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Abstract
With the growth of online services, IoT devices, and DevOps-oriented software 
development, software log anomaly detection is becoming increasingly important. 
Prior works mainly follow a traditional four-staged architecture (Preprocessor, 
Parser, Vectorizer, and Classifier). This paper proposes OneLog, which utilizes a 
single deep neural network instead of multiple separate components. OneLog har-
nesses convolutional neural network (CNN) at the character level to take digits, 
numbers, and punctuations, which were removed in prior works, into account along-
side the main natural language text. We evaluate our approach in six message- and 
sequence-based data sets: HDFS, Hadoop, BGL, Thunderbird, Spirit, and Liberty. 
We experiment with Onelog with single-, multi-, and cross-project setups. Onelog 
offers state-of-the-art performance in our datasets. Onelog can utilize multi-project 
datasets simultaneously during training, which suggests our model can generalize 
between datasets. Multi-project training also improves Onelog performance making 
it ideal when limited training data is available for an individual project. We also 
found that cross-project anomaly detection is possible with a single project pair 
(Liberty and Spirit). Analysis of model internals shows that one log has multiple 
modes of detecting anomalies and that the model learns manually validated parsing 
rules for the log messages. We conclude that character-based CNNs are a promising 
approach toward end-to-end learning in log anomaly detection. They offer good per-
formance and generalization over multiple datasets. We will make our scripts pub-
licly available upon the acceptance of this paper.
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1 Introduction

Software logs are semi-structured text produced by the software during runtime. A 
log file includes numerous lines, where each one is comprised of two parts. The 
structured part, known as header or metadata, consists of information such as 
timestamp, process ID, thread ID, logging level, and logger component, while the 
unstructured part, known as message or content, is free from text which developers 
use to announce the occurrence of an event or report an internal system state.

Recently, deep learning has been used widely to achieve state-of-the-art perfor-
mance in log anomaly detection (Du et al. 2017; Nedelkoski et al. 2020; Zhang et al. 
2019; Meng et al. 2019; Lu et al. 2018; Hashemi and Mäntylä 2022). Most previous 
works rely on a four-stage architecture (preprocessor, parser, vectorizer, and clas-
sifier) to perform their analysis while using deep neural networks only in the final 
stage (classifier). In this paper, we propose an alternative where the log parser, vec-
torizer, and classifier are merged into a single deep neural network, see Fig. 1. Merg-
ing all components into a single deep neural network takes the log-analysis field one 
step closer toward end-to-end learning.

Our work is motivated by the potential benefits of end-to-end learning that has 
demonstrated good accuracy in many different tasks like playing board games (Sil-
ver et  al. 2016), language translation (Shen et  al. 2015), and autonomous driving 
(Bojarski et al. 2016). End-to-end learning refers to training a single system, usu-
ally a deep neural network, to perform the tasks from the raw data to the end results 
without independent modules or sub-goals. Glasmachers (2017) explains, this meth-
odology seeks to minimize human intervention by relying solely on data. Potential 
benefits of end-to-end learning in log anomaly detection are:

• Automatic Feature and Task Learning: For instance, while log messaged can 
be parsed in separate module, the end-to-end approach trusts for the system to 
autonomously learn log parsing as part of the overarching task, such as anomaly 
detection, if it proves advantageous.

• Less Engineering Effort: In previous architecture, engineers needed to be experts 
and optimize three components compared to one.

• Better Accuracy: As explained by Wu et  al. (2021), machine-learning systems 
consist of multiple components that are developed and trained separately may 
fail to improve the overall performance while each component improves indi-
vidually.

Fig. 1  An overall view of the OneLog idea
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• Cross-project learning: End-to-end learning makes using data across various pro-
jects possible

As our approach is end-to-end, the input is a raw text message or sequence of one or 
multiple events, while the output is a binary integer indicating sequence anomalous-
ness. Since the input is in raw text, processing could happen at multiple language 
levels. Nonetheless, this paper proposes a character-based approach rather than a 
word-based or subword-based one. We chose this because: 

1. Words take different forms in logs, e.g., the word "request" may be abbreviated 
to "req" or "block" to "blk"

2. Processing numerical values is almost impossible in word- and subword-based 
approaches

3. Punctuation marks information is preserved
4. Character-based dictionary is significantly smaller than word-based vocabulary.

Hence, we apply a character-based hierarchical convolutional neural network pro-
posed by Zhang et al. (2015) to detect anomalies in software logs.

Moreover, we take it one step further and train multiple datasets together to 
improve the performance of each individual. Furthermore, we do not stop there and 
attempt to open the black box of the hierarchical neural network to find an interpre-
tation for our results. In the interest of ensuring transparency, the source code for our 
experiments has been made publicly accessible via GitHub.1

All in all, OneLog’s main contributions could be recapitulated within the follow-
ing research questions: 

RQ 1.  How accurate is OneLog in software log anomaly detection among datasets 
of different types (sequence/message based) and domains? OneLog proves 
state-of-the-art performance among multiple datasets of different types and 
domains (see Sect. 3.2).

RQ 2.  Does accuracy improve when combining datasets of the same type and sim-
ilar domains? OneLog shows increasing accuracy on the Hadoop dataset 
when it is combined with the HDFS dataset (see Sect. 3.3). OneLog dem-
onstrates improvements in all datasets when shrunk training sets are com-
bined for training (see Sect. 3.4).

RQ 3.  Is cross-project anomaly detection possible with OneLog? We cannot be 
entirely sure about cross-project anomaly detection as we acquired mixed 
results in our experiments. However, we found very high accuracies when 
the datasets were similar enough (see Sect. 3.5).

1 https://github.com/M3SOulu/OneLogReplicationPackage.
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RQ 4.  Is there an interpretation of how OneLog achieves near-perfect state-of-
the-art results among all datasets? Though the black-box nature of neural 
networks is uninterpretable for humans in the first place, we strived to uti-
lize various methods to obtain insights into our model. We found evidence 
that internally the neural network learns to operate similarly to previous 
studies that used separate components to parse, vectorize, and classify log 
sequences and messages (see Sect. 4).

This paper is structured as follows. Next, in Sect. 2, we explain our methodology 
and datasets used in our experiments. Section 3 presents our experimental results in 
various anomaly detection setups. In Sect. 4 we continue with experiments and also 
add explorations on the internal behavior of our model. Section 5 compares our work 
against the most relevant related works while Sect. 6 presents the limitations of this 
work. Finally, Sect. 8 concludes this paper.

2  Methodology

This section explains the idea of OneLog, especially the hierarchical convolutional neu-
ral network. Before delving into the model, it is necessary to specify the datasets, their 
types, and their preprocessing steps.

2.1  Datasets

During our study, we faced two different types of datasets. The first is datasets, where 
each logline is labeled individually. Moreover, these datasets are similar to other one-
to-one NLP tasks, such as spam detection or sentiment analysis. These datasets are usu-
ally cumulative logs of an extensive system such as operating systems or supercomput-
ers. So, we named this type of dataset Event-based.

