
Vol.:(0123456789)

Automated Software Engineering (2024) 31:1
https://doi.org/10.1007/s10515-023-00398-6

1 3

DifFuzzAR: automatic repair of timing side‑channel
vulnerabilities via refactoring

Rui Lima1,2 · João F. Ferreira1,2 · Alexandra Mendes3,4 · Carolina Carreira1,2

Received: 20 August 2022 / Accepted: 4 September 2023
© The Author(s) 2023

Abstract
Vulnerability detection and repair is a demanding and expensive part of the software
development process. As such, there has been an effort to develop new and better
ways to automatically detect and repair vulnerabilities. DifFuzz is a state-of-the-art
tool for automatic detection of timing side-channel vulnerabilities, a type of vul-
nerability that is particularly difficult to detect and correct. Despite recent progress
made with tools such as DifFuzz, work on tools capable of automatically repairing
timing side-channel vulnerabilities is scarce. In this paper, we propose DifFuzzAR,
a tool for automatic repair of timing side-channel vulnerabilities in Java code. The
tool works in conjunction with DifFuzz and it is able to repair 56% of the vulnerabil-
ities identified in DifFuzz’s dataset. The results show that the tool can automatically
correct timing side-channel vulnerabilities, being more effective with those that are
control-flow based. In addition, the results of a user study show that users generally
trust the refactorings produced by DifFuzzAR and that they see value in such a tool,
in particular for more critical code.

Keywords Source code refactoring · Timing side-channel vulnerabilities ·
Automatic repair of vulnerabilities · Code repair · Security · Java

1 Introduction

Software vulnerabilities are a serious threat to the security of software systems and
can have disastrous consequences. For that reason, the detection of software vul-
nerabilities is an important problem that has received a lot of attention from the

 * João F. Ferreira
 joao@joaoff.com

1 INESC-ID, Lisbon, Portugal
2 IST, University of Lisbon, Lisbon, Portugal
3 HASLab/INESC TEC, Porto, Portugal
4 Faculty of Engineering, University of Porto, Porto, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-023-00398-6&domain=pdf

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 2 of 37

software security community. However, the detection of vulnerabilities can be dif-
ficult since a vulnerable application can pass all tests or even fulfil its correctness
specification. Different types of vulnerabilities have different difficulty levels of
detection. Arguably, one of the hardest types of vulnerabilities to be detected are
side-channel vulnerabilities.

A side-channel is any observable side effect of a computation which can mani-
fest in several different ways: for example, in the difference in computation time, in
power consumption, sound production, or electromagnetic radiation emitted (Zhou
and Feng 2005; Koeune and Standaert 2005). Most of the side-effects require that
the attackers have physical access to the system they are trying to attack, since they
need to gather information directly from the system (e.g. measuring the power con-
sumption). On the other hand, side-effects such as the difference in computation
time or in response size do not require the attackers to be in direct contact with the
systems under attack. This enables the possibility of remote attacks, thus exposing
systems to a larger number of attackers.

Moreover, side-channel vulnerabilities based on measuring differences in compu-
tation time, also known as timing side-channel vulnerabilities, can occur at multiple
program points: for example, they can occur on a simple method to compare strings,
or on a large and complex parallel computation. There are multiple real-world appli-
cations that were found to be vulnerable to timing side-channel attacks. For instance,
Nate Lawson et al. discovered a timing side-channel vulnerability in Google’s Keyc-
zar Library (Lawson 2020); another example is the timing side-channel vulnerability
discovered in Xbox 360 (IVC Wiki 2020).

As timing side-channel vulnerabilities are difficult to detect, there has been a
substantial effort to develop tools capable of automatically detecting these vulner-
abilities (Antonopoulos et al. 2017; Chen et al. 2017; Nilizadeh et al. 2019). Despite
this, once vulnerabilities are found, developers must correct them manually, which
in some cases can be difficult, time-consuming and prone to errors. As such, we
propose to facilitate the correction of vulnerabilities by developing a tool capable of
automatically repairing timing side-channel vulnerabilities. Even though the ideas
presented in this paper are general and can be applied to different programming lan-
guages, we focus on Java, since according to GitHub (2019), Java is the second lan-
guage with more contributors in public and private repositories and is still the most
used language for enterprise applications (Cloud Foundry 2020; IBM 2020). The
tool developed, called DifFuzzAR, is designed to work in conjunction with the state-
of-the-art detection tool DifFuzz Nilizadeh et al. (2019). We evaluated DifFuzzAR
using the same dataset that was used to evaluate DifFuzz: although DifFuzzAR has
some limitations, it repaired 56% of the vulnerabilities identified in DifFuzz’s data-
set. This shows that DifFuzzAR has the potential to simplify substantially the debug-
ging process. We also performed a quantitative and subjective user study to gather
insights on whether potential users would like to use DifFuzzAR and if they trust
its results, and to collect suggestions for improvement. The results are positive and
show that DifFuzzAR has the potential to be used and trusted by its target users and
that these do see value in the tool, in particular for more critical code.

This paper is an extension of the work originally presented in Lima et al. (2021).
In particular, we improve the presentation, we clarify descriptions, we extend parts

1 3

Automated Software Engineering (2024) 31:1 Page 3 of 37 1

of the related work, and we add new examples of refactorings that aid understand-
ing. We also substantially extend the evaluation section by describing a new user
study. In particular, we address the three following research questions:

RQ1. Do users trust DifFuzzAR’s refactorings?

RQ2. What would users like to see in a tool such as DifFuzzAR?

RQ3. Do users value the use of DifFuzzAR differently in critical and non-critical
applications?

1.1 Structure of the paper

We present background and related work in Sect. 2. After presenting an overview of
the system in Sect. 3, we describe the main components of DifFuzzAR. In Sect. 4 we
present how vulnerable methods are identified and in Sect. 5 we describe how vul-
nerabilities are fixed. The evaluation of the tool is presented in Sect. 6. We discuss
threats to validity in Sect. 7 and we conclude the paper in Sect. 8, where we also
present current limitations and discuss future work.

2 Background and related work

This section presents background and related work on timing side-channel vulner-
abilities and automated repair methods.

2.1 Timing side‑channel vulnerabilities

A timing side-channel vulnerability happens when a secret1 can be learned based
on the time a computation takes to complete. To put it differently, an application
is vulnerable to timing side-channel attacks when the time it takes to complete a
computation depends on a given secret, e.g., a password. These attacks are practi-
cal and apply to general software systems. For example, in their influential work,
Brumley and Boneh were able to extract private keys from an OpenSSL-based web
server running on a machine in the local network (Brumley and Boneh 2005). As
mentioned in the previous section, timing side-channel vulnerabilities were found in
Google’s Keyczar Library (Lawson 2020) and Xbox 360 (IVC Wiki 2020). A timing
side-channel vulnerability can appear in multiple ways, as detailed below.

1 A secret is any value, not known by an attacker, be it a password, a secret code, or any value that
attackers attempt to learn.

