, which is influenced by a high probabil-
ity of success paired with a minimized normalized cost.

3.12  Optimization problem, genetic algorithm, and its significance

While traditional solutions like exhaustive search can address optimization prob-
lems, they become impractical when dealing with extensive search spaces (Kumar 
et al. 2023). In our current context, with fourteen attributes, each potentially ranging 
from 1 to 9, we encounter over 22.8 trillion potential solutions  (919 > 22.8 trillion). 
Hence, meta-heuristic methods, like GA, are favored as they can deliver near-opti-
mal results within acceptable timeframes. GA stands out as a prevalent meta-heuris-
tic strategy for tackling optimization challenges, with numerous scholars employ-
ing it across various domains, especially in combinatorial optimization tasks. While 
other meta-heuristics exist, the No-Free-Lunch Theorem (Wolpert and Macready 
1997) suggests that no singular metaheuristic outshines the rest, and overall, they 
yield comparable results. Numerous studies have showcased GA’s application across 
diverse sectors for combinatorial optimization issues, consistently yielding encour-
aging outcomes (Komaki and Kayvanfar 2015; Hu et al. 2020; Mirjalili et al. 2014; 
Mahmoodabadi et al. 2013). Therefore, this research employs GA.

3.13  Genetic algorithm

The Genetic Algorithm (GA) is an evolutionary technique rooted in Charles Dar-
win’s theory of natural selection and was formulated by John Holland in the 1970s 
(Holland 1992). It leverages the principle of natural selection to choose potential 
parent solutions from a population, with the aim of generating superior offspring in 
subsequent generations (Holland 1992). GA refines the set of solutions with each 

(15)Maximize E(S) = Prob(S) − norm(C(S))
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iteration, progressively nearing the optimal solution. It proves especially potent 
when dealing with objective functions that are stochastic, non-linear, non-differen-
tiable, or discontinuous. GA is anchored on three core operations: selection, cross-
over, and mutation. These operations guide the generation of the optimal solution 
with each successive iteration (Mirjalili and Mirjalili 2019). The foundational steps 
of the standard GA technique are showcased in Algorithm 1.

Algorithm 1  Standard Genetic Algorithm

Step 1: Randomly generate the initial population of chromosomes, say P
Step 2: Calculate fitness function f (x) for each chromosome x in P
Step 3: Generate child population C by applying selection, crossover, and mutation operators on P
Step 4: P ← C
Step 5: Repeat Steps (2–4) until convergence

Fine-tuning the elements of GA to the specific optimization problem at hand is 
pivotal for attaining optimal performance. Given GA’s widespread recognition, we 
won’t delve deeply into its components within this article. For a comprehensive 
understanding, readers are directed to established research (Mirjalili and Mirjalili 
2019; Mitchell 1998). However, it’s essential to tailor the algorithm to the unique 
contours of the problem in focus. Subsequent sections will elucidate how we’ve 
molded the conventional GA to align with our distinct context.

4  Results and analysis

This section presents the results and analysis of this study. A through summary 
of the previous findings of this research project (Khan, et al. 2023) and identified 
causes of agile-quantum projects are discussed in Sect. 4.1. The results and analysis 
of developed success probability prediction model is detailed in Sect. 4.2.

4.1  Previous study and identified causes‑practices

We extended the previous empirical study (Khan, et al. 2023) findings by summa-
rizing the core categorizing of identified challenges with respect to their relevant 
causes and practices. Thematically, we categorized the identified challenges across 
core four categories- knowledge and awareness, quantum-aware tools and technolo-
gies, sustainable scaling, and standards and specifications.

We now summarize these categories with respect to the causes of the challenges 
and their respective best practices.

4.2  Knowledge and awareness

This category encapsulates the substantial challenges related to the knowledge and 
understanding of using traditional agile practices within the quantum software devel-
opment realm. The most prominent challenges in this category include knowledge 
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gap, team dynamics, and quantum software development education. These chal-
lenges stem from a lack of domain specific knowledge, lack of market interest, lim-
ited academic research, funding sources, and gap between research and practice. 
To tackle these challenges, interviewees suggested a list of best practices that rec-
ommend fostering team unity through team-building and cohesiveness-enhancing 
activities, and improving quantum literacy via targeted workshops and training. 
Strengthening the infrastructure and promoting industry awareness, alongside aca-
demic research support, can advance the field. Similarly, understanding the com-
mercial and operational complexities of quantum systems and applying domain best 
practices are also crucial for effective agile integration. This analysis underscores 
the criticality of addressing the "Knowledge and Awareness" barriers to successfully 
scale agile practices in this cutting-edge domain. The list of identified challenges, 
their causes and best practices is provided in Appendix A.

4.3  Sustainable scaling

This category explores the challenges of bringing agile practices sustainably within 
the quantum software development sphere, highlighting two principal challenges: 
ethically aligned quantum software development and agile-quantum ecosystem. 
Their underlying causes—complex technical requirements, cross-disciplinary inte-
gration difficulties, emerging working culture, quantum-agile interface stability, 
security, reliability, and rapid pace of innovation—demand targeted practices for 
resolution. In response, interviewees suggested strengthening quantum domain-
specific expertise and establishing defined knowledge management criteria as fun-
damental steps. Building a technical infrastructure dedicated to quantum software 
development activities is also important. The development of universally applica-
ble quantum-enabled simulators could democratize access to quantum technolo-
gies across various platforms. Furthermore, leveraging software to reduce energy 
consumption through ’green agile’ techniques could contribute to more sustainable 
quantum computing practices. Tools for continuous quantum–classical hybridization 
are essential to bridge the gap between traditional/classical computing infrastruc-
ture and quantum systems. Finally, positioning quantum ethics at the nexus of quan-
tum information science, technology ethics, and moral philosophy is necessary for a 
holistic assessment of the impacts posed by emergent quantum technologies. These 
practices aim to create a scalable, ethical, and agile framework that is responsive to 
the unique demands of quantum software development.