The second type, which we call Sequence-based datasets, are datasets, where a 
sequence comprised of multiple loglines is labeled instead of individual lines. Addi-
tionally, while different sequences may contain loglines of the same event types, each 
logline could only belong to one sequence. For instance, multiple sequences may begin 
with loglines of the same format (for example, “User connected from [ip-address]”) 
while an individual logline (for example, line 28 for the file “backend.log”) may only 
belong to only one sequence. These datasets usually represent processes or behaviors.

Throughout the rest of this section, we introduce the datasets used in this paper; see 
Table 1. Later, we will explain using both types in OneLog with no model modification 
and even training datasets together for a performance boost.

2.1.1  Event‑based datasets

2.1.1.1 BGL: The Blue Gene/L (BGL) dataset (Oliner and Stearley 2007) was gath-
ered from BlueGene/L supercomputer with 131,072 CPUs and 32,768 GB of RAM 
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at Lawrence Livermore National Labs (LLNL) in Livermore, California. The dataset 
contains a total number of 4,747,963 loglines. However, many samples are dupli-
cated as log events tend to repeat. Removing redundant samples not only reduces the 
training time and computational cost but also strengthens evaluations’ authenticity, 
as some duplicated samples that may find their way into both the train and test set 
during the splitting process are preemptively removed. After removing redundan-
cies, the dataset contains 358,356 normal and 49,001 anomalous samples.

2.1.1.2 Thunderbird: Containing more than 211,212,192 lines and taking up 
almost 30 GB of space, Thunderbird dataset (Oliner and Stearley 2007) is one of the 
most extensive public log datasets. The Thunderbird dataset is collected from the 
Thunderbird supercomputer system at Sandia National Labs (SNL) located in Albu-
querque, with 9,024 processors and 27,072 GB of memory. However, the same as 
the BGL dataset, Thunderbird includes many duplicated samples. So, to strengthen 
evaluations, we dismiss the redundant samples. The dataset includes 15,512,829 
normal and 24,617 anomalous samples after removing redundancies.

2.1.1.3 Liberty: The Liberty supercomputer, with 512 processors and 944 GB 
of memory, is located at Sandia National Labs (SNL) in Albuquerque. The data-
set (Oliner and Stearley 2007) contains 265,569,231 lines, taking almost 30 GB of 
space. Not being an exception from others, the dataset is not divine from duplica-
tion. After removing redundancies, the dataset remained with 6,453,814 normal and 
5,114 anomalous samples.

2.1.1.4 Spirit: The Spirit supercomputer at Sandia National Labs (SNL) located in 
Albuquerque is equipped with 1028 processors and 1024 GB of memory. Although 
it was ranked 202 among the best supercomputers in the world between 2004 and 
2006, it is relatively weak compared to today’s standard. The Spirit dataset (Oliner 
and Stearley 2007) is collected from the supercomputer containing 272,298,969 
lines of logs taking up 37 GB of space. After redundancy removal, however, the 
dataset contains 90,200 normal and 13,644,385 anomalous samples.

2.1.2  Sequence‑based datasets

2.1.2.1 HDFS: Hadoop Distributed File System (HDFS) is a fault-tolerant and low-
cost distributed file system established by Hadoop. The dataset is regarded as a 

Table 1  Datasets explanation

Dataset Type Volume Log Lines Samples

Normal Anomaly Total Ratio

HDFS Sequence 1.48 GB 11,175,629 558,223 16,838 575,061 0.0301
Hadoop Sequence 45.7 MB 781,586 610 15,345 15,955 25.1557
BGL Event 708 MB 4,747,963 309,355 49,001 358,356 0.1583
Thunderbird Event 29.6 GB 211,212,192 15,512,829 24,617 15,537,446 0.0016
Spirit Event 37.3 GB 272,298,969 13,644,385 90,200 13,734,585 0.0066
Liberty Event 29.5 GB 265,569,231 6,453,814 5,114 6,458,928 0.0008
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benchmark in the log anomaly detection domain. It was constructed via map-reduce 
jobs with more than 200 Amazon EC2 nodes, and it was annotated by Hadoop 
domain specialists (Xu et  al. 2009). Each log message’s blockid has been used to 
produce sequences. We retrieve 16,838 anomaly and 558,223 non-anomaly samples 
after the preprocessing.

2.1.2.2 Hadoop: Hadoop is a big data processing technology that enables dis-
tributed data processing. The dataset, introduced by Lin et  al. (2016), comprises 
a five-machine Hadoop cluster log, each with an Intel(R) Core(TM) i7-3770 CPU 
and 16GB of RAM. Furthermore, since our algorithm only identifies anomalies, not 
their categories, we first combine all types of anomalies into a single class. Then, as 
many sequences in the dataset are excessively lengthy, we use the sliding window 
approach (window size of 64) to produce subsequences. As the merging resulted in 
a higher number of anomaly samples, we inverse the labels (replace zeros with ones 
and ones with zeros) to maintain the nature of the anomaly detection task where the 
minority is labeled as positive. Thereafter, the dataset includes 610 anomaly and 
15,345 non-anomaly samples. On the other hand, when the dataset couples with 
other datasets in training, we do not inverse the labels as other datasets compensate 
for the inversed imbalances of Hadoop.

2.2  Preprocessing

Since the Hierarchical CNN model processes input data in sequence form (a matrix 
of characters where each row represents an event, so the entire matrix represents a 
sequence of messages), log input should be transformed into sequences before they 
are passed to the model, similar to the work by Du et al. (2017). As mentioned previ-
ously, in Table 1, HDFS and Hadoop’s sequences are produced by a particular prop-
erty, naming block

i
d in HDFS and files in Hadoop. However, BGL, Thunderbird, 

Spirit, and Liberty are event-based datasets which makes sequences meaningless for 
them. So, we produce single-event sequences (Each event is made into a sequence 
that contains only one event). After sequence production, environmental biases in 
the dataset, such as IP addresses and integer sections of block IDs, are removed to 
avoid creating any bias in the model. Then, each sequence is converted to a matrix 
of integer numbers according to a character table.

2.3  Hierarchical CNN model

As previously stated, OneLog treats the log anomaly detection problem as a 
sequence of the text classification problem. Moreover, it takes its input in raw text 
format (a matrix of characters) and learns to classify anomaly sequences during the 
training. Thus, since the characters are encoded into integer numbers, the entire task 
is to classify a matrix of integers.

