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Abstract
Profiling is an important tool in the software developer’s box, used to identify hot 
methods where most computational resources are used, to focus efforts at improv-
ing efficiency. Profilers are also important in the context of Genetic improvement 
(GI) of software. GI applies search-based optimisation to existing software with 
many examples of success in a variety of contexts. GI generates variants of the 
original program, testing each for functionality and properties such as run time or 
memory footprint, and profiling can be used to target the code variations to increase 
the search efficiency. We report on an experimental study comparing two profilers 
included with different versions of the Java Development Kit (JDK), HPROF (JDK 
8) and Java Flight Recorder (JFR) (JDK 8, 9, and 17), within the GI toolbox Gin on 
six open-source applications, for both run time and memory use. We find that a core 
set of methods are labelled hot in most runs, with a long tail appearing rarely. We 
suggest five repeats enough to overcome this noise. Perhaps unsurprisingly, chang-
ing the profiler and JDK dramatically change the hot methods identified, so profiling 
must be rerun for new JDKs. We also show that using profiling for test case subset 
selection is unwise, often missing relevant members of the test suite. Similar general 
patterns are seen for memory profiling as for run time but the identified hot methods 
are often quite different.
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1  Introduction

Profiling tools are a useful aid to software developers in general, helping to iden-
tify areas of existing code for improvement. As systems become more complex and 
greater reliance is placed on automated tools to support developers, better under-
standing of profilers’ behaviour is of great importance. Profilers are also relevant 
to Genetic Improvement (GI) of software (Petke et al. 2017). GI aims to automati-
cally improve code by applying computational search methods, with impressive 
results being demonstrated for both functional improvements like bug fixes (e.g., 
GenProg (Le Goues et al. 2012)), and non-functional improvements, like run time 
(e.g.,  (Langdon and Harman 2015)). A critical, and yet underexplored, part of the 
GI process is the identification of hot methods or procedures, regions of code found 
to be bottlenecks that are targeted for mutation. Hot methods are usually identified 
by a profiling tool. Variations in a profiler’s output will greatly impact the insights 
a developer can make or the performance of the GI search, motivating us to seek 
better understanding of the consistency and behaviour of profilers. The Gin open 
source toolbox for GI research in Java, originally proposed by White (2017) and fur-
ther developed by Brownlee et al. (2019), was recently upgraded by us (Watkinson 
and Brownlee 2023) to support the Java Development Kit (JDK) 17 and part of that 
process switched from the retired HPROF profiler to the more recent Java Flight 
Recorder (JFR).

We (Watkinson and Brownlee 2023) outlined the initial process of changing the 
profiler in Gin and explored the difference in profiling outputs between HPROF 
under JDK 8 and JFR under JDK 9. We now recap and expand that work with a 
broader series of experiments, covering additional profiler/JDK combinations 
(JFR and JDK 8/17), five additional open-source target projects, and further analy-
sis including variation within the results of each profiler and extension to memory 
profiling.

To measure the effectiveness of a profiler there needs to be some baseline or 
ground truth. Mytkowicz et  al. (2010) faced a similar challenge when comparing 
the accuracy of Java profilers. They reached the conclusion that accuracy should be 
judged in terms of actionability. An actionable profile relates to the practical nature 
of the use of a programs profile. The profile is used to identify hot methods that are 
then altered to improve the program. If a profiler identifies ten slow methods and, 
when these are changed, the program speeds up considerably, the profiler has cre-
ated an actionable profile. The profiler could be deemed inaccurate if its results were 
not actionable, that is if it returned 10 hot methods and when changed these did not 
actually speed up the program.

Actionable can be generalised to: “able to be used in the context needed”. In 
our case, if the profiler finds hot methods that can be altered to improve the pro-
gram, it is accurate. While the true ‘hotness’ of every method is not known, it can 
be assumed that if a profiler returns the same 10 methods every profiling run, and its 
method of determining hotness is correct, that it is accurate. Conversely, if a profiler 
returns an inconsistent list of hot methods each run it can be deemed inaccurate. Or, 
alternatively, the relative hotness of all methods is similar enough that there is little 
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value in identifying any subset of methods as hot, though as we will see, this is not 
the case for the projects in the present study (as demonstrated by the histograms in 
Figure 4 in Section 4.1, where around 50 methods are consistently identified as hot, 
and over 100 are identified by profiler in only 5–10% of repeat runs). Throughout 
the rest of this paper, we will describe methods as hot when they have been identi-
fied as such by a profiler; though in practice hot is really a property of the software 
and its typical usage.

In light of the above, our study seeks to answer the following research questions. 

RQ1	� How consistently does a single CPU profiler identify hot methods between 
repeat runs on a given JDK? How much confidence can we have in the profil-
ing results? How many repeat runs are needed to capture most hot methods?

RQ2	� How much do the hot methods change as we move from one CPU profiler 
and JDK to another? Will it be necessary to repeat the profiling stage for a 
new context?

RQ3	� Is it possible to identify a subset of the test suite calling a target method 
(i.e., test case subset selection (Yoo and Harman 2012)) during the profil-
ing process? As Gin samples the call stack during profiling, it also walks up 
the stack to identify unit tests calling each hot method. The aim is to reduce 
evaluation time for patches by only needing to run the relevant tests rather 
than the whole suite. How much do those tests identified vary?

RQ4	� Does memory profiling follow a similar pattern to CPU profiling? Over the 
years GI has grown to target other non-functional properties of code such as 
memory consumption. We are unaware of any work exploring whether the 
hot methods are different for such properties, so what issues might appear if 
we apply a similar profiling approach to memory use?

We have focused on the context of GI, but investigation of profilers should also 
be of interest to Java developers more generally. Profiling already forms an impor-
tant part of a developer’s tool kit, allowing for performance bottlenecks to be identi-
fied for optimisation once the software’s implementation has met the required speci-
fication. RQ1 explores how reliable the results of profiling are. RQ2 extends this to 
look at the impact of changing profiler and Java version. Migrating software to a 
different Java version is becoming more frequent as Oracle’s release cycle switched 
to every six months so RQ2 is of increasing importance: do we need to reprofile for 
every upgrade? Our results suggest that we do. RQ3 investigates the automatic iden-
tification of tests calling hot methods, which is of relevance to automatic program 
repair researchers, and potentially relevant to anyone interested in test-driven devel-
opment of software. RQ4 is also of wider relevance to Java developers. As cloud and 
mobile apps continue to grow in importance, developers strive to make software less 
resource-heavy, motivating investigation of non-CPU properties such as memory.
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Our experimental results lead to several conclusions. We use Weighted Rank 
Biased Overlap (WRBO) (Webber et  al. 2010) to compare the ranked lists of hot 
methods produced by profiler runs, giving a scale of 0 to 1 for similarity in the 
rankings. We show that each of the profilers is largely consistent in the hot meth-
ods that it identifies during multiple repeat runs, with a WRBO of over 0.65. In 
practice, five repeat runs are enough to identify hot methods with 95% confidence. 
However, changing profiler and JDK leads to dramatically different profiling results, 
with a typical WRBO of 0.2 when switching profiler on the same JDK, and between 
0.2–0.7 for the same profiler on different JDKs. This second point is, perhaps, unsur-
prising, but to our knowledge has not been tested experimentally in this way before. 
We also show that using a profiler for test case subset selection as described in RQ3 
should generally be avoided; even in the context of GI whereby the full test suite is 
used to confirm functionality of the final results, the selected tests vary so much that 
it is likely the search will find sub-optimal results that break functionality, requiring 
further rerunning of the search. In the example highlighted in Sect. 4.3, for only 9 
of 57 identified hot methods did the same test cases appear in nearly all repeat runs. 
From this we might also conclude that testing is itself suboptimal, and observing 
the behaviour of programs “in the real world” would better serve to identify where 
optimisation is needed. We also show that memory profiling follows broadly similar 
patterns to those seen for CPU profiling, albeit identifying rather different sets of 
hot methods. The Spearman correlation between ranks assigned to hot methods for 
CPU and memory varies between −1.0 (i.e., the most-hot methods for CPU were 
the least-hot for memory), and +0.751 (i.e., hot methods for CPU and memory were 
largely the same).

Section  2 describes the approach to integrating the profiling tools within Gin. 
Section  3 describes our experimental study and summarises the results, with fur-
ther discussion in Sect. 5. Sections 6 and 7 summarise the threats to validity of our 
results, and relevant related work. In Sect. 8 we give our conclusions and sugges-
tions for future work.

