
Vol.:(0123456789)

Automated Software Engineering (2024) 31:37
https://doi.org/10.1007/s10515-024-00428-x

1 3

OneLog: towards end‑to‑end software log anomaly
detection

Shayan Hashemi1 · Mika Mäntylä2

Received: 30 October 2022 / Accepted: 24 February 2024
© The Author(s) 2024

Abstract
With the growth of online services, IoT devices, and DevOps-oriented software
development, software log anomaly detection is becoming increasingly important.
Prior works mainly follow a traditional four-staged architecture (Preprocessor,
Parser, Vectorizer, and Classifier). This paper proposes OneLog, which utilizes a
single deep neural network instead of multiple separate components. OneLog har-
nesses convolutional neural network (CNN) at the character level to take digits,
numbers, and punctuations, which were removed in prior works, into account along-
side the main natural language text. We evaluate our approach in six message- and
sequence-based data sets: HDFS, Hadoop, BGL, Thunderbird, Spirit, and Liberty.
We experiment with Onelog with single-, multi-, and cross-project setups. Onelog
offers state-of-the-art performance in our datasets. Onelog can utilize multi-project
datasets simultaneously during training, which suggests our model can generalize
between datasets. Multi-project training also improves Onelog performance making
it ideal when limited training data is available for an individual project. We also
found that cross-project anomaly detection is possible with a single project pair
(Liberty and Spirit). Analysis of model internals shows that one log has multiple
modes of detecting anomalies and that the model learns manually validated parsing
rules for the log messages. We conclude that character-based CNNs are a promising
approach toward end-to-end learning in log anomaly detection. They offer good per-
formance and generalization over multiple datasets. We will make our scripts pub-
licly available upon the acceptance of this paper.

Keywords Anomaly detection · Log analysis · Deep learning · Character-based
classification · End-to-end learning · Software operations

 * Shayan Hashemi
 shayan.hashemi@oulu.fi

 Mika Mäntylä
 mika.mantyla@helsinki.fi

1 M3S, ITEE, University of Oulu, Oulu, Finland
2 Department of Computer Science, University of Helsinki, Helsinki, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00428-x&domain=pdf

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 2 of 36

1 Introduction

Software logs are semi-structured text produced by the software during runtime. A
log file includes numerous lines, where each one is comprised of two parts. The
structured part, known as header or metadata, consists of information such as
timestamp, process ID, thread ID, logging level, and logger component, while the
unstructured part, known as message or content, is free from text which developers
use to announce the occurrence of an event or report an internal system state.

Recently, deep learning has been used widely to achieve state-of-the-art perfor-
mance in log anomaly detection (Du et al. 2017; Nedelkoski et al. 2020; Zhang et al.
2019; Meng et al. 2019; Lu et al. 2018; Hashemi and Mäntylä 2022). Most previous
works rely on a four-stage architecture (preprocessor, parser, vectorizer, and clas-
sifier) to perform their analysis while using deep neural networks only in the final
stage (classifier). In this paper, we propose an alternative where the log parser, vec-
torizer, and classifier are merged into a single deep neural network, see Fig. 1. Merg-
ing all components into a single deep neural network takes the log-analysis field one
step closer toward end-to-end learning.

Our work is motivated by the potential benefits of end-to-end learning that has
demonstrated good accuracy in many different tasks like playing board games (Sil-
ver et al. 2016), language translation (Shen et al. 2015), and autonomous driving
(Bojarski et al. 2016). End-to-end learning refers to training a single system, usu-
ally a deep neural network, to perform the tasks from the raw data to the end results
without independent modules or sub-goals. Glasmachers (2017) explains, this meth-
odology seeks to minimize human intervention by relying solely on data. Potential
benefits of end-to-end learning in log anomaly detection are:

• Automatic Feature and Task Learning: For instance, while log messaged can
be parsed in separate module, the end-to-end approach trusts for the system to
autonomously learn log parsing as part of the overarching task, such as anomaly
detection, if it proves advantageous.

• Less Engineering Effort: In previous architecture, engineers needed to be experts
and optimize three components compared to one.

• Better Accuracy: As explained by Wu et al. (2021), machine-learning systems
consist of multiple components that are developed and trained separately may
fail to improve the overall performance while each component improves indi-
vidually.

Fig. 1 An overall view of the OneLog idea

1 3

Automated Software Engineering (2024) 31:37 Page 3 of 36 37

• Cross-project learning: End-to-end learning makes using data across various pro-
jects possible

As our approach is end-to-end, the input is a raw text message or sequence of one or
multiple events, while the output is a binary integer indicating sequence anomalous-
ness. Since the input is in raw text, processing could happen at multiple language
levels. Nonetheless, this paper proposes a character-based approach rather than a
word-based or subword-based one. We chose this because:

1. Words take different forms in logs, e.g., the word "request" may be abbreviated
to "req" or "block" to "blk"

2. Processing numerical values is almost impossible in word- and subword-based
approaches

3. Punctuation marks information is preserved
4. Character-based dictionary is significantly smaller than word-based vocabulary.

Hence, we apply a character-based hierarchical convolutional neural network pro-
posed by Zhang et al. (2015) to detect anomalies in software logs.

Moreover, we take it one step further and train multiple datasets together to
improve the performance of each individual. Furthermore, we do not stop there and
attempt to open the black box of the hierarchical neural network to find an interpre-
tation for our results. In the interest of ensuring transparency, the source code for our
experiments has been made publicly accessible via GitHub.1

All in all, OneLog’s main contributions could be recapitulated within the follow-
ing research questions:

RQ 1. How accurate is OneLog in software log anomaly detection among datasets
of different types (sequence/message based) and domains? OneLog proves
state-of-the-art performance among multiple datasets of different types and
domains (see Sect. 3.2).

RQ 2. Does accuracy improve when combining datasets of the same type and sim-
ilar domains? OneLog shows increasing accuracy on the Hadoop dataset
when it is combined with the HDFS dataset (see Sect. 3.3). OneLog dem-
onstrates improvements in all datasets when shrunk training sets are com-
bined for training (see Sect. 3.4).

RQ 3. Is cross-project anomaly detection possible with OneLog? We cannot be
entirely sure about cross-project anomaly detection as we acquired mixed
results in our experiments. However, we found very high accuracies when
the datasets were similar enough (see Sect. 3.5).

1 https://github.com/M3SOulu/OneLogReplicationPackage.

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 4 of 36

RQ 4. Is there an interpretation of how OneLog achieves near-perfect state-of-
the-art results among all datasets? Though the black-box nature of neural
networks is uninterpretable for humans in the first place, we strived to uti-
lize various methods to obtain insights into our model. We found evidence
that internally the neural network learns to operate similarly to previous
studies that used separate components to parse, vectorize, and classify log
sequences and messages (see Sect. 4).

This paper is structured as follows. Next, in Sect. 2, we explain our methodology
and datasets used in our experiments. Section 3 presents our experimental results in
various anomaly detection setups. In Sect. 4 we continue with experiments and also
add explorations on the internal behavior of our model. Section 5 compares our work
against the most relevant related works while Sect. 6 presents the limitations of this
work. Finally, Sect. 8 concludes this paper.

2 Methodology

This section explains the idea of OneLog, especially the hierarchical convolutional neu-
ral network. Before delving into the model, it is necessary to specify the datasets, their
types, and their preprocessing steps.

2.1 Datasets

During our study, we faced two different types of datasets. The first is datasets, where
each logline is labeled individually. Moreover, these datasets are similar to other one-
to-one NLP tasks, such as spam detection or sentiment analysis. These datasets are usu-
ally cumulative logs of an extensive system such as operating systems or supercomput-
ers. So, we named this type of dataset Event-based.

The second type, which we call Sequence-based datasets, are datasets, where a
sequence comprised of multiple loglines is labeled instead of individual lines. Addi-
tionally, while different sequences may contain loglines of the same event types, each
logline could only belong to one sequence. For instance, multiple sequences may begin
with loglines of the same format (for example, “User connected from [ip-address]”)
while an individual logline (for example, line 28 for the file “backend.log”) may only
belong to only one sequence. These datasets usually represent processes or behaviors.