4.4  Quantum‑aware tools and technologies

This category of challenges emerged from two major challenging factors- clas-
sic-quantum tailoring and continuous SE infrastructure. The core causes of these 
challenges include right tool for the right job, lack of industrial interest, limited 
resources, transforming process from legacy to quantum software, and technological 
paradigm shift. To navigate these challenges, a suite of best practices is essential. 
Developing agile toolkits specifically for quantum software will facilitate the precise 
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tailoring needed for quantum tasks. Regular evaluation and selection of development 
tools for agile based quantum software development will ensure a consistent align-
ment with project requirements. Allocating dedicated resources within agile frame-
works to quantum exploration can address the limitations of funding and focus. 
Forming quantum interest groups within agile teams can spark industrial interest 
and foster collaborations. Designating sprints for the transformation from legacy to 
quantum software allows for a structured approach to this complex transition. Work-
shops aimed at enhancing agility in quantum computing can prepare teams for the 
technological paradigm shift. Finally, advancing CI/CD pipelines to accommodate 
quantum development ensures that the agile practices can be sustained in a continu-
ous SE infrastructure. Integrating these practices can provide a robust framework for 
overcoming the challenges of agile-quantum software development realm.

4.4.1  Standards and specifications

In the domain of standards and specifications for agile-based quantum software 
development, there are two pivotal challenges: process standardization and optimum 
documentation. These challenges stem from varying interpretations of agile meth-
odologies, rapid evolution of quantum technologies, complexity of quantum comput-
ing concepts, the necessity to integrate with existing standards, and interdisciplinary 
collaboration barriers. Addressing these challenges necessitates a coherent set of 
practices:

For process standardization, maturity models tailored to agile-quantum devel-
opment are essential. They assess and guide teams toward refined agile practices. 
Complementing these models, standard assessment protocols are necessary to gauge 
the effectiveness of agile practices and documentation in the quantum software 
development environment. A comprehensive integration framework is also neces-
sary, providing best practices for blending agile methodologies with the quantum 
software development process, inclusive of standardized process checklists and tem-
plates. Simultaneously, establishing quality standards for documentation specific to 
the quantum software domain is essential. These standards should guide teams in 
creating documentation that is clear, concise, and essential for the project at hand. 
Agile teams should incorporate sprints dedicated to ensuring compliance with estab-
lished frameworks and standards, allowing for consistent realignment with best 
practices throughout the development cycle. Furthermore, advocating for the utiliza-
tion of Software Development Kits (SDKs) with inherent standards and documenta-
tion guidelines can streamline adherence to best practices, reducing the overhead for 
agile teams. Developing agile-quantum playbooks offers a standardized yet adapt-
able approach to procedures and documentation templates across various quantum 
development projects. Furthermore, to enhance documentation quality, conducting 
workshops is key, where agile teams are trained to craft documentation tailored to 
the unique demands of quantum software development, emphasizing the principles 
of agility and relevance. Likewise, dedicating specific sprints to the iterative devel-
opment and refinement of documentation ensures that it evolves iteratively with the 
rapid development cycles characteristic of quantum software projects. This proac-
tive approach ensures the documentation remains current with the latest project 
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insights, architectural decisions, and code modifications, achieving an optimal bal-
ance throughout the project’s lifecycle.

4.5  Agile‑quantum software project success prediction model (AQSSPM)

This section provides an overview of the survey participants’ demographics (see 
Sect.  4.2.1), describe the application process of Genetic Algorithms (GA) (see 
Sect. 4.2.2), and the results of the proposed model are discussed in Sect. 4.2.3.

4.5.1  Experts demographics

We conducted a frequency analysis to examine the collected data, a method suit-
able for evaluating multiple variables, including numeric and ordinal data. Our study 
involved 104 participants from 16 countries across four continents, covering 12 pro-
fessional roles and 12 different project directions, as shown in Fig. 1a–c. A signifi-
cant number of participants have experience levels between 3 and 5 years in their 
fields, as depicted in Fig. 1d. We also explored gender representation in the collected 
responses. Participants were asked to self-identify their gender. The data revealed a 
majority of male participants at 64%, compared to 19% females. 21% opted not to 
specify their gender, as shown in Fig. 1e.

To understand our participants’ professional roles, we used thematic mapping. 
This helped categorize their roles into 9 different categories, shown in Fig.  2b. 
The roles of documentation and training specialist were the most common, with 
21 participants. Additionally, we identified 9 main working domains among the 

Fig. 1  Demographics data collection process participant
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participants. Telecommunication and chemical technology emerged as dominant 
sectors, each with 19 participants, as illustrated in Fig. 1c.

4.5.2  Genetic algorithm application process

This section formally presents the optimization problem of success probability max-
imization in the presence of cost. It is explained that the GA algorithm needs to be 
customized for this specific problem. Additionally, the necessary modifications to 
GA and its components are also discussed. We have employed the GA in the follow-
ing steps:

Step-1 Representation
In the current study, each potential solution, i.e., chromosome, comprises an 

ordered set of values. The order of the values in the set corresponds to the order of 
attributes described in Fig. 2. The first value in the set represents the first attribute 
scale, the second value represents the second attribute level, and so on.

Step- 2 Initialization
The research utilized a sample size of 50, where the initial set was produced ran-

domly. Precisely, 50 chromosomes were established at the onset of the algorithm, 
and every chromosome component was allocated a random whole number ranging 
from 1 to 9, inclusive.

Step-3 Fitness function
The efficiency of a chromosome is determined using Eq. 15, denoting the chro-

mosome’s fitness metric. A superior fitness metric signifies a heightened likelihood 
of success and reduced related expenses.