2 � Profilers and integration with Gin

Our experiments focus on profiling in the context of the Java GI toolkit Gin, which 
provides several utilities to ease our experimental pipeline including a consistent 
API for integration with large projects built with both the Maven and Gradle build 
tools, and an existing profiling framework. There are many profiling tools avail-
able for Java. We investigate the profilers HPROF (Oracle 2011) and Java Flight 
Recorder (JFR) (Oracle 2014). We now summarise the motivation behind focus-
ing on these two. Key to an automated experimental pipeline is the ability to call 
the profiler programatically without manual intervention. We also wish to limit any 
additional overhead or dependencies and, in the interests of open science, avoid 
anything requiring a commercial licence. Ideally our profilers should also be able 
to capture both CPU and memory usage. We previously summarised (Watkinson 
and Brownlee 2023) these desirable qualitative properties of several current profil-
ing tools with a view to upgrading Gin for newer versions of Java. The third-party 
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tool JProfiler (EJ-Technologies 2020) was ruled out due to its commercial licence. 
The profilers integrated within IDEs, such as NetBeans (Apache 2020) and Eclipse 
(Eclipse Foundation 2019), were ruled out due to the overhead associated with run-
ning the host IDE. VisualVM (Sedlacek and Hurka 2022), Java Mission Control 
(Oracle 2018), and JConsole (Oracle 2023) all require some element of user interac-
tion with a visual interface, preventing their use in an automated experimental pipe-
line. This leaves HPROF and JFR, both of which are free and can be called progra-
matically. HPROF was included with JDK versions up to 8, and was the original 
profiling tool integrated within Gin up to v2.0 (White 2017; Brownlee et al. 2019). 
This led to its use in identifying code for improvement in several GI studies (Petke 
and Brownlee 2019; Petke et al. 2023; Brownlee et al. 2020), so we include it for 
comparison within our study. JFR has been bundled with the JDK since version 7, 
being officially supported since version 9. We first described the integration of both 
profilers within Gin in (Watkinson and Brownlee 2023), and recap the details here 
for convenience.

Both HPROF and JFR profilers rely on sampling, whereby a trace of the stack 
is made at intervals to determine which methods appear most often. The basic idea 
is that the method on the top of the call stack is recorded at intervals to determine 
where CPU time is spent or changes to memory use occur. Sampling has the inher-
ent potential to introduce noise to the results by identifying different methods as hot 
on different runs. Both HPROF and JFR also add a small amount of randomness to 
the profiling interval to avoid bias towards functions that run at the same rate as the 
sampling. Further, HPROF and JFR take slightly different approaches to sampling 
that may also impact results so we briefly explain this difference. The interested 
reader can refer to the official documentation for HPROF (Oracle 2011) and JFR 
(Oracle 2014) for further detail. JFR records information on events that occur in the 
Java Virtual Machine (JVM). To minimise overhead, rather than stopping all threads 
at once to take a stack trace of everything, JFR stops threads individually. Each trace 
produces an event that is recorded, and these events are output to a .jfr file after a 
recording ends (Oracle Corporation 2022). A consequence of JFR’s approach is that 
only stack traces ending in Java code (rather than JDK library code) are recorded. 
HPROF differs by profiling all threads inside the JVM at intervals. This differs from 
the event based profiling of JFR as HPROF can profile sleeping, waiting or blocked 
threads and I/O calls that JFR can not see. In the context of GI, we are only inter-
ested in identifying the Java code that can be modified by the search. For API and 
library calls that means identifying the calling code in the project being profiled; 
which is not always possible through HPROF’s approach. So, a filtering step is 
introduced with the net result that the results of both profilers identify hot methods 
within the target application’s Java source only.

2.1 � Integration with Gin

As both tools are built-in to Java, integrating HPROF and JFR with Gin is relatively 
simple. For the profiling tool, Gin runs a target application with a separate Java 
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virtual machine instance, adding flags to the Java command that cause it to invoke 
the profiler. In Gin versions up to v2.1, the command to invoke HPROF is: 

where, by default, the interval in milliseconds is 10. The initial upgrade to JFR 
for JDK 8 and 9 proposed by Watkinson and Brownlee (2023) used the following: 

where the “profile” option for settings makes samples every 10ms (currently 
this rate is not user-configurable). Current versions of the JDK no longer require the 
first two options so Gin for JDK 17 uses this: 

-XX:StartFlightRecording=name=Gin,dumponexit=true,settings=pro�le,�lename=

HPROF and JFR each output respective files that are used to extract results. 
HPROF outputs results to a text file that can be easily read and translated. JFR 
outputs to a .jfr file with a binary format that requires specific parsing tools pro-
vided with the Java API to view: these are provided officially from JDK 9 and up 
(GitHub 2020); in JDK 7–8 the JFR parsing API is radically different, and undocu-
mented1. Programmatically, this file is broken into RecordedEvent objects, a data 
structure from the JFR library, by first reading the .jfr file to a JFR RecordingFile 
object. Gin is concerned with stack traces, so each RecordedEvent with the type 
ExecutionSample is collected. Each ExecutionSample has a list of stack frames 
that are iterated over to identify methods and function calls that occurred in order. 
Though it does not fit the context of Gin, the free tool Java Mission Control2 can 
easily visualise JFR files to debug.

Figure 2 shows an example HPROF output file from a profiling run of JCodec 
(See Sect. 3.1 for projects in our study). The top ranked method, a Java native I/O 
function is found 112 times. As discussed before, JFR can not profile I/O calls so 
this function can only be found by HPROF. However, this is actually a negative for 
HPROF if the calling function cannot be identified as both GI and human developers 
aim to target editable source code rather than internal Java API functions. Moving 
down the list, methods 2, 4, 6–8, and 10 are all Java native calls, Gin ignores these 
as well. For these functions, JFR would jump past them in the call stack to find a 
function part of JCodec. By doing this, in the example JFR could potentially return 
an extra 132 samples of JCodec methods.

1  http://​hirt.​se/​blog/?p=​446.
2  https://​www.​oracle.​com/​java/​techn​ologi​es/​jdk-​missi​on-​contr​ol.​html.

http://hirt.se/blog/?p=446
https://www.oracle.com/java/technologies/jdk-mission-control.html
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Both profilers count the appearances of methods in the stack. HPROF records and 
returns the number of times each method is found at the top of the call stack. The meth-
ods seen most often are filtered to only those that belong to the target program; these 
are then returned as hot methods. JFR traverses the call stack until it discovers a method 
that is part of the program being profiled, then, this method’s number of samples is 
incremented. Figure 1 gives a sketch of a situation. This means, a method that is part 

Fig. 1   Example of a call stack: three methods in a call stack showing the bottom of the stack, found 
by JFR and the top, found by HPROF. This is a fundamental difference in the way HPROF and 
JFR approach sampling. JFR will stop walking up the trace at the code that is part of the pro-
ject being profiled (MainProgram.begin()) whereas HPROF will pick up the API function 
Java.vector.indexOf() . This API function is not editable; so we walk back up the trace to find 
the calling function MainProgram.begin(). In some cases, this trace back to the target project is not 
available. Figure taken from (Watkinson and Brownlee 2023)

CPU SAMPLES BEGIN (total = 229) Tue Dec 12 19:30:33 2023
rank self accum count trace method

1 48.91% 48.91% 112 300154 java.io.FileInputStream.readBytes
2 2.62% 51.53% 6 300062
3 2.62% 54.15% 6 300462 org.jcodec.codecs.h264.decode.PredictionMerger.

weightPrediction
4 1.75% 55.90% 4 300380 java.lang.Thread.isInterrupted
5 1.75% 57.64% 4 300453 org.jcodec.codecs.h264.decode.MBlockDecoderBase.

predictChromaInter
6 1.31% 58.95% 3 300140 java.util.zip.ZipFile.getEntry
7 1.31% 60.26% 3 300171 java.io.UnixFileSystem.getBooleanAttributes0
8 0.87% 61.14% 2 300065
9 0.87% 62.01% 2 300404 org.jcodec.containers.mp3.MPEGAudioDemuxer.

skipJunkBB
10 0.87% 62.88% 2 300433 java.lang.System.arraycopy
11 0.87% 63.76% 2 300437 org.jcodec.codecs.h264.decode.PredictionMerger.

mergeWeight
12 0.87% 64.63% 2 300439 org.jcodec.codecs.h264.decode.DeblockerInput.<

init>

Fig. 2   Example of an HPROF output file: The methods found on top of the call stack in each sample 
taken by HPROF. Each row corresponds to a unique method, sorted in descending order of appearances. 
Rank 1 in this case is a Java file reading method that appeared on the top of the stack 112 times. ‘Trace’ 
is a unique ID identifying the stack trace (elsewhere in the file) that shows how this method was called. 
In this example, many Java language and util functions are found on top of the call stack alongside the 
JCodec core methods
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of the program being profiled is found in every call stack, whereas, in HPROF samples 
there may be Java language or I/O operations that are found and not returned as hot 
methods. This is why, as noted by Watkinson and Brownlee (2023), JFR consistently 
finds more hot methods and finds them more times in samples.