Throughout the rest of this section, we introduce the datasets used in this paper; see
Table 1. Later, we will explain using both types in OneLog with no model modification
and even training datasets together for a performance boost.

2.1.1 Event‑based datasets

2.1.1.1 BGL: The Blue Gene/L (BGL) dataset (Oliner and Stearley 2007) was gath-
ered from BlueGene/L supercomputer with 131,072 CPUs and 32,768 GB of RAM

1 3

Automated Software Engineering (2024) 31:37 Page 5 of 36 37

at Lawrence Livermore National Labs (LLNL) in Livermore, California. The dataset
contains a total number of 4,747,963 loglines. However, many samples are dupli-
cated as log events tend to repeat. Removing redundant samples not only reduces the
training time and computational cost but also strengthens evaluations’ authenticity,
as some duplicated samples that may find their way into both the train and test set
during the splitting process are preemptively removed. After removing redundan-
cies, the dataset contains 358,356 normal and 49,001 anomalous samples.

2.1.1.2 Thunderbird: Containing more than 211,212,192 lines and taking up
almost 30 GB of space, Thunderbird dataset (Oliner and Stearley 2007) is one of the
most extensive public log datasets. The Thunderbird dataset is collected from the
Thunderbird supercomputer system at Sandia National Labs (SNL) located in Albu-
querque, with 9,024 processors and 27,072 GB of memory. However, the same as
the BGL dataset, Thunderbird includes many duplicated samples. So, to strengthen
evaluations, we dismiss the redundant samples. The dataset includes 15,512,829
normal and 24,617 anomalous samples after removing redundancies.

2.1.1.3 Liberty: The Liberty supercomputer, with 512 processors and 944 GB
of memory, is located at Sandia National Labs (SNL) in Albuquerque. The data-
set (Oliner and Stearley 2007) contains 265,569,231 lines, taking almost 30 GB of
space. Not being an exception from others, the dataset is not divine from duplica-
tion. After removing redundancies, the dataset remained with 6,453,814 normal and
5,114 anomalous samples.

2.1.1.4 Spirit: The Spirit supercomputer at Sandia National Labs (SNL) located in
Albuquerque is equipped with 1028 processors and 1024 GB of memory. Although
it was ranked 202 among the best supercomputers in the world between 2004 and
2006, it is relatively weak compared to today’s standard. The Spirit dataset (Oliner
and Stearley 2007) is collected from the supercomputer containing 272,298,969
lines of logs taking up 37 GB of space. After redundancy removal, however, the
dataset contains 90,200 normal and 13,644,385 anomalous samples.

2.1.2 Sequence‑based datasets

2.1.2.1 HDFS: Hadoop Distributed File System (HDFS) is a fault-tolerant and low-
cost distributed file system established by Hadoop. The dataset is regarded as a

Table 1 Datasets explanation

Dataset Type Volume Log Lines Samples

Normal Anomaly Total Ratio

HDFS Sequence 1.48 GB 11,175,629 558,223 16,838 575,061 0.0301
Hadoop Sequence 45.7 MB 781,586 610 15,345 15,955 25.1557
BGL Event 708 MB 4,747,963 309,355 49,001 358,356 0.1583
Thunderbird Event 29.6 GB 211,212,192 15,512,829 24,617 15,537,446 0.0016
Spirit Event 37.3 GB 272,298,969 13,644,385 90,200 13,734,585 0.0066
Liberty Event 29.5 GB 265,569,231 6,453,814 5,114 6,458,928 0.0008

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 6 of 36

benchmark in the log anomaly detection domain. It was constructed via map-reduce
jobs with more than 200 Amazon EC2 nodes, and it was annotated by Hadoop
domain specialists (Xu et al. 2009). Each log message’s blockid has been used to
produce sequences. We retrieve 16,838 anomaly and 558,223 non-anomaly samples
after the preprocessing.

2.1.2.2 Hadoop: Hadoop is a big data processing technology that enables dis-
tributed data processing. The dataset, introduced by Lin et al. (2016), comprises
a five-machine Hadoop cluster log, each with an Intel(R) Core(TM) i7-3770 CPU
and 16GB of RAM. Furthermore, since our algorithm only identifies anomalies, not
their categories, we first combine all types of anomalies into a single class. Then, as
many sequences in the dataset are excessively lengthy, we use the sliding window
approach (window size of 64) to produce subsequences. As the merging resulted in
a higher number of anomaly samples, we inverse the labels (replace zeros with ones
and ones with zeros) to maintain the nature of the anomaly detection task where the
minority is labeled as positive. Thereafter, the dataset includes 610 anomaly and
15,345 non-anomaly samples. On the other hand, when the dataset couples with
other datasets in training, we do not inverse the labels as other datasets compensate
for the inversed imbalances of Hadoop.

2.2 Preprocessing

Since the Hierarchical CNN model processes input data in sequence form (a matrix
of characters where each row represents an event, so the entire matrix represents a
sequence of messages), log input should be transformed into sequences before they
are passed to the model, similar to the work by Du et al. (2017). As mentioned previ-
ously, in Table 1, HDFS and Hadoop’s sequences are produced by a particular prop-
erty, naming block

i
d in HDFS and files in Hadoop. However, BGL, Thunderbird,

Spirit, and Liberty are event-based datasets which makes sequences meaningless for
them. So, we produce single-event sequences (Each event is made into a sequence
that contains only one event). After sequence production, environmental biases in
the dataset, such as IP addresses and integer sections of block IDs, are removed to
avoid creating any bias in the model. Then, each sequence is converted to a matrix
of integer numbers according to a character table.

2.3 Hierarchical CNN model

As previously stated, OneLog treats the log anomaly detection problem as a
sequence of the text classification problem. Moreover, it takes its input in raw text
format (a matrix of characters) and learns to classify anomaly sequences during the
training. Thus, since the characters are encoded into integer numbers, the entire task
is to classify a matrix of integers.

Accordingly, the model is divided into three sections in our network. The first one
embeds input characters, the second processes embedded characters to form event
vectors, and the third processes the embedded vectors and classifies the entry (the
character matrix), see Fig. 2.

1 3

Automated Software Engineering (2024) 31:37 Page 7 of 36 37

In more detail, the input is a sequence of log events, while each log event is a
sequence of characters (the leftmost rectangle in the figure). Hence, assuming that B
is the batch size used in our model training, L

s
 is the maximum number of log events

in a sequence, and L
l
 is the maximum number of characters in a log event (line),

the input size is (B,L
s
, L

l
) . At first, OneLog embeds all characters into an arbitrary

vector space with the dimension of C
e
 , the character embedding matrix’s dimen-

sions, producing an intermediate tensor shape of (B,L
s
, L

l
,C

e
) . After that, three one-

dimensional convolutional layers (event embedding network) are applied to each log
event (the second dimension) in the tensor. Presuming that C

l
 is the number of out-

put channels in the log event embedding network, the intermediate tensor shape is
(B,L

s
, L

l
,C

l
) . The output is aggregated by taking the maximums in the third dimen-

sion, delivering the intermediate tensor shape of (B,L
s
,C

l
).

Following the aggregation, the intermediate tensor goes through three one-
dimensional convolutional layers (sequence embedding network). Supposing the
number of output channels in the sequence embedding network’s last layer is C

s
 , the

intermediate tensor shape is (B,L
s
,C

s
) . Next, the output is aggregated by selecting

the maximums in the second dimension, making a tensor shape of (B,C
s
) . Finally,

the intermediate tensor passes through multiple fully-connected layers activated by
a Rectifier Linear Unit (ReLU) followed by a Sigmoid-activated one with one output
neuron, producing an output shape of (B, 1), which indicates the probabilities of
input sequences being anomalous. As the model hierarchically applies convolution,
we call it Hierarchical Convolutional Neural Network (HCNN).