Step -4 Constraint handling
Numerous practical challenges come with constraints, suggesting that a solution 

might not always be viable. Chromosomes formed in GA might sometimes reside in 
an impractical search area, indicating they don’t adhere to the parameters outlined 
in Eq. 15. To ensure that chromosomes conform to the stipulated guidelines, they 
are designed to meet specific constraints. This ensures they remain within bounda-
ries, even after iterative changes across generations. The value range was confined 
between  Smax and  Smin, and the GA settings were tailored to produce chromosomes 
within these acceptable zones.

Step-5 Selection & Reproduction
The present research adopted the roulette-wheel selection method from the given 

options due to its straightforward nature and efficiency.
Step–6 Crossover

Fig. 2  The structure used to represent a chromosome
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A set probability value of 0.8 is employed for chromosome crossover, and the 
single-point crossover technique was chosen for its straightforward approach.

Step–7 Mutation
We opted for the random mutation approach, which has a probability of 0.1. 

This means there is a 10% chance for each chromosome to be substituted with a 
random number ranging between  Smax and  Smin.

Step-8 Stopping criteria
The study adopted a threshold of 100 generations as the termination condition. 

All essential elements and their corresponding values pertinent to the optimiza-
tion issue outlined in Eq. 15 can be found in Table 2.

Execution of GA- In the sections above, we elaborated on all the essential 
components and their associated values required for the GA execution. Algo-
rithm 2 offers a thorough recapitulation of the algorithm’s steps.

Algorithm 2  Steps of Genetic Algorithm employed

Step 1: Train a predictive model to produce success probability
Step 2: Set the values of GA parameters
Step 3: Randomly generate the initial population of chromosomes, says Pop
Step 4: Calculate the success probability Prob(S) of each chromosome S in Pop using Eq. 8
with the help of the predictive model mentioned in Step 1
Step 5: Calculate the normalized cost of each chromosome S in Pop using Eq. 13
Step 6: Calculate efficacy E(S) for each chromosome S in Pop using Eq. 15, and it will serve
as the fitness function f(S) of S
Step 7: Generate child population C by applying selection, crossover, and mutation operators on 

Pop
Step 8: Pop ← C
Step 9: Repeat Steps (4–8) until the stopping criteria are met

Table 2  The values of the GA 
parameters

Parameter name Value

Max. iterations 100
Size of population 50
Total genes 40
Type of gene Integer
Max. gene value 9
Min. gene value 1
Selection method Roulette wheel
Crossover method Single point
Probability of crossover 0.8
Mutation method Random
Probability of mutation 0.1
Fitness function Efficacy (Eq. 15)
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Upon successful execution of Algorithm  2, the chromosome labeled SB, hav-
ing the optimal fitness value, is retained. Leveraging the scale values of each vari-
able encompassed in SB, an optimal solution conducive to project success can be 
derived.

4.5.3  AQSSPM results

This section presents the final results obtained by implementing the GA with Naive 
Bayes classifier (NBC) and the Logistic regression (LR) model. Furthermore, 
the results of NBC and LR correlation analysis are also presented in sub-sequent 
section.

5  Results with GA‑NBC

The results of the GA-NBC for agile-quantum project success probability are pre-
sented in Table  3 while the best fitness order of the identified 19 causes are pre-
sented in Table 4. Initially, the success probability and cost were 53.17% and 0.463, 
respectively. After 100 generations, the optimal solution yielded a cost of 0.403 and 
a success probability of 99.68%, signifying a 46.51% improvement in success prob-
ability and 6% decrease in cost, as given in Table 3. The results from the NBC and 
GA analyses indicate the initial cost of developing quantum software using agile 
was relatively high.

The initial low success rate and high cost in quantum software development 
using agile methodologies can be attributed to various causes faced by the industry 
as given in Appendix A. One of the primary obstacles is the C1 (lack of domain-
specific knowledge), which hampers the efficient application and understanding of 
quantum principles. Furthermore, a noticeable C2 (lack of market interest), com-
bined with C3 (limited academic research), means there is a dearth of foundational 
and advanced knowledge being disseminated and applied. Furthermore, C4 (funding 
sources) are limited, making it challenging to invest in innovative solutions and tools 
that could streamline the development process. The frequent iterations underlying to 
agile methods exacerbate resource consumption, potentially straining already lim-
ited resources. C6 (cross-disciplinary integration difficulties) adds another layer of 
complexity, and developing quantum code at the gate level remains a specialized 
and intricate task.

The agile approach demands the C8 (right tool for the right job), but this is often 
lacking in the agile-quantum realm. The stability, security, and reliability of the 
quantum-agile interface are still under scrutiny, and the dynamics and evolution of 
business models in this nascent field can be unpredictable. Classical agile practices 
might not seamlessly integrate with quantum software systems, raising concerns 
about their compatibility.

Moreover, the quantum software development life cycle is still in its infancy, with 
many organizations grappling with the transition from classical to quantum soft-
ware. This transformation is further hampered by a discernible gap between research 
and practical application. As the industry evolves, C18 (emerging working cultures) 



1 3

Automated Software Engineering (2024) 31:34 Page 19 of 39 34

Ta
bl

e 
3 

 T
he

 in
iti

al
 a

nd
 e

nd
in

g 
fit

ne
ss

 a
ch

ie
ve

d 
by

 th
e 

N
B

C
 m

od
el

 fo
r a

ll 
va

ria
bl

es

St
ag

es
G

en
er

at
io

ns
In

iti
al

 su
cc

es
s p

ro
ba

bi
lit

y 
(%

)
En

di
ng

 su
cc

es
s p

ro
ba

bi
lit

y 
(%

)
C

ha
ng

e 
in

 p
ro

ba
bi

lit
y 

(%
)

In
iti

al
 c

os
t

En
di

ng
 c

os
t

C
ha

ng
e 

in
 c

os
t

N
ai

ve
–b

ay
es

10
0

53
.1

7
99

.6
8

 +
 46

.5
1

0.
46

3
0.