Accordingly, the model is divided into three sections in our network. The first one 
embeds input characters, the second processes embedded characters to form event 
vectors, and the third processes the embedded vectors and classifies the entry (the 
character matrix), see Fig. 2.
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In more detail, the input is a sequence of log events, while each log event is a 
sequence of characters (the leftmost rectangle in the figure). Hence, assuming that B 
is the batch size used in our model training, L

s
 is the maximum number of log events 

in a sequence, and L
l
 is the maximum number of characters in a log event (line), 

the input size is (B,L
s
, L

l
) . At first, OneLog embeds all characters into an arbitrary 

vector space with the dimension of C
e
 , the character embedding matrix’s dimen-

sions, producing an intermediate tensor shape of (B,L
s
, L

l
,C

e
) . After that, three one-

dimensional convolutional layers (event embedding network) are applied to each log 
event (the second dimension) in the tensor. Presuming that C

l
 is the number of out-

put channels in the log event embedding network, the intermediate tensor shape is 
(B,L

s
, L

l
,C

l
) . The output is aggregated by taking the maximums in the third dimen-

sion, delivering the intermediate tensor shape of (B,L
s
,C

l
).

Following the aggregation, the intermediate tensor goes through three one-
dimensional convolutional layers (sequence embedding network). Supposing the 
number of output channels in the sequence embedding network’s last layer is C

s
 , the 

intermediate tensor shape is (B,L
s
,C

s
) . Next, the output is aggregated by selecting 

the maximums in the second dimension, making a tensor shape of (B,C
s
) . Finally, 

the intermediate tensor passes through multiple fully-connected layers activated by 
a Rectifier Linear Unit (ReLU) followed by a Sigmoid-activated one with one output 
neuron, producing an output shape of (B,  1), which indicates the probabilities of 
input sequences being anomalous. As the model hierarchically applies convolution, 
we call it Hierarchical Convolutional Neural Network (HCNN).

Since the proposed model is entirely made of convolutional and fully connected 
layers, the computations may be parallelized, making the training and inference dras-
tically more efficient than RNN-based solutions. Furthermore, parallelism allows for 
higher quantities of training data that boost performance and generalizability.

3  Experimental results

Throughout this section, OneLog is assessed in different challenges, from standard 
ones to more challenging ones, using the aforenamed datasets. More in-depth, we 
evaluate OneLog in a benchmark challenge that trains and tests the model on the 

Fig. 2  The Hierarchical CNN model visualization. Variables S and E are indications of sequence and 
event lengths which are equivalents of L

s
 and L

l
 in the model explanation text. However, It must be noted 

that within our experiments, though the sequence events window size is 64, there is no limit to the num-
ber of characters in each log event (line)
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same data. To attain near-perfect results for those that did not achieve it in the first 
experiment, we combine correlated datasets to increase their performance in the sec-
ond experiment. Following that, we evaluate the effects of multi-project training by 
reducing the training set samples from all datasets. Finally, we evaluate the idea of 
cross-project training in supercomputer log datasets.

3.1  Environment settings

It is important to discuss some experiment environment details before diving deep 
into the experiments. Likewise, the HierarchicalCNN model is part of the deep neu-
ral networks family, which usually requires a considerable amount of data to gen-
eralize appropriately. On the other hand, a decent number of anomalous samples is 
mandatory in the test set to perform a consolidated evaluation. So, we decide to split 
each dataset 80% to 20% between train and test sets for the performance evaluation 
experiments. We believe an 80–20 split is a good sweet spot between training com-
prehensivity and testing rigidity. Furthermore, we preserve 20% of the training data 
for validation purposes to prevent overfitting. Thus, about 74% of the entire dataset 
is used for training.

On the other hand, since we train our model on lots of data, we require a fast 
method of training to make the training method viable. Hence, we use mixed float-
ing point precision during our training, maintaining the model in 32-bit floating 
point numbers while using 16-bit floating point numbers for gradient calculation. 
The mixed floating point precision method allows for larger training batches pos-
sible. However, batch sizes differ for each dataset as it is correlated to the aver-
age sequence size, which is different for each dataset. So, we used smaller batches 
in training on datasets with larger average sequence lengths, like Hadoop, and 
larger ones on datasets with shorter average sequence lengths, such as Spirit and 
Thunderbird.

Furthermore, as the HierarchicalCNN model contains multiple convolutions and 
fully-connected layers (nine layers in total), it is drastically prone to the vanishing 
gradient problem. In order to circumvent this problem, we utilize the batch normali-
zation technique in all convolution layers of message and sequence embedding sec-
tions. Doing so facilitates the flow of gradient throw the network and expedites the 
convergence process.

Since we are utilizing mixed floating point precision to expedite training speed, 
our model is exposed to numerical instability during the training process. The insta-
bilities come from computing the derivative of the natural logarithm and exponen-
tial in a mixed precision fashion. To compensate for this problem, instead of using 
the traditional binary classification loss (a variety of log loss) on a probability out-
put, we use the binary classification loss for logits and remove the sigmoid activa-
tion at the end of the model, making the last layer of the model linear. Thus, we 
have to compute neither the exponential function within the sigmoid nor the natu-
ral logarithms within the log loss, enhancing the numerical stability of our training. 
Furthermore, we use the Adam optimizer to produce a more robust gradient value.
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3.2  Single‑project experiment: RQ1

RQ1: How accurate is OneLog in software log anomaly detection among datasets 
of different types (sequence/message based) and domains?

3.2.1  Motivation

In this experiment, we strive to evaluate the HierarchicalCNN model among dif-
ferent datasets and compare them to parser-less and parser-based state-of-the-art 
log anomaly detection methods.

3.2.2  Method

In order to perform the evaluation process, we need to train the model on each 
dataset. However, before training, we acquire the optimum batch size for each 
dataset. The optimum batch size is the largest batch size that could fit in the 
accelerator’s (GPU in our experiment) memory and perform all necessary train-
ing steps (feedforward, backward gradient computation, and weight update). A 
larger batch size compared to a smaller one not only reduce the training time due 
to better parallelization but also results in more generalized gradient values that 
help with faster convergence.

It is worth mentioning that since the batch sizes were not deterministic val-
ues and were entirely dependent on the machine’s hardware specifications and 
state, we did not include them in the results. However, we can confirm that since 
Hadoop’s average sequence length is larger, smaller batch sizes were consist-
ently found for it compared to single-event sequence datasets such as BGL or 
Thunderbird.

Furthermore, since Hadoop does not include enough samples, it puts the model 
at risk of overfitting. So, to prevent overfitting, we use dropout layers with the prob-
ability of 0.5 for all convolution and fully-connected layers in the HierarchicalCNN 
model while experimenting on the Hadoop dataset.

Thereafter, we train each model with the optimum batch sizes that were previ-
ously found. Furthermore, training for each model happened no more than 128 
epochs to further standardize the evaluation. Finally, we evaluated each trained 
model using each dataset’s test set by computing the F1 score for each test set and 
comparing it to the state-of-the-art methods.

3.2.3  Results

As Table  2 shows, OneLog achieves near-perfect results, either close to or better 
than the state-of-the-art. OneLog scores the F1 score of 0.99 on all datasets except 
for Hadoop. We think the reason for such an incident is that Hadoop is a more com-
plex dataset with fewer samples, making it extremely difficult for the model to score 
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as high in this dataset. We provide a solution to improve the model’s performance 
on the Hadoop dataset in the next experiment.