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 4 of 37

2.1.1 Early‑exit vulnerabilities

An early-exit timing side-channel vulnerability happens when the method contains
exit points that are dependent on the value of a secret. An example is when checking
if an array has a certain length and exiting immediately once it is established that it
does not. If that array is a secret, then the execution time of the method is dependent
on the value of the secret, in this case, on the size of the array.

Listing 1 shows a classic example of an early-exit vulnerability, consisting of
code that checks if the given password is correct. In this code, an exit condition is
dependent on the secret, the parameter sec. Resourceful attackers can find the pass-
word by trying different combinations of characters until they find the correct one,
as they know they found a correct character simply by the time the function takes to
respond. For example, if the password is “bcdef” and the attackers use the password
“abcde”, the function returns false immediately. If they use the password “bbcde”,
they will know that the first character of the password is correct simply because the
function took extra clock cycles to return. With that, the attackers know that the first
character of the password is “b”. They can now repeat the process for the other char-
acters of the password.

2.1.2 Control‑flow based vulnerabilities

A control-flow based timing side-channel vulnerability happens when there is a sig-
nificantly slow operation that happens only when a certain condition is met. This
means that an attacker can take notice of the time a method takes to return and learn
that the slow operation is executed.

In the example shown in Listing 2, if the condition in line 7 is true, two slow
methods will be executed, while if the condition is false, the execution time will be
much faster. In this case, it is possible to learn information about the exponent
through the timing behavior of the program, since the value of the exponent influ-
ences the execution time.

1 3

Automated Software Engineering (2024) 31:1 Page 5 of 37 1

2.1.3 Mixed vulnerabilities

Some methods might suffer from both early-exit and control-flow based timing
side-channel vulnerabilities. When this happens, we say that the method has a
mixed timing side-channel vulnerability. To fix it, it is necessary to correct the
early-exit and the control-flow parts of the vulnerability. This can be done in dif-
ferent ways. First, they can be corrected simultaneously. Another option is to first
correct one of the types of vulnerability and then correct the other type on the
corrected version of the first type. As an example, Listing 3 shows a method with
a mixed timing side-channel vulnerability, where the parameter a is a secret.

2.2 Detection of timing side‑channel vulnerabilities

Automated detection of timing side-channel vulnerabilities has received substan-
tial attention in recent years. Antonopoulos et al. (2017) developed a new way to
prove the absence of timing side-channels, by using decomposition instead of

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 6 of 37

self-composition. Their approach divides the program’s execution traces into smaller
and less complex partitions. Then each partition has their resilience to timing side-
channels attacks checked through a time complexity analysis. The authors’ idea is
that the resilience of each component proves the resilience of the whole program.
To ensure that any pair of program traces with the same public input has a compo-
nent containing both traces, the construction of the partition is done by splitting the
program traces at secret-independent branches. The authors’ approach follows the
demand-driven partitioning strategy that uses a regex-like notion that they call trails,
which identifies sets of execution traces, particularly those influenced by tainted (or
secret) data. The authors prove a non-relational property about a trace, instead of
proving a relational property about every pair of execution traces. Their method is
implemented in a tool called Blazer.

Chen et al. (2017) presented the notion of ϵ-bounded non-interference, a vari-
ation of Goguen and Meseguer’s non-interference principle (Goguen and Meseg-
uer 1982). The execution time of an application can be affected by sources exter-
nal to the application. As such, a minimum difference in execution time should be
expected and must be accepted. This minimum change is what the authors denote
as ϵ . To simplify, ϵ-bounded non-interference means that regardless of the secret,
the execution time of an application will not vary by more than ϵ . To verify the ϵ
-bounded non-interference property, the authors present a new program logic called
Quantitative Cartesian Hoare Logic (QCHL), which is at the core of their tech-
nique. With QCHL the authors can “[...] prove triples of the form ⟨�⟩ S ⟨�⟩,where
S is a program fragment and � , � are first-order formulas that relate the program’s
resource usage (e.g., execution time) between an arbitrary pair of program runs”.
The authors implemented their technique in a tool called Themis and showed that
their tool can find previously unknown vulnerabilities in widely used Java programs.

These two works improve the field of detection of side-channel vulnerabilities.
However, both use static analysis.

Nilizadeh et al. (2019) present a new approach based on dynamic analysis and
introduce a new tool called DifFuzz that uses differential fuzzing.2 DifFuzz instru-
ments a program to record its coverage and resource consumption along the paths
that are executed. As such, the inputs must maximize the code coverage. For that,
they use the fuzz testing tool American Fuzzy Lop (AFL) (Zalewski 2017), which
uses genetic algorithms and mutates the inputs using byte-level coverage. Given
that AFL only supports programs written in C, C++, or Objective C, and DifFuzz
is written in Java, the authors used Kelinci (Kersten et al. 2017) to connect the two
tools, since Kelinci provides AFL-style instrumentation for Java programs. To use
DifFuzz, one has to create a Fuzzing Driver (or Driver File), that parses the input
provided by AFL and executes two copies of the code, measuring the cost difference
between the two. That cost difference will be used to guide the AFL in the gen-
eration of more input values so that the difference can be increased. This process is
repeated for a predetermined time or until the user cancels the execution of the tool.

2 Fuzzing is an automated testing technique in which invalid, unexpected or random data is provided as
input to the program in test.

1 3

Automated Software Engineering (2024) 31:1 Page 7 of 37 1

DifFuzz was evaluated with a dataset of widely-used Java applications and it found
previously unknown vulnerabilities (later confirmed by the developers). It was also
applied to complex examples from the DARPA STAC (2020) program. DifFuzz was
able to find the same vulnerabilities as other tools and also found vulnerabilities on
corrected versions of the benchmarks of Themis and Blazer.

The authors of DifFuzz proposed improvements such as adding statistical guaran-
tees to the tool and adding automated repair methods to eliminate the vulnerabilities
discovered by DifFuzz. Our work contributes to the latter.

2.3 Automated repair tools

Automated program repair consists in fixing software bugs with little to no human
intervention. Usually, workflows for automated program repair start with fault local-
ization, which aims at locating faults in the code; patch generation, which aims to
generate valid patches; and patch validation, which checks the validity of the gener-
ated patches in the previous step. Validity of patches is often determined by check-
ing whether the patched program passes a given test suite. As described in Goues
et al. (2019), automated program repair techniques can be classified as heuristic-
based (Forrest et al. 2009; Kim et al. 2013; Liu et al. 2019; Cornu et al. 2015), con-
straint-based (Nguyen et al. 2013; Xuan et al. 2016; Mechtaev and Roychoudhury
2016), and learning-based (Gupta et al. 2017; Chen et al. 2019; Lutellier et al. 2020;
Ye et al. 2021; Chen et al. 2021; Yasunaga and Liang 2021; Allamanis et al. 2021;
Yasunaga and Liang 2020).

Two influential works in the area are GenProg (Le Goues et al. 2011) and
Nopol (Xuan et al. 2016). GenProg receives as input the faulty source code and a set
of test cases. The set of test cases must contain a set of passing positive test cases
and at least one failing negative test case. The negative test case encodes the fault to
be repaired and the set of positive test cases encodes the functionalities that can not
be lost while repairing the bug. GenProg uses genetic programming to search for a
variant of the program that retains all required functionality but does not have the
fault in question.