40
3

-6
.0

%



 Automated Software Engineering (2024) 31:34

1 3

34 Page 20 of 39

Ta
bl

e 
4 

 T
he

 b
es

t fi
tn

es
s o

f c
au

se
s o

bt
ai

ne
d 

fro
m

 a
ll 

st
ag

es
 o

f G
A

-N
B

C

M
od

el
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
C

14
C

15
C

16
C

17
C

18
C

19

N
ai

ve
–b

ay
es

7
7

2
5

4
9

2
6

6
8

8
4

6
5

3
2

3
6

2



1 3

Automated Software Engineering (2024) 31:34 Page 21 of 39 34

and the imperative of adhering to business ethics and corporate governance can 
influence the trajectory of agile adoption for quantum software development.

However, as the process matures and these causes are addressed, there is potential 
for a significant increase in success probability, as endorsed by the GA-NBC analy-
sis. The subsequent decrease in cost also suggests that with time and focused efforts, 
the quantum software industry can optimize its agile methodologies, leading to more 
efficient and cost-effective outcomes.

In the realm of agile-quantum software development, several causes could influ-
ence the success probability and cost. The results given in Table 4 suggest the best 
fitness of identified causes to increase the project success probability and to decrease 
the cost. For instance, the cause C6 (Cross-disciplinary integration difficulties) 
holds the most significant impact. This highlights the need of integrating cross-dis-
ciplinary practices within quantum projects to achieve optimal outcomes. Follow-
ing closely are causes C10 (limited resources) and C11 (varying interpretations of 
agile methodologies). The scarcity of specialized tools and expertise underscores the 
importance of resource optimization. Additionally, the interpretations of agile meth-
ods and techniques should be rigorous, emphasizing stable protocols and efficient 
integrations. Together, addressing these primary causes can significantly bolster the 
success rate of agile-quantum projects.

6  Results with logistic regression model

The success probability of agile-quantum projects was also assessed using a GA-LR 
model. Table 5 presented that when the LR model is paired with GA, it considerably 
impacts the project’s outcome. Initially, the project had a success rate of 55.52% 
at a cost of 0.496. But after 100 iterations with the GA-LR, the outcome improved 
dramatically, showing a success rate of 98.99% at a lowered cost of 0.409. This indi-
cates a notable 43.47% improvement in success probability and an 8.70% cost reduc-
tion (Table 5). This indicated that by focusing on the main causes, we can increase 
the agile-quantum project’s success probability by 43.47% while also cutting down 
costs.

Therefore, we determined the best fitness of identified causes to increase the 
project success probability and to decrease the cost by applying GA-LR model 
(Table 6). For instance, C1 (lack of domain specific knowledge) stands out as the 
most critical cause, as the field of quantum software engineering demands special-
ized knowledge for effective project execution. Without a deep understanding of the 
domain, teams can face significant barriers, leading to inefficiencies and increased 
costs. Moreover, C10 (limited resource), agile methodologies, known for their itera-
tive nature, require consistent and specialized resources. A scarcity can hinder the 
smooth progression of the development cycle, potentially escalating costs. C11 (var-
ying interpretations of agile methodologies) is equally crucial. As quantum comput-
ing introduces new paradigms, ensuring a seamless, secure interface with agile prac-
tices becomes paramount. Any vulnerabilities can not only risk the project’s success 
but also inflate costs due to unforeseen issues. Additionally, C2 (lack of market 
interest) plays a pivotal role. For any project to be successful, it needs to align with 
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market demands. If the agile-quantum project doesn’t resonate with market interest, 
its chances of success diminish, and resources invested might not yield the desired 
return. Lastly, C6 (cross-disciplinary integration difficulties) is essential to the suc-
cess of agile-quantum projects, as it enables the harmonious combination of diverse 
expertise and insights. Successfully addressing C6 is key to fostering innovation 
and ensuring the efficacy of agile-quantum initiatives. In essence, prioritizing and 
addressing these causes head-on can significantly enhance the success trajectory of 
agile-quantum projects while ensuring cost-effectiveness.

6.1  Comparison between NBC and LR based best fitness of identified causes

In this section, we compared the results (best fitness of causes) derived from the 
GA-NBC with those of the GA-LR approach to gain a holistic insight into their 
respective efficacies.

Variable Best Fitness Order—Our proposed framework for gauging the success 
probability in agile-quantum projects presents two key benefits. Firstly, it suggests 
an ideal cost allocation across different causes to amplify the success probability of 
agile-quantum project. Secondly, it offers insights into the comparative significance 
of the identified causes.

Table 3 presents the initial and ending cost to fix the identified causes necessary 
to approach a near-perfect project success rate. The results suggests that some causes 
might not be pivotal, as elevated success percentages can be maintained even with 
reduced cost allocations. For instance, cause C7 (rapid pace of innovation) need 2 
units to attain a success probability of 98.68% using the GA-NBC. Conversely, C6 
(cross-disciplinary integration difficulties) requires an allocation of 9 units, indicat-
ing a more substantial financial and effort commitment to optimize the probability 
of success in the agile-quantum project (see Table 4).

Further assessments employing GA-LR learned the financial allocation per cause 
critical for enhancing the success probability of agile-quantum project. Table  5 
reveals that certain causes employ minimal influence on success, sustaining high 
success percentages even with minimum allocated funds and effort. For instance, 
C3 (limited academic research) demands only a 2-unit allocation, while C1 (lack 
of domain-specific knowledge), C10 (limited resources), and C11 (varying interpre-
tations of agile methodologies) each necessitate 8 units. Based on these findings, 
emphasizing C1, C10, and C11 while limiting the budget for C3 ensures an elevated 
success probability i.e., 99.29%.

