
Vol.:(0123456789)

Automated Software Engineering (2024) 31:28
https://doi.org/10.1007/s10515-024-00423-2

1 3

Comparing apples and oranges? Investigating
the consistency of CPU and memory profiler results
across multiple java versions

Myles Watkinson1 · Alexander E. I. Brownlee2

Received: 31 July 2023 / Accepted: 1 February 2024
© The Author(s) 2024

Abstract
Profiling is an important tool in the software developer’s box, used to identify hot
methods where most computational resources are used, to focus efforts at improv-
ing efficiency. Profilers are also important in the context of Genetic improvement
(GI) of software. GI applies search-based optimisation to existing software with
many examples of success in a variety of contexts. GI generates variants of the
original program, testing each for functionality and properties such as run time or
memory footprint, and profiling can be used to target the code variations to increase
the search efficiency. We report on an experimental study comparing two profilers
included with different versions of the Java Development Kit (JDK), HPROF (JDK
8) and Java Flight Recorder (JFR) (JDK 8, 9, and 17), within the GI toolbox Gin on
six open-source applications, for both run time and memory use. We find that a core
set of methods are labelled hot in most runs, with a long tail appearing rarely. We
suggest five repeats enough to overcome this noise. Perhaps unsurprisingly, chang-
ing the profiler and JDK dramatically change the hot methods identified, so profiling
must be rerun for new JDKs. We also show that using profiling for test case subset
selection is unwise, often missing relevant members of the test suite. Similar general
patterns are seen for memory profiling as for run time but the identified hot methods
are often quite different.

Keywords  Profiling · Runtime · Memory use · Genetic improvement · Java ·
Empirical study

 *	 Alexander E. I. Brownlee
	 alexander.brownlee@stir.ac.uk

	 Myles Watkinson
	 myleswatkinson1@gmail.com

1	 School of Computer Science, University of Adelaide, Adelaide, Australia
2	 Computing Science and Mathematics, University of Stirling, Stirling, Scotland, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00423-2&domain=pdf

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 2 of 34

1  Introduction

Profiling tools are a useful aid to software developers in general, helping to iden-
tify areas of existing code for improvement. As systems become more complex and
greater reliance is placed on automated tools to support developers, better under-
standing of profilers’ behaviour is of great importance. Profilers are also relevant
to Genetic Improvement (GI) of software (Petke et al. 2017). GI aims to automati-
cally improve code by applying computational search methods, with impressive
results being demonstrated for both functional improvements like bug fixes (e.g.,
GenProg (Le Goues et al. 2012)), and non-functional improvements, like run time
(e.g., (Langdon and Harman 2015)). A critical, and yet underexplored, part of the
GI process is the identification of hot methods or procedures, regions of code found
to be bottlenecks that are targeted for mutation. Hot methods are usually identified
by a profiling tool. Variations in a profiler’s output will greatly impact the insights
a developer can make or the performance of the GI search, motivating us to seek
better understanding of the consistency and behaviour of profilers. The Gin open
source toolbox for GI research in Java, originally proposed by White (2017) and fur-
ther developed by Brownlee et al. (2019), was recently upgraded by us (Watkinson
and Brownlee 2023) to support the Java Development Kit (JDK) 17 and part of that
process switched from the retired HPROF profiler to the more recent Java Flight
Recorder (JFR).

We (Watkinson and Brownlee 2023) outlined the initial process of changing the
profiler in Gin and explored the difference in profiling outputs between HPROF
under JDK 8 and JFR under JDK 9. We now recap and expand that work with a
broader series of experiments, covering additional profiler/JDK combinations
(JFR and JDK 8/17), five additional open-source target projects, and further analy-
sis including variation within the results of each profiler and extension to memory
profiling.

To measure the effectiveness of a profiler there needs to be some baseline or
ground truth. Mytkowicz et al. (2010) faced a similar challenge when comparing
the accuracy of Java profilers. They reached the conclusion that accuracy should be
judged in terms of actionability. An actionable profile relates to the practical nature
of the use of a programs profile. The profile is used to identify hot methods that are
then altered to improve the program. If a profiler identifies ten slow methods and,
when these are changed, the program speeds up considerably, the profiler has cre-
ated an actionable profile. The profiler could be deemed inaccurate if its results were
not actionable, that is if it returned 10 hot methods and when changed these did not
actually speed up the program.

Actionable can be generalised to: “able to be used in the context needed”. In
our case, if the profiler finds hot methods that can be altered to improve the pro-
gram, it is accurate. While the true ‘hotness’ of every method is not known, it can
be assumed that if a profiler returns the same 10 methods every profiling run, and its
method of determining hotness is correct, that it is accurate. Conversely, if a profiler
returns an inconsistent list of hot methods each run it can be deemed inaccurate. Or,
alternatively, the relative hotness of all methods is similar enough that there is little

1 3

Automated Software Engineering (2024) 31:28 	 Page 3 of 34  28

value in identifying any subset of methods as hot, though as we will see, this is not
the case for the projects in the present study (as demonstrated by the histograms in
Figure 4 in Section 4.1, where around 50 methods are consistently identified as hot,
and over 100 are identified by profiler in only 5–10% of repeat runs). Throughout
the rest of this paper, we will describe methods as hot when they have been identi-
fied as such by a profiler; though in practice hot is really a property of the software
and its typical usage.

In light of the above, our study seeks to answer the following research questions.

RQ1	� How consistently does a single CPU profiler identify hot methods between
repeat runs on a given JDK? How much confidence can we have in the profil-
ing results? How many repeat runs are needed to capture most hot methods?

RQ2	� How much do the hot methods change as we move from one CPU profiler
and JDK to another? Will it be necessary to repeat the profiling stage for a
new context?

RQ3	� Is it possible to identify a subset of the test suite calling a target method
(i.e., test case subset selection (Yoo and Harman 2012)) during the profil-
ing process? As Gin samples the call stack during profiling, it also walks up
the stack to identify unit tests calling each hot method. The aim is to reduce
evaluation time for patches by only needing to run the relevant tests rather
than the whole suite. How much do those tests identified vary?

RQ4	� Does memory profiling follow a similar pattern to CPU profiling? Over the
years GI has grown to target other non-functional properties of code such as
memory consumption. We are unaware of any work exploring whether the
hot methods are different for such properties, so what issues might appear if
we apply a similar profiling approach to memory use?

We have focused on the context of GI, but investigation of profilers should also
be of interest to Java developers more generally. Profiling already forms an impor-
tant part of a developer’s tool kit, allowing for performance bottlenecks to be identi-
fied for optimisation once the software’s implementation has met the required speci-
fication. RQ1 explores how reliable the results of profiling are. RQ2 extends this to
look at the impact of changing profiler and Java version. Migrating software to a
different Java version is becoming more frequent as Oracle’s release cycle switched
to every six months so RQ2 is of increasing importance: do we need to reprofile for
every upgrade? Our results suggest that we do. RQ3 investigates the automatic iden-
tification of tests calling hot methods, which is of relevance to automatic program
repair researchers, and potentially relevant to anyone interested in test-driven devel-
opment of software. RQ4 is also of wider relevance to Java developers. As cloud and
mobile apps continue to grow in importance, developers strive to make software less
resource-heavy, motivating investigation of non-CPU properties such as memory.

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 4 of 34

Our experimental results lead to several conclusions. We use Weighted Rank
Biased Overlap (WRBO) (Webber et al. 2010) to compare the ranked lists of hot
methods produced by profiler runs, giving a scale of 0 to 1 for similarity in the
rankings. We show that each of the profilers is largely consistent in the hot meth-
ods that it identifies during multiple repeat runs, with a WRBO of over 0.65. In
practice, five repeat runs are enough to identify hot methods with 95% confidence.
However, changing profiler and JDK leads to dramatically different profiling results,
with a typical WRBO of 0.2 when switching profiler on the same JDK, and between
0.2–0.7 for the same profiler on different JDKs. This second point is, perhaps, unsur-
prising, but to our knowledge has not been tested experimentally in this way before.
We also show that using a profiler for test case subset selection as described in RQ3
should generally be avoided; even in the context of GI whereby the full test suite is
used to confirm functionality of the final results, the selected tests vary so much that
it is likely the search will find sub-optimal results that break functionality, requiring
further rerunning of the search. In the example highlighted in Sect. 4.3, for only 9
of 57 identified hot methods did the same test cases appear in nearly all repeat runs.
From this we might also conclude that testing is itself suboptimal, and observing
the behaviour of programs “in the real world” would better serve to identify where
optimisation is needed. We also show that memory profiling follows broadly similar
patterns to those seen for CPU profiling, albeit identifying rather different sets of
hot methods. The Spearman correlation between ranks assigned to hot methods for
CPU and memory varies between −1.0 (i.e., the most-hot methods for CPU were
the least-hot for memory), and +0.751 (i.e., hot methods for CPU and memory were
largely the same).

Section 2 describes the approach to integrating the profiling tools within Gin.
Section 3 describes our experimental study and summarises the results, with fur-
ther discussion in Sect. 5. Sections 6 and 7 summarise the threats to validity of our
results, and relevant related work. In Sect. 8 we give our conclusions and sugges-
tions for future work.

2 � Profilers and integration with Gin

Our experiments focus on profiling in the context of the Java GI toolkit Gin, which
provides several utilities to ease our experimental pipeline including a consistent
API for integration with large projects built with both the Maven and Gradle build
tools, and an existing profiling framework. There are many profiling tools avail-
able for Java. We investigate the profilers HPROF (Oracle 2011) and Java Flight
Recorder (JFR) (Oracle 2014). We now summarise the motivation behind focus-
ing on these two. Key to an automated experimental pipeline is the ability to call
the profiler programatically without manual intervention. We also wish to limit any
additional overhead or dependencies and, in the interests of open science, avoid
anything requiring a commercial licence. Ideally our profilers should also be able
to capture both CPU and memory usage. We previously summarised (Watkinson
and Brownlee 2023) these desirable qualitative properties of several current profil-
ing tools with a view to upgrading Gin for newer versions of Java. The third-party

1 3

Automated Software Engineering (2024) 31:28 	 Page 5 of 34  28

tool JProfiler (EJ-Technologies 2020) was ruled out due to its commercial licence.
The profilers integrated within IDEs, such as NetBeans (Apache 2020) and Eclipse
(Eclipse Foundation 2019), were ruled out due to the overhead associated with run-
ning the host IDE. VisualVM (Sedlacek and Hurka 2022), Java Mission Control
(Oracle 2018), and JConsole (Oracle 2023) all require some element of user interac-
tion with a visual interface, preventing their use in an automated experimental pipe-
line. This leaves HPROF and JFR, both of which are free and can be called progra-
matically. HPROF was included with JDK versions up to 8, and was the original
profiling tool integrated within Gin up to v2.0 (White 2017; Brownlee et al. 2019).
This led to its use in identifying code for improvement in several GI studies (Petke
and Brownlee 2019; Petke et al. 2023; Brownlee et al. 2020), so we include it for
comparison within our study. JFR has been bundled with the JDK since version 7,
being officially supported since version 9. We first described the integration of both
profilers within Gin in (Watkinson and Brownlee 2023), and recap the details here
for convenience.