Since the proposed model is entirely made of convolutional and fully connected
layers, the computations may be parallelized, making the training and inference dras-
tically more efficient than RNN-based solutions. Furthermore, parallelism allows for
higher quantities of training data that boost performance and generalizability.

3 Experimental results

Throughout this section, OneLog is assessed in different challenges, from standard
ones to more challenging ones, using the aforenamed datasets. More in-depth, we
evaluate OneLog in a benchmark challenge that trains and tests the model on the

Fig. 2 The Hierarchical CNN model visualization. Variables S and E are indications of sequence and
event lengths which are equivalents of L

s
 and L

l
 in the model explanation text. However, It must be noted

that within our experiments, though the sequence events window size is 64, there is no limit to the num-
ber of characters in each log event (line)

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 8 of 36

same data. To attain near-perfect results for those that did not achieve it in the first
experiment, we combine correlated datasets to increase their performance in the sec-
ond experiment. Following that, we evaluate the effects of multi-project training by
reducing the training set samples from all datasets. Finally, we evaluate the idea of
cross-project training in supercomputer log datasets.

3.1 Environment settings

It is important to discuss some experiment environment details before diving deep
into the experiments. Likewise, the HierarchicalCNN model is part of the deep neu-
ral networks family, which usually requires a considerable amount of data to gen-
eralize appropriately. On the other hand, a decent number of anomalous samples is
mandatory in the test set to perform a consolidated evaluation. So, we decide to split
each dataset 80% to 20% between train and test sets for the performance evaluation
experiments. We believe an 80–20 split is a good sweet spot between training com-
prehensivity and testing rigidity. Furthermore, we preserve 20% of the training data
for validation purposes to prevent overfitting. Thus, about 74% of the entire dataset
is used for training.

On the other hand, since we train our model on lots of data, we require a fast
method of training to make the training method viable. Hence, we use mixed float-
ing point precision during our training, maintaining the model in 32-bit floating
point numbers while using 16-bit floating point numbers for gradient calculation.
The mixed floating point precision method allows for larger training batches pos-
sible. However, batch sizes differ for each dataset as it is correlated to the aver-
age sequence size, which is different for each dataset. So, we used smaller batches
in training on datasets with larger average sequence lengths, like Hadoop, and
larger ones on datasets with shorter average sequence lengths, such as Spirit and
Thunderbird.

Furthermore, as the HierarchicalCNN model contains multiple convolutions and
fully-connected layers (nine layers in total), it is drastically prone to the vanishing
gradient problem. In order to circumvent this problem, we utilize the batch normali-
zation technique in all convolution layers of message and sequence embedding sec-
tions. Doing so facilitates the flow of gradient throw the network and expedites the
convergence process.

Since we are utilizing mixed floating point precision to expedite training speed,
our model is exposed to numerical instability during the training process. The insta-
bilities come from computing the derivative of the natural logarithm and exponen-
tial in a mixed precision fashion. To compensate for this problem, instead of using
the traditional binary classification loss (a variety of log loss) on a probability out-
put, we use the binary classification loss for logits and remove the sigmoid activa-
tion at the end of the model, making the last layer of the model linear. Thus, we
have to compute neither the exponential function within the sigmoid nor the natu-
ral logarithms within the log loss, enhancing the numerical stability of our training.
Furthermore, we use the Adam optimizer to produce a more robust gradient value.

1 3

Automated Software Engineering (2024) 31:37 Page 9 of 36 37

3.2 Single‑project experiment: RQ1

RQ1: How accurate is OneLog in software log anomaly detection among datasets
of different types (sequence/message based) and domains?

3.2.1 Motivation

In this experiment, we strive to evaluate the HierarchicalCNN model among dif-
ferent datasets and compare them to parser-less and parser-based state-of-the-art
log anomaly detection methods.

3.2.2 Method

In order to perform the evaluation process, we need to train the model on each
dataset. However, before training, we acquire the optimum batch size for each
dataset. The optimum batch size is the largest batch size that could fit in the
accelerator’s (GPU in our experiment) memory and perform all necessary train-
ing steps (feedforward, backward gradient computation, and weight update). A
larger batch size compared to a smaller one not only reduce the training time due
to better parallelization but also results in more generalized gradient values that
help with faster convergence.

It is worth mentioning that since the batch sizes were not deterministic val-
ues and were entirely dependent on the machine’s hardware specifications and
state, we did not include them in the results. However, we can confirm that since
Hadoop’s average sequence length is larger, smaller batch sizes were consist-
ently found for it compared to single-event sequence datasets such as BGL or
Thunderbird.

Furthermore, since Hadoop does not include enough samples, it puts the model
at risk of overfitting. So, to prevent overfitting, we use dropout layers with the prob-
ability of 0.5 for all convolution and fully-connected layers in the HierarchicalCNN
model while experimenting on the Hadoop dataset.

Thereafter, we train each model with the optimum batch sizes that were previ-
ously found. Furthermore, training for each model happened no more than 128
epochs to further standardize the evaluation. Finally, we evaluated each trained
model using each dataset’s test set by computing the F1 score for each test set and
comparing it to the state-of-the-art methods.

3.2.3 Results

As Table 2 shows, OneLog achieves near-perfect results, either close to or better
than the state-of-the-art. OneLog scores the F1 score of 0.99 on all datasets except
for Hadoop. We think the reason for such an incident is that Hadoop is a more com-
plex dataset with fewer samples, making it extremely difficult for the model to score

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 10 of 36

as high in this dataset. We provide a solution to improve the model’s performance
on the Hadoop dataset in the next experiment.

3.2.4 Discussion

We think the excellent performance of OneLog could be attributed to three facts.
First, even past works have achieved relatively high F1 scores in evaluation datasets,
suggesting that achieving high performance with multiple approaches in that dataset
is possible. Second, our character-based NLP approach demands samples on a large
scale and uses them to train millions of parameters to learn complex behavior in the
data. Thirdly, the Hierarchical CNN, operating at the character level, can meticu-
lously focus on parameters. In specific scenarios, these parameters crucially deter-
mine a sequence’s anomaly label.

For instance, Figs. 3 and 4 show two examples where param-
eters play a significant role in anomaly detection. In the HDFS data-
set Fig. 4, while two sequences with the block_ids blk_-
1877795964140566716 and blk_8557779918081539564 follow the

Table 2 Evaluation of the OneLog trained on the multi-project dataset and its comparison to the state-of-
the-art (to the best of our knowledge) method on each dataset

In methods denoted by a superscript asterisk, we were unable to replicate the results with equivalent
accuracy, thus we have cited the findings from the original publication

Method HDFS Hadoop BGL Thunderbird Spirit Liberty

OneLog 0.99 0.97 0.99 0.99 0.99 0.99
LogBERT* (Guo et al. 2021) 0.82 – 0.91 0.97 – –
NeuralLog (Le and Zhang 2021) 0.98 – 0.98 0.96 0.97 –
Logsy* (Nedelkoski et al. 2020) – – 0.65 0.99 0.99 –
LogRobust (Zhang et al. 2019) 0.99 0.90 0.75 0.68 0.95 –
LogAnomaly (Meng et al. 2019) 0.94 – 0.88 0.84 0.95 –
DeepLog (Du et al. 2017) 0.95 – 0.86 0.93 – –
SiaLog (Hashemi and Mäntylä 2022) 0.99 0.94 0.99 – – –
CNNLog (Lu et al. 2018) 0.98 0.92 0.95 – – –
Auto-LSTM (Farzad and Gulliver 2019) – – 0.95 0.99 – –

Fig. 3 A sample from the Hadoop dataset where parameters are the sole determinants differentiating
between normal and anomalous behaviors

1 3

Automated Software Engineering (2024) 31:37 Page 11 of 36 37

same execution path, they have distinct labels, with their parameters being the
distinguishing factor. Specifically, blk_-1877795964140566716 removes
three block files from /mnt/hadoop/dfs/data/current/. However,
the standard procedure is to remove the second file from /mnt/hadoop/dfs/
data/current/subdir, precisely what blk_8557779918081539564
accomplishes. Additionally, in the Hadoop dataset Fig. 3, two sequences from
containers container_1445087491445_0007_01_000008 and con-
tainer_1445094324383_0001_01_000009 differ only in their parameters.
The former is categorized as normal, while the latter is identified as a machine-down
anomaly. Such detailed distinctions are feasible only with accurate parameter pro-
cessing, a strength inherent in the Hierarchical CNN model.