By analyzing the relationship between each cause financial allocation and the 
project’s success probability, we can order the causes based on their cost-effective-
ness and overall relevance. Employing results from the GA-NBC (refer to Table 4) 
and GA-LR (see Table 6), we allocate rankings to each cause and the determined 
ranks are given in Table 7.

For example, C6 (cross-disciplinary integration difficulties), with an allocation of 
9 units in the NBC analysis and 7 units in the LR analysis, holds the first and second 
ranks, respectively, highlighting its paramount importance. Using a similar meth-
odology for all causes, we compile a comprehensive ranking (displayed in Table 7), 
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assisting professionals in emphasizing the pivotal cause for agile-quantum projects, 
thereby substantially improving the project success probability.

6.2  NBC and LR correlation analysis

We undertook a non-parametric statistical analysis to identify the similarities and 
differences between the optimal fitness rankings derived from the Naive Bayes Clas-
sifier (NBC) and Logistic Regression (LR) (Failed 2004; Winter et al. 2016). Sev-
eral relative research studies have adopted this non-parametric statistical analysis 
approach (Khan et al. 2017; Akbar et al. 2022; Khan and Akbar 2020). For a uni-
form metric, we employed Spearman’s Rank-Order Correlation Coefficient, organ-
izing each factor associated with the agile-quantum project in accordance with the 
supreme fitness values yielded by both NBC and LR (see Table 7). This correlation 
coefficient gauges the linear association between factors, with potential values span-
ning from + 1 to − 1. A coefficient of + 1 signifies an absolute linear correlation.

A Spearman’s Rank-order correlation coefficient value was (rs = 0.955, 
p = 0.000), as presented in Table 8. This high correlation value underscores a strong 
association between the rankings derived from Naive Bayes Classifier (NBC) and 
Logistic Regression (LR) methodologies. This remarkable agreement implies that 
practitioners can utilize either of these techniques to pinpoint the significant factors 
(causes) affecting agile-quantum projects.

Although there is significant alignment, minor variations in rankings attributed 
to specific factors by NBC and LR were detected. For example, C1 (lack of domain-
specific knowledge) secured the 3rd rank using NBC but ascended to the top rank 
with LR. Similarly, C2 (lack of market interest) and C4 (funding resources) showed 
slight shifts in rankings (as seen in Table 8). These nuanced differences hint at a 
measure of variation in the ranking system between the two techniques, a factor to 
bear in mind when discerning pivotal aspects of agile-quantum projects.

Beyond the Spearman’s Rank-order correlation, an independent t-test was applied 
to evaluate the average rank differences generated by both methods (see Table 9). 
The Levene’s Test outcome was non-significant (p = 0.967 > 0.05), confirming uni-
form variances, and our analysis proceeded under this assumption. The t-test results 
(t = 1.195, p = 0.240 > 0.05) revealed no significant differences between the ranks 
produced by both methodologies. This uniformity confirms that, for determining 

Table 8  Correlation between the ranking of NBC and LR

**. Correlation is significant at the 0.01 level (2-tailed)

LR_Ranking NBC_Ranking

Spearman’s rho LR_ranking Correlation Coefficient 1.000 0.955**

Sig. (2-tailed) – 0.000
N 19 19

NBC_ranking Correlation Coefficient 0.955** 1.000
Sig. (2-tailed) 0.000
N 19 19
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variable importance, practitioners can confidently adopt either NBC or LR, opti-
mizing resource distribution and amplifying the success prospects of agile-quantum 
projects.

7  Summary of results

Now we present the summary of the developed AQSSPM model results in Sect. 5.1 
and the core implications of this research project are reported in Sect. 5.2.

7.1  AQSSPM

The objective of this research project was to explore the challenges, causes behind 
these challenges and the most effective practices to address them. Finally, based on 
the identified causes, develop the AQSSPM model which could evaluate the success 
probability of agile-quantum projects, serving as a roadmap to industry practitioners 
for informed decision-making. Central to this model’s development is a thorough 
examination of key causes, validated by industry experts through structured ques-
tionnaire study. To develop AQSSPM, we used the GA, NBC and LR approaches, 
which analyze the causes in terms of financial allocation, and cost (team composi-
tion, monetary pledges, and other essential assets). Following this, our study gives 
deep insights of the core causes need to be addressed on priority basis to increase 
the agile-quantum project success and to minimize the cost.

The developed AQSSPM is presented in Fig. 3, that shows that using GA along-
side NBC, we observed the success probability of an agile-quantum project soaring 
from an initial 53.17% to a remarkable 99.68% over its lifecycle, while concurrently 
reducing costs from 0.463 to 0.403%. On other hand the GA with LR, the success 
rate leaped from 55.52 to 98.99%, coupled with a cost saving, as costs declined from 
0.496 to 0.409% after 100 iterations.

Enhancing the power of GA in combination with both NBC and LR granted us 
the ability to perceive the fundamental determinants behind the success of agile-
quantum projects. This evaluation gives a body of knowledge to practitioners with a 
solid roadmap, underscoring the significance of domain specific knowledge, proper 
cross-disciplinary integration, availability of resources, adaptability to technologi-
cal paradigm shifting, and increase market interest. Acknowledging and ranking 
these causes can revolutionize project execution, setting the stage for agile-quantum 
endeavors that are successful and financially practical. In summation, the result of 
this study serves the industry practitioners and researchers with the knowledge and 
tool required to amplify the success probability of their agile-quantum projects.