Xuan et al. (2016) presented Nopol, an approach to automatically repair buggy
conditional statements. This approach takes as input a program and a set of test
cases and outputs a patch for the input program with a conditional expression. The
set of test cases passed as input is similar to the one expected by GenProg. However,
unlike GenProg, which follows a generic approach for automatic software repair,
Nopol was built to focus on buggy if conditions and missing precondition bugs.
Buggy if conditions occur when a bug is the condition of an ‘if’ statement. Missing
precondition bugs happen when there should be a condition before a statement, such
as detecting a null pointer or an invalid index to access an array. Nopol uses Ochiai,
a spectrum-based ranking metric that is used to rank statements in a descending
order based on their suspiciousness score. The suspiciousness score indicates the
likelihood that a statement contains a fault.

For a comprehensive survey on automated program repair, we recommend Mon-
perrus’s survey (Monperrus 2015). Moreover, since this is a fast-moving research

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 8 of 37

topic with new approaches being regularly proposed, we also recommend Monper-
rus’s living review on automated program repair (Monperrus 2018).

2.4 Automated repair of timing side‑channel vulnerabilities

Wu et al. (2018) proposed a method based on program analysis and transformation
to eliminate timing side-channel vulnerabilities. Their solution produces a trans-
formed program functionally equivalent to the original program but without instruc-
tion and cache timing side-channels. They ensure that the number of CPU cycles
taken to execute any path is independent of the secret data, and the cache behaviour
of memory accesses is independent of the secret data in terms of hits and misses.
Their method is implemented in LLVM and uses static analysis to identify the set
of variables whose values depend on the secret inputs. To decide if those vari-
ables lead to timing side-channel vulnerabilities, they check if the variables affect
unbalanced conditional jumps, for instruction timing side-channel, or accesses to
memory blocks across multiple cache lines, for cache-related timing side-channel
vulnerabilities. After this analysis, to mitigate the leaks, code transformation is per-
formed to equalize the execution time. The method is implemented in a tool called
SC-Eliminator.

3 System overview

DifFuzzAR is designed to work in conjunction with DifFuzz. The tool needs to first
identify the vulnerable method to be repaired. For this, the tool assumes the exist-
ence of a Driver file that can be used with DifFuzz. Once the vulnerable method is
identified using the Driver, the tool will attempt to repair the method. In its current
version, DifFuzzAR will attempt to repair Early-Exit Timing Side-Channel vulner-
abilities, Control-Flow Based Timing Side-Channel vulnerabilities, and, by combin-
ing both, Mixed Timing Side-Channel vulnerabilities.

DifFuzzAR was designed to be as modular as possible. This way, if someone
wants to add functionality to repair another type of vulnerability, they simply have
to create a new independent module with all the code capable of repairing it. The
one thing that is intrinsic to the tool is the analysis of the Driver to identify the
vulnerable method and the class it belongs to. Once this identification is done, the
tool searches for that method and sends it to the module responsible for correcting
an early-exit timing side-channel vulnerability. That module then creates a repaired
version of the method, which is then sent to the module responsible for correcting
a control-flow based timing side-channel vulnerability. That module then creates
another repaired version of the method and, given that it is the final module, the tool
outputs a new class with the corrected method. An overview of the architecture of
the tool is shown in Fig. 1.

1 3

Automated Software Engineering (2024) 31:1 Page 9 of 37 1

4 Identification of vulnerable methods

The first task of DifFuzzAR is to uncover the vulnerable method that is to be
repaired. As mentioned above, the driver used for DifFuzz is used to identify the
method. This means that the driver must be properly created so that the correct
method is retrieved. We assume that drivers are similar to the drivers provided by
DifFuzz, where each driver calls the vulnerable method twice, each time immedi-
ately after a call to the method Mem.clear()3. However, there are three groups of
variations that we consider:

Group 1. The simplest variation occurs when an object is created between
the invocation of Mem.clear() and the invocation of the vulnerable
method. This normally happens when the vulnerable method is an
instance method and the object needed to invoke it is created before the
invocation.

Group 2. A second variation is when after the instruction Mem.clear() a ‘try’
block appears. When this happens, the vulnerable method is considered
to be the first instruction of the ‘try’ block.

Vulnerable
ProjectDriver Creates new

class with
corrected
method

Sends
vulnerable

method

Driver
Process

Sends
modified

code

Early-Exit
Correction

Sends
modified
method

Control-
Flow

Correction

Corrected
Class

Retrieves
vulnerable

class

Searches
for invocation
of vulnerable

method

Fig. 1 Overview of DifFuzzAR

3 DifFuzz instruments executions and keeps track of execution costs (so that it can detect discrepancies
between executions). The method Mem.clear() resets the value of the current cost, which is necessary
to measure the cost for each execution separately. For concrete examples, see https:// github. com/ sr- lab/
DifFu zzAR/ tree/ master/ src/ test/ resou rces.

https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources
https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 10 of 37

Group 3. The third variation occurs when after the invocation of the instruction
Mem.clear() an ‘if’ statement appears. When this happens, the invoca-
tion of the vulnerable method is considered to be the first statement of
either the ‘then’ or ‘else’ block. This normally happens when the driver
used for the safe and unsafe versions of an example are similar and the
difference is only in the value assigned to a boolean variable. That vari-
able will then be used as a condition of an ‘if’ to decide which method
to invoke (either the safe or unsafe version). To resolve this case, it is
necessary to record the variable and its value. When the tool finds the
‘if’ statement where its condition is the variable found, the value of the
variable is used to decide whether to look in the first instruction of the
‘then’ block or the ‘else’ block.

The search for the method after the Mem.clear() instruction is done twice
since in the driver the vulnerable method will be invoked twice. Following Dif-
Fuzz’s convention, the parameter that changes in both invocations of the method
is considered to be the secret. We thus assume that the driver uses the same argu-
ments for the public parameters and different ones for the secret. For example,
consider the method invocations vulnMethod(a, b, c) and vulnMethod(a, d, c);
here, the second parameter is considered by the tool as the secret, since it is
the only parameter that changes. In the identification of the vulnerable method,
the tool also finds the path to the class file where the method definition is, even
if that class is an inner class in some package. The tool also validates its find-
ings of the vulnerable method by comparing the two instances and checking if
name, class, return type and the number of parameters are the same, while at
least one parameter is different. A basic overview of this process can be seen in
Algorithm 1.

Algorithm 1 Identification of the vulnerable method using a DifFuzz driver
1: f ← findDriverFile(driverPath)
2: instMem1, f’ ← findMemClear(f)
3: vulnOpt1 ← recordNextInstruction(instMem1)
4: instMem2 ← findMemClear(f’)
5: vulnOpt2 ← recordNextInstruction(instMem2)
6: valid ← compareInstructions(vulnOpt1, vulnOpt2)

After implementing this strategy, the tool was tested with the 58 drivers of all
the examples provided with the DifFuzz dataset (Nilizadeh et al. 2019). The tool
was capable of finding the correct vulnerable method in all examples.