On the other hand, we believe the model performed less accurately on the
Hadoops dataset since it does not contain enough samples. The upcoming experi-
ment confirms this hypothesis to some degree.

3.3 Multi‑project experiment for sequence‑based datasets: RQ2

RQ2: Does accuracy improve when combining datasets of the same type and simi-
lar domains?

3.3.1 Motivation

As shown in the previous experiment, OneLog achieved near-perfect results in all
datasets except the Hadoop dataset. We think the root cause of this is Hadoop’s lack
of samples (610 normal and 15,345 anomalies) and overcomplexities compared to
other datasets. So, a potential solution could be transferring knowledge from other
datasets. After all, since we use a character-based approach, it may capitalize on the
shared vocabulary among different log datasets. Therefore, in this experiment, we
combine multiple datasets for training.

3.3.2 Method

We train our HiearchicalCNN model on a combined dataset of multiple log datasets.
Although it seems straightforward, choosing suitable datasets could be challenging.
On the one hand, the more data fed to the model, the more generalized the model
becomes. On the other hand, however, our arsenal of datasets is extensive, making
it computationally expensive for training. Thus, we explored a handful of datasets
that increase the Hadoop results to near perfect while maintaining trainability. After

Fig. 4 A sample from the HDFS dataset where parameters are the sole determinants differentiating
between normal and anomalous behaviors

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 12 of 36

attempting multiple trainable combinations, we found that combining Hadoop with
HDFS increases the model’s performance on Hadoop to near-perfect while keeping
the model trainable.

3.3.3 Results

As shown in Table 3, with the help of the HDFS dataset, Multi-project OneLog
achieves near-perfect results, F1 score of 0.99, compared to the Single-project
OneLog that had the F1 score 0.97 on the Hadoop dataset.

3.3.4 Discussion

Although the extra performance may not be worth the computational costs in some
cases, this experiment bears witness to the fact that combining multiple log datasets
improves OneLog’s performance on an individual dataset. This approach is handy
when the available data is insufficient to train a model with desired performance. In
such cases, we may take advantage of other datasets (such as open public ones) to
boost the performance. Furthermore, this finding is crucial as it shows that having a
generalized model for software log anomaly detection is possible.

3.4 More difficult and comprehensive multi‑project experiment: RQ2

RQ2: Does accuracy improve when combining datasets of the same type and simi-
lar domains?

3.4.1 Motivation

As shown in Sect. 3.3, combining multiple datasets increases OneLog’s perfor-
mance on the Hadoop dataset. However, it was impossible to observe any perfor-
mance improvement in other datasets as the results were already near-perfect (F1
score of 0.99) in single project experiments; see Table 2.

Given a large amount of data, the task was too easy for our deep neural net-
work. However, having more than sufficient data is a luxury that might not hold
true in an industry where things like time pressure hampers practitioners, and
the systems are constantly evolving. Therefore, we decided to reduce the train-
ing data to make the anomaly detection task more difficult. This allows us to

Table 3 Evaluation of the
Multi-project (MP) OneLog
trained on the multi-project
dataset and its comparison to the
state-of-the-art (to the best of
our knowledge) method on each
dataset

Method Hadoop

OneLog (Hadoop only) 0.97
OneLog (Hadoop & HDFS) 0.99
LogRobust 0.90
SiaLog 0.94
CNNLog 0.92

1 3

Automated Software Engineering (2024) 31:37 Page 13 of 36 37

experiment more on the Multi-project Onelog performance and assess if multi-
ple datasets help the model perform better at each dataset.

3.4.2 Method

Reducing training set size is challenging as the datasets at hand vary in nature,
complexity, and volume. For instance, the HDFS dataset contains many similar
sequences and not many templates, so it is on the easier end of the spectrum.
However, for the Hadoop dataset, since the data volume (number of sequences)
is lower and the complexity (number of templates) is higher, the model finds it
more challenging to achieve near-perfect results.

At first, we decided to take a constant percentage of each dataset. However,
we found this method inapplicable as the trained model’s accuracy varied greatly
between datasets. Furthermore, the model achieved the same near-perfect result
just by utilizing 2% of the HDFS training set. On the other hand, the model mis-
classified nearly all sequences when it was trained on 10% of the Hadoop train-
ing set.

Thus, we changed the dataset reduction method from a constant percentage
to the same difficulty for all. Going more in-depth, we started from a complete
training set and decreased the available training set ratio until the accuracy had
gotten to a certain level in single-project training and repeated this process for
each dataset individually. We aimed to get an F1 score of 0.8 for all datasets as
it allows some learning to happen in each single-project training while leaving
enough room for improvement. One can notice from Table 4 that not all datasets
got to 0.8 in a single-project setup, as the reduction in training data resulted in
relatively abrupt performance changes. Nevertheless, by reducing the training
set samples, we achieved the goal of reducing single-project performance while
allowing some learning to appear.

After reducing the training data, we combine all subsets and train a Multi-
project Onelog model using the combined dataset. We measure the performance
of the trained model on each test set individually. Finally, it is important to men-
tion that we only reduced training set sizes and left test sets untouched in this
experiment, implying that they are the same as in the previous experiments.

Table 4 Multi-project training
when all datasets are equally
difficult

Dataset Subset Ratio Single-project Multi-project

HDFS 0.0090 0.83 0.86
Hadoop 0.7800 0.78 0.89
BGL 0.0150 0.75 0.98
Thunderbird 0.0025 0.74 0.91
Spirit 0.0020 0.80 0.97
Liberty 0.0100 0.77 0.89

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 14 of 36

3.4.3 Results

Table 4 shows how the model performs on each test set after being trained in single-
project and multi-project settings. We get improvement in all datasets. The average
single-project F1 score is 0.78, while the average multi-project F1 score is 0.92. The
biggest improvement is in BGL, which improves the test set F1 score from 0.75 to
0.98 in single-project and multi-project training, respectively. The lowest improve-
ment is HDFS which improves only from 0.83 to 0.86 in single-project and multi-
project training, respectively.

3.4.4 Discussion

The significant average improvements and the fact that we got improvements in all
datasets provide evidence that multi-project training improves performance. The
results suggest that the OneLog model can generalize on multiple datasets and that
this generalization results in performance improvement when sufficient training data
is unavailable.

3.5 Cross‑project experiment with supercomputer log datasets: RQ3

RQ: Is cross-project anomaly detection possible with OneLog?

3.5.1 Motivation

As demonstrated in Sects. 3.3 and 3.4, combining multiple datasets improves perfor-
mance. However, there might exist situations when no training data is available due
to data inaccessibility, incompatibility, or scarcity. In such situations, cross-project
training may become the only viable option. Assuming we have multiple similar
datasets, in cross-project training, a model trains on one or multiple datasets while
being tested on other datasets that it has not seen in training. Such a method allows
software engineers to train a model once and use it as the system changes and also
use a trained model in situations where they do not have access to the data.

3.5.2 Method

Before diving deep into the experiments, we must select the experimentation data-
sets. We select BGL, Thunderbird, Spirit, and Liberty as they are all supercomputer
logs and, thus, possess a reasonable chance that cross-project training would offer
positive results. In order to evaluate the cross-project training idea, we developed
two experiments. During the first experiment, we train a distinct model for each
dataset and evaluate its performance on all other datasets. This way, we evaluate if
we could deploy a model to detect supercomputer anomalies without being trained
on the same data. In other words, the models are the same as Sect. 3.2; however,
evaluation datasets are other supercomputer logs than the training dataset. In the

1 3

Automated Software Engineering (2024) 31:37 Page 15 of 36 37

second experiment, we leave one of the datasets out for evaluation while training
on the rest. This experiment examines the possibility of training a model on similar
datasets and deploying it to another machine if the deployment machine’s log were
inaccessible.