Both HPROF and JFR profilers rely on sampling, whereby a trace of the stack
is made at intervals to determine which methods appear most often. The basic idea
is that the method on the top of the call stack is recorded at intervals to determine
where CPU time is spent or changes to memory use occur. Sampling has the inher-
ent potential to introduce noise to the results by identifying different methods as hot
on different runs. Both HPROF and JFR also add a small amount of randomness to
the profiling interval to avoid bias towards functions that run at the same rate as the
sampling. Further, HPROF and JFR take slightly different approaches to sampling
that may also impact results so we briefly explain this difference. The interested
reader can refer to the official documentation for HPROF (Oracle 2011) and JFR
(Oracle 2014) for further detail. JFR records information on events that occur in the
Java Virtual Machine (JVM). To minimise overhead, rather than stopping all threads
at once to take a stack trace of everything, JFR stops threads individually. Each trace
produces an event that is recorded, and these events are output to a .jfr file after a
recording ends (Oracle Corporation 2022). A consequence of JFR’s approach is that
only stack traces ending in Java code (rather than JDK library code) are recorded.
HPROF differs by profiling all threads inside the JVM at intervals. This differs from
the event based profiling of JFR as HPROF can profile sleeping, waiting or blocked
threads and I/O calls that JFR can not see. In the context of GI, we are only inter-
ested in identifying the Java code that can be modified by the search. For API and
library calls that means identifying the calling code in the project being profiled;
which is not always possible through HPROF’s approach. So, a filtering step is
introduced with the net result that the results of both profilers identify hot methods
within the target application’s Java source only.

2.1 � Integration with Gin

As both tools are built-in to Java, integrating HPROF and JFR with Gin is relatively
simple. For the profiling tool, Gin runs a target application with a separate Java

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 6 of 34

virtual machine instance, adding flags to the Java command that cause it to invoke
the profiler. In Gin versions up to v2.1, the command to invoke HPROF is:

where, by default, the interval in milliseconds is 10. The initial upgrade to JFR
for JDK 8 and 9 proposed by Watkinson and Brownlee (2023) used the following:

where the “profile” option for settings makes samples every 10ms (currently
this rate is not user-configurable). Current versions of the JDK no longer require the
first two options so Gin for JDK 17 uses this:

-XX:StartFlightRecording=name=Gin,dumponexit=true,settings=pro�le,�lename=

HPROF and JFR each output respective files that are used to extract results.
HPROF outputs results to a text file that can be easily read and translated. JFR
outputs to a .jfr file with a binary format that requires specific parsing tools pro-
vided with the Java API to view: these are provided officially from JDK 9 and up
(GitHub 2020); in JDK 7–8 the JFR parsing API is radically different, and undocu-
mented1. Programmatically, this file is broken into RecordedEvent objects, a data
structure from the JFR library, by first reading the .jfr file to a JFR RecordingFile
object. Gin is concerned with stack traces, so each RecordedEvent with the type
ExecutionSample is collected. Each ExecutionSample has a list of stack frames
that are iterated over to identify methods and function calls that occurred in order.
Though it does not fit the context of Gin, the free tool Java Mission Control2 can
easily visualise JFR files to debug.

Figure 2 shows an example HPROF output file from a profiling run of JCodec
(See Sect. 3.1 for projects in our study). The top ranked method, a Java native I/O
function is found 112 times. As discussed before, JFR can not profile I/O calls so
this function can only be found by HPROF. However, this is actually a negative for
HPROF if the calling function cannot be identified as both GI and human developers
aim to target editable source code rather than internal Java API functions. Moving
down the list, methods 2, 4, 6–8, and 10 are all Java native calls, Gin ignores these
as well. For these functions, JFR would jump past them in the call stack to find a
function part of JCodec. By doing this, in the example JFR could potentially return
an extra 132 samples of JCodec methods.

1  http://​hirt.​se/​blog/?p=​446.
2  https://​www.​oracle.​com/​java/​techn​ologi​es/​jdk-​missi​on-​contr​ol.​html.

http://hirt.se/blog/?p=446
https://www.oracle.com/java/technologies/jdk-mission-control.html

1 3

Automated Software Engineering (2024) 31:28 	 Page 7 of 34  28

Both profilers count the appearances of methods in the stack. HPROF records and
returns the number of times each method is found at the top of the call stack. The meth-
ods seen most often are filtered to only those that belong to the target program; these
are then returned as hot methods. JFR traverses the call stack until it discovers a method
that is part of the program being profiled, then, this method’s number of samples is
incremented. Figure 1 gives a sketch of a situation. This means, a method that is part

Fig. 1   Example of a call stack: three methods in a call stack showing the bottom of the stack, found
by JFR and the top, found by HPROF. This is a fundamental difference in the way HPROF and
JFR approach sampling. JFR will stop walking up the trace at the code that is part of the pro-
ject being profiled (MainProgram.begin()) whereas HPROF will pick up the API function
Java.vector.indexOf() . This API function is not editable; so we walk back up the trace to find
the calling function MainProgram.begin(). In some cases, this trace back to the target project is not
available. Figure taken from (Watkinson and Brownlee 2023)

CPU SAMPLES BEGIN (total = 229) Tue Dec 12 19:30:33 2023
rank self accum count trace method

1 48.91% 48.91% 112 300154 java.io.FileInputStream.readBytes
2 2.62% 51.53% 6 300062
3 2.62% 54.15% 6 300462 org.jcodec.codecs.h264.decode.PredictionMerger.

weightPrediction
4 1.75% 55.90% 4 300380 java.lang.Thread.isInterrupted
5 1.75% 57.64% 4 300453 org.jcodec.codecs.h264.decode.MBlockDecoderBase.

predictChromaInter
6 1.31% 58.95% 3 300140 java.util.zip.ZipFile.getEntry
7 1.31% 60.26% 3 300171 java.io.UnixFileSystem.getBooleanAttributes0
8 0.87% 61.14% 2 300065
9 0.87% 62.01% 2 300404 org.jcodec.containers.mp3.MPEGAudioDemuxer.

skipJunkBB
10 0.87% 62.88% 2 300433 java.lang.System.arraycopy
11 0.87% 63.76% 2 300437 org.jcodec.codecs.h264.decode.PredictionMerger.

mergeWeight
12 0.87% 64.63% 2 300439 org.jcodec.codecs.h264.decode.DeblockerInput.<

init>

Fig. 2   Example of an HPROF output file: The methods found on top of the call stack in each sample
taken by HPROF. Each row corresponds to a unique method, sorted in descending order of appearances.
Rank 1 in this case is a Java file reading method that appeared on the top of the stack 112 times. ‘Trace’
is a unique ID identifying the stack trace (elsewhere in the file) that shows how this method was called.
In this example, many Java language and util functions are found on top of the call stack alongside the
JCodec core methods

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 8 of 34

of the program being profiled is found in every call stack, whereas, in HPROF samples
there may be Java language or I/O operations that are found and not returned as hot
methods. This is why, as noted by Watkinson and Brownlee (2023), JFR consistently
finds more hot methods and finds them more times in samples.

These differing approaches impact the final profiling result. Every JFR call stack
will be traversed to find a function relating to the program being profiled, this is not
the same for HPROF. If two programs call a number of I/O functions and Java lan-
guage functions HPROF and JFR will return different results. JFR will search past the
unrelated functions and identify that the method from the program being profiled is
hot. HPROF will only identify the function as a hot method if it is profiled when it
is not running any of the unrelated functions. Even though GI can not edit functions
in libraries rather than the program being profiled, manipulating how library functions
are called could improve the run time. Part of the motivation for our experiments is to
determine how much of a difference to the profiling results there is in practice, within
repeat runs of one profiler on one JDK (Sect. 4.1) and as profiler and JDK are changed
(Sect. 4.2).

2.2 � Memory profiling

Both HPROF and JFR are also able to profile memory use. Gin was extended to include
memory profiling by Callan and Petke (2022), as part of work studying multi-objective
genetic improvement of software (in that case, studying the trade-off of programs rang-
ing from low CPU time to low memory use). Integration just requires a slight change to
the arguments passed to the JVM. For HPROF:

and for JFR:

The profiling works by tracking objects being allocated to the heap. Each allocation
is annotated with a stack trace identifying the original Java code location where the
item was allocated. This includes temporary local objects including arrays.

HPROF then outputs a table of samples and corresponding traces, similar to that
for CPU time, and are parsed in the same way. The recording file from JFR contains
similar data in binary format. The samples and corresponding traces from JFR are
embedded in jdk.ObjectAllocationInNewTLAB events. The JFR traces are parsed and
ranked in order of those responsible for the largest memory allocation.

1 3

Automated Software Engineering (2024) 31:28 	 Page 9 of 34  28

3 � Experiments

We (Watkinson and Brownlee 2023) previously profiled Perwendel Spark and
reported that, while there was some positive correlation between the results, there
was considerable noise and the number of samples for hot methods found by the two
profilers was also different. JFR found a mean of 26.2 hot methods, whereas HPROF
found only 21.6. Some of this can be accounted for by the change in JDK as well as
the change in profiler. Some can also be attributed simply to noise in the system: run
time is notoriously difficult to measure consistently, and at the resolution required
to sample methods appearing frequently in the call stack, the problem is worse still.
Thus, in the present study, we investigate just how consistent the results of profiling
are.

We compare both HPROF and JFR in experiments, with HPROF on JDK 8 and
JFR on JDK 8, JDK 9, and JDK 17. We include 9 for its closeness to 8, and 17
as it is the version currently used by Gin, and (until September 2023) the current
Long Term Support version of Java. For brevity, we will refer to HPROF/JDK8 as
HPROF8, JFR/JDK8 as JFR8, JFR/JDK9 as JFR9, and JFR/JDK17 as JFR17.