These differing approaches impact the final profiling result. Every JFR call stack 
will be traversed to find a function relating to the program being profiled, this is not 
the same for HPROF. If two programs call a number of I/O functions and Java lan-
guage functions HPROF and JFR will return different results. JFR will search past the 
unrelated functions and identify that the method from the program being profiled is 
hot. HPROF will only identify the function as a hot method if it is profiled when it 
is not running any of the unrelated functions. Even though GI can not edit functions 
in libraries rather than the program being profiled, manipulating how library functions 
are called could improve the run time. Part of the motivation for our experiments is to 
determine how much of a difference to the profiling results there is in practice, within 
repeat runs of one profiler on one JDK (Sect. 4.1) and as profiler and JDK are changed 
(Sect. 4.2).

2.2 � Memory profiling

Both HPROF and JFR are also able to profile memory use. Gin was extended to include 
memory profiling by Callan and Petke (2022), as part of work studying multi-objective 
genetic improvement of software (in that case, studying the trade-off of programs rang-
ing from low CPU time to low memory use). Integration just requires a slight change to 
the arguments passed to the JVM. For HPROF: 

and for JFR: 

The profiling works by tracking objects being allocated to the heap. Each allocation 
is annotated with a stack trace identifying the original Java code location where the 
item was allocated. This includes temporary local objects including arrays.

HPROF then outputs a table of samples and corresponding traces, similar to that 
for CPU time, and are parsed in the same way. The recording file from JFR contains 
similar data in binary format. The samples and corresponding traces from JFR are 
embedded in jdk.ObjectAllocationInNewTLAB events. The JFR traces are parsed and 
ranked in order of those responsible for the largest memory allocation.
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3 � Experiments

We (Watkinson and Brownlee 2023) previously profiled Perwendel Spark and 
reported that, while there was some positive correlation between the results, there 
was considerable noise and the number of samples for hot methods found by the two 
profilers was also different. JFR found a mean of 26.2 hot methods, whereas HPROF 
found only 21.6. Some of this can be accounted for by the change in JDK as well as 
the change in profiler. Some can also be attributed simply to noise in the system: run 
time is notoriously difficult to measure consistently, and at the resolution required 
to sample methods appearing frequently in the call stack, the problem is worse still. 
Thus, in the present study, we investigate just how consistent the results of profiling 
are.

We compare both HPROF and JFR in experiments, with HPROF on JDK 8 and 
JFR on JDK 8, JDK 9, and JDK 17. We include 9 for its closeness to 8, and 17 
as it is the version currently used by Gin, and (until September 2023) the current 
Long Term Support version of Java. For brevity, we will refer to HPROF/JDK8 as 
HPROF8, JFR/JDK8 as JFR8, JFR/JDK9 as JFR9, and JFR/JDK17 as JFR17.

Note that the ground truth is unknown and, in practice, probably does vary from 
one JDK to the next, and more so with changes in underlying OS, hardware, and so 
on. However, we keep these fixed for a given project in our study. Our goal here is 
simply to understand how much variation there is in different profiling contexts.

3.1 � Experimental setup and pipeline

We wished to focus on the default profiling tools that come with Java. This is 
motivated by the desire to use the profiling tools explored with the Gin GI toolkit, 
which avoids the use of additional external tools as much as possible. HPROF is 
freely available with Java Development Kit (JDK) versions 8 and below, whereas 
JFR is freely available with versions 7 and up. More specifically, our experiments 
used Oracle JDK 8.0.341 for HPROF and Oracle JDK 1.8.0_202, Oracle JDK 
9.0.4, and Oracle JDK 17.0.6 for JFR. OpenJDK 8–9 does not include JFR, so we 
were limited to the closed-source Oracle JDK. In combination, these will allow us 
to measure the impact of changing from HPROF to JFR under JDK 8, and chang-
ing JDK while running JFR. All experiments were run on the machines listed 

Table 1   The machines used for 
the experiments

Machine A Machine B

CPU two 16-core Intel Xeon 
E5-2620v4 CPUs@2.1GHz

one 8-core Intel 
i7-11390H 
CPU@3.40GHz

Memory 32GB DDR4 2133MHz ECC 16GB DDR3 
1600MHz non-
ECC

OS Debian 5.10 Ubuntu 22.04
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in Table 1, with Table 2 showing which project was run on which machine. The 
experiments were run sequentially (one profiling run of one project at a time), 
and no other computationally intensive processes were run in parallel with the 
experiments.

All profiling is done inside of Gin using its two profiling tools 
(gin.util.Profiler for CPU time and gin.util.MemoryProfiler for memory 
use). These tools output CSV files listing the hot methods in descending order, 
with the sample counts and any associated unit tests. The CSVs generated by 
our experimental runs are all available in the artefact published with the paper 
(Brownlee and Watkinson 2024). Gin itself is available from https://​github.​
com/​ginto​ol/​gin. The specific builds used in our experiments were tag v2.1 
for HPROF8, branch jdk8-jfr for JFR8, branch jdk9  for JFR9, and commit 
2359f57 from the current trunk for JFR17.

We considered six open source Java projects, listed in Table  2, with their 
GitHub repository URL and the specific build we worked with. The projects 
selected were drawn from those in two previous studies with Gin (Petke et  al. 
2023; Watkinson and Brownlee 2023), and were originally chosen using the cri-
teria that they used the Maven or Gradle build tools, have a non-trivial test suite 
(taking minutes to hours to run during profiling) with only passing tests, are rea-
sonably popular ( > 1000 stars (i.e., bookmarked by over 1000 users) and > 300 
forks), open-source with a permissive licence, and crucially, compatible with Java 
8 to allow comparisons with HPROF. As we wanted to keep the comparisons as 
fair as possible, no changes were made by us to the projects to make them com-
patible with particular Java versions. Consequently, in some cases older builds 
were chosen to allow compatibility with Java 8 for comparisons and, even then, 
not all builds worked with all Java versions in the study without modification. 
The Java versions that each project was tested on are indicated in Table  1. All 
projects used the Maven build tool, except Disruptor, which used Gradle.

The experimental pipeline for each project listed in Table 2 was as follows: 

1.	 reboot the host machine
2.	 switch the default Java and JAVA_HOME to the appropriate JDK
3.	 clone the project from GitHub
4.	 build and test the project using one of Maven or Gradle

Table 2   Which projects were studied with which profilers in our experiments. *The URL for each is pre-
fixed with github.com. X: OpenNLP results with JFR8 for CPU only

Project GitHub* URL Version Machine HPROF8 JFR8 JFR9 JFR17

Disruptor /LMAX-Exchange/disruptor 3.4.2 A ∙ ∙

GSON /google/gson 2.8.4 A ∙ ∙ ∙ ∙

JCodec /jcodec/jcodec 0.2.0 A ∙ ∙ ∙ ∙

JUnit4 /junit-team/junit4 4.13.2 A ∙ ∙ ∙ ∙

OpenNLP /apache/opennlp 1.9.4 A ∙ X ∙ ∙

Perwendel Spark /perwendel/spark 2.9.3 B ∙ ∙ ∙

https://github.com/gintool/gin
https://github.com/gintool/gin
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5.	 run shell script calling the Gin profiler 20 times (running the test suite for the 
target application); each run of the test suite invokes a separate, fresh Java virtual 
machine instance

6.	 analyse resulting CSVs

Profiling was carried out on runs of the test suite included with each project. While 
not necessarily reflecting the real-world usage patterns of the projects, for the pur-
pose of testing profiling these exercise large portions of the projects and so represent 
a reasonable way to compare the results of profiling itself. Inevitably, there will be 
some changes to the profiles over the course of the repeat runs due to cache filling, 
but the same approach was used for all projects and all profiler configurations. For 
any one project the impact should be comparable across the profilers tested. Analy-
sis of profiling consistency is given in Section 4.1.

3.2 � Approach to analysis

The profilers return ranked lists of methods in a CSV (20 lists per profiler per pro-
ject). We are interested in the similarity of these lists: both within the 20 lists pro-
duced by one profiler (RQ1 and RQ4), and comparing the 20 lists produced by one 
profiler and the 20 produced by another (RQ2). To do this, we consider each pair of 
lists drawn from the 20. That is, when comparing the 20 lists (l1, l2,… l20) produced 
by one profiler, we measure the similarity of the pair l1 vs l2 , the pair l1 vs l3 , the pair 
l1 vs l4 ... etc, giving us 190 (20 choose 2) comparisons. We then report summary 
statistics over these 190 measurements. When comparing two profilers, we have two 
sets of 20 ranked lists to compare (l1, l2,… l20) and (m1,m2,…m20) . We measure the 
similarity of all combinations of this: i.e., the pair l1 vs m1 , the pair l1 vs m2 , the pair 
l1 vs m3...etc., giving us 400 (20 × 20) comparisons. Again we report summary statis-
tics over all 400 comparisons.