3.5.3 Results

As Table 5 illustrates the first experiment’s results, cross-project training could be
possible under the condition that datasets are similar enough. Training the model
on Spirit data produced an F1 score of 0.91 in Liberty. Vice versa, we observed that
training on Liberty results in an F1-Score of 0.99 in Spirit. However, all other pairs
offered poor results, e.g., training on Thunderbird produces F1 scores of 0.10, 0.01,
and 0.00 in Spirit, Liberty, and BGL, respectively.

Table 6 discloses the second experiment’s results, which are in line with the pre-
vious one. For Spirit and Liberty, we got an F1 score of 0.99 when the model was
trained on the three other supercomputers’ datasets. The result indicates that the
model may not be trained on the target machine’s data at all should a minimum of
one similar dataset exist within the training datasets pool.

3.5.4 Discussion

It appears that we could achieve high accuracy even by training on foreign data only.
However, this foreign data has to be close enough as we could find only one pair
(Spirit and Liberty) where cross-project training produced accurate enough results.
An important question for future research are methods of finding close enough data-
sets before training.

Table 5 Cross-project training
results within train on one
evaluate on others settings

Training Evaluation

BGL Thunderbird Spirit Liberty

BGL 0.99 0.00 0.00 0.00
Thunderbird 0.00 0.99 0.10 0.01
Spirit 0.00 0.06 0.99 0.91
Liberty 0.00 0.05 0.99 0.99

Table 6 Cross-project training
results within leaving one out
for evaluation settings

Datasets F1 score

Training Evaluation

Thunderbird Spirit Liberty BGL 0.00
BGL Spirit Liberty Thunderbird 0.05
BGL Thunderbird Liberty Spirit 0.99
BGL Thunderbird Spirit Liberty 0.99

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 16 of 36

4 Model Interpretation: RQ4

RQ4: Is there an interpretation of how OneLog achieves near-perfect state-of-the-
art results among all datasets?

In the previous section, we saw how OneLog outperforms the state-of-the-art
methods among different datasets. Although one may assert that the model inter-
nals do not matter as long as the performance is good, we believe interpreting the
black-box model of deep learning increases authenticity. More in-depth, we can find
out if models have found an unexpected method in their decision-making process,
such as making decisions based on an environmental bias in the datasets (such as IP
address). Nonetheless, OneLog’s deep neural network’s black box remains a mys-
tery, as it is not apparent how it achieves such high scores. This section aims to com-
prehend the deep neural network and interpret its decision-making.

Although some algorithms have been proposed to interpret deep neural networks’
decision-making (Shrikumar et al. 2016; Winter 2002; Sundararajan et al. 2017;
Bach et al. 2015; Shrikumar et al. 2017), especially in the computer vision field,
we found their outcomes impractical for our study during our experiments. As the
mentioned methods discover the most contributing input(s) to the production of the
output while our model’s input is a matrix of characters, we found the idea of the
most contributing character(s) to a log sequence anomalousness irrational.

Furthermore, we consider that our deep neural network’s hierarchical architecture
makes it unintuitive to interpret it as one neural network, as different model sections
are supposed to perform different tasks. Furthermore, we believe each model sec-
tion should be interpreted separately. Hence, we split our network into two parts and
investigated them separately.

Accordingly, we split the hierarchical convolutional neural network into two sub-
models. The first submodel is comprised of character and event embedding layers
(see Fig. 2), while the second submodel carries sequence embedding and classifi-
cation layers. We name the first submodel the "Parser Model" and the second sub-
model the "Classifier Model".

Throughout the rest of this section, we strive to investigate each model’s internal
decision-making mechanisms and evaluate how accurately they are performing the
task considered for them.

4.1 Parser model interpretation

4.1.1 Background

This subsection is dedicated to figuring out the under-the-hood mechanics of the
Parser Model. Accordingly, we intend to know if the Parser Model acts similarly
to log parsers in prior studies by Zhu et al. (2019). Although neural networks and
standard parsers are both functions, a direct comparison is impossible. Furthermore,
a neural network (specifically the Parser Model) is a sequence of linear-algebra
operations on input vector(s), while parsers are considered as a set of templates that

1 3

Automated Software Engineering (2024) 31:37 Page 17 of 36 37

are compared against the input to find the fittest template. Therefore, we found these
two models incomparable. So, a direct function comparison between a neural net-
work and a standard parser is impossible.

As an internal comparison is impossible, function similarity approximation
becomes a viable option. Moreover, the similarity between two functions within a
defined domain could be approximated by computing the difference between their
outputs for a set of distributed inputs from the desired domain. So, we may compute
the similarity between the Parser Model and an actual log parser by comparing their
outputs for a specific set of inputs. Nonetheless, this raises another challenge as the
Parser Model’s output is a continuous vector while a parser’s output is a discrete
categorical cluster number.

The foremost solution to this problem may be clustering vectors and comparing
the clusters with the ground truth categories using a standard clustering performance
metric. However, since a perfect clustering algorithm does not exist, by doing so, we
are including clustering errors in our measurements. Thus, to circumvent the lat-
est trouble, we use silhouette score (Shahapure and Nicholas 2020; Starczewski and
Krzyżak 2015). Though silhouette score is not commonly employed for this goal, it
fits our situation flawlessly.

4.1.2 Method

The silhouette score is an unsupervised metric for clustering accuracy measurement.
Silhouette ranges from −1 (worst) to +1 (best). According to Pedregosa et al. (2011),
the score is 1 when all clusters are correct, it is −1 when all clusters are incorrect,
and zero indicates overlapping clusters. Silhouette indicates how close the mem-
bers of each cluster are and how distant they are from other clusters simultaneously.
Accordingly, lower intra-cluster and higher extra-cluster distances elevate silhouette
scores. So, if the silhouette score is passed with embedded vectors and the ground
truth template numbers (manually labeled), it shows how close events of the same
template are embedded while being distant from templates of other clusters. This
measures how close the Parser Model’s output is to manually-labeled event tem-
plates that act as ground truth. Moreover, it answers the question Is Parser Model
embedding events according to their templates, which could be deemed as an act of
log parsing? If the answer to this question is yes (positive silhouette score), then it
may be concluded that the Parser Model is actually parsing the log line before pass-
ing them to Sequence Embedding layers.

We acquire the gold standard human-labeled log event template datasets for our
ground truth. Past work has used this data for log parser performance experiments
(Zhu et al. 2019). Since the parsed template data is unavailable for all of our test
datasets, we performed this experiment for only four datasets (HDFS, Hadoop,
BGL, and Thunderbird). During the experiment, for each dataset, we first embedded
all events from the log parser benchmarking dataset using a Parser Model extracted
from a model trained on the target dataset and calculated the silhouette score for
embedded events using their template number.

In addition to the silhouette score, we provide a visualization. Visualization
of more than three dimensions is uninterpretable for humans. Thus, we reduce

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 18 of 36

embedded event vector dimensions using the U-MAP algorithm (McInnes et al.
2018) and visualize the events in a 2D plot. Each event is also colored based on
its template.

4.1.3 Results

Table 7 shows the silhouette scores for different datasets. From the table, we can
observe that we achieve an excellent score of 0.74 for Hadoop. For HDFS and
BGL, on the other hand, the scores are lower yet still clearly on the positive side,
with silhouette scores of 0.34 and 0.24, respectively, while Thunderbird stands
in the middle ground between BGL, HDFS, and Hadoop with silhouette scores
of 0.48. So it appears that the Parser Model is, in fact, parsing the events in a
similar way as other log parsers. We should bear in mind that our Parser Model
is not trained for log parsing, and all the correct event labeling it achieves is
simply a side product of its main goal of anomaly detection.