Note that the ground truth is unknown and, in practice, probably does vary from
one JDK to the next, and more so with changes in underlying OS, hardware, and so
on. However, we keep these fixed for a given project in our study. Our goal here is
simply to understand how much variation there is in different profiling contexts.

3.1 � Experimental setup and pipeline

We wished to focus on the default profiling tools that come with Java. This is
motivated by the desire to use the profiling tools explored with the Gin GI toolkit,
which avoids the use of additional external tools as much as possible. HPROF is
freely available with Java Development Kit (JDK) versions 8 and below, whereas
JFR is freely available with versions 7 and up. More specifically, our experiments
used Oracle JDK 8.0.341 for HPROF and Oracle JDK 1.8.0_202, Oracle JDK
9.0.4, and Oracle JDK 17.0.6 for JFR. OpenJDK 8–9 does not include JFR, so we
were limited to the closed-source Oracle JDK. In combination, these will allow us
to measure the impact of changing from HPROF to JFR under JDK 8, and chang-
ing JDK while running JFR. All experiments were run on the machines listed

Table 1   The machines used for
the experiments

Machine A Machine B

CPU two 16-core Intel Xeon
E5-2620v4 CPUs@2.1GHz

one 8-core Intel
i7-11390H
CPU@3.40GHz

Memory 32GB DDR4 2133MHz ECC 16GB DDR3
1600MHz non-
ECC

OS Debian 5.10 Ubuntu 22.04

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 10 of 34

in Table 1, with Table 2 showing which project was run on which machine. The
experiments were run sequentially (one profiling run of one project at a time),
and no other computationally intensive processes were run in parallel with the
experiments.

All profiling is done inside of Gin using its two profiling tools
(gin.util.Profiler for CPU time and gin.util.MemoryProfiler for memory
use). These tools output CSV files listing the hot methods in descending order,
with the sample counts and any associated unit tests. The CSVs generated by
our experimental runs are all available in the artefact published with the paper
(Brownlee and Watkinson 2024). Gin itself is available from https://​github.​
com/​ginto​ol/​gin. The specific builds used in our experiments were tag v2.1
for HPROF8, branch jdk8-jfr for JFR8, branch jdk9 for JFR9, and commit
2359f57 from the current trunk for JFR17.

We considered six open source Java projects, listed in Table 2, with their
GitHub repository URL and the specific build we worked with. The projects
selected were drawn from those in two previous studies with Gin (Petke et al.
2023; Watkinson and Brownlee 2023), and were originally chosen using the cri-
teria that they used the Maven or Gradle build tools, have a non-trivial test suite
(taking minutes to hours to run during profiling) with only passing tests, are rea-
sonably popular ( > 1000 stars (i.e., bookmarked by over 1000 users) and > 300
forks), open-source with a permissive licence, and crucially, compatible with Java
8 to allow comparisons with HPROF. As we wanted to keep the comparisons as
fair as possible, no changes were made by us to the projects to make them com-
patible with particular Java versions. Consequently, in some cases older builds
were chosen to allow compatibility with Java 8 for comparisons and, even then,
not all builds worked with all Java versions in the study without modification.
The Java versions that each project was tested on are indicated in Table 1. All
projects used the Maven build tool, except Disruptor, which used Gradle.

The experimental pipeline for each project listed in Table 2 was as follows:

1.	 reboot the host machine
2.	 switch the default Java and JAVA_HOME to the appropriate JDK
3.	 clone the project from GitHub
4.	 build and test the project using one of Maven or Gradle

Table 2   Which projects were studied with which profilers in our experiments. *The URL for each is pre-
fixed with github.com. X: OpenNLP results with JFR8 for CPU only

Project GitHub* URL Version Machine HPROF8 JFR8 JFR9 JFR17

Disruptor /LMAX-Exchange/disruptor 3.4.2 A ∙ ∙

GSON /google/gson 2.8.4 A ∙ ∙ ∙ ∙

JCodec /jcodec/jcodec 0.2.0 A ∙ ∙ ∙ ∙

JUnit4 /junit-team/junit4 4.13.2 A ∙ ∙ ∙ ∙

OpenNLP /apache/opennlp 1.9.4 A ∙ X ∙ ∙

Perwendel Spark /perwendel/spark 2.9.3 B ∙ ∙ ∙

https://github.com/gintool/gin
https://github.com/gintool/gin

1 3

Automated Software Engineering (2024) 31:28 	 Page 11 of 34  28

5.	 run shell script calling the Gin profiler 20 times (running the test suite for the
target application); each run of the test suite invokes a separate, fresh Java virtual
machine instance

6.	 analyse resulting CSVs

Profiling was carried out on runs of the test suite included with each project. While
not necessarily reflecting the real-world usage patterns of the projects, for the pur-
pose of testing profiling these exercise large portions of the projects and so represent
a reasonable way to compare the results of profiling itself. Inevitably, there will be
some changes to the profiles over the course of the repeat runs due to cache filling,
but the same approach was used for all projects and all profiler configurations. For
any one project the impact should be comparable across the profilers tested. Analy-
sis of profiling consistency is given in Section 4.1.

3.2 � Approach to analysis

The profilers return ranked lists of methods in a CSV (20 lists per profiler per pro-
ject). We are interested in the similarity of these lists: both within the 20 lists pro-
duced by one profiler (RQ1 and RQ4), and comparing the 20 lists produced by one
profiler and the 20 produced by another (RQ2). To do this, we consider each pair of
lists drawn from the 20. That is, when comparing the 20 lists (l1, l2,… l20) produced
by one profiler, we measure the similarity of the pair l1 vs l2 , the pair l1 vs l3 , the pair
l1 vs l4 ... etc, giving us 190 (20 choose 2) comparisons. We then report summary
statistics over these 190 measurements. When comparing two profilers, we have two
sets of 20 ranked lists to compare (l1, l2,… l20) and (m1,m2,…m20) . We measure the
similarity of all combinations of this: i.e., the pair l1 vs m1 , the pair l1 vs m2 , the pair
l1 vs m3...etc., giving us 400 (20 × 20) comparisons. Again we report summary statis-
tics over all 400 comparisons.

The specific similarity measures used need to consider that the rank order of
methods varies between repeat runs and the lists rarely contain precisely the same
set of methods. It is trivial to filter the sets of methods to only those that appear
a certain number of times, and this could be a way to reduce noise in the results.
Consequently, where we consider metrics calculated across the repeat runs for a pro-
filer, we filter the list of hot methods found by each run according to the following
three sets. union is the set of methods identified as hot in any of the repeat runs of a
profiler, that is, the case where no filtering is applied. median is the set of methods
identified as hot in at least half (i.e., 10) of the repeat runs of a profiler. intersection
is the set of methods identified as hot in all 20 of the repeat runs of a profiler. While
we apply the above filtering, we still keep the rank orderings associated with each
method in the set, in order to apply the metrics described in the remainder of this
section.

The variation in rank order and methods present across repeat runs also leads us
to use a method known as Weighted Rank Biased Overlap (WRBO) (Webber et al.
2010) as the principal means to compare the rankings generated by the profilers.
The ability of WRBO to both handle lists of varying length and not require that the

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 12 of 34

lists contain the same elements makes it preferable to well-known rank-comparison
methods such as Spearman Rank Correlation or Kendall Tau. WRBO has previ-
ously been used to compare feature importance rankings generated by Explainable
AI algorithms (Sarica et al. 2022). WRBO can also assign a higher weight to the
first few elements in a list; we use a weighting of 0.9 which results in the top 10 hot
methods being responsible for 85.56% to the total scoring. The method returns a
score in the range [0, 1], with 1 being a perfect overlap of identical lists and 0 being
no similarity between both the order of the list elements, and the number of shared
elements. We used a Python implementation of the WRBO function provided by
Raikar (2023).

It is also possible to further filter the union, median, and intersection sets to
include only those methods identified by both profilers being compared. This allows
us to compute a simple arithmetic mean ranking for each member of the sets across
all repeat runs, then use scatterplots and the more well-known Spearman Rank Cor-
relation for comparisons, at the cost of significant loss of information through aggre-
gation and exclusion of methods not common to both sets. This latter approach was
taken in our previous paper (Watkinson and Brownlee 2023). These results appear
later in the discussion (Sects. 4.2 and 4.4).

4 � Results

We now present the results of our experiments and answers to the research ques-
tions. The following sections report summary statistics and a subset of examples
reflecting the trends we have observed across all the experiments. The full set of
results and visualisations is available from https://​github.​com/​Myles​Watki​nson/​repli​
cation_​packa​ge and (Brownlee and Watkinson 2024).

4.1 � RQ1. How consistently does each profiler identify hot methods
between repeat runs on a given JDK?

GI pipelines generally use profiling to identify hot methods, i.e., the methods where
the CPU spends most time and so are most fertile for improvement. These are the
methods to be targeted by mutations. Yet measurement of CPU time is notoriously
noisy so we begin by asking how consistently any of the profilers in our study iden-
tify hot methods for a given project over multiple runs.

Table 3 reports the counts of hot methods in each of the four sets for each project
and profiler. The median lists contain 10–30% of the methods in union, and intersec-
tion contains around 10–60% of median. In summary, well over half the methods iden-
tified across all repeat runs appear in fewer than half of them, and a smaller fraction
still appear in all repeat runs. Thus we confirm that there is considerable noise in the
results for each profiler and JDK combination on each project. The histograms in Fig. 4
show the distribution of appearances for hot methods for JUnit4. These reflect the trend
seen across all projects in the study. The figures show how often unique methods are
identified as hot over the 20 repeat runs, each bar being the number of hot methods that

https://github.com/MylesWatkinson/replication_package
https://github.com/MylesWatkinson/replication_package

1 3

Automated Software Engineering (2024) 31:28 	 Page 13 of 34  28

appeared 1, 2,… , 20 times. There is a peak at 20: a core set of hot methods that are
identified by the profiler in every repeat run. There is then a long tail tending towards
a large number of methods that are identified as hot in only one of the repeat runs. The
key point here is that even a limited number of repeat runs will be able to identify the
core set of hot methods and filter out those methods identified as hot purely as a result
of sampling artefacts.