1 3

Automated Software Engineering (2024) 31:1 Page 11 of 37 1

5 Correction of vulnerabilities

In the current version of DifFuzzAR, the correction of a vulnerability is done in two
separate phases: the correction of an early-exit timing side-channel vulnerability fol-
lowed by the correction of a control-flow based timing side-channel vulnerability.
This way, there are two separate modules, each responsible for the correction of one
type of vulnerability. As mentioned above, the addition of the correction of a new
type of side-channel vulnerability is as simple as writing the code responsible for
that correction and adding the module to the tool, as well as its invocation.

From the previous identification step, the tool knows which method was identified
as vulnerable by DifFuzz. However, it does not know the specific instruction or set of
instructions that cause the vulnerability. As such, the tool has to analyze the code and
produce a correction that consists in a modification of the code to make its execution
time as independent of the secret as possible. Algorithm 2 shows a basic overview of
the correction process. If the vulnerable method has more than one return statement,
then the tool considers it to potentially have an early-exit and so the tool starts by cor-
recting that vulnerability. Afterwards, the tool executes the module responsible for
the correction of control-flow based timing side-channel vulnerabilities.

The tool is implemented in Java and uses the open-source library Spoon (Pawlak
et al. 2015) for the refactoring process. Examples of corrected vulnerabilities, which
can be useful to understand in more detail the descriptions presented in the next sub-
sections, are available in our GitHub repository.4

Algorithm 2 Overview of the repair process
1: if numberReturns > 1 then
2: vulnMethod ← repairEarlyExit(vulnMethod)
3: end if
4: vulnMethod ← repairControlFlow(vulnMethod)

5.1 Correcting early‑exit timing side‑channel vulnerabilities

The correction of early-exit timing side-channel vulnerabilities consists in the elimi-
nation of all ‘return’ statements except the last one. However, the result of the execu-
tion of the method should be the same after the modification. For that reason, every
‘return’ statement of the method will be replaced with an assignment of the value being
returned to a variable. That variable will either be the variable returned in the final
return (if it returns a variable) or a new one created with the return type of the method.

Algorithm 3 shows an overview of the correction process for early-exit timing side-
channel vulnerabilities. The tool starts by obtaining the element returned in the final
return of the method. If this element is not a variable, the tool creates a new variable
of the same type as the return type of the method, and initializes it with the element
obtained, referred from now on as the return variable. Then, the tool analyses every
instruction of the method in search for a return statement, which will be replaced by an

4 Examples in GitHub repository: https:// github. com/ sr- lab/ DifFu zzAR/ tree/ master/ src/ test/ resou rces.

https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 12 of 37

assignment to the return variable with the value being returned. If that return statement
happens after a ‘while’ block, then the instruction is added before the ‘while’ block. If
it is the last return statement, then the value being returned is altered to be the return
variable. If the return statement is inside an ‘if’ statement, then the condition of the
‘if’ statement is saved to be used to protect the variables used in the condition. If the
instruction under analysis uses any variable saved to be protected, then that statement
will be inside the ‘then’ block of a new ‘if’ statement, where the condition is the com-
bination of the negation of every condition that variable was part of.

In the end, a new version of the class that contains the vulnerable method is cre-
ated. This version is a copy of the original version, except that it contains an extra
method called VulnerableMethodName$Modification. If the users want to use the
corrected version, they must replace the original method with the corrected method.

This correction can create or exacerbate a control-flow based timing side-channel
vulnerability. For instance, if an early-exit happens inside a loop, where the stopping
condition depends on a secret, then the effect of the existing control-flow based timing
side-channel vulnerability becomes more prominent, i.e., the difference in execution
time depending on the secret is greater since it will have more instructions to execute.

Listing 4 shows another example of code which contains an early-exit timing side-
channel vulnerability. The solution for early-exit timing side-channel vulnerabilities
is to remove the early exit from the code. Listing 5 shows the corrected code (as

1 3

Automated Software Engineering (2024) 31:1 Page 13 of 37 1

proposed by DifFuzzAR). The solution in this case consists in removing the early-exit,
which was in line 17 in the original code, and changing the logic of the program to
have a single exit point.

5.2 Correcting control‑flow timing side‑channel vulnerabilities

The correction of control-flow based timing side-channel vulnerabilities involves (1)
the modification of the stopping condition of loops that depend on a secret to depend
on a public argument or (2) the replication of the block of instructions of the ‘then’
block to the ‘else’ block, and vice-versa, of an ‘if’ statement where the condition
depends on the secret.

Algorithm 4 shows an overview of the correction process for this type of vulner-
abilities. The pseudo-code is divided into two parts to improve presentation. In this
process, the tool starts by creating a list of the secrets and a list of the public argu-
ments. The list of public arguments is final, while the list of secrets is updated during
the analysis of the method. Every time a variable is assigned with a value dependent
on a secret, that variable is added to the list of secrets. The tool also creates a map
to connect the newly created variables with the old variables being replaced. The
tool then starts to analyse each instruction, taking actions according to the type of
instruction and where the instruction happens.

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 14 of 37

1 3

Automated Software Engineering (2024) 31:1 Page 15 of 37 1

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 16 of 37

If the instruction found is an assignment that needs to be modified, then a new
variable is created and it is added to the map of replacements with the existing
variable. The instruction is also changed so that the variable being assigned to is
the newly created one. If the instruction found is a ‘for’ statement and the stop-
ping condition uses a secret, the tool will attempt to change the condition to use a
public argument instead of the secret. This public argument must be of the same
type as the secret in the stopping condition. When the tool finds a ‘for’ state-
ment it will retrieve the body of the ‘for’ and will analyse each instruction of that
block. If the instruction found is an ‘if’ statement then the tool will retrieve the
‘then’ and ‘else’ blocks. If the condition uses a secret, then the tool will try to
modify the instructions of the ‘then’ block and then of the ‘else’ block, producing
two new blocks with the modified versions of the instructions. Then, the modified
version of the ‘then’ block is added to the ‘else’ block and the modified version of
the ‘else’ block is added to the ‘then’ block. Otherwise, the tool will analyse each
instruction of both blocks without adding new instructions to either block. If the
instruction is a method invocation, the tool will retrieve the target of that invoca-
tion. If the target is a secret, then the tool will create a new variable to replace
the target. If the instruction is a local variable, the tool will retrieve the assigned
value. If that value uses a secret, then the variable assigned to will be considered
a secret. If the value being assigned does not use any variable that is used in the
condition of the ‘if’ statement this instruction belongs to, then a new variable to
replace the variable assigned to is created. If the instruction is a loop statement,
then the tool will retrieve its body and will analyse each instruction of the body.
If the instruction is an operator assignment, then the tool will create a new vari-
able to replace the one being assigned to. If the instruction is a ‘try’ block, then
the tool will retrieve its body and will analyse its instructions. If the instruction
is a unary operator, the tool will retrieve the variable used. If that variable was
already replaced, then the tool will obtain the variable created as a replacement
and will replace the variable in the unary operator with the variable created for
replacement. If the instruction is a ‘while’ statement, the tool will replace the
variables used in the stopping condition, either by variables already created as
replacements or with newly created variables. Then the tool retrieves the body of
the loop and will analyse its instructions.