3.2.4  Discussion

We think the excellent performance of OneLog could be attributed to three facts. 
First, even past works have achieved relatively high F1 scores in evaluation datasets, 
suggesting that achieving high performance with multiple approaches in that dataset 
is possible. Second, our character-based NLP approach demands samples on a large 
scale and uses them to train millions of parameters to learn complex behavior in the 
data. Thirdly, the Hierarchical CNN, operating at the character level, can meticu-
lously focus on parameters. In specific scenarios, these parameters crucially deter-
mine a sequence’s anomaly label.

For instance, Figs.  3 and 4 show two examples where param-
eters play a significant role in anomaly detection. In the HDFS data-
set Fig.  4, while two sequences with the block_ids blk_-
1877795964140566716 and blk_8557779918081539564 follow the 

Table 2  Evaluation of the OneLog trained on the multi-project dataset and its comparison to the state-of-
the-art (to the best of our knowledge) method on each dataset

In methods denoted by a superscript asterisk, we were unable to replicate the results with equivalent 
accuracy, thus we have cited the findings from the original publication

Method HDFS Hadoop BGL Thunderbird Spirit Liberty

OneLog 0.99 0.97 0.99 0.99 0.99 0.99
LogBERT* (Guo et al. 2021) 0.82 – 0.91 0.97 – –
NeuralLog (Le and Zhang 2021) 0.98 – 0.98 0.96 0.97 –
Logsy* (Nedelkoski et al. 2020) – – 0.65 0.99 0.99 –
LogRobust (Zhang et al. 2019) 0.99 0.90 0.75 0.68 0.95 –
LogAnomaly (Meng et al. 2019) 0.94 – 0.88 0.84 0.95 –
DeepLog (Du et al. 2017) 0.95 – 0.86 0.93 – –
SiaLog (Hashemi and Mäntylä 2022) 0.99 0.94 0.99 – – –
CNNLog (Lu et al. 2018) 0.98 0.92 0.95 – – –
Auto-LSTM (Farzad and Gulliver 2019) – – 0.95 0.99 – –

Fig. 3  A sample from the Hadoop dataset where parameters are the sole determinants differentiating 
between normal and anomalous behaviors
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same execution path, they have distinct labels, with their parameters being the 
distinguishing factor. Specifically, blk_-1877795964140566716 removes 
three block files from /mnt/hadoop/dfs/data/current/. However, 
the standard procedure is to remove the second file from /mnt/hadoop/dfs/
data/current/subdir, precisely what blk_8557779918081539564 
accomplishes. Additionally, in the Hadoop dataset Fig.  3, two sequences from 
containers container_1445087491445_0007_01_000008 and con-
tainer_1445094324383_0001_01_000009 differ only in their parameters. 
The former is categorized as normal, while the latter is identified as a machine-down 
anomaly. Such detailed distinctions are feasible only with accurate parameter pro-
cessing, a strength inherent in the Hierarchical CNN model.

On the other hand, we believe the model performed less accurately on the 
Hadoops dataset since it does not contain enough samples. The upcoming experi-
ment confirms this hypothesis to some degree.

3.3  Multi‑project experiment for sequence‑based datasets: RQ2

RQ2: Does accuracy improve when combining datasets of the same type and simi-
lar domains?

3.3.1  Motivation

As shown in the previous experiment, OneLog achieved near-perfect results in all 
datasets except the Hadoop dataset. We think the root cause of this is Hadoop’s lack 
of samples (610 normal and 15,345 anomalies) and overcomplexities compared to 
other datasets. So, a potential solution could be transferring knowledge from other 
datasets. After all, since we use a character-based approach, it may capitalize on the 
shared vocabulary among different log datasets. Therefore, in this experiment, we 
combine multiple datasets for training.

3.3.2  Method

We train our HiearchicalCNN model on a combined dataset of multiple log datasets. 
Although it seems straightforward, choosing suitable datasets could be challenging. 
On the one hand, the more data fed to the model, the more generalized the model 
becomes. On the other hand, however, our arsenal of datasets is extensive, making 
it computationally expensive for training. Thus, we explored a handful of datasets 
that increase the Hadoop results to near perfect while maintaining trainability. After 

Fig. 4  A sample from the HDFS dataset where parameters are the sole determinants differentiating 
between normal and anomalous behaviors
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attempting multiple trainable combinations, we found that combining Hadoop with 
HDFS increases the model’s performance on Hadoop to near-perfect while keeping 
the model trainable.

3.3.3  Results

As shown in Table  3, with the help of the HDFS dataset, Multi-project OneLog 
achieves near-perfect results, F1 score of 0.99, compared to the Single-project 
OneLog that had the F1 score 0.97 on the Hadoop dataset.

3.3.4  Discussion

Although the extra performance may not be worth the computational costs in some 
cases, this experiment bears witness to the fact that combining multiple log datasets 
improves OneLog’s performance on an individual dataset. This approach is handy 
when the available data is insufficient to train a model with desired performance. In 
such cases, we may take advantage of other datasets (such as open public ones) to 
boost the performance. Furthermore, this finding is crucial as it shows that having a 
generalized model for software log anomaly detection is possible.

3.4  More difficult and comprehensive multi‑project experiment: RQ2

RQ2: Does accuracy improve when combining datasets of the same type and simi-
lar domains?

3.4.1  Motivation

As shown in Sect.  3.3, combining multiple datasets increases OneLog’s perfor-
mance on the Hadoop dataset. However, it was impossible to observe any perfor-
mance improvement in other datasets as the results were already near-perfect ( F1 
score of 0.99) in single project experiments; see Table 2.

Given a large amount of data, the task was too easy for our deep neural net-
work. However, having more than sufficient data is a luxury that might not hold 
true in an industry where things like time pressure hampers practitioners, and 
the systems are constantly evolving. Therefore, we decided to reduce the train-
ing data to make the anomaly detection task more difficult. This allows us to 

Table 3  Evaluation of the 
Multi-project (MP) OneLog 
trained on the multi-project 
dataset and its comparison to the 
state-of-the-art (to the best of 
our knowledge) method on each 
dataset

Method Hadoop

OneLog (Hadoop only) 0.97
OneLog (Hadoop & HDFS) 0.99
LogRobust 0.90
SiaLog 0.94
CNNLog 0.92
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experiment more on the Multi-project Onelog performance and assess if multi-
ple datasets help the model perform better at each dataset.

3.4.2  Method

Reducing training set size is challenging as the datasets at hand vary in nature, 
complexity, and volume. For instance, the HDFS dataset contains many similar 
sequences and not many templates, so it is on the easier end of the spectrum. 
However, for the Hadoop dataset, since the data volume (number of sequences) 
is lower and the complexity (number of templates) is higher, the model finds it 
more challenging to achieve near-perfect results.

At first, we decided to take a constant percentage of each dataset. However, 
we found this method inapplicable as the trained model’s accuracy varied greatly 
between datasets. Furthermore, the model achieved the same near-perfect result 
just by utilizing 2% of the HDFS training set. On the other hand, the model mis-
classified nearly all sequences when it was trained on 10% of the Hadoop train-
ing set.