How many repeats might be necessary in practice? This will depend on the con-
fidence we wish to have that the methods identified by profiling are truly hot, and what
our definition of hot is in the first place. If we assume that we wish to detect all meth-
ods that would be identified as hot in at least half of all profiling runs, then we can say
that the associated probability of hot ness p = 0.5 . The binomial distribution then tells
us the probability P(x) that the method will be identified as hot x times in a set of n
profiling runs is:

We can rearrange this inequality to tell us the minimum number of repeat runs
required to identify the method as hot with a 95% probability or, in practice, that it
will not be identified as hot in any repeat runs with a probability of < 0.05 . i.e.,:

(1)P(x) =

(

n

x

)

pxqn−x

Table 3   Count of hot methods identified by each profiler and JDK combination within the union, median,
and intersection sets for each project. The percentages show what portion of union were in median, and
what portion of median were in intersection for each profiler

Project Hot method count

HPROF8 JFR8 JFR9 JFR17

union Disruptor 56 – 109 –
Gson 146 94 109 104
Jcodec 845 830 830 635
Junit4 470 287 285 311
OpenNLP 587 442 483 499
Perwendel Spark 102 113 95 –

median Disruptor 5 (9%) – 39 (36%) –
Gson 32 (22%) 27 (29%) 27 (25%) 17 (16%)
Jcodec 191 (23%) 257 (31%) 244 (29%) 157 (25%)
Junit4 154 (33%) 95 (33%) 102 (36%) 105 (34%)
OpenNLP 158 (27%) 156 (35%) 169 (35%) 170 (34%)
Perwendel Spark 16 (16%) 25 (22%) 20 (21%) –

intersection Disruptor 3 (60%) - 13 (33%) –
Gson 7 (22%) 5 (19%) 4 (15%) 2 (12%)
Jcodec 50 (26%) 72 (28%) 74 (30%) 39 (25%)
Junit4 53 (34%) 42 (44%) 49 (48%) 50 (48%)
OpenNLP 61 (39%) 80 (51%) 78 (46%) 81 (48%)
Perwendel Spark 4 (25%) 14 (56%) 10 (50%) –

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 14 of 34

Solving Eq. (2) for n, we find that n ≥ 4.32 . So five repeat runs of the profiler gives
us a 95% confidence that we will detect all hot methods by taking the union across
those five repeat runs. Of course, the sample size will change if the probability of
detection that we consider to be hot is different.

How much do the ranked lists of hot methods generated by repeat runs of
the same profiler on the same JDK overlap? That is, how much noise is there
among the runs of a single profiler? We calculated the WRBO between all pairs of
ranked lists within the 20 produced by repeat runs of a given profiler, the lists being
filtered to match union (in practice, no filtering) and intersection sets. The median
and interquartile range of these WRBO figures are given in Table 4.

For most projects, the median WRBO is over 0.65 with a low Interquartile Range
(IQR), indicating that all pairs of profiling results among the repeat runs of one pro-
filer give similar ranks to the hot methods. Only Gson and Perwendel Spark differ,
with Gson having a low WRBO for JFR17 and Perwendel Spark having a high IQR
for the union results with HPROF8. Closer inspection revealed that a small number
of repeat runs identified dramatically different orderings of the top few hot methods,
skewing the results for these specific project/profiler combinations. The top-ranked
hot methods for these two projects tended to have only a small (fewer than 10) num-
ber of samples during the profiling run so only a small amount of noise had a large
impact on the overall ranking. To avoid this issue causing uncertainty in profiling
results in practice, a mitigation could be to repeat runs of each unit test during the
profiling.

In Table 4 it can be seen that JFR versions typically achieve higher WRBO
between repeat runs on one JDK than HPROF. This is true for both union methods
and intersection methods. Further, JFR results generally have lower IQR than those
of HPROF, meaning that in most cases all pairings of profiling results for a given
profiler have a high WRBO (having distributions like those in Fig. 3). Thus we can
conclude that JFR produces more consistent rankings of hot methods than HPROF
does.

WRBO is higher for the intersection sets. These are filtered to only the methods
identified hot by every repeat of the profiler, so the random noise from the tail end
of the results is removed. Among these hot methods, the rank order is also generally
more consistent. The highest value of 1.0 is seen for Disruptor on HPROF8. Here,
there are only three methods in intersection, that is, appearing in every repeat run.
These three appear in the same order in every repeat run, leading to a WRBO of 1.0.
For union and median, WRBO is reduced because it then includes the many other
methods appearing in only some runs, often in a differing orders.

Impact of rebooting Our experimental pipeline did not feature a reboot between
repeat runs of each compiler. This could result in some drift in the results as CPU
caches become filled. To determine the impact of this issue, we looked at the ranks
allocated to each hot method in each repeat run. Figure 5 shows these ranks as a heat
map. We show the results for Gson as it was run on all profilers and had the fewest
hot methods, making the visualisation a reasonable size, but the results are similar

(2)
(

n

0

)

0.500.5n−0 < 0.05

1 3

Automated Software Engineering (2024) 31:28 	 Page 15 of 34  28

for all projects. The methods (rows) are sorted by order of first appearance, so we
see those appearing in higher ranks in the first profiler runs near the top. Near the
bottom we see methods that were not ranked at all in the first 18–19 repeats, and
only appeared on the last runs of the profiler. If there was a large impact from cach-
ing on the results, we would expect to see many rows that are either: dark on the left,
steadily getting lighter to the right, as particular methods start out being identified as
hot then gradually dropping in the rankings, or light on the left changing to dark on
the right, as new methods start to be identified as hot. Instead we see some methods
being consistently dark across the whole row, or a few dark points spread uniformly
(subject to statistical noise) across the rows. The same figures for the other projects
are in our artefact (Brownlee and Watkinson 2024).

Overall, these results give some confidence that there is not much drift over the
course of the repeat runs.

In summary, there is a high degree of consistency between the ranked lists
of hot methods identified by a given profiler on a single JVM, with JFR on any
of the three JDKs tested producing more consistent results than HPROF. While
there is noise among the repeat runs of any one profiler, this can be filtered by
removing the tail of methods that only appear once across all repeat runs.

Fig. 3   Distribution of WRBO values for all 190 pairs of ranked lists from 20 repeat runs when profiling
JCodec with each profiler/JDK combination

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 16 of 34

Fig. 4   Distribution of hot method appearances across repeat runs of profilers for JUnit4, i.e., how often
we see methods appearing only once, twice, up to 20 times

Table 4   WRBO within repeat runs of each profiler. Each figure is the median with interquartile range in
brackets. Values closer to 1 suggest that the set of methods identified as hot and their rank ordering are
highly consistent across all repeat runs of the profiler

Project Median WRBO (IQR)

HPROF8 JFR8 JFR9 JFR17

union Disruptor 0.662 (0.104) – 0.849 (0.053) –
Gson 0.704 (0.081) 0.446 (0.133) 0.697 (0.078) 0.389 (0.173)
Jcodec 0.707 (0.111) 0.812 (0.062) 0.820 (0.057) 0.737 (0.072)
Junit4 0.892 (0.031) 0.760 (0.103) 0.899 (0.030) 0.914 (0.081)
OpenNLP 0.696 (0.163) 0.912 (0.049) 0.887 (0.056) 0.859 (0.105)
Perwendel Spark 0.743 (0.458) 0.830 (0.040) 0.824 (0.047) –

intersection Disruptor 1.000 (0.000) – 0.923 (0.049) –
Gson 0.932 (0.058) 0.828 (0.100) 0.973 (0.045) 0.900 (0.100)
Jcodec 0.719 (0.109) 0.813 (0.063) 0.823 (0.062) 0.767 (0.072)
Junit4 0.896 (0.031) 0.774 (0.101) 0.907 (0.030) 0.919 (0.082)
OpenNLP 0.699 (0.056) 0.912 (0.049) 0.887 (0.056) 0.859 (0.105)
Perwendel Spark 0.928 (0.145) 0.896 (0.038) 0.918 (0.043) –

1 3

Automated Software Engineering (2024) 31:28 	 Page 17 of 34  28

4.2 � RQ2. Is there a difference in the hot methods identified by each profiler?

The profiler and JDK combinations studied each produce generally consistent results
across repeat runs but what happens when we exchange one profiler/JDK pair for
another? As software is updated to support new Java versions, the results reported
for older JDKs may become invalid. It might be tempting in a GI study to take a
standard set of hot methods, and test a new GI technique for them, but if the JDK
is different, these methods may no longer be hot. Why does this matter? For experi-
mentation in GI we might expect to do, e.g., landscape analysis, on the same pro-
jects in different contexts. More broadly, though, it is useful to know how tied to a
particular JDK and profiler any experimental results are going to be. We now con-
sider the differences in rankings produced by different profiling tools, under differ-
ent JDKs.

Fig. 5   Heatmaps showing the ranks allocated to methods in each repeat run for GSON with the experi-
mental pipeline used througout the rest of the paper (i.e., without rebooting between runs). Darker means
closer to rank 1 (most CPU-intensive); bright yellow means not ranked at all. There is one row per
method identified as hot, sorted in order of first appearance in the profiling data. There are 20 columns,
one for each repeat of the profiler, sorted in time order

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 18 of 34

Table 5 reports the WRBO figures comparing all pairs of ranked lists produced
by the repeat runs of each profiler. WRBO between JFR variants is highest, around
0.6 in union and intersection sets. Similarity between lists generated by HPROF and
JFR8 (and, we observed, also JFR9 and JFR17) is low. So the hot methods found by
JFR under any of JDK8, 9, and 17 have more overlap with each other than with the
set of methods returned by HPROF. Differences between union and intersection are
not consistent enough to say whether one of the two sets has more similarity over
different profilers.

The low WRBO figures are largely due to different methods appearing in the sets.
For example, with JCodec, intersection contained 50 hot methods for HPROF8 and
72 hot methods for JFR8. Of these, 42 were found by JFR but not HPROF, 20 were
found by HPROF but not JFR, and 30 were found by both. With Gson, only one
of the hot methods identified by HPROF was identified by JFR9, and none of the
JFR17 hot methods were identified by the other two profiler runs.

Figure 6 shows scatter plots comparing the mean ranks of methods common
to each pair of profilers. The means were computed over the set of ranks for each
method (so runs that did not count a method as hot were not included in the statistics
for that method). Across union, there is a strong correlation between method ranks
as seen in Figs. 6a,c. In contrast, in the intersection scatter plots there seems to be
almost no visible correlation between HPROF8 and JFR8 ranks.

The strongest trend in the union plots is on the right side with those methods
having lower ranks/higher numbers. For HPROF8 vs JFR8 there is significant noise
on the left side of the graph where the ‘hotter’ methods sit. This explains the low
WRBO values, which place more weight on the highest-ranked methods.