The specific similarity measures used need to consider that the rank order of 
methods varies between repeat runs and the lists rarely contain precisely the same 
set of methods. It is trivial to filter the sets of methods to only those that appear 
a certain number of times, and this could be a way to reduce noise in the results. 
Consequently, where we consider metrics calculated across the repeat runs for a pro-
filer, we filter the list of hot methods found by each run according to the following 
three sets. union is the set of methods identified as hot in any of the repeat runs of a 
profiler, that is, the case where no filtering is applied. median is the set of methods 
identified as hot in at least half (i.e., 10) of the repeat runs of a profiler. intersection 
is the set of methods identified as hot in all 20 of the repeat runs of a profiler. While 
we apply the above filtering, we still keep the rank orderings associated with each 
method in the set, in order to apply the metrics described in the remainder of this 
section.

The variation in rank order and methods present across repeat runs also leads us 
to use a method known as Weighted Rank Biased Overlap (WRBO) (Webber et al. 
2010) as the principal means to compare the rankings generated by the profilers. 
The ability of WRBO to both handle lists of varying length and not require that the 
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lists contain the same elements makes it preferable to well-known rank-comparison 
methods such as Spearman Rank Correlation or Kendall Tau. WRBO has previ-
ously been used to compare feature importance rankings generated by Explainable 
AI algorithms (Sarica et  al. 2022). WRBO can also assign a higher weight to the 
first few elements in a list; we use a weighting of 0.9 which results in the top 10 hot 
methods being responsible for 85.56% to the total scoring. The method returns a 
score in the range [0, 1], with 1 being a perfect overlap of identical lists and 0 being 
no similarity between both the order of the list elements, and the number of shared 
elements. We used a Python implementation of the WRBO function provided by 
Raikar (2023).

It is also possible to further filter the union, median, and intersection sets to 
include only those methods identified by both profilers being compared. This allows 
us to compute a simple arithmetic mean ranking for each member of the sets across 
all repeat runs, then use scatterplots and the more well-known Spearman Rank Cor-
relation for comparisons, at the cost of significant loss of information through aggre-
gation and exclusion of methods not common to both sets. This latter approach was 
taken in our previous paper (Watkinson and Brownlee 2023). These results appear 
later in the discussion (Sects. 4.2 and 4.4).

4 � Results

We now present the results of our experiments and answers to the research ques-
tions. The following sections report summary statistics and a subset of examples 
reflecting the trends we have observed across all the experiments. The full set of 
results and visualisations is available from https://​github.​com/​Myles​Watki​nson/​repli​
cation_​packa​ge and (Brownlee and Watkinson 2024).

4.1 � RQ1. How consistently does each profiler identify hot methods 
between repeat runs on a given JDK?

GI pipelines generally use profiling to identify hot methods, i.e., the methods where 
the CPU spends most time and so are most fertile for improvement. These are the 
methods to be targeted by mutations. Yet measurement of CPU time is notoriously 
noisy so we begin by asking how consistently any of the profilers in our study iden-
tify hot methods for a given project over multiple runs.

Table 3 reports the counts of hot methods in each of the four sets for each project 
and profiler. The median lists contain 10–30% of the methods in union, and intersec-
tion contains around 10–60% of median. In summary, well over half the methods iden-
tified across all repeat runs appear in fewer than half of them, and a smaller fraction 
still appear in all repeat runs. Thus we confirm that there is considerable noise in the 
results for each profiler and JDK combination on each project. The histograms in Fig. 4 
show the distribution of appearances for hot methods for JUnit4. These reflect the trend 
seen across all projects in the study. The figures show how often unique methods are 
identified as hot over the 20 repeat runs, each bar being the number of hot methods that 

https://github.com/MylesWatkinson/replication_package
https://github.com/MylesWatkinson/replication_package
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appeared 1, 2,… , 20 times. There is a peak at 20: a core set of hot methods that are 
identified by the profiler in every repeat run. There is then a long tail tending towards 
a large number of methods that are identified as hot in only one of the repeat runs. The 
key point here is that even a limited number of repeat runs will be able to identify the 
core set of hot methods and filter out those methods identified as hot purely as a result 
of sampling artefacts.

How many repeats might be necessary in practice? This will depend on the con-
fidence we wish to have that the methods identified by profiling are truly hot, and what 
our definition of hot is in the first place. If we assume that we wish to detect all meth-
ods that would be identified as hot in at least half of all profiling runs, then we can say 
that the associated probability of hot ness p = 0.5 . The binomial distribution then tells 
us the probability P(x) that the method will be identified as hot x times in a set of n 
profiling runs is:

We can rearrange this inequality to tell us the minimum number of repeat runs 
required to identify the method as hot with a 95% probability or, in practice, that it 
will not be identified as hot in any repeat runs with a probability of < 0.05 . i.e.,:

(1)P(x) =

(

n

x

)

pxqn−x

Table 3   Count of hot methods identified by each profiler and JDK combination within the union, median, 
and intersection sets for each project. The percentages show what portion of union were in median, and 
what portion of median were in intersection for each profiler

Project Hot method count

HPROF8 JFR8 JFR9 JFR17

union Disruptor 56 – 109 –
Gson 146 94 109 104
Jcodec 845 830 830 635
Junit4 470 287 285 311
OpenNLP 587 442 483 499
Perwendel Spark 102 113 95 –

median Disruptor 5 (9%) – 39 (36%) –
Gson 32 (22%) 27 (29%) 27 (25%) 17 (16%)
Jcodec 191 (23%) 257 (31%) 244 (29%) 157 (25%)
Junit4 154 (33%) 95 (33%) 102 (36%) 105 (34%)
OpenNLP 158 (27%) 156 (35%) 169 (35%) 170 (34%)
Perwendel Spark 16 (16%) 25 (22%) 20 (21%) –

intersection Disruptor 3 (60%) - 13 (33%) –
Gson 7 (22%) 5 (19%) 4 (15%) 2 (12%)
Jcodec 50 (26%) 72 (28%) 74 (30%) 39 (25%)
Junit4 53 (34%) 42 (44%) 49 (48%) 50 (48%)
OpenNLP 61 (39%) 80 (51%) 78 (46%) 81 (48%)
Perwendel Spark 4 (25%) 14 (56%) 10 (50%) –
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Solving Eq. (2) for n, we find that n ≥ 4.32 . So five repeat runs of the profiler gives 
us a 95% confidence that we will detect all hot methods by taking the union across 
those five repeat runs. Of course, the sample size will change if the probability of 
detection that we consider to be hot is different.

How much do the ranked lists of hot methods generated by repeat runs of 
the same profiler on the same JDK overlap? That is, how much noise is there 
among the runs of a single profiler? We calculated the WRBO between all pairs of 
ranked lists within the 20 produced by repeat runs of a given profiler, the lists being 
filtered to match union (in practice, no filtering) and intersection sets. The median 
and interquartile range of these WRBO figures are given in Table 4.

For most projects, the median WRBO is over 0.65 with a low Interquartile Range 
(IQR), indicating that all pairs of profiling results among the repeat runs of one pro-
filer give similar ranks to the hot methods. Only Gson and Perwendel Spark differ, 
with Gson having a low WRBO for JFR17 and Perwendel Spark having a high IQR 
for the union results with HPROF8. Closer inspection revealed that a small number 
of repeat runs identified dramatically different orderings of the top few hot methods, 
skewing the results for these specific project/profiler combinations. The top-ranked 
hot methods for these two projects tended to have only a small (fewer than 10) num-
ber of samples during the profiling run so only a small amount of noise had a large 
impact on the overall ranking. To avoid this issue causing uncertainty in profiling 
results in practice, a mitigation could be to repeat runs of each unit test during the 
profiling.

In Table  4 it can be seen that JFR versions typically achieve higher WRBO 
between repeat runs on one JDK than HPROF. This is true for both union methods 
and intersection methods. Further, JFR results generally have lower IQR than those 
of HPROF, meaning that in most cases all pairings of profiling results for a given 
profiler have a high WRBO (having distributions like those in Fig. 3). Thus we can 
conclude that JFR produces more consistent rankings of hot methods than HPROF 
does.

WRBO is higher for the intersection sets. These are filtered to only the methods 
identified hot by every repeat of the profiler, so the random noise from the tail end 
of the results is removed. Among these hot methods, the rank order is also generally 
more consistent. The highest value of 1.0 is seen for Disruptor on HPROF8. Here, 
there are only three methods in intersection, that is, appearing in every repeat run. 
These three appear in the same order in every repeat run, leading to a WRBO of 1.0. 
For union and median, WRBO is reduced because it then includes the many other 
methods appearing in only some runs, often in a differing orders.