Thus, we changed the dataset reduction method from a constant percentage 
to the same difficulty for all. Going more in-depth, we started from a complete 
training set and decreased the available training set ratio until the accuracy had 
gotten to a certain level in single-project training and repeated this process for 
each dataset individually. We aimed to get an F1 score of 0.8 for all datasets as 
it allows some learning to happen in each single-project training while leaving 
enough room for improvement. One can notice from Table 4 that not all datasets 
got to 0.8 in a single-project setup, as the reduction in training data resulted in 
relatively abrupt performance changes. Nevertheless, by reducing the training 
set samples, we achieved the goal of reducing single-project performance while 
allowing some learning to appear.

After reducing the training data, we combine all subsets and train a Multi-
project Onelog model using the combined dataset. We measure the performance 
of the trained model on each test set individually. Finally, it is important to men-
tion that we only reduced training set sizes and left test sets untouched in this 
experiment, implying that they are the same as in the previous experiments.

Table 4  Multi-project training 
when all datasets are equally 
difficult

Dataset Subset Ratio Single-project Multi-project

HDFS 0.0090 0.83 0.86
Hadoop 0.7800 0.78 0.89
BGL 0.0150 0.75 0.98
Thunderbird 0.0025 0.74 0.91
Spirit 0.0020 0.80 0.97
Liberty 0.0100 0.77 0.89
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3.4.3  Results

Table 4 shows how the model performs on each test set after being trained in single-
project and multi-project settings. We get improvement in all datasets. The average 
single-project F1 score is 0.78, while the average multi-project F1 score is 0.92. The 
biggest improvement is in BGL, which improves the test set F1 score from 0.75 to 
0.98 in single-project and multi-project training, respectively. The lowest improve-
ment is HDFS which improves only from 0.83 to 0.86 in single-project and multi-
project training, respectively.

3.4.4  Discussion

The significant average improvements and the fact that we got improvements in all 
datasets provide evidence that multi-project training improves performance. The 
results suggest that the OneLog model can generalize on multiple datasets and that 
this generalization results in performance improvement when sufficient training data 
is unavailable.

3.5  Cross‑project experiment with supercomputer log datasets: RQ3

RQ: Is cross-project anomaly detection possible with OneLog?

3.5.1  Motivation

As demonstrated in Sects. 3.3 and 3.4, combining multiple datasets improves perfor-
mance. However, there might exist situations when no training data is available due 
to data inaccessibility, incompatibility, or scarcity. In such situations, cross-project 
training may become the only viable option. Assuming we have multiple similar 
datasets, in cross-project training, a model trains on one or multiple datasets while 
being tested on other datasets that it has not seen in training. Such a method allows 
software engineers to train a model once and use it as the system changes and also 
use a trained model in situations where they do not have access to the data.

3.5.2  Method

Before diving deep into the experiments, we must select the experimentation data-
sets. We select BGL, Thunderbird, Spirit, and Liberty as they are all supercomputer 
logs and, thus, possess a reasonable chance that cross-project training would offer 
positive results. In order to evaluate the cross-project training idea, we developed 
two experiments. During the first experiment, we train a distinct model for each 
dataset and evaluate its performance on all other datasets. This way, we evaluate if 
we could deploy a model to detect supercomputer anomalies without being trained 
on the same data. In other words, the models are the same as Sect. 3.2; however, 
evaluation datasets are other supercomputer logs than the training dataset. In the 
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second experiment, we leave one of the datasets out for evaluation while training 
on the rest. This experiment examines the possibility of training a model on similar 
datasets and deploying it to another machine if the deployment machine’s log were 
inaccessible.

3.5.3  Results

As Table 5 illustrates the first experiment’s results, cross-project training could be 
possible under the condition that datasets are similar enough. Training the model 
on Spirit data produced an F1 score of 0.91 in Liberty. Vice versa, we observed that 
training on Liberty results in an F1-Score of 0.99 in Spirit. However, all other pairs 
offered poor results, e.g., training on Thunderbird produces F1 scores of 0.10, 0.01, 
and 0.00 in Spirit, Liberty, and BGL, respectively.

Table 6 discloses the second experiment’s results, which are in line with the pre-
vious one. For Spirit and Liberty, we got an F1 score of 0.99 when the model was 
trained on the three other supercomputers’ datasets. The result indicates that the 
model may not be trained on the target machine’s data at all should a minimum of 
one similar dataset exist within the training datasets pool.

3.5.4  Discussion

It appears that we could achieve high accuracy even by training on foreign data only. 
However, this foreign data has to be close enough as we could find only one pair 
(Spirit and Liberty) where cross-project training produced accurate enough results. 
An important question for future research are methods of finding close enough data-
sets before training.

Table 5  Cross-project training 
results within train on one 
evaluate on others settings

Training Evaluation

BGL Thunderbird Spirit Liberty

BGL 0.99 0.00 0.00 0.00
Thunderbird 0.00 0.99 0.10 0.01
Spirit 0.00 0.06 0.99 0.91
Liberty 0.00 0.05 0.99 0.99

Table 6  Cross-project training 
results within leaving one out 
for evaluation settings

Datasets F1 score

Training Evaluation

Thunderbird Spirit Liberty BGL 0.00
BGL Spirit Liberty Thunderbird 0.05
BGL Thunderbird Liberty Spirit 0.99
BGL Thunderbird Spirit Liberty 0.99
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4  Model Interpretation: RQ4

RQ4: Is there an interpretation of how OneLog achieves near-perfect state-of-the-
art results among all datasets?

In the previous section, we saw how OneLog outperforms the state-of-the-art 
methods among different datasets. Although one may assert that the model inter-
nals do not matter as long as the performance is good, we believe interpreting the 
black-box model of deep learning increases authenticity. More in-depth, we can find 
out if models have found an unexpected method in their decision-making process, 
such as making decisions based on an environmental bias in the datasets (such as IP 
address). Nonetheless, OneLog’s deep neural network’s black box remains a mys-
tery, as it is not apparent how it achieves such high scores. This section aims to com-
prehend the deep neural network and interpret its decision-making.

Although some algorithms have been proposed to interpret deep neural networks’ 
decision-making (Shrikumar et  al. 2016; Winter 2002; Sundararajan et  al. 2017; 
Bach et  al. 2015; Shrikumar et  al. 2017), especially in the computer vision field, 
we found their outcomes impractical for our study during our experiments. As the 
mentioned methods discover the most contributing input(s) to the production of the 
output while our model’s input is a matrix of characters, we found the idea of the 
most contributing character(s) to a log sequence anomalousness irrational.

Furthermore, we consider that our deep neural network’s hierarchical architecture 
makes it unintuitive to interpret it as one neural network, as different model sections 
are supposed to perform different tasks. Furthermore, we believe each model sec-
tion should be interpreted separately. Hence, we split our network into two parts and 
investigated them separately.