Table 5   WRBO between repeat runs of different profilers

Project Median WRBO (IQR)

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

union Disruptor – 0.492 (0.113) – – –
Gson 0.191 (0.079) 0.173 (0.065) 0.320 (0.086) 0.117 (0.074) 0.106 (0.071)
Jcodec 0.148 (0.055) 0.140 (0.059) 0.796 (0.059) 0.578 (0.054) 0.601 (0.055)
Junit4 0.177 (0.023) 0.210 (0.029) 0.701 (0.047) 0.682 (0.055) 0.687 (0.019)
OpenNLP 0.218 (0.042) 0.346 (0.052) 0.549 (0.021) 0.211 (0.015) 0.532 (0.049)
Perwendel

Spark
0.202 (0.064) 0.493 (0.079) 0.560 (0.040) – –

intersection Disruptor - 0.404 (0.017) – – –
Gson 0.828 (0.100) 0.099 (0.031) 0.149 (0.000) – –
Jcodec 0.151 (0.056) 0.144 (0.059) 0.796 (0.059) 0.574 (0.052) 0.598 (0.050)
Junit4 0.175 (0.025) 0.210 (0.028) 0.705 (0.049) 0.687 (0.056) 0.690 (0.020)
OpenNLP 0.219 (0.043) 0.346 (0.052) 0.549 (0.021) 0.211 (0.015) 0.532 (0.049)
Perwendel

Spark
0.148 (0.045) 0.348 (0.041) 0.552 (0.048) – –

1 3

Automated Software Engineering (2024) 31:28 	 Page 19 of 34  28

Table 6 reports the Spearman correlation for the mean ranks. Across union meth-
ods, the Spearman correlation coefficient is high for all pairs of profilers. Though
it is slightly lower for HPROF8 vs JFR8, it still always exceeds 0.6. For intersec-
tion, Spearman correlation is high between all JFR runs, but drops dramatically for
HPROF8 vs JFR8. The one exception (Perwendel Spark, with a Spearman correla-
tion of 1.0 for HPROF8 vs JFR8 on intersection) is because in that case intersec-
tion only contained two hot methods.

When moving from union to median and then to intersection, the number of hot
methods decreases greatly, as we move towards methods that only appear consist-
ently across repeat runs. When looking at JCodec’s HPROF8 vs JFR8 results, the
union methods span ranks 0 to 300, median methods span 0 to 200 and intersection
methods only fall between ranks 0 to 40. Aligning this with the plots in Fig. 6b there
seems to be almost no correlation between HPROF and JFR8 intersection methods,
whereas, the union set exhibits a clearer trend. Though, this trend is more apparent
on the right side of the plots where lower ranked methods are present.

Methods found in higher mean ranks have less consistent ranks between runs than
those found in lower ranks. It would seem that the hottest methods vary consider-
ably from one profiler to the other but less so when changing JDK. This is consistent
with the findings of Mytkowicz et al. (2010), in that moving from one profiler to
another produces quite different results. This is a little suprising, as we might expect
the optimisations introduced by a new JDK to also have a large effect on the hottest
methods where the CPU spends most time. However, it is the case that the larger
jump in JDK (8 to 17) does lead to a lower WRBO and correlation, albeit not as low
as the change from JFR to HPROF.

Table 6   Spearman correlation between mean ranks over repeat runs of different profilers. For Gson, the
intersection sets had no overlap for JFR9 vs JFR17 and HPROF8 vs JFR17, and a single common hot
method for HPROF8 vs JFR9, so it was impossible to compute a correlation (though it was possible to
compute WRBO for Table 5 as WRBO does not require perfectly overlapping lists)

Project Spearman correlation

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

union Disruptor – 0.514 – – –
Gson 0.650 0.661 0.822 0.530 0.506
Jcodec 0.759 0.756 0.888 0.784 0.808
Junit4 0.631 0.670 0.901 0.852 0.858
OpenNLP 0.585 0.607 0.839 0.617 0.765
Perwendel Spark 0.740 0.682 0.864 – –

intersection Disruptor – 1.000 – – –
Gson – – – – –
Jcodec 0.157 0.101 0.915 0.664 0.850
Junit4 0.006 0.329 0.808 0.827 0.712
OpenNLP 0.657 0.537 0.884 0.783 0.803
Perwendel Spark 1.000 0.700 0.786 – –

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 20 of 34

This higher consistency for low-ranked methods may come not only from profil-
ers but from Gin’s internal ranking method. Gin resolves ties in method counts by
ranking methods in the order they are seen.

If both profilers in a pairing returned identical results, the scatter plot would
resemble the function: x = y . How each point on the graph differs from this function
may explain where differences in each profiler arises.

First, the plots in Fig. 6c can be broken into 3 sections using x, mean JFR8 rank,
and y, mean HPROF8 rank. The middle, where x = y , the top, where x < y and
the bottom, where x > y . The middle is the ideal where there are consistent results

Fig. 6   Mean ranks of hot methods for JCodec: HPROF8 vs JFR8 and JFR8 vs JFR9. Each of the points
represents one method, and it denotes the mean ranks returned by either profiler, taken over the 20 repeat
runs. Only methods found by both profilers are included. ‘Union’ means methods identified by at least
one repeat run of the profiler, ‘Intersection’ means methods identified by all repeat runs. The union plots
generally show a strong linear relationship between ranks from one profiler and another; where this is
driven by the long tail of low-ranked seldon-appearing methods the WRBO will be low but Spearman
correlation high (Tables 5 and 6). If the hottest methods are ranked similarly then WRBO and Spearman
will both be high. Some intersection plots show very little relationship as is seen in Fig. 6b; the methods
consistently identified by one profiler are different to those from another. Others (mostly when compar-
ing JFR on different JDKs) have a much stronger relationship (e.g., Fig. 6d), implying that the methods
are ranked similarly

1 3

Automated Software Engineering (2024) 31:28 	 Page 21 of 34  28

between the two profilers. Points in the top section occur when JFR8 finds methods
in a lower rank (i.e., higher number) than HPROF8 and vice versa for those in the
upper ranks. Over all projects, more points exist in the top half than the bottom. That
is, HPROF8 generally allocates lower ranks to methods also identified as hot by
JFR8. After accumulating and taking the mean difference between x and y coordi-
nates of points on the plot: mean rank of union methods between HPROF and JFR8
for JCodec, the function found is 1.6x = y . Even though JFR finds more hot methods
and therefore has a larger range of potential hot method ranks HPROF8 coordinates
are 1.6 times larger.

These asymmetric errors suggest that the differences in profiling results between
HPROF8 and JFR8 are not due to uniform random noise. There are two reasons
methods may exist in the top half. Either HPROF8 does not profile long running
methods enough or JFR8 profiles methods too much. As both profilers have the
same snapshot interval it is unlikely that JFR8 profiles methods more times than it
should. Likely, the cause is noise when profiling. This noise can not be uniformly
random over both profilers as the errors are assymetric. Therefore, it can be ascer-
tained HPROF8’s profiling is more affected by the noise of seldom-appearing meth-
ods than JFR8.

Overall then, changing the profiler and JDK combination rarely produces a simi-
lar set of results, though changes from one JDK to another have less impact if the
profiler is kept the same. It is crucial to repeat the profiling to re-identify the hot
methods for a given application should either profiler or JDK change.

4.3 � RQ3. How consistently does each profiler identify unit tests associated
with hot methods?

One of the features of Gin is the ability to identify tests that execute each hot method;
those tests responsible for the method being called each time it is seen on the stack.
This is a form of Regression Test Selection (RTS) (Yoo and Harman 2012). The
idea is to determine the parts of the test suite relevant to each hot method, so that
only those rather than the whole suite need to be run during the GI search. A similar
approach was used by Harrand et al. (2019) when selecting a location to make edits.
They suggested edits should only be made in areas covered by a test case otherwise
dead code will be edited. We now consider the tests identified by the profiler for
each hot method in our experiments. To simplify the analysis, here we only consider
the intersection hot methods for each profiler, that is, those methods identified by
every repeat run of the profiler. For each hot method, we examined the 20 sets of
tests that were identified by the profiler for it (each repeat run of the profiler iden-
tifying one set of tests for that method). We counted the number of times each test
appears for each hot method.

The full set of histograms reporting the distribution of the number of appearances
of tests for each hot method for each project and profiler is included in our support-
ing data artefact (Brownlee and Watkinson 2024). These are hugely varied but four
examples are given in Figure 7 capturing the most common types of distribution

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 22 of 34

seen. For OpenNLP, there were 57 hot methods identified by the profiling within
union. Of these:

•	 6 of the hot methods had the distribution shown in Fig. 7a, where many unit tests
were only identified by one of the repeat runs of the profiler, and none appeared
in 10 or more repeats.

•	 20 of the 57 followed Fig. 7b: many tests having one appearance, some tests
appearing in more than 10 of the repeats, but none in all 20 repeats.

•	 22 of the 57 followed Fig. 7c: as above, but with some tests appearing in all 20
repeats.

•	 9 of the 57 followed Fig. 7d, where all tests identified appeared in nearly all
repeats.

The last of these four categories is the most desirable: the tests being identified by
following the traces produced by the profiler consistently enough to lend some con-
fidence that they are actually of use. In most examples tests only appear occasionally

Fig. 7   Typical distributions of test appearances. OpenNLP, JFR9. Each plot is for a different hot method
and shows the rate at which tests were detected as calling that method method

1 3

Automated Software Engineering (2024) 31:28 	 Page 23 of 34  28

regardless of profiler. This clearly suggests that we should not use such an approach
to select subsets of the test suite: at a minimum, in the context of GI, one should
still follow the good practice of running the entire test suite on any patched code
or employ established RTS techniques, e.g., (Yoo and Harman 2012; Guizzo et al.
2021).

4.4 � RQ4. Memory

We now briefly explore the consistency of profiling for memory. The same profilers
are able to sample object allocation events in the JVM to match memory allocation
to specific functions. Functions allocating the most memory throughout the record-
ing process will be returned as described in Sect. 2.2.

The distributions of method appearances in memory profiling results, in Fig. 8,
are similar to those seen for CPU use in Fig. 4. Several methods are identified as hot
in terms of memory consistently across all repeat runs for each project, with a long
tail of methods appearing less frequently.