Impact of rebooting Our experimental pipeline did not feature a reboot between 
repeat runs of each compiler. This could result in some drift in the results as CPU 
caches become filled. To determine the impact of this issue, we looked at the ranks 
allocated to each hot method in each repeat run. Figure 5 shows these ranks as a heat 
map. We show the results for Gson as it was run on all profilers and had the fewest 
hot methods, making the visualisation a reasonable size, but the results are similar 

(2)
(

n

0

)

0.500.5n−0 < 0.05
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for all projects. The methods (rows) are sorted by order of first appearance, so we 
see those appearing in higher ranks in the first profiler runs near the top. Near the 
bottom we see methods that were not ranked at all in the first 18–19 repeats, and 
only appeared on the last runs of the profiler. If there was a large impact from cach-
ing on the results, we would expect to see many rows that are either: dark on the left, 
steadily getting lighter to the right, as particular methods start out being identified as 
hot then gradually dropping in the rankings, or light on the left changing to dark on 
the right, as new methods start to be identified as hot. Instead we see some methods 
being consistently dark across the whole row, or a few dark points spread uniformly 
(subject to statistical noise) across the rows. The same figures for the other projects 
are in our artefact (Brownlee and Watkinson 2024).

Overall, these results give some confidence that there is not much drift over the 
course of the repeat runs.

In summary, there is a high degree of consistency between the ranked lists 
of hot methods identified by a given profiler on a single JVM, with JFR on any 
of the three JDKs tested producing more consistent results than HPROF. While 
there is noise among the repeat runs of any one profiler, this can be filtered by 
removing the tail of methods that only appear once across all repeat runs.

Fig. 3   Distribution of WRBO values for all 190 pairs of ranked lists from 20 repeat runs when profiling 
JCodec with each profiler/JDK combination
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Fig. 4   Distribution of hot method appearances across repeat runs of profilers for JUnit4, i.e., how often 
we see methods appearing only once, twice, up to 20 times

Table 4   WRBO within repeat runs of each profiler. Each figure is the median with interquartile range in 
brackets. Values closer to 1 suggest that the set of methods identified as hot and their rank ordering are 
highly consistent across all repeat runs of the profiler

Project Median WRBO (IQR)

HPROF8 JFR8 JFR9 JFR17

union Disruptor 0.662 (0.104) – 0.849 (0.053) –
Gson 0.704 (0.081) 0.446 (0.133) 0.697 (0.078) 0.389 (0.173)
Jcodec 0.707 (0.111) 0.812 (0.062) 0.820 (0.057) 0.737 (0.072)
Junit4 0.892 (0.031) 0.760 (0.103) 0.899 (0.030) 0.914 (0.081)
OpenNLP 0.696 (0.163) 0.912 (0.049) 0.887 (0.056) 0.859 (0.105)
Perwendel Spark 0.743 (0.458) 0.830 (0.040) 0.824 (0.047) –

intersection Disruptor 1.000 (0.000) – 0.923 (0.049) –
Gson 0.932 (0.058) 0.828 (0.100) 0.973 (0.045) 0.900 (0.100)
Jcodec 0.719 (0.109) 0.813 (0.063) 0.823 (0.062) 0.767 (0.072)
Junit4 0.896 (0.031) 0.774 (0.101) 0.907 (0.030) 0.919 (0.082)
OpenNLP 0.699 (0.056) 0.912 (0.049) 0.887 (0.056) 0.859 (0.105)
Perwendel Spark 0.928 (0.145) 0.896 (0.038) 0.918 (0.043) –
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4.2 � RQ2. Is there a difference in the hot methods identified by each profiler?

The profiler and JDK combinations studied each produce generally consistent results 
across repeat runs but what happens when we exchange one profiler/JDK pair for 
another? As software is updated to support new Java versions, the results reported 
for older JDKs may become invalid. It might be tempting in a GI study to take a 
standard set of hot methods, and test a new GI technique for them, but if the JDK 
is different, these methods may no longer be hot. Why does this matter? For experi-
mentation in GI we might expect to do, e.g., landscape analysis, on the same pro-
jects in different contexts. More broadly, though, it is useful to know how tied to a 
particular JDK and profiler any experimental results are going to be. We now con-
sider the differences in rankings produced by different profiling tools, under differ-
ent JDKs.

Fig. 5   Heatmaps showing the ranks allocated to methods in each repeat run for GSON with the experi-
mental pipeline used througout the rest of the paper (i.e., without rebooting between runs). Darker means 
closer to rank 1 (most CPU-intensive); bright yellow means not ranked at all. There is one row per 
method identified as hot, sorted in order of first appearance in the profiling data. There are 20 columns, 
one for each repeat of the profiler, sorted in time order
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Table 5 reports the WRBO figures comparing all pairs of ranked lists produced 
by the repeat runs of each profiler. WRBO between JFR variants is highest, around 
0.6 in union and intersection sets. Similarity between lists generated by HPROF and 
JFR8 (and, we observed, also JFR9 and JFR17) is low. So the hot methods found by 
JFR under any of JDK8, 9, and 17 have more overlap with each other than with the 
set of methods returned by HPROF. Differences between union and intersection are 
not consistent enough to say whether one of the two sets has more similarity over 
different profilers.

The low WRBO figures are largely due to different methods appearing in the sets. 
For example, with JCodec, intersection contained 50 hot methods for HPROF8 and 
72 hot methods for JFR8. Of these, 42 were found by JFR but not HPROF, 20 were 
found by HPROF but not JFR, and 30 were found by both. With Gson, only one 
of the hot methods identified by HPROF was identified by JFR9, and none of the 
JFR17 hot methods were identified by the other two profiler runs.

Figure  6 shows scatter plots comparing the mean ranks of methods common 
to each pair of profilers. The means were computed over the set of ranks for each 
method (so runs that did not count a method as hot were not included in the statistics 
for that method). Across union, there is a strong correlation between method ranks 
as seen in Figs. 6a,c. In contrast, in the intersection scatter plots there seems to be 
almost no visible correlation between HPROF8 and JFR8 ranks.

The strongest trend in the union plots is on the right side with those methods 
having lower ranks/higher numbers. For HPROF8 vs JFR8 there is significant noise 
on the left side of the graph where the ‘hotter’ methods sit. This explains the low 
WRBO values, which place more weight on the highest-ranked methods.

Table 5   WRBO between repeat runs of different profilers

Project Median WRBO (IQR)

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

union Disruptor – 0.492 (0.113) – – –
Gson 0.191 (0.079) 0.173 (0.065) 0.320 (0.086) 0.117 (0.074) 0.106 (0.071)
Jcodec 0.148 (0.055) 0.140 (0.059) 0.796 (0.059) 0.578 (0.054) 0.601 (0.055)
Junit4 0.177 (0.023) 0.210 (0.029) 0.701 (0.047) 0.682 (0.055) 0.687 (0.019)
OpenNLP 0.218 (0.042) 0.346 (0.052) 0.549 (0.021) 0.211 (0.015) 0.532 (0.049)
Perwendel 

Spark
0.202 (0.064) 0.493 (0.079) 0.560 (0.040) – –

intersection Disruptor - 0.404 (0.017) – – –
Gson 0.828 (0.100) 0.099 (0.031) 0.149 (0.000) – –
Jcodec 0.151 (0.056) 0.144 (0.059) 0.796 (0.059) 0.574 (0.052) 0.598 (0.050)
Junit4 0.175 (0.025) 0.210 (0.028) 0.705 (0.049) 0.687 (0.056) 0.690 (0.020)
OpenNLP 0.219 (0.043) 0.346 (0.052) 0.549 (0.021) 0.211 (0.015) 0.532 (0.049)
Perwendel 

Spark
0.148 (0.045) 0.348 (0.041) 0.552 (0.048) – –
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Table 6 reports the Spearman correlation for the mean ranks. Across union meth-
ods, the Spearman correlation coefficient is high for all pairs of profilers. Though 
it is slightly lower for HPROF8 vs JFR8, it still always exceeds 0.6. For intersec-
tion, Spearman correlation is high between all JFR runs, but drops dramatically for 
HPROF8 vs JFR8. The one exception (Perwendel Spark, with a Spearman correla-
tion of 1.0 for HPROF8 vs JFR8 on intersection) is because in that case intersec-
tion only contained two hot methods.

When moving from union to median and then to intersection, the number of hot 
methods decreases greatly, as we move towards methods that only appear consist-
ently across repeat runs. When looking at JCodec’s HPROF8 vs JFR8 results, the 
union methods span ranks 0 to 300, median methods span 0 to 200 and intersection 
methods only fall between ranks 0 to 40. Aligning this with the plots in Fig. 6b there 
seems to be almost no correlation between HPROF and JFR8 intersection methods, 
whereas, the union set exhibits a clearer trend. Though, this trend is more apparent 
on the right side of the plots where lower ranked methods are present.

Methods found in higher mean ranks have less consistent ranks between runs than 
those found in lower ranks. It would seem that the hottest methods vary consider-
ably from one profiler to the other but less so when changing JDK. This is consistent 
with the findings of Mytkowicz et  al. (2010), in that moving from one profiler to 
another produces quite different results. This is a little suprising, as we might expect 
the optimisations introduced by a new JDK to also have a large effect on the hottest 
methods where the CPU spends most time. However, it is the case that the larger 
jump in JDK (8 to 17) does lead to a lower WRBO and correlation, albeit not as low 
as the change from JFR to HPROF.