In the end, a new method is created with the control-flow based timing side-
channel vulnerability corrected. An example is the code in Listing 6. Here, the
method has a control-flow based timing side-channel vulnerability, since its exe-
cution time depends on the value of a secret, in this case the parameter taint.
The ‘then’ and ‘else’ block of the ‘if’ statement has different instructions with
different execution times. As such, to correct this vulnerability, the tool modifies
the instructions of both blocks and adds the modified version of the ‘then’ block
to the ‘else’ block and the modified version of the ‘else’ block to the ‘then’ block.
The difference in the instructions is that the assignment is not made to the same
variables, so as not to alter the value of the original variables. As a result, the tool
produces the code in Listing 7.

1 3

Automated Software Engineering (2024) 31:1 Page 17 of 37 1

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 18 of 37

5.3 Correcting mixed timing side‑channel vulnerabilities

Sometimes a method has both an early-exit and a control-flow based timing side-
channel vulnerability. If the method has more than one return statement, the tool
tries to repair an early-exit timing side-channel vulnerability producing a modified
version of the method. Then, the tool tries to correct the control-flow based tim-
ing side-channel vulnerability in the modified version of the method, producing its
final version. This means that each module responsible for correcting a type of tim-
ing side-channel vulnerability must return its modified version of the method. Since
both repair processes create new variables in the method, and a method can not have
two variables with the same name, the naming of a variable is global to the tool and
it keeps a record of the names used.

6 Evaluation

In this section, we describe how the developed tool was evaluated. The evaluation is
divided in two main parts:

• testing the tool to ensure that the refactored code is semantically correct and to
ensure that it has no timing side-channel vulnerabilities detected by DifFuzz, and

• a user study to assess if potential users would like to use DifFuzzAR, if they
trust the code refactorings produced by the tool, and to gather suggestions for
improvement.

6.1 Testing the tool

The evaluation consists in ensuring that the refactored code is semantically correct
and that it has no timing side-channel vulnerabilities detected by DifFuzz. This sec-
tion presents both types of evaluation, explaining how they are done as well as why
they are necessary.

This evaluation was performed in a remote server with a 32-processor Intel Xeon
Silver 4110 at 2.10GHz with 64GB of RAM running Debian Linux 10. DifFuzz was
configured to run for 2.5 h. The results of the evaluation can be seen in Table 1.

6.1.1 Dataset used

We started with the 32 examples distributed with DifFuzz. One of the examples
suffers from a size side-channel. For other examples, the correction seems to
involve some domain-specific changes, which are outside the scope of our pro-
posed method. For instance, the example blazer modpow2, seems to contain a
control-flow based timing side-channel vulnerability that is corrected by chang-
ing the multiplication operation, which is outside the scope of our work. Since
we are interested in assessing the effectiveness of our tool within the scope in

1 3

Automated Software Engineering (2024) 31:1 Page 19 of 37 1

which it can operate, we decided to exclude these examples. Also, it was not pos-
sible to understand why some examples are vulnerable. As such, only 25 of those
examples were used. Those examples were categorized according to the type of
vulnerability.

One of the examples suffers from an early-exit timing side-channel vulnerability;
eight of the examples contain a control-flow based timing side-channel vulnerabil-
ity; the remaining 16 examples have a mixed timing side-channel vulnerability.

6.1.2 Semantics preservation

The modifications proposed can ‘break’ the code, in the sense that for the same
inputs, the output can be different from that of the original version. As such, it is

Table 1 Results of the application of DifFuzzAR to the DifFuzz dataset

Example name Has secure
version?

Type Correction
attempted

Semantically
correct

Vulnerability
corrected

Apache FtpServer Clear Yes Mixed Yes No –
Apache FtpServer Md5 Yes Early-Exit

(If dependent)
Yes No –

Apache FtpServer Salted Yes Mixed Yes No –
Apache FtpServer StringUtils Yes Mixed Yes Yes Yes
Blazer Array Yes Control-Flow Yes Yes Yes
Blazer Gpt14 Yes Control-Flow Yes Yes No
Blazer K96 Yes Control-Flow Yes Yes Yes
Blazer Modpow1 Yes Control-Flow Yes Yes Yes
Blazer PasswordEq Yes Mixed Yes Yes Yes
Blazer Sanity Yes Mixed Yes Yes Yes
Blazer StraightLine Yes Control-Flow Yes Yes Yes
Blazer UnixLogin Yes Control-Flow Yes Yes Yes
Example PWCheck Yes Mixed Yes Yes Yes
GitHub AuthmReloaded Yes Mixed Yes Yes Yes
STAC Ibasys No Control-Flow Yes Yes No
Themis Boot-Stateless-Auth Yes Mixed Yes Yes No
Themis Dynatable No Mixed Yes Yes No
Themis Jdk Yes Mixed Yes Yes Yes
Themis Jetty Yes Mixed Yes Yes Yes
Themis OACC No Mixed Yes Yes Yes
Themis OrientDb Yes Mixed Yes Yes No
Themis Pac4j Yes Control-Flow Yes Yes Yes
Themis PicketBox Yes Mixed Yes Yes No
Themis Spring-Security Yes Mixed Yes Yes No
Themis Tomcat Yes Mixed Yes Yes No

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 20 of 37

important that after any modifications to a method, the method is tested again to
ensure that its functionality remains.

During the development of the tool, the application examples used by the authors
of DifFuzz were used to ensure that the tool was capable of correcting a vulnerabil-
ity. However, these examples do not include tests, so it was not possible to ensure
that the correction kept the functionality of the method. Since creating manual tests
is a time-consuming and error-prone activity, we decided to use (EvoSuite 2020)
to generate tests automatically. The tests were created and first run on the original,
vulnerable, code. We only retained tests that pass. Then, the vulnerable method was
replaced with the method created by the tool and the tests were executed again. If all
retained tests passed, then the solution created by the tool to correct the timing side-
channel vulnerability was considered to be semantically correct.

Table 1 shows that 22 of the 25 attempted corrections (88%) are semantically cor-
rect. Regarding the 3 corrections that are not semantically correct, the first of them
fails at compile time because the correction introduced a new variable that was used
before being declared; the remaining two fail because, when removing a return to
deal with the early-exit vulnerability, an exception ArrayIndexOutOfBoundsExcep-
tion is introduced. Regarding the missing variable declaration, one solution would
be to add the creation of a new variable as the first instruction after the declaration
of the variable that was replaced. However, this would add several extra instruc-
tions to the code and would create several instructions with the same name. All that
would make it so that it would not be possible to minimize the execution time of the
branches. It should be noted, however, that this can easily be fixed manually by the
user.