Each profiler still shows some consistency in ranking the hottest methods. Table 7
shows that WRBO within repeat runs of a single profiler/JDK combination is over
0.69 in all cases. Comparisons of different profiler/JDK combinations are given in
Tables 8 and 9, where we report WRBO and Spearman correlation for each pair of
profilers, for union. WRBO values for HPROF8 vs JFR8 are low, but higher than
was seen for CPU use (Table 5), suggesting more overlap in the hot methods each
profiler found. In contrast, WRBO was lower than observed for CPU between JFR
on different JDKs, suggesting that changes to the JDK made more of an impact on
profiles for memory than for CPU. Spearman values vary considerably per project,
though generally following the trend of WRBO. Exceptions (low WRBO, high

Table 7   WRBO within repeat runs of each profiler when investigating memory footprint. Each figure is
the median with interquartile range (IQR) in brackets. Values closer to 1 suggest that the set of methods
identified as hot and their rank ordering are highly consistent across all repeat runs of the profiler

Project Median WRBO (IQR)

HPROF8 JFR8 JFR9 JFR17

union Disruptor 1.000 (0.000) – 0.945 (0.024) –
Gson 0.818 (0.130) 0.895 (0.105) 0.816 (0.053) 0.692 (0.102)
Jcodec 0.751 (0.110) 0.812 (0.062) 0.911 (0.031) 0.871 (0.042)
Junit4 0.908 (0.021) 0.945 (0.138) 0.840 (0.133) 0.893 (0.025)
OpenNLP 0.936 (0.027) – 0.952 (0.034) 0.932 (0.042)
Perwendel Spark 0.662 (0.104) 0.950 (0.026) 0.981 (0.020) –

intersection Disruptor 1.000 (0.000) – 0.977 (0.027) –
Gson 1.000 (0.000) 0.956 (0.093) 0.838 (0.055) 0.716 (0.100)
Jcodec 0.800 (0.108) 0.813 (0.063) 0.915 (0.031) 0.871 (0.042)
Junit4 0.962 (0.022) 0.945 (0.138) 0.891 (0.057) 0.895 (0.025)
OpenNLP 0.937 (0.026) – 0.952 (0.034) 0.932 (0.041)
Perwendel Spark 0.983 (0.018) 0.969 (0.027) 0.984 (0.021) –

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 24 of 34

Spearman, for Gson on JFR9 vs JFR17, and JCodec on JFR8 vs JFR9 and JFR9
vs JFR17, were driven by very low overlaps between the hot methods identified
by the two profilers, where those which were identified by both were ranked simi-
larly.) Given this variability, the best practice would still be as noted earlier for CPU:
rerun the profiler for each new profiler/JDK, and keep the most frequently appearing
methods across the repeat runs.

In order to confirm that the two profilers do identify different sets of hot meth-
ods, we also tried comparing the results for CPU and memory profiling when using
the same profiler and JDK. WRBO and Spearman correlation comparing the ranks
of methods identified for CPU and memory use, by each profiler, are given in
Tables 10 and 11. While in most cases there is a weak positive correlation between
hot methods for CPU and memory, the results vary considerably. For example, for
Gson, the Spearman correlation between mean ranks of hot methods in union for
CPU and memory were: 0.596 for JFR17, 0.751 for JFR9, and −0.786 (i.e., nega-
tive) for HPROF8. For JCodec, those figures were 0.294, 0.427, and 0.422 respec-
tively. The corresponding scatter plots showing how method ranks compare for

Table 8   Median WRBO between all pairs of repeat runs of different profilers when investigating mem-
ory footprint. Profiler results for all methods in union 

Project Median WRBO (IQR)

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

Disruptor – 0.181 (0.001) – – –
Gson 0.316 (0.033) 0.092 (0.044) 0.188 (0.034) 0.055 (0.029) 0.182 (0.037)
Jcodec 0.191 (0.089) 0.675 (0.117) 0.156 (0.015) 0.171 (0.040) 0.844 (0.044)
Junit4 0.341 (0.083) 0.529 (0.107) 0.408 (0.107) 0.329 (0.081) 0.568 (0.103)
OpenNLP – 0.731 (0.019) – – 0.737 (0.046)
Perwendel Spark 0.543 (0.014) 0.750 (0.010) 0.464 (0.007) – –

Table 9   Spearman correlation between mean ranks over repeat runs of different profilers when investi-
gating memory footprint. Profiler results for all methods in union 

Project Spearman

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

Disruptor – -1.000 – – –
Gson 0.500 -0.607 0.189 0.212 0.576
Jcodec 0.137 0.605 0.452 0.398 0.792
Junit4 0.235 0.549 0.118 0.111 0.728
OpenNLP – 0.734 – – 0.841
Perwendel Spark 0.619 0.797 0.518 – –

1 3

Automated Software Engineering (2024) 31:28 	 Page 25 of 34  28

CPU and memory are in Fig. 9 for Gson and Fig. 10 for JCodec. In some cases, the
method ranks for these two properties are similar, with a strong positive correlation,
i.e. the same methods that consume most CPU time and consume most memory.
In others cases the ranks for CPU and memory are inconsistent; from zero corre-
lation, to strong negative correlation, i.e, the methods consuming most CPU time
consumed the least memory, and vice versa. It is clear that there is no simple rela-
tionship between the two and profiling for both properties separately is valuable.
Further investigation of the relationship between these and other properties would
be an interesting direction for future research.

5 � Discussion

Differences between each ranking of hot methods produced by running the profil-
ers is partially explained by random variations or ‘noise’ during profiling. This is
the only source of variation for one profiler/JDK combination; changing these also
naturally leads to a different set of hot methods. Thus the same method may not be
found the same number of times in every profiling run. The impact of this is that dif-
ferent hot methods may be identified; whether these are used by a human developer
or for targeting within GI the result will potentially be the missing of improvable
parts of the code. Fortunately, for one profiler and JDK combination, the results are

Table 10   Median WRBO between all pairs of repeat runs of each profiler when investigating CPU use
and memory use. Results for all methods in union 

Project Median WRBO (IQR)

HPROF8 JFR8 JFR9 JFR17

Disruptor 0.220 (0.050) – 0.432 (0.023) –
Gson 0.044 (0.025) 0.331 (0.072) 0.630 (0.064) 0.316 (0.160)
Jcodec 0.178 (0.055) 0.014 (0.037) 0.054 (0.028) 0.015 (0.037)
Junit4 0.217 (0.017) 0.248 (0.077) 0.463 (0.100) 0.524 (0.034)
OpenNLP 0.289 (0.054) – 0.276 (0.023) 0.340 (0.050)
Perwendel Spark 0.174 (0.043) 0.415 (0.044) 0.605 (0.057) –

Table 11   Spearman correlation
between mean ranks over repeat
runs of each profiler when
investigating CPU use and
memory use. Results for all
methods in union 

Project Spearman

HPROF8 JFR8 JFR9 JFR17

Disruptor −1.000 – 0.609 –
Gson −0.786 0.586 0.751 0.596
Jcodec 0.422 0.206 0.427 0.294
Junit4 0.317 0.213 0.620 0.832
OpenNLP 0.539 – 0.679 0.757
Perwendel Spark 0.223 0.600 0.357 –

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 26 of 34

reasonably consistent, and the hottest methods do indeed appear across all repeat
runs. Where the profiler and JDK change, then the results are different enough to
always require rerunning the profiling.

One main trend seen in results was consistency within HPROF and JFR hot
method lists. HPROF had greater variation in hot method lists compared to JFR.
This was first seen in the WRBO within repeat runs of the same project with each
profiler. This effect propagated to the WRBO of hot method lists between HPROF
and JFR.

These clear differences between the two profilers can only partially be attributed
to random noise. A large part of the difference in results comes from the two differ-
ent methodologies the profilers use (Sect. 2).

The method HPROF uses is to check the top of the call stack and increment the
count for whatever method is there. If HPROF takes 10 samples and a Java lan-
guage function is at the top of the call stack each time HPROF will return no hot
methods. This may be useful if HPROF is used as a general performance profiler.
A software engineer could remove a particularly slow function from their program.

Fig. 8   Distribution of hot method appearances across repeat runs of the memory profilers for JUnit4, i.e.,
how often we see methods appearing only once, twice, up to 20 times

1 3

Automated Software Engineering (2024) 31:28 	 Page 27 of 34  28

In the context of GI, no edits can be made to Java API functions so these results are
not useful unless the calling function can be traced in the stack, which is not always
true for HPROF. This links back to how profiler accuracy is judged: in the practical
context of how results will be used.

With JFR the call stack is traversed until a function relating to the main program
is found. This eliminates all Java API or other unrelated functions from results.
If JFR takes 10 samples, the count of 10 hot methods will be incremented. This
approach removes a lot of noise from function run times.

As an example looking at how JFR reduces noise, a function ‘main’ could have a
loop that calls a Java internal function ‘vector’. HPROF will only see the ‘main’ func-
tion when ‘vector’ is not running. Alternatively, JFR will see the function regardless of
whether ‘vector’ is running or ‘main’ is running. From this, it can be seen that JFR is
likely to return a higher sample count for the ‘main’ function. Further, the longer ‘vec-
tor’ runs, the less samples HPROF takes and the shorter ’vector’ runs the more samples

Fig. 9   Mean ranks of hot methods for GSON for CPU and memory with each profiler / JDK combina-
tion, taken for union over 20 repeat runs

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 28 of 34

HPROF takes of ‘main’. JFR will always see ’main’ the number of times it samples the
call stack when ’main’ is running.

The above example explains how HPROF does not identify functions by how long
they run for but instead how long sections of code in which no other functions are
called run for. It could be considered that this is a better result than JFR, that records
a function on top of the call stack even when an internal function is running on top of
it. Although, manipulating how a function calls internal classes may still improve it’s
run time. Therefore, JFR may be more appropriate for Gin (and other GI tools) than
HPROF. The more consistent results of JFR further motivate its use for both CPU and
memory profiling.

Fig. 10   Mean ranks of hot methods for JCodec for CPU and memory with each profiler / JDK combina-
tion, taken for union over 20 repeat runs

1 3

Automated Software Engineering (2024) 31:28 	 Page 29 of 34  28

6 � Threats to validity

Our results are heavily dependent on how representative the projects selected for the
study are. Five of the six formed part of a previous systematic study in GI search
spaces by Petke et al. (2023), where they were chosen following a systematic pro-
cess using criteria including popularity, scale, and test suite size. The sixth, Perwen-
del Spark, was chosen arbitrarily by Watkinson and Brownlee (2023) from the set of
non-trivial Java projects available on GitHub as part of the original study migrating
Gin’s profiler from HPROF to JFR. The projects studied cover a variety of applica-
tion areas and we have no reason to suspect they are outliers.

The results are limited to the specific CPU and OS combination used for our
experimental platform. We focused on two specific profilers and three JDK imple-
mentations. In part this limitation was imposed by the need to use profilers that we
could interrogate programatically. It would certainly be interesting to extend the
study to include other profilers but nevertheless the results as they stand are a useful
place to start in the exploration of this topic.