Table 6   Spearman correlation between mean ranks over repeat runs of different profilers. For Gson, the 
intersection sets had no overlap for JFR9 vs JFR17 and HPROF8 vs JFR17, and a single common hot 
method for HPROF8 vs JFR9, so it was impossible to compute a correlation (though it was possible to 
compute WRBO for Table 5 as WRBO does not require perfectly overlapping lists)

Project Spearman correlation

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

union Disruptor – 0.514 – – –
Gson 0.650 0.661 0.822 0.530 0.506
Jcodec 0.759 0.756 0.888 0.784 0.808
Junit4 0.631 0.670 0.901 0.852 0.858
OpenNLP 0.585 0.607 0.839 0.617 0.765
Perwendel Spark 0.740 0.682 0.864 – –

intersection Disruptor – 1.000 – – –
Gson – – – – –
Jcodec 0.157 0.101 0.915 0.664 0.850
Junit4 0.006 0.329 0.808 0.827 0.712
OpenNLP 0.657 0.537 0.884 0.783 0.803
Perwendel Spark 1.000 0.700 0.786 – –
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This higher consistency for low-ranked methods may come not only from profil-
ers but from Gin’s internal ranking method. Gin resolves ties in method counts by 
ranking methods in the order they are seen.

If both profilers in a pairing returned identical results, the scatter plot would 
resemble the function: x = y . How each point on the graph differs from this function 
may explain where differences in each profiler arises.

First, the plots in Fig. 6c can be broken into 3 sections using x, mean JFR8 rank, 
and y, mean HPROF8 rank. The middle, where x = y , the top, where x < y and 
the bottom, where x > y . The middle is the ideal where there are consistent results 

Fig. 6   Mean ranks of hot methods for JCodec: HPROF8 vs JFR8 and JFR8 vs JFR9. Each of the points 
represents one method, and it denotes the mean ranks returned by either profiler, taken over the 20 repeat 
runs. Only methods found by both profilers are included. ‘Union’ means methods identified by at least 
one repeat run of the profiler, ‘Intersection’ means methods identified by all repeat runs. The union plots 
generally show a strong linear relationship between ranks from one profiler and another; where this is 
driven by the long tail of low-ranked seldon-appearing methods the WRBO will be low but Spearman 
correlation high (Tables 5 and 6). If the hottest methods are ranked similarly then WRBO and Spearman 
will both be high. Some intersection plots show very little relationship as is seen in Fig. 6b; the methods 
consistently identified by one profiler are different to those from another. Others (mostly when compar-
ing JFR on different JDKs) have a much stronger relationship (e.g., Fig. 6d), implying that the methods 
are ranked similarly
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between the two profilers. Points in the top section occur when JFR8 finds methods 
in a lower rank (i.e., higher number) than HPROF8 and vice versa for those in the 
upper ranks. Over all projects, more points exist in the top half than the bottom. That 
is, HPROF8 generally allocates lower ranks to methods also identified as hot by 
JFR8. After accumulating and taking the mean difference between x and y coordi-
nates of points on the plot: mean rank of union methods between HPROF and JFR8 
for JCodec, the function found is 1.6x = y . Even though JFR finds more hot methods 
and therefore has a larger range of potential hot method ranks HPROF8 coordinates 
are 1.6 times larger.

These asymmetric errors suggest that the differences in profiling results between 
HPROF8 and JFR8 are not due to uniform random noise. There are two reasons 
methods may exist in the top half. Either HPROF8 does not profile long running 
methods enough or JFR8 profiles methods too much. As both profilers have the 
same snapshot interval it is unlikely that JFR8 profiles methods more times than it 
should. Likely, the cause is noise when profiling. This noise can not be uniformly 
random over both profilers as the errors are assymetric. Therefore, it can be ascer-
tained HPROF8’s profiling is more affected by the noise of seldom-appearing meth-
ods than JFR8.

Overall then, changing the profiler and JDK combination rarely produces a simi-
lar set of results, though changes from one JDK to another have less impact if the 
profiler is kept the same. It is crucial to repeat the profiling to re-identify the hot 
methods for a given application should either profiler or JDK change.

4.3 � RQ3. How consistently does each profiler identify unit tests associated 
with hot methods?

One of the features of Gin is the ability to identify tests that execute each hot method; 
those tests responsible for the method being called each time it is seen on the stack. 
This is a form of Regression Test Selection (RTS) (Yoo and Harman 2012). The 
idea is to determine the parts of the test suite relevant to each hot method, so that 
only those rather than the whole suite need to be run during the GI search. A similar 
approach was used by Harrand et al. (2019) when selecting a location to make edits. 
They suggested edits should only be made in areas covered by a test case otherwise 
dead code will be edited. We now consider the tests identified by the profiler for 
each hot method in our experiments. To simplify the analysis, here we only consider 
the intersection hot methods for each profiler, that is, those methods identified by 
every repeat run of the profiler. For each hot method, we examined the 20 sets of 
tests that were identified by the profiler for it (each repeat run of the profiler iden-
tifying one set of tests for that method). We counted the number of times each test 
appears for each hot method.

The full set of histograms reporting the distribution of the number of appearances 
of tests for each hot method for each project and profiler is included in our support-
ing data artefact (Brownlee and Watkinson 2024). These are hugely varied but four 
examples are given in Figure  7 capturing the most common types of distribution 
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seen. For OpenNLP, there were 57 hot methods identified by the profiling within 
union. Of these:

•	 6 of the hot methods had the distribution shown in Fig. 7a, where many unit tests 
were only identified by one of the repeat runs of the profiler, and none appeared 
in 10 or more repeats.

•	 20 of the 57 followed Fig.  7b: many tests having one appearance, some tests 
appearing in more than 10 of the repeats, but none in all 20 repeats.

•	 22 of the 57 followed Fig. 7c: as above, but with some tests appearing in all 20 
repeats.

•	 9 of the 57 followed Fig.  7d, where all tests identified appeared in nearly all 
repeats.

The last of these four categories is the most desirable: the tests being identified by 
following the traces produced by the profiler consistently enough to lend some con-
fidence that they are actually of use. In most examples tests only appear occasionally 

Fig. 7   Typical distributions of test appearances. OpenNLP, JFR9. Each plot is for a different hot method 
and shows the rate at which tests were detected as calling that method method
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regardless of profiler. This clearly suggests that we should not use such an approach 
to select subsets of the test suite: at a minimum, in the context of GI, one should 
still follow the good practice of running the entire test suite on any patched code 
or employ established RTS techniques, e.g., (Yoo and Harman 2012; Guizzo et al. 
2021).

4.4 � RQ4. Memory

We now briefly explore the consistency of profiling for memory. The same profilers 
are able to sample object allocation events in the JVM to match memory allocation 
to specific functions. Functions allocating the most memory throughout the record-
ing process will be returned as described in Sect. 2.2.

The distributions of method appearances in memory profiling results, in Fig. 8, 
are similar to those seen for CPU use in Fig. 4. Several methods are identified as hot 
in terms of memory consistently across all repeat runs for each project, with a long 
tail of methods appearing less frequently.

Each profiler still shows some consistency in ranking the hottest methods. Table 7 
shows that WRBO within repeat runs of a single profiler/JDK combination is over 
0.69 in all cases. Comparisons of different profiler/JDK combinations are given in 
Tables 8 and 9, where we report WRBO and Spearman correlation for each pair of 
profilers, for union. WRBO values for HPROF8 vs JFR8 are low, but higher than 
was seen for CPU use (Table 5), suggesting more overlap in the hot methods each 
profiler found. In contrast, WRBO was lower than observed for CPU between JFR 
on different JDKs, suggesting that changes to the JDK made more of an impact on 
profiles for memory than for CPU. Spearman values vary considerably per project, 
though generally following the trend of WRBO. Exceptions (low WRBO, high 

Table 7   WRBO within repeat runs of each profiler when investigating memory footprint. Each figure is 
the median with interquartile range (IQR) in brackets. Values closer to 1 suggest that the set of methods 
identified as hot and their rank ordering are highly consistent across all repeat runs of the profiler

Project Median WRBO (IQR)

HPROF8 JFR8 JFR9 JFR17

union Disruptor 1.000 (0.000) – 0.945 (0.024) –
Gson 0.818 (0.130) 0.895 (0.105) 0.816 (0.053) 0.692 (0.102)
Jcodec 0.751 (0.110) 0.812 (0.062) 0.911 (0.031) 0.871 (0.042)
Junit4 0.908 (0.021) 0.945 (0.138) 0.840 (0.133) 0.893 (0.025)
OpenNLP 0.936 (0.027) – 0.952 (0.034) 0.932 (0.042)
Perwendel Spark 0.662 (0.104) 0.950 (0.026) 0.981 (0.020) –

intersection Disruptor 1.000 (0.000) – 0.977 (0.027) –
Gson 1.000 (0.000) 0.956 (0.093) 0.838 (0.055) 0.716 (0.100)
Jcodec 0.800 (0.108) 0.813 (0.063) 0.915 (0.031) 0.871 (0.042)
Junit4 0.962 (0.022) 0.945 (0.138) 0.891 (0.057) 0.895 (0.025)
OpenNLP 0.937 (0.026) – 0.952 (0.034) 0.932 (0.041)
Perwendel Spark 0.983 (0.018) 0.969 (0.027) 0.984 (0.021) –



	 Automated Software Engineering           (2024) 31:28 

1 3

   28   Page 24 of 34

Spearman, for Gson on JFR9 vs JFR17, and JCodec on JFR8 vs JFR9 and JFR9 
vs JFR17, were driven by very low overlaps between the hot methods identified 
by the two profilers, where those which were identified by both were ranked simi-
larly.) Given this variability, the best practice would still be as noted earlier for CPU: 
rerun the profiler for each new profiler/JDK, and keep the most frequently appearing 
methods across the repeat runs.