In the end, it is worth mentioning that there might be many events that are not
relevant for anomaly detection. Such events are likely to be incorrectly clustered
as, from our model’s point of view, they do not contain useful information.

Figure 5 shows our visualization. Event distances are the distances of embed-
ded log event vectors after U-Map transformation. Event colors represent the
ground truth of manual labeling. We can see that events of the same color are
closer to each other compared to events of different colors. This gives visual
support to the idea that the Parser model processed events have formed clusters
based on log text structure within the embedding vector space. We can see some
points overlapping with incorrect clusters. This finding aligns with the Silhou-
ette score, indicating that the clusters are imperfect. However, as our model is
not trained for event parsing or labeling, it is irrational to expect perfect clus-
ters here. Instead, this finding demonstrates our model’s capability to learn some
parsing rules as part of its end goal of anomaly detection. Note: Although the
visualization experiment is possible for the Hadoop, BGL, and Thunderbird
datasets, we found their images uninterpretable. HDFS only contains less than
15 event types, while the number is much higher for Hadoop, BGL, and Thun-
derbird, resulting in indistinguishable colors in the visualization.

Table 7 The silhouette score of
the Parser Model with respect to
manually labeled log templates

Dataset Samples Templates Silhouette Score

HDFS 2000 14 0.34
Hadoop 2000 114 0.74
BGL 2000 120 0.24
Thunderbird 2000 149 0.48

1 3

Automated Software Engineering (2024) 31:37 Page 19 of 36 37

4.1.4 Discussion

It appears the Parser model learns to parse as a side product of its end goal of
anomaly detection. An interesting future research idea would be to use just the
parser model and see how it performs if trained for parsing only. One needs to
remember that in the current setup, the Parser model has not been trained with
the ground truth. Rather its silhouette scores are a side product of learning how to
detect anomalies.

Fig. 5 The embedded vectors visualization of the HDFS log parsing benchmark dataset

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 20 of 36

4.2 Classifier model interpretation

4.2.1 Background

Classifier Model is the second part of the HierarchicalCNN model. The classi-
fier model, comprised of the sequence embedding component and classifier, is
responsible for feature extraction and classification of the embedded events. The
input to this component is the embedded event vectors (from Parser-model),
while the output is a binary value indicating the input’s anomaly status.

4.2.2 Method

This experiment focuses on finding the responsible event(s) for labeling a
sequence as anomalous. This task is similar to finding responsible pixels (or
areas) for image classification. Hence, we decided to choose the popular inte-
grated gradients method (Sundararajan et al. 2017), which has been employed
for responsible pixel task regularly. However, our entries are embedded events
rather than pixels. Thus, we generated many heatmaps using the integrated gradi-
ent algorithm.

4.2.3 Results

Figures 6, 7 and 8 show selected anomalous sequence heatmaps (darker colors
represent greater integrated gradient values).

We qualitatively explored the results for the HDFS dataset, shown in Figs. 6, 7
and 8, as this dataset is the only one with not many event templates and is compre-
hensible for humans. Furthermore, we found that the model relies on multiple strate-
gies to classify anomalous sequences. According to the experiment, the following
strategies explain what we think are three of the most important ones that the model
utilized to classify anomalies and are relatively interpretable for humans.

1. Fatal event: Detecting a single fatal event in the sequence, as shown in Fig. 6.
This strategy is very straightforward as some events in the HDFS dataset occur
only in anomalous situations, explained by Hashemi and Mäntylä (2022).

2. Bad subsequence: Detecting faulty subsequences. On this occasion, each sequence
event does not indicate anomalous behavior individually. Nevertheless, the occur-
rence of them together in a particular order indicates that the entire sequence is
anomalous, as examples in Fig. 7.

3. Multiple suspicious events: The last strategy exists when multiple suspicious
events happen during the sequence, which may not indicate anomalous behavior
on its own. For example, the software starts to clean up at the end. The model
considers the combination of the suspicious event(s) and cleanup process as an
anomalous action; see Fig. 8.

1 3

Automated Software Engineering (2024) 31:37 Page 21 of 36 37

Fig. 6 Suspiciousness map of various anomalous samples from the HDFS dataset that were detected
as anomalies by the model for the occurrence of a fatal event. Darker colors represent more suspicious
events

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 22 of 36

Fig. 6 (continued)

1 3

Automated Software Engineering (2024) 31:37 Page 23 of 36 37

Fig. 6 (continued)

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 24 of 36

Fig. 7 Suspiciousness map of various anomalous samples from the HDFS dataset that were detected as
anomalies by the model for the occurrence of a suspicious sequence. Darker colors represent more suspi-
cious events

1 3

Automated Software Engineering (2024) 31:37 Page 25 of 36 37

Fig. 7 (continued)

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 26 of 36

Fig. 7 (continued)

1 3

Automated Software Engineering (2024) 31:37 Page 27 of 36 37

Fig. 8 Suspiciousness map of various anomalous samples from the HDFS dataset that were detected as
anomalies by the model for the occurrence of a suspicious event or sequence and a cleanup operation at
the end. Darker colors represent more suspicious events

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 28 of 36

Fig. 8 (continued)

1 3

Automated Software Engineering (2024) 31:37 Page 29 of 36 37

Fig. 8 (continued)

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 30 of 36

5 Related works

Here we compare our approaches to related work in terms of model design and per-
formance. Although different approaches have been invented to address log anomaly
detection, we focus on deep-learning-based models only as they have achieved the
best performance in almost every dataset.

Table 8 summarizes the prior works mentioned in this section. In the table, we
can see that there are other approaches that do not utilize pre-built log parsers like
Drain or Spell or works that have found innovative ways to retain semantic informa-
tion available in log messages. Recently many works have utilized word tokenizer
followed by Transformer, e.g., Nedelkoski et al. (2020), Le and Zhang (2021), Guo
et al. (2021). Yet, they all convert the log message input to words while we take the
log messages as raw a character stream. Therefore, the most notable finding from the
table is that prior works have used separate components for Parser and Vectorizer,
while we have a single deep model with a Hierarchical Convolutional Neural Net-
work (HCNN).

As one of the first deep-learning-based approaches, DeepLog (Du et al. 2017)
parses the sequences using the Spell log parsing algorithm mentioned by Du and Li
(2016) and uses Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) to model the non-anomaly logs by predicting the next event in the sequence.
After the training, the model predicts a low probability for anomaly sequences as it
has converged on non-anomaly data. DeepLog also uses parameter values and log
keys to preserve text information.

LogRobust (Zhang et al. 2019) applies an attention model to Bidirectional
Long Short-Term Memory (Bi-LSTM) to classify the event sequences. However,

Table 8 Previous methods explanation and comparison to OneLog

SM Sequence Modeling, BC Binary Classification, SV Semantic Vectorization, TA Template Approxima-
tion, T2V Template2Vec, ML Metric Learning, HCNN Hierarchical Convolutional Neural Network

Method Parser Vectorizer Classifier Approach Input Type

DeepLog (Du et al. 2017) Spell Onehot LSTM SM Sequence
CNNLog (Lu et al. 2018) – Onehot CNN BC Sequence
LogRobust (Zhang et al. 2019) Drain SV Bi-LSTM BC Sequence
LogAnomaly (Meng et al. 2019) TA T2V LSTM SM Sequence
Logsy (Nedelkoski et al. 2020) – Tokenizer Transformer BC Message
NeuralLog (Le and Zhang 2021) – Tokenizer Transformer BC Sequence
Logbert (Guo et al. 2021) Tokenizer – Transformer SM Message
Auto-BLSTM (Farzad and Gulliver

2019)
Tokenizer Autoencoder Bi-LSTM BC Message

SiaLog (Hashemi and Mäntylä 2022) Drain Onehot LSTM ML Sequence
OneLog HCNN HCNN HCNN BC Both

1 3

Automated Software Engineering (2024) 31:37 Page 31 of 36 37

the main contribution of this work is in the introduction of log evolution. LogRo-
bust asserts that software logs evolve due to updates. Hence, it proposes a method
for synthetically evolving log messages and sequences by adding noise. Further-
more, it introduces a new method of vectorization called “semantic vectoriza-
tion”, which uses pre-trained word embeddings to construct a vector based on
words’ semantic meanings in a log event. In a way, this semantic vector can be
seen to retain some natural language information.