6.1.3 Vulnerability correction

Once the tool repairs a vulnerable method and that repair is shown to be semanti-
cally correct, it is necessary to verify if the repair produced by the tool repairs the
vulnerability. We use DifFuzz to determine if the repaired version contains any tim-
ing side-channel vulnerabilities.

Table 1 shows that out of 25 examples, the tool successfully corrected 14 of them,
a success rate of 56%. Not all corrected versions produced by the tool are semanti-
cally correct, meaning that the code lost some of the functionality after the repair.
When considering only semantically correct examples, the total of examples is 22,
which makes a success rate of 63,6%.

Some of the attempted vulnerability corrections fail due to the unavailability
of public arguments to fix control-flow vulnerabilities. For instance, consider the
example Themis Spring-Security shown in Listing 8, which contains a mixed vul-
nerability: an early-exit vulnerability in line 8 and a control-flow vulnerability in
line 12 (since the loop depends on the secret). For this example, our tool fixes the
early-exit vulnerability, as shown in Listing 9. However, to repair the control-flow
vulnerability, the tool attempts to replace the secret used in the stopping condition
of the loop (expectedLength) with a public argument of the same type (as shown

1 3

Automated Software Engineering (2024) 31:1 Page 21 of 37 1

in Algorithm 4). Since there are no public arguments of the same type, the tool
does not change the stopping condition. This problem also applies to the examples
Themis Dynatable, Themis OrientDb, Themis PickedBox. Without additional infor-
mation, these examples cannot be fully repaired automatically. A possible future
improvement is to bring the developer into the loop to obtain the additional infor-
mation needed to repair the vulnerability. The other examples fail due to issues that
go from the difficulty in identifying secrets due to complex data dependencies (e.g.,
in Blazer Gpt14, the secret is a parameter in the constructor of the class where the
vulnerable method is defined) to the short circuiting semantics of conditional Java
statements (which cause time variations when evaluating conditions, as in Themis
Boot-Stateless-Auth). We have no immediate suggestions on how to fix these. More
information about these failed corrections can be found at Lima’s Master’s the-
sis (Lima 2021).

6.2 User study

In this section, we provide the motivation for the user study, its goals, and the meth-
ods used. We end the section with the results obtained.

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 22 of 37

6.2.1 Motivation

DifFuzzAR tries to repair timing side-channel vulnerabilities by automatically refac-
toring the Java code. To understand the impact that changes proposed by DifFuzzAR
may have on users, we reviewed previous work on tools that automatically change
code (i.e. refactoring tools).

Murphy-Hill et al. (2011) studied refactoring usage from Eclipse’s user data.
Their findings seem to suggest that users refrain from using refactoring tools
because of three main factors:

1. lack of awareness of their existence;
2. lack of opportunity to use refactoring;
3. lack of trust in refactoring.

Users refrain from using refactoring tools in part because of a lack of trust about
the full impact of the tools in the code. Murphy-Hill et al. (2011) stated that several
developers mentioned they would avoid using a refactoring tool because of worries
about introducing errors or unintended side-effects.

Another study by Eilertsen (2012) investigated the usability of refactoring tools.
They interviewed and performed a usability study with 17 developers. They con-
cluded that users of refactoring tools often complain about a lack of control and
usability (Eilertsen 2012). Refactoring tools may change a program in unpredictable
ways and users often like to review the code.

6.2.2 Goals

Given the human aspects affecting refactoring tools, we decided to perform a quanti-
tative and subjective user study about DifFuzzAR. The goal is to understand if poten-
tial users would use our tool, if they trust its results, and what improvements they
suggest. In particular, we are interested in answering the following research ques-
tions (RQs):

RQ1. Do users trust DifFuzzAR’s refactorings?

RQ2. What would users like to see in a tool such as DifFuzzAR?

RQ3. Do users value the use of DifFuzzAR differently in critical and non-critical
applications?

6.2.3 Design and methods used

In order to answer our RQs we designed a survey study. We followed best prac-
tices from Redmiles et al. (2017) and followed methods similar to Eilertsen (2012).
We recruited participants through our network (e.g., past students and colleagues).

1 3

Automated Software Engineering (2024) 31:1 Page 23 of 37 1

The participants did not receive payment upon survey completion. Participants were
shown a consent form before filling in the survey. They could remove their consent
at any point without giving justification. We did not collect any personal data.

As we wanted to study potential users of our tool, we recruited participants with
Java programming experience. We pre-screened participants and only accepted those
that have been working with Java for at least two years in the previous 10 years. To
characterize our sample, we also asked participants to rate their expertise in Java and
if they knew what timing side-channel vulnerabilities were before our study.

We then asked all participants to go through a brief explanation of timing side-
channel vulnerabilities with examples, and another explanation about DifFuzzAR
and about what the tool does.

To understand if users would trust the results of our tool we provided four
vignette scenarios. A vignette, as described in Lavrakas encyclopedia (Lavrakas
2008), describes a protagonist (or group of protagonists) faced with a realistic situ-
ation pertaining to the construct under consideration. The respondent is asked to
make a judgment about the protagonist, the situation, or the correct course of action,
using some form of closed-ended response. In our vignette scenarios, we presented
the following scenario to participants:

Imagine you apply DifFuzzAR to automatically repair timing side-channel
vulnerabilities in Java code.

We then provided an example of code before and after a vulnerability is fixed by
the tool. We used one scenario for control-based vulnerabilities, one for early-exit,
and two for mixed vulnerabilities (one simple and one more complex). For each sce-
nario, we asked participants to indicate, using a 5-point Likert agreement scale, if
they would trust that refactoring. We also asked them for feedback. The code snip-
pets used in these scenarios are taken from the examples used in the first part of the
evaluation (Sect. 6.1) and can be seen in Appendix A. It is important to mention that
in the early-exit example we modified the “before” code to remove the control-flow
vulnerability. We did this to provide an example with only an early-exit vulnerabil-
ity. While the “before” was adapted, the correction of the early-exit vulnerability
showed to participants is a direct output of DifFuzzAR.

DifFuzzAR differs from usual refactoring tools as it aims at producing code that
is more secure (instead of “cleaner” code). So, we also wanted to gauge if different
situations impact users’ willingness to use a tool like DifFuzzAR. With this goal in
mind, we provided users with two scenarios of DifFuzzAR’s usage. One scenario
described a programmer that is coding a sensitive part of a program (e.g., authenti-
cation) and the other describes a less critical situation (e.g., programming the GUI
of an application). We call them critical and non-critical scenarios, respectively, and
they can be reviewed in more detail in Appendix B. For each, we asked users to
indicate their willingness to use DifFuzzAR using a 5-point Likert agreement scale.
We also asked them for feedback. It should be noted that the non-critical scenario
(focused on the dark mode change) can also leak information through observing
timing differences, since the processing time for switching to dark mode might
be slightly longer or shorter than switching to light mode. Despite the absence of
secrets, in such a scenario, DifFuzzAR could potentially suggest a refactoring that

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 24 of 37

ensures a constant-time execution. Our goal in including this scenario is to under-
stand whether developers see value in using DifFuzzAR in situations where no poten-
tially sensitive information nor secrets can be retrieved. This can provide insights on
how to best integrate tools such as DifFuzzAR into the developer’s workflow.