Results in this paper may be impacted by the sample rate of each profiler. Both
HPROF and JFR use an added ‘randomness’ to profiling frequency. A 10 ms pro-
filing interval means 10 ms + t where t is any number between −10 and 10. This
removes errors from functions that may do the same thing every 10 ms. This would
be a disadvantage for other uses of the profiler in which a user may see the same
call stack every sample. Further, HPROF uses yield points (Mytkowicz et al. 2010).
Yield points are time when it is safe to run a garbage collector, they are placed by
the compiler. Although, the compiler may omit yield points if no memory is dynam-
ically allocated as an optimisation which can skew profiling results, by causing some
samples to be missed. Furthermore, the filtering of methods to those in the target
projects noted in Sect. 2, while necessary in the context of GI, omits system and
library calls that will be of interest from the point of view of profiling outside the
context of GI.

7 � Related work

7.1 � Profilers in a GI framework

GI works by applying transformations (mutations) to existing code. The space of
transformations is explored to discover code variants with the same or “close
enough” functionality as the original code that improve a target property such as
runtime or energy consumption. The search space is often sparse and very large i.e.,
very few functioning variants of the code, very far apart, making it difficult to find
code that both retains functionality and performs better than the original. Thus one
focus of research has been to determine ways to make this space more amenable
to search. This can include new, smarter, mutation operators (e.g., (Harrand et al.
2019; Brownlee et al. 2020)).

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 30 of 34

Alternatively, reducing the search space by “searching in the right place” (Ahmad
et al. 2022) involves profiling the target application in order to identify hot methods.
As such, in GI the targeted applications are often profiled.3 For this purpose it is cru-
cial that a profiler identifies functions that impact heavily on the target property. If,
say, we are aiming to reduce run time, and waiting or sleeping threads are profiled,
the GI search may target a function that waits a long time for other tasks to be done
but does not actually complete much work itself. Furthermore, if the selection of hot
methods varies dependent on the profiler or, worse, from one run of the profiler to
the next, the GI search space is likely to change. In this context, further investigation
of profiling is an important topic for the GI research community. Furthermore, given
their original design purpose to identify bottlenecks in code for human developers,
deeper exploration of profiler performance is of more general interest to the software
development community.

However, existing GI frameworks rarely offer support for profiling; for example,
PyGGI and Magpie (Blot and Petke 2022) do not provide support in their current
versions. Instead, profiling appears to be often done by the development team on an
ad-hoc basis and with a variety of tools due to the targeted applications and objec-
tives. For example, Haraldsson et al. (2017) profiled code by counting the lines-of-
code; Langdon et al. (2017) used nVidia’s CUDA performance profiler; Petke et al.
(2018) employed callgrind15 and gprof16 to profile; Petke (2022); Langdon and
Alexander (2023); Schulte et al. (2014) used the ‘perf’ tool to count CPU instruc-
tions, and Bokhari et al. (2018) used Corbertura 2.1.1.

The Java GI toolbox Gin (White 2017; Brownlee et al. 2019), which forms the
focus of the present study, was developed with the aim to facilitate GI research. Gin
is open-source, meaning researchers can build upon the existing code, and as far as
possible makes use of multiple existing tools such as EvoSuite (Fraser and Arcuri
2011) for automated test creation. Gin also includes a profiling tool to identify hot
methods for both CPU and memory use in a target software project. Recently, we
(Watkinson and Brownlee 2023) updated the profiler from HPROF (Oracle 2011) to
Java Flight Recorder (JFR) (GitHub 2020) to allow Gin to migrate from Java 8 to the
latest Long Term Support release of Java, version 17. Comparison was given of the
outputs of both profilers for CPU use in a toy program and an open source software
project. The present work extends and consolidates that experimentation.

7.2 � Comparison and analysis of profilers

To our knowledge there is no work comparing profilers specifically in the context of
GI. However, there have been some experimental studies comparing profilers more
generally.

Analysing Gprof (a profiler for GCC), Varley (1993) published research cri-
tiquing the profiler. Their research gives insight into the ways a profiler might be
judged. The paper dives into the Gprof methodology to explain its downfall and

3  A rare exception is the optimisation of straight-line Assembly code by Kuepper et al. (2022).

1 3

Automated Software Engineering (2024) 31:28 	 Page 31 of 34  28

presents the execution of Gprof on an example program. Finally, the paper presents
the positives and negatives of the profiling tool in relation to the expected profiling
results. This almost acts as a unit test style analysis. The expected profiling result is
manually made and compared to the true profiling result to identify inconsistencies
which are stated as profiling inaccuracies.

In their proposal of a sample-based call stack style profiler, Froyd et al. (2004)
sets out a number of experiments to compare profilers. They run a program and pro-
file it with multiple tools then compare the time taken. They focus solely on the
overhead added by certain profilers.

Similarly to our previous paper, Patel and Rajwat (2013) offer a number of pro-
filer alternatives and compare each of them to address their limitations and advan-
tages. Further, they go on to classify many types of embedded profiling methods.
Unlike other work they do not run any experiments, and simply review the architec-
ture and methodology of each profiler to assess accuracy and overhead.

Mytkowicz et al. (2010) comes closest to the work in this paper. They aimed to
evaluate the accuracy of Java profilers, comparing four Java profilers available at
the time (including HPROF) and found considerable differences in the hot meth-
ods identified by each. They acknowledged that there may not be a necessarily ‘cor-
rect’ profile, but that an ’actionable’ profile could be deemed as accurate. Action-
able means if hot methods identified by the profile are optimised, the whole program
could see a large improvement. This more practical approach to accuracy aligns with
the work in this paper; a profiler is needed for a specific purpose and so should be
judged in terms of this purpose.

7.3 � Paper novelty

The present paper extends our original assessment of profiler suitability (Watkinson
and Brownlee 2023), where we used both qualitative and quantitative comparisons.
The qualitative analysis, whereby JFR was chosen as a replacement for HPROF, fol-
lowed closely work by Patel and Rajwat (2013); each profiler’s architecture, design
and methodology was analysed and used to select a fitting profiler for the context.
As opposed to previous work, the present paper focuses on a quantitative compari-
son of profilers that fall within the same class, all the candidates being sample-based
call-stack profilers. We also investigate memory profiling, for which we could not
find any previous examples, and test case subset selection for a GI context.

8 � Conclusions

Profiling to identify target areas for improvement is an important part of the typi-
cal GI pipeline and software development in general. This study has contributed an
experimental comparison of four profiler/JDK combinations.

We are able to draw several conclusions from our results. For Research Question
1 (RQ1), we have shown that, while there is certainly noise in the results for a sin-
gle profiler run, each profiler in the study consistently identifies the top-ranked hot

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 32 of 34

methods over the course of 20 repeats. In some cases fewer repeats may be possible,
and we suggest 5 repeats. For RQ2, we have shown that moving from one CPU pro-
filer and JDK to another produces very different results and certainly makes it neces-
sary to repeat the profiling stage for the new context. This is also important for those
maintaining software: migrating a program to a new Java version will require a rerun
of profiling. For RQ3, we show that, while it is possible to determine a subset of the
test suite during the profiling process, the identified tests vary considerably, and a far
more promising direction is to employ Regression Test Selection techniques such as
(Yoo and Harman 2012; Guizzo et al. 2021). For RQ4, we have shown that mem-
ory profiling does indeed follow a similar general pattern to CPU profiling. There
is strong consistency within the top-ranked hot methods across repeat runs for one
profiler/JDK combination, but some large differences when exchanging one profiler/
JDK for another.

There remains considerable work to be done in this area. Beyond the obvious
directions of further experiments with additional target applications, different pro-
filers, different JDKs, and hardware architectures to confirm our results, it would
certainly be interesting to compare profilers that target other properties, as well as
measuring the impact on the GI search space of any variations that are observed.
There is an interesting broader question about what happens at the long tail of sel-
dom used methods, and deeper understanding of the causes of the noise we observed
in our results. A standard test suite for the study of profilers would also be an inter-
esting and useful addition for Java and other platforms.

Acknowledgements  The authors would like to thank the anonymous reviewers for their constructive sug-
gestions, and Jay Brownlee for guidance on statistical analysis.

Author contributions  M.W and A.B wrote the main manuscript text. M.W. completed the experimental
study and implementation; A.B. completed the statistical analysis and generated the plots. All authors
reviewed the manuscript.

Data availability  The full set of results and visualisations from our experiments can be found at https://​
github.​com/​Myles​Watki​nson/​repli​cation_​packa​ge and in a permanent artefact at (Brownlee and Watkin-
son 2024).

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

https://github.com/MylesWatkinson/replication_package
https://github.com/MylesWatkinson/replication_package
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Automated Software Engineering (2024) 31:28 	 Page 33 of 34  28

References

Ahmad, H., Cashin, P., Forrest, S., Weimer, W.: Digging into semantics: Where do search-based soft-
ware repair methods search? In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G.,
Tušar, T. (eds.) Parallel Problem Solving from Nature - PPSN XVII, pp. 3–18. Springer, Dortmund
(2022)

Apache: Introduction to Profiling Java Applications in NetBeans IDE (2020). https://​netbe​ans.​apache.​org/​
tutor​ial/​main/​kb/​docs/​java/​profi​ler-​intro/

Blot, A., Petke, J.: MAGPIE: Machine Automated General Performance Improvement via Evolution of
Software (2022)

Bokhari, M.A., Alexander, B., Wagner, M.: In-vivo and offline optimisation of energy use in the presence
of small energy signals: A case study on a popular Android library. In: 15th EAI International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous
’18, pp. 207–215. ACM, New York, NY, USA (2018). https://​doi.​org/​10.​1145/​32869​78.​32870​14

Brownlee, A.E.I., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.: Gin: genetic improve-
ment research made easy. In: Genetic and Evolutionary Computation Conference, GECCO 2019,
pp. 985–993. ACM, Prague, Czechia (2019). https://​doi.​org/​10.​1145/​33217​07.​33218​41

Brownlee, A.E.I., Petke, J., Rasburn, A.F.: Injecting shortcuts for faster running Java code. In: 2020 IEEE
Congress on Evolutionary Computation (CEC). IEEE Press, Glasgow, Scotland (2020). https://​doi.​
org/​10.​1109/​CEC48​606.​2020.​91857​08

Brownlee, A.E.I., Watkinson, M.B.: Data and Processing Scripts for the Paper “Comparing Apples and
Oranges? Investigating the Consistency of CPU and Memory Profiler Results Across Multiple Java
Versions”. note = [Online; accessed 7-February-2024]. http://​hdl.​handle.​net/​11667/​226