7.2  Academic implications

The research presented in this paper has substantial academic implications, par-
ticularly for the growing field of QSE. By investigating the suitability of tradi-
tional agile methodologies within quantum software development, this study 
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contributes to the theoretical foundation of QSE, an area that is still in its infancy. 
The paper extends the knowledge base by identifying challenges specific to quan-
tum software development, their root causes, and offering best practices to over-
come them, thus filling a gap in the existing literature.

The introduction of a predictive model based on genetic algorithms represents 
an innovative approach to address decision-making in quantum software projects. 
This model, which employs nature-inspired algorithms to evaluate project success 
probability, not only adds a new tool for academic research but also sets the stage for 
future studies to refine and validate predictive models in this domain. It encourages 
further empirical research to explore the effectiveness of agile practices in quantum 
software development, potentially leading to the development of new frameworks 
and methodologies that are specifically designed for the quantum realm.

Moreover, the interdisciplinary nature of this study, bridging software engineer-
ing with QC, illustrates the importance of cross-disciplinary research in addressing 
complex technological challenges. It provides a template for how agile methodolo-
gies can be adapted to fit new and emerging fields, offering a blueprint that can be 
studied and replicated across different domains of technology research.

Fig. 3  Agile-quantum project success probability prediction model
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Based on this study, future research could be conducted to integrate traditional 
software engineering methodologies, tools, and techniques within the quantum soft-
ware domain. This direction would be critical, considering that the current infra-
structure for QSE is emerging and largely unexplored. Subsequent studies could 
evaluate how existing software engineering practices could be adapted for quantum 
computing, thus maximizing the concept of hybridization between conventional and 
quantum software development. This integration is essential for establishing a robust 
quantum software engineering ecosystem that can support the rapid evolution and 
unique demands of quantum computing technologies.

7.3  Industrial implications

For the industry, the implications of this research are equally significant. The transi-
tion from traditional computing to quantum computing represents a paradigm shift 
in how computational tasks are approached and executed. By offering a detailed 
analysis of the challenges and best practices for adopting agile methods in quantum 
software development, the paper provides industry professionals with a framework 
to navigate this transition effectively.

The predictive model introduced in this paper serves as a practical tool for organ-
izations considering the integration of existing agile practices into their quantum 
computing projects. It enables them to make informed decisions about the potential 
costs and outcomes of their projects, thereby reducing uncertainty and increasing 
the likelihood of successful implementation.

Additionally, by highlighting the need for quantum-aware tools and technologies, 
the research underscores the market demand for specialized solutions that organize 
to the unique requirements of quantum software development. This could stimulate 
investment and innovation in the development of such tools, fostering a supportive 
ecosystem for the growth of the quantum software industry.

Overall, the findings from this research provide valuable insights that can guide 
the development of quantum software, ensuring that the industry can keep pace with 
technological advancements while maintaining software quality, sustainability, and 
ethical standards.

8  Threats to validity

Various potential threats could affect the validity of the study findings. We have 
examined potential threats across the four essential categories of validity threats: 
internal validity, external validity, construct validity, and conclusion validity, as 
defined by Wohlin et al. (2012).

8.1  Internal validity threats

Internal validity refers to the extent to which particular factors affect the results 
and findings of the collected data. The internal validity of our study may be 
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compromised by several factors based on the survey design and the subjectivity 
of responses. The use of a closed-ended questionnaire, while beneficial for stand-
ardizing responses, may limit the depth of insight into the complex integration of 
traditional and quantum software engineering practices. The 9-point rating scale 
assumes a linear perception of the attributes (variables) being measured, which may 
not accurately capture the detailed opinions of agile and quantum computing practi-
tioners. Additionally, the study validity can be compromised if participant responses 
are influenced by their individual levels of familiarity and hands-on experience with 
quantum software development, potentially introducing biases that could skew the 
results. Moreover, the misinterpretation of survey questions by the participants could 
jeopardize the accuracy of the data collected. To minimize these threats, we piloted 
our survey instrument, refining it with feedback from experts in empirical software 
engineering to enhance its reliability, understandability, structure, and validity.

Furthermore, the potential biases stemming from the use of genetic algorithm, 
NBC, and LG—such as premature convergence, feature independence assumption, 
and assumption of linearity—are primarily threats to the internal validity of the 
study findings. These biases can influence the causal relationships and the accuracy 
of the model predictions due to selection bias, and assumptions about data char-
acteristics that do not hold true. However, we collected data from 104 participants 
across 16 different countries, consisting of 12 professional roles and project direc-
tions which significantly enhances the diversity and representativeness of the study 
sample. This wide range of data helps mitigate biases related to sample selection 
and algorithm assumptions by ensuring a broad spectrum of insights and experi-
ences. It contributes to the model generalizability and reduces the risk of overfitting.

8.2  External validity threats

External validity concerns the extent to which a study results can be generalized 
beyond the particular sample, setting, or conditions examined. This involves consider-
ing how the study findings are applicable to other groups, environments, or scenarios 
not directly investigated in the research. The external validity of our study is based 
on the representativeness of our participant pool. With data collected from 104 agile 
and quantum computing practitioners, there is a risk that our sample may not be suf-
ficiently diverse or large enough to generalize findings across the entire field of quan-
tum software development. Despite efforts to ensure a diverse population, the possibil-
ity that our sample is not fully representative of the global community or all expertise 
levels in quantum computing and agile methodologies remains a threat to the validity 
of our study findings. Furthermore, the rapid evolution of quantum computing tech-
nology may mean that our findings have a limited shelf-life, potentially reducing their 
applicability as the field advances. Therefore, to mitigate the stated threats, our survey 
reached participants from 16 countries across four continents, broadening the cultural 
and geographical scope of our study. Our sample size is on par with similar studies in 
the growing field of quantum software development (Khan et al. 2023), supporting the 
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generalizability of our results. The international reach of our survey supports a global 
perspective, potentially reflecting wider trends in quantum computing practices.