LogAnomaly (Meng et al. 2019) also uses LSTM but presents a new vectoriza-
tion technique called “template2vec’ that takes advantage of synonyms and anto-
nyms. This template approach is somewhat similar to LogRobust, where part of
natural language information is retained through the words in the template. Addi-
tionally, LogAnomaly keeps track of message counts in sequences to detect quan-
titive anomalies alongside sequential ones.

In another innovation in the vectorizer component, Lu et al. (2018) proposes
a technique to embed log keys to feature-rich vectors called “log-key2vec”.
Besides, it uses Convolutional Neural Network (CNN) (LeCun et al. 2015) to
classify sequences, making the model more computationally efficient in training
and inference time compared to LSTM-based models. A parser is also used in this
work, yet, the details are unclear.

The first work to propose the adoption of Transformer (Devlin et al. 2018) in
log anomaly detection is Logsy (Nedelkoski et al. 2020). Logsy embeds log mes-
sages in a vector space, with non-anomaly messages clustered at the origin while
anomaly messages embedding at a distance. A unique loss function, which ena-
bles the learning process of embedding operations, is also among its contribu-
tions. The second case of using the Transformer, NeuralLog, mentioned in Le and
Zhang (2021), uses a Transformer Encoder on top of a pre-trained Bert model
to take advantage of both the semantic embedding of Bert and the self-attention
mechanism of the Transformer Encoder. Le and Zhang (2021) achieves relatively
high scores among multiple datasets. The third approach is using Transformer
(Guo et al. 2021) uses Bidirectional Encoder Representation from Transformer
(BERT) to learn normal data patterns and use it to identify anomalies in a semi-
supervised fashion.

In another unique approach, Farzad and Gulliver (2019) introduces Auto-
LSTM, Auto-BLSTM, and Auto-GRU, which also operate on natural language
directly without needing a parser. They first extract features from log messages
using an autoencoder (Ballard 1987). Then a recurrent neural network module,
namely LSTM, Bidirectional LSTM, or GRU, is used to classify the message. The
method achieves accurate results due to its nice pipeline of neural networks.

Finally, in our past work (Hashemi and Mäntylä 2022), we utilized the Siamese
network (Bromley et al. 1994) with LSTM to embed log sequences into a vec-
tor space that keeps sequences of the same type (anomaly / non-anomaly) close
to each other while maximizing distance from the different type. Additionally,
the authors introduce other benefits that come with the Siamese network, such
as more robust predictions, unsupervised evolution monitoring, and sequence
visualization.

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 32 of 36

6 Threads to validity

Despite OneLog’s superior performance over other software log anomaly detec-
tion methods within a multi-project framework, it is not devoid of limitations.
The most substantial challenge lies in the requirement for labeled data, which
can be a significant obstacle in many practical scenarios. Additionally, the com-
putational expense associated with the deep neural network presents another
potential limitation. In the subsequent subsections, we will thoroughly examine
our research’s internal and external validity. This exploration will encompass
a detailed discussion to assess the robustness and applicability of our findings
across various contexts.

6.1 Internal validity

Regarding internal validity, it is imperative to note that the evaluation environment
of OneLog diverges significantly from alternative methodologies due to their mutual
incompatibility. In methodologies necessitating parsing, the parser’s elimination
of parameters from log messages results in the homogenization of numerous log
messages. This leads to substantial duplication within the dataset, necessitating a
duplication removal prior to splitting the dataset into training and testing subsets.
Consequently, achieving identical evaluation environments is infeasible. In order
to circumvent this problem, we performed the experiments multiple times with dif-
ferent random seeds and ensured we were getting consistent results. Furthermore,
we reimplemented state-of-the-art methods (except ones marked with a superscript
asterisk in Table 2) and ensured that the outcomes aligned with, if not surpassed,
the original results. It is noteworthy to mention that certain methodologies, notably
DeepLog, exhibited enhanced performance in our implementation relative to their
initial publication. All in all, We are confident in our work since we evaluated it in
a variety of contexts, including different datasets and model capabilities. The fact
that we achieved consistent scores in diverse circumstances proves that our sug-
gested strategy works as predicted and leads to more accurate software log anomaly
identification.

6.2 External validity

Concerning the matter of external validity, it is pertinent to acknowledge that it
may be subject to limitations due to the unavailability of an appropriate industrial
dataset. This absence significantly constrains our capacity to assert the efficacy of
our methodology within a real-world industrial setting. However, it is essential to
note that the primary objective of this study was to introduce a novel end-to-end
anomaly detection methodology and conduct its preliminary validation. Conse-
quently, a pressing need exists for subsequent research endeavors to thoroughly
explore the advantages and limitations of OneLog and Hierarchical Convolutional

1 3

Automated Software Engineering (2024) 31:37 Page 33 of 36 37

Neural Network architectures in the context of software log anomaly detection in
real-world settings.

6.3 Construct validity

Construct validity in software engineering involves ensuring that the measure-
ments, tests, or procedures used in a study actually measure the theoretical con-
structs they are intended to measure (Wohlin et al. 2012). We used well-estab-
lished statistics from machine learning like F1 score, so we see no problem there.
However, regarding our data there is of course the issue that labeled anomalies
might not represent true or anomalies that would be important enough to software
operations engineers. There is very little we can do to mitigate this issue.

7 Implications

Character-Based Approach and Parser Elimination: Our design employs a charac-
ter-based processing method for log events, enhancing performance by leveraging
elements such as numbers and punctuation, which are often disregarded in word-
based or parser-based approaches. By incorporating complete messages, OneLog
is adept at detecting anomalies that may arise from incorrect parameters. This
raises an intriguing possibility: end-to-end learning systems like OneLog might
obviate the need for traditional log parsers, a topic that has garnered considerable
research interest. This shift could streamline log analysis processes, making them
more efficient and effective.

Use of Multiple Datasets at Once: Our approach facilitates the simultaneous
utilization of multiple datasets which is currently supported in one prior work
(Nedelkoski et al. 2020). This feature is particularly beneficial in scenarios where
available training data are limited, allowing for the augmentation of smaller data-
sets with a broader body of public datasets. Our findings demonstrate that this
strategy substantially enhances model performance. Moreover, we have success-
fully implemented cross-project anomaly detection, leveraging only external data
sources, which is effective when analyzing system logs of sufficient similarity.
These steps mark an advancement towards the integration of transfer and aug-
mented learning principles within the realm of log anomaly detection, underscor-
ing OneLog’s potential to overcome traditional data scarcity challenges.

Model Interpretations Enhance Confidence in OneLog: Through model inter-
pretations, we have uncovered that OneLog autonomously develops human-
like event parsing rules. Beyond parsing, OneLog utilizes at least three distinct
anomaly detection rules: fatal events, bad subsequences, and multiple suspi-
cious events. Our analysis of the model’s internal logic affirm our confidence in
OneLog’s capabilities, showcasing its potential as a solution in the field of log
analysis.

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 34 of 36

8 Conclusion and future works

This paper presents OneLog, a novel method to detect anomalies in software logs.
OneLog merges the parser, vectorizer, and classifier components into one deep neu-
ral network, which moves the log analysis field closer to complete end-to-end learn-
ing. We think the most interesting findings are. First, producing state-of-the-art per-
formance; Second, training the model on sequence-based and event-based datasets
with no modification; Third, making multiple datasets usage possible in training to
enhance performance; Fourth, model interpretations showing that OneLog internally
learns human-like event parsing rules and anomaly detection rules.