Callan, J., Petke, J.: Multi-objective genetic improvement: A case study with evosuite. In: International
Symposium on Search Based Software Engineering, pp. 111–117 (2022). Springer

Eclipse Foundation: Eclipse Downloads | The Eclipse Foundation (2019). https://​www.​eclip​se.​org/​downl​
oads/

EJ-Technologies: Java Profiler - JProfiler (2020). https://​www.​ej-​techn​ologi​es.​com/​produ​cts/​jprof​iler/​
overv​iew.​html

Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented software. In: 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engi-
neering, pp. 416–419 (2011). ACM

Froyd, N., Mellor-Crummey, J., Fowler, R.: A Sample-Driven Call Stack Profiler, (2004). https://​schol​
arship.​rice.​edu/​bitst​ream/​handle/​1911/​96328/​TR04-​437.​pdf?​seque​nce=​1 &​isAll​owed=y

GitHub: Java Flight Recorder Events. https://​bests​oluti​on-​at.​github.​io/​jfr-​doc/​openj​dk-​17.​html. [Online;
accessed 12-July-2023] (2020)

Guizzo, G., Petke, J., Sarro, F., Harman, M.: Enhancing genetic improvement of software with regression
test selection. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp. 1323–1333 (2021). IEEE

Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.I., Smith, A.V., Gudnason, V.: Genetic improvement
of runtime and its fitness landscape in a bioinformatics application. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. GECCO ’17, pp. 1521–1528. ACM, New
York, NY, USA (2017). https://​doi.​org/​10.​1145/​30676​95.​30825​26

Harrand, N., Allier, S., Rodriguez-Cancio, M., Monperrus, M., Baudry, B.: A journey among Java neutral
program variants. Genet. Program Evolvable Mach. 20(4), 531–580 (2019)

Kuepper, J., Erbsen, A., Gross, J., Conoly, O., Sun, C., Tian, S., Wu, D., Chlipala, A., Chuengsatiansup,
C., Genkin, D., Wagner, M., Yarom, Y.: CryptOpt: Verified Compilation with Random Program
Search for Cryptographic Primitives (2022). [Online; accessed 9-January-2023]

Langdon, W.B., Alexander, B.J.: Genetic Improvement of OLC and H3 with Magpie. 2023 IEEE/ACM
International Workshop on Genetic Improvement (GI) (2023) https://​doi.​org/​10.​1109/​gi593​20.​2023.​
00011

Langdon, W.B., Harman, M.: Optimizing existing software with genetic programming. IEEE Trans. Evol.
Comput. 19(1), 118–135 (2015). https://​doi.​org/​10.​1109/​TEVC.​2013.​22815​44

Langdon, W.B., Lam, B.Y.H., Modat, M., Petke, J., Harman, M.: Genetic improvement of GPU software.
Genet. Program Evolvable Mach. 18(1), 5–44 (2017). https://​doi.​org/​10.​1007/​s10710-​016-​9273-9

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method for automatic software
repair. IEEE Trans. Software Eng. 38, 54–72 (2012). https://​doi.​org/​10.​1109/​TSE.​2011.​104

https://netbeans.apache.org/tutorial/main/kb/docs/java/profiler-intro/
https://netbeans.apache.org/tutorial/main/kb/docs/java/profiler-intro/
https://doi.org/10.1145/3286978.3287014
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1109/CEC48606.2020.9185708
https://doi.org/10.1109/CEC48606.2020.9185708
http://hdl.handle.net/11667/226
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://scholarship.rice.edu/bitstream/handle/1911/96328/TR04-437.pdf?sequence=1%20&isAllowed=y
https://scholarship.rice.edu/bitstream/handle/1911/96328/TR04-437.pdf?sequence=1%20&isAllowed=y
https://bestsolution-at.github.io/jfr-doc/openjdk-17.html
https://doi.org/10.1145/3067695.3082526
https://doi.org/10.1109/gi59320.2023.00011
https://doi.org/10.1109/gi59320.2023.00011
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1109/TSE.2011.104

	 Automated Software Engineering (2024) 31:28

1 3

 28   Page 34 of 34

Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Evaluating the accuracy of Java profilers. In:
Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’10, pp. 187–197. Association for Computing Machinery, New York, NY, USA
(2010). https://​doi.​org/​10.​1145/​18065​96.​18066​18

Oracle Corporation: Oracle JDK Migration Guide. https://​docs.​oracle.​com/​en/​java/​javase/​18/​migra​te/​
index.​html. [Online; accessed 9-January-2023] (2022)

Oracle: HPROF: A Heap/CPU Profiling Tool. https://​docs.​oracle.​com/​javase/​7/​docs/​techn​otes/​sampl​es/​
hprof.​html. [Online; accessed 12-July-2023] (2011)

Oracle: JDK Mission Control (2018). https://​www.​oracle.​com/​java/​techn​ologi​es/​jdk-​missi​on-​contr​ol.​html
Oracle: JFR Runtime Guide. https://​docs.​oracle.​com/​javac​ompon​ents/​jmc-5-​4/​jfr-​runti​me-​guide/​about.​

htm#​JFRUH​170. [Online; accessed 12-July-2023] (2014)
Oracle: Using JConsole - Java SE Monitoring and Management Guide (2023). https://​docs.​oracle.​com/​

javase/​8/​docs/​techn​otes/​guides/​manag​ement/​jcons​ole.​html
Patel, R., Rajwat, A.: A survey of embedded software profiling methodologies. International Journal of

Embedded Systems and Applications 1 (2013) https://​doi.​org/​10.​5121/​ijesa.​2011.​1203
Petke, J., Brownlee, A.E.I.: Software improvement with Gin: A case study. In: Search-Based Software

Engineering: 11th International Symposium, SSBSE 2019, Tallinn, Estonia, August 31 - Septem-
ber 1, 2019, Proceedings, pp. 183–189. Springer, Berlin, Heidelberg (2019). https://​doi.​org/​10.​1007/​
978-3-​030-​27455-9_​14

Petke, J.: Using genetic improvement to optimise optimisation algorithm implementations. (2022).
https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​25143​5594

Petke, J., Haraldsson, S.O., Harman, M., White, D.R., Woodward, J.R.: Genetic improvement of soft-
ware: a comprehensive survey. IEEE Trans. Evol. Comput. 22(3), 415–432 (2017). https://​doi.​org/​
10.​1109/​TEVC.​2017.​26932​19

Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Specialising software for different downstream appli-
cations using genetic improvement and code transplantation. IEEE Trans. Software Eng. 44(6),
574–594 (2018). https://​doi.​org/​10.​1109/​TSE.​2017.​27026​06

Petke, J., Alexander, B., Barr, E.T., Brownlee, A.E., Wagner, M., White, D.R.: Program transformation
landscapes for automated program modification using Gin. Empir. Softw. Eng. 28(4), 1–41 (2023)

Raikar, K.: How to objectively compare two ranked lists in Python. Towareds Data Science (2023).
https://​towar​dsdat​ascie​nce.​com/​how-​to-​objec​tively-​compa​re-​two-​ranked-​lists-​in-​python-​b3d74​
e236f​6a

Sarica, A., Quattrone, A., Quattrone, A.: Introducing the rank-biased overlap as similarity measure for
feature importance in explainable machine learning: A case study on Parkinson’s Disease. In: Mah-
mud, M., He, J., Vassanelli, S., Zundert, A., Zhong, N. (eds.) Brain Inform., pp. 129–139. Springer,
Cham (2022)

Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software optimization for reduc-
ing energy. SIGARCH Comput. Archit. News 42(1), 639–652 (2014). https://​doi.​org/​10.​1145/​26548​
22.​25419​80

Sedlacek, J., Hurka, T.: VisualVM: Home (2022). https://​visua​lvm.​github.​io/
Varley, D.A.: Practical experience of the limitations of gprof. Software: Practice and Experience 23(4),

461–463 (1993) https://​doi.​org/​10.​1002/​spe.​43802​30407
Watkinson, M., Brownlee, A.: Updating Gin’s profiler for current Java. In: The 12th International Work-

shop on Genetic Improvement, at the International Conference on Software Engineering, Mel-
bourne, Australia, May 20 2023 (2023). ACM

Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings. ACM Trans. Inform. Syst.
(TOIS) 28(4), 1–38 (2010)

White, D.R.: GI in no time. In: Genetic and Evolutionary Computation Conference, July 15-19, 2017,
Companion Material Proceedings, pp. 1549–1550. ACM, Berlin, Germany (2017). https://​doi.​org/​
10.​1145/​30676​95.​30825​15

Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Softw. Test-
ing Verif. Reliability 22(2), 67–120 (2012)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/1806596.1806618
https://docs.oracle.com/en/java/javase/18/migrate/index.html
https://docs.oracle.com/en/java/javase/18/migrate/index.html
https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
https://www.oracle.com/java/technologies/jdk-mission-control.html
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://doi.org/10.5121/ijesa.2011.1203
https://doi.org/10.1007/978-3-030-27455-9_14
https://doi.org/10.1007/978-3-030-27455-9_14
https://api.semanticscholar.org/CorpusID:251435594
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/TSE.2017.2702606
https://towardsdatascience.com/how-to-objectively-compare-two-ranked-lists-in-python-b3d74e236f6a
https://towardsdatascience.com/how-to-objectively-compare-two-ranked-lists-in-python-b3d74e236f6a
https://doi.org/10.1145/2654822.2541980
https://doi.org/10.1145/2654822.2541980
https://visualvm.github.io/
https://doi.org/10.1002/spe.4380230407
https://doi.org/10.1145/3067695.3082515
https://doi.org/10.1145/3067695.3082515

	Comparing apples and oranges? Investigating the consistency of CPU and memory profiler results across multiple java versions
	Abstract
	1 Introduction
	2 Profilers and integration with Gin
	2.1 Integration with Gin
	2.2 Memory profiling

	3 Experiments
	3.1 Experimental setup and pipeline
	3.2 Approach to analysis

	4 Results
	4.1 RQ1. How consistently does each profiler identify hot methods between repeat runs on a given JDK?
	4.2 RQ2. Is there a difference in the hot methods identified by each profiler?
	4.3 RQ3. How consistently does each profiler identify unit tests associated with hot methods?
	4.4 RQ4. Memory

	5 Discussion
	6 Threats to validity
	7 Related work
	7.1 Profilers in a GI framework
	7.2 Comparison and analysis of profilers
	7.3 Paper novelty

	8 Conclusions
	Acknowledgements
	References