We finished our survey by asking participants for suggestions to improve DifFuz-
zAR and by asking demographic questions.

User studies can suffer from bias due to the sample, how the survey questions
are made, and even from the response options (Redmiles et al. 2017). To mitigate
this problem, we did two cognitive interviews,5 followed best practices by offering
“don’t know” or “prefer not to answer” responses (Redmiles et al. 2017), and used
methods previously used in studies on related subjects (Eilertsen 2012).

6.2.4 Results

Our survey was answered by 20 users but only 11 meet our requirements and passed
the pre-screening. To pass this pre-screening they needed to answer the question
“How many of the last ten years (2012-2022) have you spent developing or main-
taining software in Java?” with at least two years. We chose to do this because we
wanted participants that could understand Java code well. Our sample of 11 partici-
pants has, on average, four years of experience with Java.

We followed the same methods as Eilertsen (2012) and asked participants to
report their self-described proficiency with changing Java code. The respondents
rated their proficiency on a scale from 1 to 5 (where 1 indicates no proficiency
and five indicates expert proficiency). Most respondents (10 participants) reported
at least three (i.e., above average) proficiency in Java. Our sample of users also
reported a good familiarity with timing side-channel vulnerabilities as almost half
of the respondents (45.45%) self-reported they knew what they were. Moreover,
27.27% of participants were not familiar with the concept and 27.27% were unsure.
Most of the participants had a Master’s degree (55%, i.e., 6 participants) with the
remaining ones having a Bachelor’s degree (45%). All participants were male with
the exception of one female participant. The most common age group was 18-24
(63.6%), followed by 25-34 (18.2%), 35-44 (9.1%), and 45-54 (9.1%).

DifFuzzAR Scenarios
Respondents went through four scenarios. For each scenario, they were presented

with a concrete example of DifFuzzAR’s usage, where we provided Java code before
and after applying the tool. After each scenario, we asked participants to use a
5-point Likert scale to indicate if they trust the refactorings produced by DifFuzzAR.
When analyzing Likert scale data, it is recommended to use a non-parametric statis-
tical test as the answers are not normally distributed (Lazar et al. 2017). Therefore,
we analyzed the data using the Wilcoxon signed-rank non-parametric test with con-
tinuity correction. This test’s null hypothesis is that there is not a significant differ-
ence between the samples. To disprove this hypothesis, the resulting p-value should

5 Cognitive interviews involve asking respondents to think aloud as they complete a survey as well as
asking them questions about each survey item (Redmiles et al. 2017).

1 3

Automated Software Engineering (2024) 31:1 Page 25 of 37 1

be less than 0.05 (p < 0.05). When this happens, we conclude that there is a signifi-
cant difference between the samples (Lazar et al. 2017).

The first two scenarios (control-flow and early-exit) were found to be very trust-
worthy by participants, i.e., most respondents stated they “agreed” or “strongly
agreed” that they trusted the refactorings. Only one participant did not trust the
early-exit scenario and, from their feedback, this was due to the wrong understand-
ing that the refactoring did not preserve the behavior of the original code. Moreo-
ver, the Wilcoxon signed-rank non-parametric test did not find a statistical difference
between the first two scenarios (p > 0.05).

The remaining two scenarios (mixed vulnerabilities, one simple and one more
complex) while generally trusted (55% “agreed” or “strongly agreed” that they
trusted the refactorings) had a more mixed response from participants. Two (2) out
of 11 participants stated they did not trust the refactoring done in scenarios 3 and 4.
Their answers seem to indicate that this may be due to two reasons: (a) the partici-
pant was unable to understand the changes that had been made to the code (e.g., the
participant did not understand the final version of the code); (b) the scenario was
complex (e.g., the participant associated complexity with distrust). This lack of trust
in more complex refactorings is something that previous literature on refactoring
also found to be the case (Eilertsen 2012).

While these scenarios (3 and 4) were not found as trustworthy as the first ones (1
and 2) there was no statistical difference between any of them (p > 0.05).

Critical and non-critical scenarios
Now that we have established that most participants trust DifFuzzAR’s refactor-

ings, we turn our attention to the critical and non-critical scenarios. The critical
scenario describes programming authentication code and the non-critical describes
programming an application’s GUI. All users found DifFuzzAR to be useful in the
critical scenario (100% answered “agree” or “strongly agree”) but to be less useful
in the non-critical scenario (27% “agree” or “strongly agree”). These results are sta-
tistical different with p = 0.00072.

After analyzing participants’ answers, our results suggest that users value more
DifFuzzAR’s usage in critical use cases, and less in day-to-day coding procedures as
one participant stated “In the second (scenario), there is no risk associated with the
functionality, no secrets are involved.”. The results also seem to indicate that the pre-
vention of timing side-channel vulnerabilities is more important when their exploi-
tation can lead to loss of valuable secrets (like in the critical scenario).

Further improvements
After the previous questions, we asked participants to suggest improvements and

future features that DifFuzzAR could implement. We coded their answers with an
emergent coding scheme (Lazar et al. 2017) as we had no previous insights about
what their answers could be. The frequency of their answers and codes can be seen
in Table 2. It is important to note that respondents’ answers may be coded with more
than one code and some users may have not answered at all, so, the total frequency
of the codes does not necessarily match the number of participants in the study.

Some participants stated that they would like to see additional features in Dif-
FuzzAR such as the correction of other common vulnerabilities in other languages.

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 26 of 37

One of the participants even goes as far as suggesting they would like “to do this
(use DifFuzzAR) in an interpreted language (e.g., Python) instead of a compiled
language”. Another common theme in users’ suggestions for improvements was that
DifFuzzAR could provide more information about the changes it makes (e.g., by add-
ing comments explaining the changes, with better variable names or, as one user
mentioned, with a “detailed profiling of the modified code, before and after it was
modified (...)”.) Overall users’ comments were positive and their feedback suggested
useful future features for DifFuzzAR.

6.2.5 Discussion

We were able to successfully answer the proposed research questions
(see Sect. 6.2.2) and the insights gathered seem to confirm the usefulness of DifFuz-
zAR. We now address briefly each of our research questions.

RQ1. Do users trust DifFuzzAR’s refactoring?
Our results suggest that users trust DifFuzzAR’s code transformations. They also

seem to indicate that the complexity of the transformations affect trust, as simpler
code transformations were seen as more trustworthy by participants.

RQ2. What would users like to see in a tool such as DifFuzzAR? This study’s
results seem to indicate that our participants value

a thorough tool that also corrects other common vulnerabilities in other program-
ming languages. Users’ also seem to value a tool that is transparent about its func-
tioning, this is, a tool that informs the user about the changes it does to the code.

RQ3. Do users value the use of DifFuzzAR differently in critical and non-critical
applications?

Our results seem to suggest that users value the use of DifFuzzAR differently in
distinct situations. From the data gathered, participants appear to be more willing
to use DifFuzzAR in more critical Java code. If this is the case, then the potential
impact of DifFuzzAR is greater as this type of code is impactful to the security of a
product.