Although the model results trained on the multi-project dataset are good, it does
not come without any room for improvement. As a matter of fact, the lack of suf-
ficient data volume might result in poor performance, as observed in some of our
experiments. Therefore, we believe more extensive datasets would contribute to
this work in future works. Furthermore, additional datasets from different projects
or even the same project with varying versions may also benefit the multi-project
dataset. Conversely, if OneLog could be systematically architected to utilize normal
logs (non-anomalous) as the primary training source, the data acquisition challenge
might be substantially mitigated, since, normal data, in contrast to anomalous data,
is more readily produced and accessible, offering OneLog a more sustainable and
efficient solution for training.

Finally, the goal of the paper was to develop end-to-end learning in log analysis,
yet as shown in Fig. 1, we still have the preprocessor stage. So how could we remove
it? Our preprocessor is simple as it only organizes the raw data into sequences.
Hence, to improve the end-to-end learning further, we could have a more generaliz-
able sequence creation method for all datasets. This would facilitate the process of
using multiple datasets without any human intervention.

Acknowledgements This work has been supported by the Academy of Finland (Grant IDs 298020 and
328058). Additionally, the authors gratefully acknowledge CSC - IT Center for Science, Finland, for their
generous computational resources.

Funding Open Access funding provided by University of Oulu (including Oulu University Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Automated Software Engineering (2024) 31:37 Page 35 of 36 37

References

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W.: On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140
(2015)

Ballard, D.H.: Modular learning in neural networks. In: Aaai, vol. 647, pp. 279–284 (1987)
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M.,

Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. arXiv preprint arXiv: 1604.
07316 (2016)

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time
delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv: 1810. 04805 (2018)

Du, M., Li, F.: Spell: streaming parsing of system event logs. In: 2016 IEEE 16th International Confer-
ence on Data Mining (ICDM), pp. 859–864 (2016). https:// doi. org/ 10. 1109/ ICDM. 2016. 0103

Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis from system logs
through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1285–1298 (2017)

Farzad, A., Gulliver, T.A.: Log message anomaly detection and classification using auto-b/lstm and auto-
gru. arXiv preprint arXiv: 1911. 08744 (2019)

Glasmachers, T.: Limits of end-to-end learning. In: Asian Conference on Machine Learning, pp. 17–32.
PMLR (2017)

Guo, H., Yuan, S., Wu, X.: Logbert: log anomaly detection via bert. In: 2021 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

Hashemi, S., Mäntylä, M.: Sialog: detecting anomalies in software execution logs using the siamese net-
work. Autom. Softw. Eng. 29(2), 61 (2022). https:// doi. org/ 10. 1007/ s10515- 022- 00365-7

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Le, V.-H., Zhang, H.: Log-based anomaly detection without log parsing. CoRR, arXiv: 2108. 01955 (2021)
LeCun, Y., et al.: Lenet-5, convolutional neural networks. http:// yann. lecun. com/ exdb/ lenet, 20(5), 14

(2015)
Lin, Q., Zhang, H., Lou, J., Zhang, Y., Chen, X.: Log clustering based problem identification for online

service systems. In: 2016 IEEE/ACM 38th International Conference on Software Engineering Com-
panion (ICSE-C), pp. 102–111 (2016)

Lu, S., Wei, X., Li, Y., Wang, L.: Detecting anomaly in big data system logs using convolutional neu-
ral network. In: 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure
Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th Interna-
tional Conference on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 151–158. IEEE (2018)

McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension
reduction. arXiv preprint arXiv: 1802. 03426 (2018)

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S., Sun, P., et al.: Loga-
nomaly: unsupervised detection of sequential and quantitative anomalies in unstructured logs. In:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19. International Joint Conferences on Artificial Intelligence Organization, vol. 7, pp. 4739–4745
(2019)

Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., Kao, O.: Self-attentive classification-based
anomaly detection in unstructured logs. arXiv preprint arXiv: 2008. 09340 (2020)

Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs. In: 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07), pp. 575–584 (2007).
https:// doi. org/ 10. 1109/ DSN. 2007. 103

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830
(2011)

Shahapure, K.R., Nicholas, C.: Cluster quality analysis using silhouette score. In: 2020 IEEE 7th Inter-
national Conference on Data Science and Advanced Analytics (DSAA), pp. 747–748. IEEE (2020)

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/ICDM.2016.0103
http://arxiv.org/abs/1911.08744
https://doi.org/10.1007/s10515-022-00365-7
http://arxiv.org/abs/2108.01955
http://yann.lecun.com/exdb/lenet
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/2008.09340
https://doi.org/10.1109/DSN.2007.103

 Automated Software Engineering (2024) 31:37

1 3

 37 Page 36 of 36

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., Liu, Y.: Minimum risk training for neural machine
translation. arXiv preprint arXiv: 1512. 02433 (2015)

Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important fea-
tures through propagating activation differences. arXiv preprint arXiv: 1605. 01713 (2016)

Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation
differences. In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2017)

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural
networks and tree search. Nature 529(7587), 484–489 (2016)

Starczewski, A., Krzyżak, A.: Performance evaluation of the silhouette index. In: International Confer-
ence on Artificial Intelligence and Soft Computing, pp. 49–58. Springer (2015)

Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Confer-
ence on Machine Learning, pp. 3319–3328. PMLR (2017)

Winter, E.: The Shapley value. Handb. Game Theory Econ. Appl. 3, 2025–2054 (2002)
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software

Engineering. Springer, Berlin (2012)
Wu, R., Guo, C., Hannun, A., van der Maaten, L.: Fixes that fail: self-defeating improvements in

machine-learning systems. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman
Vaughan, J. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 11745–11756.
Curran Associates, Inc., 2021. https:// proce edings. neuri ps. cc/ paper/ 2021/ file/ 61942 7579e 7b067
421f6 aa89d 4a899 0c- Paper. pdf

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system problems by mining
console logs. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Princi-
ples, pp. 117–132 (2009)

Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. arXiv pre-
print arXiv: 1509. 01626 (2015)

Zhang, X., Xu, Y., Lin, X., Qiao, B., Zhang, H., Dang, Y., Xie, C., Yang, X., Cheng, Q., Li, Z., et al.:
Robust log-based anomaly detection on unstable log data. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 807–817 (2019)

Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks for automated log
parsing. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 121–130. IEEE (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1512.02433
http://arxiv.org/abs/1605.01713
https://proceedings.neurips.cc/paper/2021/file/619427579e7b067421f6aa89d4a8990c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/619427579e7b067421f6aa89d4a8990c-Paper.pdf
http://arxiv.org/abs/1509.01626

	OneLog: towards end-to-end software log anomaly detection
	Abstract
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.1.1 Event-based datasets
	2.1.2 Sequence-based datasets

	2.2 Preprocessing
	2.3 Hierarchical CNN model

	3 Experimental results
	3.1 Environment settings
	3.2 Single-project experiment: RQ1
	3.2.1 Motivation
	3.2.2 Method
	3.2.3 Results
	3.2.4 Discussion

	3.3 Multi-project experiment for sequence-based datasets: RQ2
	3.3.1 Motivation
	3.3.2 Method
	3.3.3 Results
	3.3.4 Discussion

	3.4 More difficult and comprehensive multi-project experiment: RQ2
	3.4.1 Motivation
	3.4.2 Method
	3.4.3 Results
	3.4.4 Discussion

	3.5 Cross-project experiment with supercomputer log datasets: RQ3
	3.5.1 Motivation
	3.5.2 Method
	3.5.3 Results
	3.5.4 Discussion

	4 Model Interpretation: RQ4
	4.1 Parser model interpretation
	4.1.1 Background
	4.1.2 Method
	4.1.3 Results
	4.1.4 Discussion

	4.2 Classifier model interpretation
	4.2.1 Background
	4.2.2 Method
	4.2.3 Results

	5 Related works
	6 Threads to validity
	6.1 Internal validity
	6.2 External validity
	6.3 Construct validity

	7 Implications
	8 Conclusion and future works
	Acknowledgements
	References