In order to confirm that the two profilers do identify different sets of hot meth-
ods, we also tried comparing the results for CPU and memory profiling when using 
the same profiler and JDK. WRBO and Spearman correlation comparing the ranks 
of methods identified for CPU and memory use, by each profiler, are given in 
Tables 10 and 11. While in most cases there is a weak positive correlation between 
hot methods for CPU and memory, the results vary considerably. For example, for 
Gson, the Spearman correlation between mean ranks of hot methods in union for 
CPU and memory were: 0.596 for JFR17, 0.751 for JFR9, and −0.786 (i.e., nega-
tive) for HPROF8. For JCodec, those figures were 0.294, 0.427, and 0.422 respec-
tively. The corresponding scatter plots showing how method ranks compare for 

Table 8   Median WRBO between all pairs of repeat runs of different profilers when investigating mem-
ory footprint. Profiler results for all methods in union 

Project Median WRBO (IQR)

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

Disruptor – 0.181 (0.001) – – –
Gson 0.316 (0.033) 0.092 (0.044) 0.188 (0.034) 0.055 (0.029) 0.182 (0.037)
Jcodec 0.191 (0.089) 0.675 (0.117) 0.156 (0.015) 0.171 (0.040) 0.844 (0.044)
Junit4 0.341 (0.083) 0.529 (0.107) 0.408 (0.107) 0.329 (0.081) 0.568 (0.103)
OpenNLP – 0.731 (0.019) – – 0.737 (0.046)
Perwendel Spark 0.543 (0.014) 0.750 (0.010) 0.464 (0.007) – –

Table 9   Spearman correlation between mean ranks over repeat runs of different profilers when investi-
gating memory footprint. Profiler results for all methods in union 

Project Spearman

HPROF8 HPROF8 JFR8 JFR8 JFR9

vs JFR8 vs JFR9 vs JFR9 vs JFR17 vs JFR17

Disruptor – -1.000 – – –
Gson 0.500 -0.607 0.189 0.212 0.576
Jcodec 0.137 0.605 0.452 0.398 0.792
Junit4 0.235 0.549 0.118 0.111 0.728
OpenNLP – 0.734 – – 0.841
Perwendel Spark 0.619 0.797 0.518 – –
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CPU and memory are in Fig. 9 for Gson and Fig. 10 for JCodec. In some cases, the 
method ranks for these two properties are similar, with a strong positive correlation, 
i.e. the same methods that consume most CPU time and consume most memory. 
In others cases the ranks for CPU and memory are inconsistent; from zero corre-
lation, to strong negative correlation, i.e, the methods consuming most CPU time 
consumed the least memory, and vice versa. It is clear that there is no simple rela-
tionship between the two and profiling for both properties separately is valuable. 
Further investigation of the relationship between these and other properties would 
be an interesting direction for future research.

5 � Discussion

Differences between each ranking of hot methods produced by running the profil-
ers is partially explained by random variations or ‘noise’ during profiling. This is 
the only source of variation for one profiler/JDK combination; changing these also 
naturally leads to a different set of hot methods. Thus the same method may not be 
found the same number of times in every profiling run. The impact of this is that dif-
ferent hot methods may be identified; whether these are used by a human developer 
or for targeting within GI the result will potentially be the missing of improvable 
parts of the code. Fortunately, for one profiler and JDK combination, the results are 

Table 10   Median WRBO between all pairs of repeat runs of each profiler when investigating CPU use 
and memory use. Results for all methods in union 

Project Median WRBO (IQR)

HPROF8 JFR8 JFR9 JFR17

Disruptor 0.220 (0.050) – 0.432 (0.023) –
Gson 0.044 (0.025) 0.331 (0.072) 0.630 (0.064) 0.316 (0.160)
Jcodec 0.178 (0.055) 0.014 (0.037) 0.054 (0.028) 0.015 (0.037)
Junit4 0.217 (0.017) 0.248 (0.077) 0.463 (0.100) 0.524 (0.034)
OpenNLP 0.289 (0.054) – 0.276 (0.023) 0.340 (0.050)
Perwendel Spark 0.174 (0.043) 0.415 (0.044) 0.605 (0.057) –

Table 11   Spearman correlation 
between mean ranks over repeat 
runs of each profiler when 
investigating CPU use and 
memory use. Results for all 
methods in union 

Project Spearman

HPROF8 JFR8 JFR9 JFR17

Disruptor −1.000 – 0.609 –
Gson −0.786 0.586 0.751 0.596
Jcodec 0.422 0.206 0.427 0.294
Junit4 0.317 0.213 0.620 0.832
OpenNLP 0.539 – 0.679 0.757
Perwendel Spark 0.223 0.600 0.357 –
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reasonably consistent, and the hottest methods do indeed appear across all repeat 
runs. Where the profiler and JDK change, then the results are different enough to 
always require rerunning the profiling.

One main trend seen in results was consistency within HPROF and JFR hot 
method lists. HPROF had greater variation in hot method lists compared to JFR. 
This was first seen in the WRBO within repeat runs of the same project with each 
profiler. This effect propagated to the WRBO of hot method lists between HPROF 
and JFR.

These clear differences between the two profilers can only partially be attributed 
to random noise. A large part of the difference in results comes from the two differ-
ent methodologies the profilers use (Sect. 2).

The method HPROF uses is to check the top of the call stack and increment the 
count for whatever method is there. If HPROF takes 10 samples and a Java lan-
guage function is at the top of the call stack each time HPROF will return no hot 
methods. This may be useful if HPROF is used as a general performance profiler. 
A software engineer could remove a particularly slow function from their program. 

Fig. 8   Distribution of hot method appearances across repeat runs of the memory profilers for JUnit4, i.e., 
how often we see methods appearing only once, twice, up to 20 times
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In the context of GI, no edits can be made to Java API functions so these results are 
not useful unless the calling function can be traced in the stack, which is not always 
true for HPROF. This links back to how profiler accuracy is judged: in the practical 
context of how results will be used.

With JFR the call stack is traversed until a function relating to the main program 
is found. This eliminates all Java API or other unrelated functions from results. 
If JFR takes 10 samples, the count of 10 hot methods will be incremented. This 
approach removes a lot of noise from function run times.

As an example looking at how JFR reduces noise, a function ‘main’ could have a 
loop that calls a Java internal function ‘vector’. HPROF will only see the ‘main’ func-
tion when ‘vector’ is not running. Alternatively, JFR will see the function regardless of 
whether ‘vector’ is running or ‘main’ is running. From this, it can be seen that JFR is 
likely to return a higher sample count for the ‘main’ function. Further, the longer ‘vec-
tor’ runs, the less samples HPROF takes and the shorter ’vector’ runs the more samples 

Fig. 9   Mean ranks of hot methods for GSON for CPU and memory with each profiler / JDK combina-
tion, taken for union over 20 repeat runs
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HPROF takes of ‘main’. JFR will always see ’main’ the number of times it samples the 
call stack when ’main’ is running.

The above example explains how HPROF does not identify functions by how long 
they run for but instead how long sections of code in which no other functions are 
called run for. It could be considered that this is a better result than JFR, that records 
a function on top of the call stack even when an internal function is running on top of 
it. Although, manipulating how a function calls internal classes may still improve it’s 
run time. Therefore, JFR may be more appropriate for Gin (and other GI tools) than 
HPROF. The more consistent results of JFR further motivate its use for both CPU and 
memory profiling.