Accordingly, we split the hierarchical convolutional neural network into two sub-
models. The first submodel is comprised of character and event embedding layers 
(see Fig. 2), while the second submodel carries sequence embedding and classifi-
cation layers. We name the first submodel the "Parser Model" and the second sub-
model the "Classifier Model".

Throughout the rest of this section, we strive to investigate each model’s internal 
decision-making mechanisms and evaluate how accurately they are performing the 
task considered for them.

4.1  Parser model interpretation

4.1.1  Background

This subsection is dedicated to figuring out the under-the-hood mechanics of the 
Parser Model. Accordingly, we intend to know if the Parser Model acts similarly 
to log parsers in prior studies by Zhu et al. (2019). Although neural networks and 
standard parsers are both functions, a direct comparison is impossible. Furthermore, 
a neural network (specifically the Parser Model) is a sequence of linear-algebra 
operations on input vector(s), while parsers are considered as a set of templates that 
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are compared against the input to find the fittest template. Therefore, we found these 
two models incomparable. So, a direct function comparison between a neural net-
work and a standard parser is impossible.

As an internal comparison is impossible, function similarity approximation 
becomes a viable option. Moreover, the similarity between two functions within a 
defined domain could be approximated by computing the difference between their 
outputs for a set of distributed inputs from the desired domain. So, we may compute 
the similarity between the Parser Model and an actual log parser by comparing their 
outputs for a specific set of inputs. Nonetheless, this raises another challenge as the 
Parser Model’s output is a continuous vector while a parser’s output is a discrete 
categorical cluster number.

The foremost solution to this problem may be clustering vectors and comparing 
the clusters with the ground truth categories using a standard clustering performance 
metric. However, since a perfect clustering algorithm does not exist, by doing so, we 
are including clustering errors in our measurements. Thus, to circumvent the lat-
est trouble, we use silhouette score (Shahapure and Nicholas 2020; Starczewski and 
Krzyżak 2015). Though silhouette score is not commonly employed for this goal, it 
fits our situation flawlessly.

4.1.2  Method

The silhouette score is an unsupervised metric for clustering accuracy measurement. 
Silhouette ranges from −1 (worst) to +1 (best). According to Pedregosa et al. (2011), 
the score is 1 when all clusters are correct, it is −1 when all clusters are incorrect, 
and zero indicates overlapping clusters. Silhouette indicates how close the mem-
bers of each cluster are and how distant they are from other clusters simultaneously. 
Accordingly, lower intra-cluster and higher extra-cluster distances elevate silhouette 
scores. So, if the silhouette score is passed with embedded vectors and the ground 
truth template numbers (manually labeled), it shows how close events of the same 
template are embedded while being distant from templates of other clusters. This 
measures how close the Parser Model’s output is to manually-labeled event tem-
plates that act as ground truth. Moreover, it answers the question Is Parser Model 
embedding events according to their templates, which could be deemed as an act of 
log parsing? If the answer to this question is yes (positive silhouette score), then it 
may be concluded that the Parser Model is actually parsing the log line before pass-
ing them to Sequence Embedding layers.

We acquire the gold standard human-labeled log event template datasets for our 
ground truth. Past work has used this data for log parser performance experiments 
(Zhu et  al. 2019). Since the parsed template data is unavailable for all of our test 
datasets, we performed this experiment for only four datasets (HDFS, Hadoop, 
BGL, and Thunderbird). During the experiment, for each dataset, we first embedded 
all events from the log parser benchmarking dataset using a Parser Model extracted 
from a model trained on the target dataset and calculated the silhouette score for 
embedded events using their template number.

In addition to the silhouette score, we provide a visualization. Visualization 
of more than three dimensions is uninterpretable for humans. Thus, we reduce 
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embedded event vector dimensions using the U-MAP algorithm (McInnes et al. 
2018) and visualize the events in a 2D plot. Each event is also colored based on 
its template.

4.1.3  Results

Table 7 shows the silhouette scores for different datasets. From the table, we can 
observe that we achieve an excellent score of 0.74 for Hadoop. For HDFS and 
BGL, on the other hand, the scores are lower yet still clearly on the positive side, 
with silhouette scores of 0.34 and 0.24, respectively, while Thunderbird stands 
in the middle ground between BGL, HDFS, and Hadoop with silhouette scores 
of 0.48. So it appears that the Parser Model is, in fact, parsing the events in a 
similar way as other log parsers. We should bear in mind that our Parser Model 
is not trained for log parsing, and all the correct event labeling it achieves is 
simply a side product of its main goal of anomaly detection.

In the end, it is worth mentioning that there might be many events that are not 
relevant for anomaly detection. Such events are likely to be incorrectly clustered 
as, from our model’s point of view, they do not contain useful information.

Figure 5 shows our visualization. Event distances are the distances of embed-
ded log event vectors after U-Map transformation. Event colors represent the 
ground truth of manual labeling. We can see that events of the same color are 
closer to each other compared to events of different colors. This gives visual 
support to the idea that the Parser model processed events have formed clusters 
based on log text structure within the embedding vector space. We can see some 
points overlapping with incorrect clusters. This finding aligns with the Silhou-
ette score, indicating that the clusters are imperfect. However, as our model is 
not trained for event parsing or labeling, it is irrational to expect perfect clus-
ters here. Instead, this finding demonstrates our model’s capability to learn some 
parsing rules as part of its end goal of anomaly detection. Note: Although the 
visualization experiment is possible for the Hadoop, BGL, and Thunderbird 
datasets, we found their images uninterpretable. HDFS only contains less than 
15 event types, while the number is much higher for Hadoop, BGL, and Thun-
derbird, resulting in indistinguishable colors in the visualization.

Table 7  The silhouette score of 
the Parser Model with respect to 
manually labeled log templates

Dataset Samples Templates Silhouette Score

HDFS 2000 14 0.34
Hadoop 2000 114 0.74
BGL 2000 120 0.24
Thunderbird 2000 149 0.48
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4.1.4  Discussion

It appears the Parser model learns to parse as a side product of its end goal of 
anomaly detection. An interesting future research idea would be to use just the 
parser model and see how it performs if trained for parsing only. One needs to 
remember that in the current setup, the Parser model has not been trained with 
the ground truth. Rather its silhouette scores are a side product of learning how to 
detect anomalies.

Fig. 5  The embedded vectors visualization of the HDFS log parsing benchmark dataset
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4.2  Classifier model interpretation

4.2.1  Background

Classifier Model is the second part of the HierarchicalCNN model. The classi-
fier model, comprised of the sequence embedding component and classifier, is 
responsible for feature extraction and classification of the embedded events. The 
input to this component is the embedded event vectors (from Parser-model), 
while the output is a binary value indicating the input’s anomaly status.

4.2.2  Method

This experiment focuses on finding the responsible event(s) for labeling a 
sequence as anomalous. This task is similar to finding responsible pixels (or 
areas) for image classification. Hence, we decided to choose the popular inte-
grated gradients method (Sundararajan et  al. 2017), which has been employed 
for responsible pixel task regularly. However, our entries are embedded events 
rather than pixels. Thus, we generated many heatmaps using the integrated gradi-
ent algorithm.