Additionally, the broader applicability of the proposed model presents a significant 
threat to the external validity of the study findings. Its practical use in real-world pro-
jects could be affected by certain factors which were not directly considered on this 
study, such as existing (classical) software development practices and the software prac-
titioners willingness to adopt new technologies. To address this issue and improve the 
study external validity, future research should aim at conducting case studies or pilot 
implementations of the model in real-world quantum software development projects.

8.3  Construct validity threats

Construct validity addresses the degree to which the survey questions accurately 
measure the concepts they are intended to assess. In our study, the construct validity 
is dependent upon how well the survey questionnaire design captures the study aim 
of integrating traditional agile practices for developing a quantum software system. 
There is a possibility that the survey items might not fully encapsulate the challenges 
of bringing agile practices into a quantum software environment, which could result 
in an incomplete understanding of the targeted problem. To ensure that the constructs 
are valid and the survey questions are well-calibrated, we incorporated iterative feed-
back from a diverse range of experts in the field to fine-tune the survey items, thereby 
enhancing the relevance and accuracy of the constructs being measured.

8.4  Conclusion validity threats

Conclusion Validity refers to the level of credibility or legitimacy of the study con-
clusions drawn from the overall study results. The conclusion validity of our study is 
dependent on the questionnaire design, which was based on previous studies and lit-
erature, there is a risk that certain pertinent variables may have been overlooked, which 
could lead to incorrect inferences. The use of a 9-point scale and the subjective nature 
of the responses pose a risk of misclassification or overestimation of the strength of 
associations. Moreover, with a sample size of 104 participants, our study might not 
have the power to detect subtle but meaningful differences or trends, which could lead 
to either Type I or Type II errors in our conclusions. To minimize the conclusion valid-
ity threats, the survey instrument was thoroughly reviewed by subject matter experts 
for clarity and coherence and was structured in alignment with established empirical 
software engineering study designs (Khan et al. 2017; Akbar et al. 2023).

9  Related work

We now summarized the related work focusing on quantum software development 
with respect to software processes (Sect.  5.1) and probabilistic models developed 
using the genetic-based algorithm (Sect. 5.2).
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9.1  Quantum software development

Quantum software development processes involve designing, implementing, 
and testing software that runs on QC platforms. This process requires an under-
standing of quantum algorithms, quantum logic gates, and the unique behavior 
of quantum bits (qubits). Based on the given characteristics of QC, its challeng-
ing to develop quantum-specific software systems using the traditional processes. 
Few studies have been conducted that focused on defining quantum software pro-
cesses, methods, and frameworks.

For instance, González(2020) described that in the realm of QC, hardware 
advancements, characterized by the rapid increase in qubit numbers, maximize 
the need for the core approaches used to execute the sophisticated algorithms and 
develop commercial systems. However, programming and engineering method-
ologies have not kept pace, lacking the specific approaches required for the novel 
challenges and risks inherent to quantum technology. This paper responds to the 
need for advanced project management strategies in quantum software develop-
ment, advocating for a hybrid framework that orchestrates traditional agile meth-
ods with the unique aspects of quantum programming. This proposed framework 
aims to organize the complexities of managing projects that blend classical and 
quantum development, ensuring readiness for the future landscape of software 
engineering in the quantum era.

Khan et al. (2022) presented an idea paper and discussed that in realm of HOC 
and QC, where resource usage is costly, software development demands a nearly 
flawless product before execution. This paper proposes an agile development 
methodology tailored for quantum software, where initial stages use interactive, 
low-cost computations for conceptualization and experimentation. As the project 
matures, more resource-intensive tasks like algorithm optimization are batch-pro-
cessed, integrating iterative development with the resource-conscious demands of 
QC.

Weder et al. (2022) reported that the complexity of developing quantum software 
applications requires multidisciplinary expertise, which boosts the emergence of 
quantum software engineering as a field focused on the application of systematic 
software principles. Hybrid quantum applications, integrating quantum and classical 
components, need life cycles that address both, plus the orchestration of execution 
and data exchange. This study introduces a comprehensive quantum software devel-
opment life cycle, examining phases, tools, and the integration of different software 
artifacts life cycles. This article outlines hybrid quantum application fundamentals, 
presents the proposed life cycle, discusses assumptions and limitations, reviews 
related work, and concludes with future perspectives.

Khan et al. (2023) explore the organization of agile development practices within 
quantum software development through encapsulating the opinions of practition-
ers from 10 countries. Findings suggest agile practices are applicable for develop-
ing quantum software but also uncover unique challenges in integrating these agile 
approaches effectively. The research offers insights for adapting agile practices to the 
specific demands of quantum software engineering, paving the way for the advance-
ment of future quantum software systems and applications.



 Automated Software Engineering (2024) 31:34

1 3

34 Page 34 of 39

9.2  Genetic algorithm‑based probabilistic models

A genetic algorithm is a search heuristic that uses natural selection and genetic pro-
cesses such as mutation and crossover, evolving a population of solutions to opti-
mize results. It selects the fittest individuals through a probabilistic fitness function, 
combining directed search with randomness to efficiently explore complex solution 
spaces. Various studies have used it to develop cost-based probabilistic models to 
determine the probable project outcomes.

For instance, Shameem et al. (2023) conducted a study to address the complexity 
and risks associated with implementing agile methods across globally distributed 
software development teams. By leveraging a genetic algorithm, the authors have 
presented a predictive model that assesses the probability of agile project success 
while considering cost factors. The effectiveness of the model is validated through 
its ability to anticipate project outcomes by analyzing critical agile project features 
(factors). It used established prediction techniques, providing insights into the pro-
ject features that GSD teams should prioritize to enhance the success rates of agile 
implementations without incurring unnecessary costs.