Fig. 10   Mean ranks of hot methods for JCodec for CPU and memory with each profiler / JDK combina-
tion, taken for union over 20 repeat runs
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6 � Threats to validity

Our results are heavily dependent on how representative the projects selected for the 
study are. Five of the six formed part of a previous systematic study in GI search 
spaces by Petke et al. (2023), where they were chosen following a systematic pro-
cess using criteria including popularity, scale, and test suite size. The sixth, Perwen-
del Spark, was chosen arbitrarily by Watkinson and Brownlee (2023) from the set of 
non-trivial Java projects available on GitHub as part of the original study migrating 
Gin’s profiler from HPROF to JFR. The projects studied cover a variety of applica-
tion areas and we have no reason to suspect they are outliers.

The results are limited to the specific CPU and OS combination used for our 
experimental platform. We focused on two specific profilers and three JDK imple-
mentations. In part this limitation was imposed by the need to use profilers that we 
could interrogate programatically. It would certainly be interesting to extend the 
study to include other profilers but nevertheless the results as they stand are a useful 
place to start in the exploration of this topic.

Results in this paper may be impacted by the sample rate of each profiler. Both 
HPROF and JFR use an added ‘randomness’ to profiling frequency. A 10 ms pro-
filing interval means 10 ms + t where t is any number between −10 and 10. This 
removes errors from functions that may do the same thing every 10 ms. This would 
be a disadvantage for other uses of the profiler in which a user may see the same 
call stack every sample. Further, HPROF uses yield points (Mytkowicz et al. 2010). 
Yield points are time when it is safe to run a garbage collector, they are placed by 
the compiler. Although, the compiler may omit yield points if no memory is dynam-
ically allocated as an optimisation which can skew profiling results, by causing some 
samples to be missed. Furthermore, the filtering of methods to those in the target 
projects noted in Sect.  2, while necessary in the context of GI, omits system and 
library calls that will be of interest from the point of view of profiling outside the 
context of GI.

7 � Related work

7.1 � Profilers in a GI framework

GI works by applying transformations (mutations) to existing code. The space of 
transformations is explored to discover code variants with the same or “close 
enough” functionality as the original code that improve a target property such as 
runtime or energy consumption. The search space is often sparse and very large i.e., 
very few functioning variants of the code, very far apart, making it difficult to find 
code that both retains functionality and performs better than the original. Thus one 
focus of research has been to determine ways to make this space more amenable 
to search. This can include new, smarter, mutation operators (e.g., (Harrand et  al. 
2019; Brownlee et al. 2020)).
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Alternatively, reducing the search space by “searching in the right place” (Ahmad 
et al. 2022) involves profiling the target application in order to identify hot methods. 
As such, in GI the targeted applications are often profiled.3 For this purpose it is cru-
cial that a profiler identifies functions that impact heavily on the target property. If, 
say, we are aiming to reduce run time, and waiting or sleeping threads are profiled, 
the GI search may target a function that waits a long time for other tasks to be done 
but does not actually complete much work itself. Furthermore, if the selection of hot 
methods varies dependent on the profiler or, worse, from one run of the profiler to 
the next, the GI search space is likely to change. In this context, further investigation 
of profiling is an important topic for the GI research community. Furthermore, given 
their original design purpose to identify bottlenecks in code for human developers, 
deeper exploration of profiler performance is of more general interest to the software 
development community.

However, existing GI frameworks rarely offer support for profiling; for example, 
PyGGI and Magpie (Blot and Petke 2022) do not provide support in their current 
versions. Instead, profiling appears to be often done by the development team on an 
ad-hoc basis and with a variety of tools due to the targeted applications and objec-
tives. For example, Haraldsson et al. (2017) profiled code by counting the lines-of-
code; Langdon et al. (2017) used nVidia’s CUDA performance profiler; Petke et al. 
(2018) employed callgrind15 and gprof16 to profile; Petke (2022); Langdon and 
Alexander (2023); Schulte et al. (2014) used the ‘perf’ tool to count CPU instruc-
tions, and Bokhari et al. (2018) used Corbertura 2.1.1.

The Java GI toolbox Gin (White 2017; Brownlee et al. 2019), which forms the 
focus of the present study, was developed with the aim to facilitate GI research. Gin 
is open-source, meaning researchers can build upon the existing code, and as far as 
possible makes use of multiple existing tools such as EvoSuite (Fraser and Arcuri 
2011) for automated test creation. Gin also includes a profiling tool to identify hot 
methods for both CPU and memory use in a target software project. Recently, we 
(Watkinson and Brownlee 2023) updated the profiler from HPROF (Oracle 2011) to 
Java Flight Recorder (JFR) (GitHub 2020) to allow Gin to migrate from Java 8 to the 
latest Long Term Support release of Java, version 17. Comparison was given of the 
outputs of both profilers for CPU use in a toy program and an open source software 
project. The present work extends and consolidates that experimentation.

7.2 � Comparison and analysis of profilers

To our knowledge there is no work comparing profilers specifically in the context of 
GI. However, there have been some experimental studies comparing profilers more 
generally.

Analysing Gprof (a profiler for GCC), Varley (1993) published research cri-
tiquing the profiler. Their research gives insight into the ways a profiler might be 
judged. The paper dives into the Gprof methodology to explain its downfall and 

3  A rare exception is the optimisation of straight-line Assembly code by Kuepper et al. (2022).
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presents the execution of Gprof on an example program. Finally, the paper presents 
the positives and negatives of the profiling tool in relation to the expected profiling 
results. This almost acts as a unit test style analysis. The expected profiling result is 
manually made and compared to the true profiling result to identify inconsistencies 
which are stated as profiling inaccuracies.

In their proposal of a sample-based call stack style profiler, Froyd et al. (2004) 
sets out a number of experiments to compare profilers. They run a program and pro-
file it with multiple tools then compare the time taken. They focus solely on the 
overhead added by certain profilers.

Similarly to our previous paper, Patel and Rajwat (2013) offer a number of pro-
filer alternatives and compare each of them to address their limitations and advan-
tages. Further, they go on to classify many types of embedded profiling methods. 
Unlike other work they do not run any experiments, and simply review the architec-
ture and methodology of each profiler to assess accuracy and overhead.

Mytkowicz et al. (2010) comes closest to the work in this paper. They aimed to 
evaluate the accuracy of Java profilers, comparing four Java profilers available at 
the time (including HPROF) and found considerable differences in the hot meth-
ods identified by each. They acknowledged that there may not be a necessarily ‘cor-
rect’ profile, but that an ’actionable’ profile could be deemed as accurate. Action-
able means if hot methods identified by the profile are optimised, the whole program 
could see a large improvement. This more practical approach to accuracy aligns with 
the work in this paper; a profiler is needed for a specific purpose and so should be 
judged in terms of this purpose.

7.3 � Paper novelty

The present paper extends our original assessment of profiler suitability (Watkinson 
and Brownlee 2023), where we used both qualitative and quantitative comparisons. 
The qualitative analysis, whereby JFR was chosen as a replacement for HPROF, fol-
lowed closely work by Patel and Rajwat (2013); each profiler’s architecture, design 
and methodology was analysed and used to select a fitting profiler for the context. 
As opposed to previous work, the present paper focuses on a quantitative compari-
son of profilers that fall within the same class, all the candidates being sample-based 
call-stack profilers. We also investigate memory profiling, for which we could not 
find any previous examples, and test case subset selection for a GI context.

8 � Conclusions

Profiling to identify target areas for improvement is an important part of the typi-
cal GI pipeline and software development in general. This study has contributed an 
experimental comparison of four profiler/JDK combinations.

We are able to draw several conclusions from our results. For Research Question 
1 (RQ1), we have shown that, while there is certainly noise in the results for a sin-
gle profiler run, each profiler in the study consistently identifies the top-ranked hot 
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methods over the course of 20 repeats. In some cases fewer repeats may be possible, 
and we suggest 5 repeats. For RQ2, we have shown that moving from one CPU pro-
filer and JDK to another produces very different results and certainly makes it neces-
sary to repeat the profiling stage for the new context. This is also important for those 
maintaining software: migrating a program to a new Java version will require a rerun 
of profiling. For RQ3, we show that, while it is possible to determine a subset of the 
test suite during the profiling process, the identified tests vary considerably, and a far 
more promising direction is to employ Regression Test Selection techniques such as 
(Yoo and Harman 2012; Guizzo et al. 2021). For RQ4, we have shown that mem-
ory profiling does indeed follow a similar general pattern to CPU profiling. There 
is strong consistency within the top-ranked hot methods across repeat runs for one 
profiler/JDK combination, but some large differences when exchanging one profiler/
JDK for another.

There remains considerable work to be done in this area. Beyond the obvious 
directions of further experiments with additional target applications, different pro-
filers, different JDKs, and hardware architectures to confirm our results, it would 
certainly be interesting to compare profilers that target other properties, as well as 
measuring the impact on the GI search space of any variations that are observed. 
There is an interesting broader question about what happens at the long tail of sel-
dom used methods, and deeper understanding of the causes of the noise we observed 
in our results. A standard test suite for the study of profilers would also be an inter-
esting and useful addition for Java and other platforms.
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