4.2.3  Results

Figures  6, 7 and 8 show selected anomalous sequence heatmaps (darker colors 
represent greater integrated gradient values).

We qualitatively explored the results for the HDFS dataset, shown in Figs. 6, 7 
and 8, as this dataset is the only one with not many event templates and is compre-
hensible for humans. Furthermore, we found that the model relies on multiple strate-
gies to classify anomalous sequences. According to the experiment, the following 
strategies explain what we think are three of the most important ones that the model 
utilized to classify anomalies and are relatively interpretable for humans. 

1. Fatal event: Detecting a single fatal event in the sequence, as shown in Fig. 6. 
This strategy is very straightforward as some events in the HDFS dataset occur 
only in anomalous situations, explained by Hashemi and Mäntylä (2022).

2. Bad subsequence: Detecting faulty subsequences. On this occasion, each sequence 
event does not indicate anomalous behavior individually. Nevertheless, the occur-
rence of them together in a particular order indicates that the entire sequence is 
anomalous, as examples in Fig. 7.

3. Multiple suspicious events: The last strategy exists when multiple suspicious 
events happen during the sequence, which may not indicate anomalous behavior 
on its own. For example, the software starts to clean up at the end. The model 
considers the combination of the suspicious event(s) and cleanup process as an 
anomalous action; see Fig. 8.
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Fig. 6  Suspiciousness map of various anomalous samples from the HDFS dataset that were detected 
as anomalies by the model for the occurrence of a fatal event. Darker colors represent more suspicious 
events
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Fig. 6  (continued)



1 3

Automated Software Engineering           (2024) 31:37  Page 23 of 36    37 

Fig. 6  (continued)
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Fig. 7  Suspiciousness map of various anomalous samples from the HDFS dataset that were detected as 
anomalies by the model for the occurrence of a suspicious sequence. Darker colors represent more suspi-
cious events
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Fig. 7  (continued)
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Fig. 7  (continued)
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Fig. 8  Suspiciousness map of various anomalous samples from the HDFS dataset that were detected as 
anomalies by the model for the occurrence of a suspicious event or sequence and a cleanup operation at 
the end. Darker colors represent more suspicious events
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Fig. 8  (continued)
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Fig. 8  (continued)
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5  Related works

Here we compare our approaches to related work in terms of model design and per-
formance. Although different approaches have been invented to address log anomaly 
detection, we focus on deep-learning-based models only as they have achieved the 
best performance in almost every dataset.

Table 8 summarizes the prior works mentioned in this section. In the table, we 
can see that there are other approaches that do not utilize pre-built log parsers like 
Drain or Spell or works that have found innovative ways to retain semantic informa-
tion available in log messages. Recently many works have utilized word tokenizer 
followed by Transformer, e.g., Nedelkoski et al. (2020), Le and Zhang (2021), Guo 
et al. (2021). Yet, they all convert the log message input to words while we take the 
log messages as raw a character stream. Therefore, the most notable finding from the 
table is that prior works have used separate components for Parser and Vectorizer, 
while we have a single deep model with a Hierarchical Convolutional Neural Net-
work (HCNN).

As one of the first deep-learning-based approaches, DeepLog (Du et  al. 2017) 
parses the sequences using the Spell log parsing algorithm mentioned by Du and Li 
(2016) and uses Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 
1997) to model the non-anomaly logs by predicting the next event in the sequence. 
After the training, the model predicts a low probability for anomaly sequences as it 
has converged on non-anomaly data. DeepLog also uses parameter values and log 
keys to preserve text information.

LogRobust (Zhang et  al. 2019) applies an attention model to Bidirectional 
Long Short-Term Memory (Bi-LSTM) to classify the event sequences. However, 

Table 8  Previous methods explanation and comparison to OneLog

SM Sequence Modeling, BC Binary Classification, SV Semantic Vectorization, TA Template Approxima-
tion, T2V Template2Vec, ML Metric Learning, HCNN Hierarchical Convolutional Neural Network

Method Parser Vectorizer Classifier Approach Input Type

DeepLog (Du et al. 2017) Spell Onehot LSTM SM Sequence
CNNLog (Lu et al. 2018) – Onehot CNN BC Sequence
LogRobust (Zhang et al. 2019) Drain SV Bi-LSTM BC Sequence
LogAnomaly (Meng et al. 2019) TA T2V LSTM SM Sequence
Logsy (Nedelkoski et al. 2020) – Tokenizer Transformer BC Message
NeuralLog (Le and Zhang 2021) – Tokenizer Transformer BC Sequence
Logbert (Guo et al. 2021) Tokenizer – Transformer SM Message
Auto-BLSTM (Farzad and Gulliver 

2019)
Tokenizer Autoencoder Bi-LSTM BC Message

SiaLog (Hashemi and Mäntylä 2022) Drain Onehot LSTM ML Sequence
OneLog HCNN HCNN HCNN BC Both
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the main contribution of this work is in the introduction of log evolution. LogRo-
bust asserts that software logs evolve due to updates. Hence, it proposes a method 
for synthetically evolving log messages and sequences by adding noise. Further-
more, it introduces a new method of vectorization called “semantic vectoriza-
tion”, which uses pre-trained word embeddings to construct a vector based on 
words’ semantic meanings in a log event. In a way, this semantic vector can be 
seen to retain some natural language information.

LogAnomaly (Meng et al. 2019) also uses LSTM but presents a new vectoriza-
tion technique called “template2vec’ that takes advantage of synonyms and anto-
nyms. This template approach is somewhat similar to LogRobust, where part of 
natural language information is retained through the words in the template. Addi-
tionally, LogAnomaly keeps track of message counts in sequences to detect quan-
titive anomalies alongside sequential ones.

In another innovation in the vectorizer component, Lu et al. (2018) proposes 
a technique to embed log keys to feature-rich vectors called “log-key2vec”. 
Besides, it uses Convolutional Neural Network (CNN) (LeCun et  al. 2015) to 
classify sequences, making the model more computationally efficient in training 
and inference time compared to LSTM-based models. A parser is also used in this 
work, yet, the details are unclear.

The first work to propose the adoption of Transformer (Devlin et al. 2018) in 
log anomaly detection is Logsy (Nedelkoski et al. 2020). Logsy embeds log mes-
sages in a vector space, with non-anomaly messages clustered at the origin while 
anomaly messages embedding at a distance. A unique loss function, which ena-
bles the learning process of embedding operations, is also among its contribu-
tions. The second case of using the Transformer, NeuralLog, mentioned in Le and 
Zhang (2021), uses a Transformer Encoder on top of a pre-trained Bert model 
to take advantage of both the semantic embedding of Bert and the self-attention 
mechanism of the Transformer Encoder. Le and Zhang (2021) achieves relatively 
high scores among multiple datasets. The third approach is using Transformer 
(Guo et  al. 2021) uses Bidirectional Encoder Representation from Transformer 
(BERT) to learn normal data patterns and use it to identify anomalies in a semi-
supervised fashion.