Alsghaier (2020) presents an innovative approach to software fault prediction 
by combining the genetic algorithm with the support vector machine (SVM) clas-
sifier, enhanced by particle swarm optimization. This methodology aids developers 
in identifying faulty classes or modules early in the software development lifecycle 
and directs attention to areas that may require additional refactoring or testing, par-
ticularly in mission-critical systems like aircraft or medical devices. Applied to both 
large-scale NASA datasets and smaller Java open-source projects, the integrated 
approach showed improved performance in predicting software faults across diverse 
datasets, indicating a significant step forward in fault detection techniques and over-
coming limitations found in previous studies.

Bilgaiyan et  al. (2020) address the challenge of effort estimation in agile soft-
ware development, a significant perspective that can influence the success of a pro-
ject. While agile methods are favored for their adaptability and efficiency over tra-
ditional models like waterfall and spiral, they introduce complexities in estimating 
costs and efforts due to their dynamic nature. Traditional estimation techniques such 
as analogy, expert opinion, and disaggregation lack a solid mathematical founda-
tion. To bridge this gap, the authors propose an innovative approach using evolu-
tionary algorithms, specifically a chaotically modified genetic algorithm (CMGA). 
This approach is based on mathematical morphology and utilizes a hybrid-artificial 
neuron model, the Dilation-Erosion perceptron (DEP), derived from complete lat-
tice theory (CLT). The DEP-CMGA model was calibrated using data from 21 ASD 
projects, and its accuracy was assessed using four statistical metrics. The perfor-
mance of this model was also compared with the best existing models in the litera-
ture, highlighting its potential for improving effort estimation in agile environments.

Lester et al. (2020) investigate the concept of design rationale (DR), a repository 
of decisions and justifications made during the design process, beneficial for guid-
ing future designs and maintaining consistency. Capturing DR is typically avoided 
due to its perceived cost and effort, leading to an implicit presence in various project 
documents. The research focuses on automating DR extraction through text mining, 
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using machine learning to classify document sentences. It highlights the importance 
of feature selection in text mining and compares two evolutionary algorithms—Ant 
Colony Optimization (ACO) and Genetic Algorithms (GAs)—for optimizing this 
selection. The study assesses the effectiveness of these algorithms using the F-1 
measure, aiming to determine if and how evolutionary algorithms can enhance the 
identification of DR from text documents.

10  Summary

Our work presents a novel contribution to the field of quantum software develop-
ment by presenting a decision-making cost probability prediction model for using 
the traditional agile approaches to develop quantum software. Where previous stud-
ies have established the need for new frameworks and methodologies, such as the 
quantum agile development framework and agile methodologies tailored for quan-
tum software, our research goes a step further by providing a detailed automated 
cost prediction framework for adopting traditional agile practices specifically for 
quantum software systems.

In the domain of using the genetic algorithm, our work stands out by applying 
these to develop the mentioned proposed cost prediction model, which presents cost 
prediction and best fitness of a set of features (causes). While other studies have suc-
cessfully used genetic algorithms for predictive modeling and effort estimation in 
agile software development, we innovate by tailoring these algorithms to address the 
complexities and uncertainties of quantum software projects. This significant pivot 
from conventional software to quantum software represents a rise in applying estab-
lished traditional computational techniques to an emerging field, potentially setting 
a benchmark for future research and development in quantum software engineering. 
Our model not only predicts project cost, best fitness of the features (causes) but also 
contributes to the understanding of hybrid quantum software development, thus pro-
viding a comprehensive toolset for developers and project managers in this cutting-
edge domain.

11  Conclusion and future direction

Our study explored Quantum Software Engineering, a field that blends the estab-
lished practices of classical software engineering with the emerging landscape of 
quantum computing. This integration is critical in steering architects and devel-
opers towards the creation of innovative quantum software applications, thereby 
advancing the field of quantum computing. The primary aim of our research 
was to identify key challenges and their causes in agile-based quantum software 
development projects and to develop a robust Agile-Quantum Software Project 
Success Prediction Model (AQSSPM). For this purpose, we conducted a survey 
to gather insights from practitioners in the field. Additionally, we jointly imple-
mented genetic algorithms (GA) with Naive-Bayes Classifiers (NBC), and Logis-
tic Regression (LR) to estimate the success probability of agile-quantum software 
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projects. We also evaluated the relevance of the identified causes of the chal-
lenges in relation to their impact on the success of these projects.

Our results were quite revealing. We found that integrating GA with NBC 
significantly improved the probability of project success, rising from an initial 
53.17% to an impressive 99.68%, and also reduced costs from 0.463 to 0.403%. In 
a similar vein, when GA was paired with LR, there was a notable increase in the 
success rate, from 55.52 to 98.99%, with a corresponding reduction in costs from 
0.496 to 0.409%. Furthermore, we identified the most critical factors (causes) for 
the success of agile-quantum projects, which included domain-specific knowl-
edge, effective cross-disciplinary integration, availability of resources, adaptabil-
ity to technological paradigm shifts, and growing market interest. These findings 
are expected to provide the research and practitioner communities with robust 
analytical tools and strategic insights, significantly enhancing the success rates of 
agile-quantum projects.

Looking towards the future, we plan to test the proposed model (AQSSPM) 
across various quantum computing projects to evaluate its adaptability and 
robustness. Moreover, based on the study findings, we will enhance the model 
with additional predictive algorithms to improve its accuracy. Additionally, 
we will conduct longitudinal studies to monitor the AQSSPM’s long-term per-
formance in the fast-evolving field of quantum computing would be beneficial. 
Finally, we plan to develop and incorporate a structured set of guidelines spe-
cifically designed for practitioners applying the proposed model in their pro-
jects. These guidelines will include practical steps, best practices, and illustrative 
examples, enhancing the practical value of the model and making its accessible 
and actionable for real-world implementation.
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