In another unique approach, Farzad and Gulliver (2019) introduces Auto-
LSTM, Auto-BLSTM, and Auto-GRU, which also operate on natural language 
directly without needing a parser. They first extract features from log messages 
using an autoencoder (Ballard 1987). Then a recurrent neural network module, 
namely LSTM, Bidirectional LSTM, or GRU, is used to classify the message. The 
method achieves accurate results due to its nice pipeline of neural networks.

Finally, in our past work (Hashemi and Mäntylä 2022), we utilized the Siamese 
network (Bromley et  al. 1994) with LSTM to embed log sequences into a vec-
tor space that keeps sequences of the same type (anomaly / non-anomaly) close 
to each other while maximizing distance from the different type. Additionally, 
the authors introduce other benefits that come with the Siamese network, such 
as more robust predictions, unsupervised evolution monitoring, and sequence 
visualization.
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6  Threads to validity

Despite OneLog’s superior performance over other software log anomaly detec-
tion methods within a multi-project framework, it is not devoid of limitations. 
The most substantial challenge lies in the requirement for labeled data, which 
can be a significant obstacle in many practical scenarios. Additionally, the com-
putational expense associated with the deep neural network presents another 
potential limitation. In the subsequent subsections, we will thoroughly examine 
our research’s internal and external validity. This exploration will encompass 
a detailed discussion to assess the robustness and applicability of our findings 
across various contexts.

6.1  Internal validity

Regarding internal validity, it is imperative to note that the evaluation environment 
of OneLog diverges significantly from alternative methodologies due to their mutual 
incompatibility. In methodologies necessitating parsing, the parser’s elimination 
of parameters from log messages results in the homogenization of numerous log 
messages. This leads to substantial duplication within the dataset, necessitating a 
duplication removal prior to splitting the dataset into training and testing subsets. 
Consequently, achieving identical evaluation environments is infeasible. In order 
to circumvent this problem, we performed the experiments multiple times with dif-
ferent random seeds and ensured we were getting consistent results. Furthermore, 
we reimplemented state-of-the-art methods (except ones marked with a superscript 
asterisk in Table 2) and ensured that the outcomes aligned with, if not surpassed, 
the original results. It is noteworthy to mention that certain methodologies, notably 
DeepLog, exhibited enhanced performance in our implementation relative to their 
initial publication. All in all, We are confident in our work since we evaluated it in 
a variety of contexts, including different datasets and model capabilities. The fact 
that we achieved consistent scores in diverse circumstances proves that our sug-
gested strategy works as predicted and leads to more accurate software log anomaly 
identification.

6.2  External validity

Concerning the matter of external validity, it is pertinent to acknowledge that it 
may be subject to limitations due to the unavailability of an appropriate industrial 
dataset. This absence significantly constrains our capacity to assert the efficacy of 
our methodology within a real-world industrial setting. However, it is essential to 
note that the primary objective of this study was to introduce a novel end-to-end 
anomaly detection methodology and conduct its preliminary validation. Conse-
quently, a pressing need exists for subsequent research endeavors to thoroughly 
explore the advantages and limitations of OneLog and Hierarchical Convolutional 
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Neural Network architectures in the context of software log anomaly detection in 
real-world settings.

6.3  Construct validity

Construct validity in software engineering involves ensuring that the measure-
ments, tests, or procedures used in a study actually measure the theoretical con-
structs they are intended to measure (Wohlin et  al. 2012). We used well-estab-
lished statistics from machine learning like F1 score, so we see no problem there. 
However, regarding our data there is of course the issue that labeled anomalies 
might not represent true or anomalies that would be important enough to software 
operations engineers. There is very little we can do to mitigate this issue.

7  Implications

Character-Based Approach and Parser Elimination: Our design employs a charac-
ter-based processing method for log events, enhancing performance by leveraging 
elements such as numbers and punctuation, which are often disregarded in word-
based or parser-based approaches. By incorporating complete messages, OneLog 
is adept at detecting anomalies that may arise from incorrect parameters. This 
raises an intriguing possibility: end-to-end learning systems like OneLog might 
obviate the need for traditional log parsers, a topic that has garnered considerable 
research interest. This shift could streamline log analysis processes, making them 
more efficient and effective.

Use of Multiple Datasets at Once: Our approach facilitates the simultaneous 
utilization of multiple datasets which is currently supported in one prior work 
(Nedelkoski et al. 2020). This feature is particularly beneficial in scenarios where 
available training data are limited, allowing for the augmentation of smaller data-
sets with a broader body of public datasets. Our findings demonstrate that this 
strategy substantially enhances model performance. Moreover, we have success-
fully implemented cross-project anomaly detection, leveraging only external data 
sources, which is effective when analyzing system logs of sufficient similarity. 
These steps mark an advancement towards the integration of transfer and aug-
mented learning principles within the realm of log anomaly detection, underscor-
ing OneLog’s potential to overcome traditional data scarcity challenges.

Model Interpretations Enhance Confidence in OneLog: Through model inter-
pretations, we have uncovered that OneLog autonomously develops human-
like event parsing rules. Beyond parsing, OneLog utilizes at least three distinct 
anomaly detection rules: fatal events, bad subsequences, and multiple suspi-
cious events. Our analysis of the model’s internal logic affirm our confidence in 
OneLog’s capabilities, showcasing its potential as a solution in the field of log 
analysis.
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8  Conclusion and future works

This paper presents OneLog, a novel method to detect anomalies in software logs. 
OneLog merges the parser, vectorizer, and classifier components into one deep neu-
ral network, which moves the log analysis field closer to complete end-to-end learn-
ing. We think the most interesting findings are. First, producing state-of-the-art per-
formance; Second, training the model on sequence-based and event-based datasets 
with no modification; Third, making multiple datasets usage possible in training to 
enhance performance; Fourth, model interpretations showing that OneLog internally 
learns human-like event parsing rules and anomaly detection rules.

Although the model results trained on the multi-project dataset are good, it does 
not come without any room for improvement. As a matter of fact, the lack of suf-
ficient data volume might result in poor performance, as observed in some of our 
experiments. Therefore, we believe more extensive datasets would contribute to 
this work in future works. Furthermore, additional datasets from different projects 
or even the same project with varying versions may also benefit the multi-project 
dataset. Conversely, if OneLog could be systematically architected to utilize normal 
logs (non-anomalous) as the primary training source, the data acquisition challenge 
might be substantially mitigated, since, normal data, in contrast to anomalous data, 
is more readily produced and accessible, offering OneLog a more sustainable and 
efficient solution for training.

Finally, the goal of the paper was to develop end-to-end learning in log analysis, 
yet as shown in Fig. 1, we still have the preprocessor stage. So how could we remove 
it? Our preprocessor is simple as it only organizes the raw data into sequences. 
Hence, to improve the end-to-end learning further, we could have a more generaliz-
able sequence creation method for all datasets. This would facilitate the process of 
using multiple datasets without any human intervention.
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