While we gathered significant data in this user study, this data is subjective as
our sample size is relatively small. However, this study has still provided valuable
insights that can inform future large-scale user studies. It also seems to confirm that
users generally trust refactorings produced by DifFuzzAR and that they see value in

Table 2 Coded answers
to “What functionalities/
improvements would you like to
see in this tool?” and frequency
of answers

Code description Frequency

Correct other common vulnerabilities 3
Provide more information about the changes 3
I don’t know 2
Add analysis of nested functions 1
Less complex changes 1
Apply the tool to interpreted languages (e.g., Python) 1
Improve variable names 1

1 3

Automated Software Engineering (2024) 31:1 Page 27 of 37 1

a tool like this, in particular in more critical Java code. It has also provided sugges-
tions for improvement of DifFuzzAR that can also be useful for other similar tools.

7 Threats to validity

Regarding our tool, a threat to validity is that it can have bugs and be incapable
of fixing vulnerable code not considered in this study. We mitigate this risk by
explicitly stating the scope of our tool (i.e., the goal is to work in conjunction with
DifFuzz) and by considering in our study all the examples available in DifFuzz’s
public benchmark. Moreover, all our code and data are publicly available for other
researchers and potential users to check the validity of the results.

Regarding the user study, a threat to validity is the fact that we recruited par-
ticipants through our professional network (e.g., past students and colleagues), as
this can potentially bias the results. However, the sampling procedure that we use
is commonly employed in studies of this nature. For example, as one of the review-
ers of this work brought to our attention, works that can be used as guidelines for
empirical studies, such as Ciolkowski et al. (2003), use similar approaches as they
use their own industrial contacts.

While the user study might have limitations and the results might not be com-
pletely generalizable, it nonetheless offers valuable insights to the community and
has the potential to shape and guide future research endeavors. We do not claim that
our study is perfect, but we argue that it provides valuable information. Moreover,
we followed best practices from Redmiles et al. (2017) and followed methods simi-
lar to Eilertsen (2012). Similar methods are also used in other research papers. For
example, we use vignette-based surveys, as such surveys have been found to well-
approximate real-world behavior (Cummings et al. 2021; Hainmueller et al. 2015).
It is worth noting that, as stated by Berry and Tichy (2003), a reference kindly sug-
gested by one of the reviewers of this paper, “Perfection in experiments, especially
in those involving human subjects, is unattainable”.

8 Conclusions

This paper presents a tool for automatic repair of timing side-channel vulnerabilities
in Java code that works in conjunction with DifFuzz (Nilizadeh et al. 2019). Pat-
terns that lead to timing side-channel vulnerabilities were identified and algorithms
capable of correcting those potential vulnerabilities were proposed and imple-
mented. The tool developed was evaluated using the same dataset that was used to
evaluate DifFuzz (Nilizadeh et al. 2019), a dataset that contains examples of applica-
tions with timing side-channel vulnerabilities. The results obtained show that 88%
of the attempted corrections are semantically correct (i.e. the original behavior is
preserved) and 56% of the corrections eliminate the existing timing side-channel
vulnerabilities. Moreover, the results obtained in a quantitative and subjective user
study seem to confirm that users generally trust refactorings produced by DifFuzzAR
and that they see value in a tool like this, in particular in more critical Java code.

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 28 of 37

The fact that users do not seem to value the use of DifFuzzAR in non-critical sce-
narios suggests that one should be careful when integrating a tool of this nature into
the developer’s workflow. It might not be advisable to allow such a tool to provide
refactoring suggestions for every component that might leak information through
observing timing differences, as fixing non-critical issues might frustrate developers
and reduce the adoption of such a tool. A more judicious use, where only compo-
nents that deal with secrets are considered, is recommended. This might be achieved
by attempting to automatically infer the secrets or by allowing the developers to
manually annotate the code to identify such secrets.

Even though there is space for improvement, we believe that DifFuzzAR can be used
as a starting point for the development of new and improved tools capable of correcting
timing side-channel vulnerabilities and other related vulnerabilities. The tool is open-
source and is available at: https:// github. com/ sr- lab/ DifFu zzAR.

8.1 System limitations

Although DifFuzzAR was built in an attempt to correct timing side-channel vulner-
abilities regardless of how they present themselves, it is still possible that sometimes
the repair created by the tool, not only does not repair the vulnerabilities, but also
breaks some of the functionality of the method. As such, it is important to do a
manual analysis of the repaired method after the execution of the tool, not only to
check if no functionality is broken but also to beautify the changes (e.g. improve the
names of the variables). Besides that, it is important that after the execution of the
tool, the produced code is analysed again with DifFuzz to see if the tool eliminated
the vulnerability.

The tool assumes that the method referenced in the Driver is vulnerable and cor-
rects it. As such, if the Driver is not properly written or the method referenced is not
the vulnerable one, but one that calls the truly vulnerable method, then the tool will
not be able to repair it. DifFuzzAR can automatically repair the patterns identified and
described in this paper. For vulnerabilities that follow other types of patterns, the tool
needs to be extended. It is thus necessary to continuously improve the tool to be able
to correct different code patterns that contain a vulnerability, or different instructions
that cause the vulnerability. If the tool is executed on the correction of a control-flow
based timing side-channel vulnerability, it will always try to repair the vulnerability
again, which means it might break the original correction. In the results presented in
this paper, the corrected versions of some examples are presented as having no timing
side-channel vulnerability. However, there is always the possibility that they might have
a vulnerability that remained unnoticed. Despite this, all the work developed is open to
others on GitHub.

8.2 Future work

There is still plenty of work that can be done to improve DifFuzzAR. An
important direction is to add the ability to repair more examples of timing
side-channel vulnerabilities (including patterns not considered). DifFuzzAR

https://github.com/sr-lab/DifFuzzAR

1 3

Automated Software Engineering (2024) 31:1 Page 29 of 37 1

is designed to be used in conjunction with DifFuzz. This means that the user
must create a Driver following the rules described in Sect. 4. A future direc-
tion that would greatly simplify the use of the tool is to automatically generate
a Driver file. Another future improvement for the tool is to transform it from a
tool into a plugin to be used in the build process of the application. This would
reduce the amount of manual intervention needed by the user. Another advan-
tage of this is that being part of the build process can make it easier for other
users to use the tool. Another direction would be to adapt DifFuzzAR so that
it could easily be used and distributed as an IDE plugin. For this, it is likely
that adjustments to the code transformations (e.g. better variable names) and
usability studies should be performed, to ensure that the code transformations
are accepted by the programmers. It would also be interesting to apply the
tool to public projects and submit any corrections found as pull requests, thus
improving existing software and, simultaneously, obtaining code reviews from
developers (as done in related refactoring projects by the authors Ribeiro et al.
2021; Pereira et al. 2022).

Further user studies can also be useful for future improvements of DifFuzzAR.
The user study presented here allowed us to gather significant data, but this data is
subjective due to the size of the sample. As such, we suggest that future work should
repeat our study with a larger sample of users. Future work on this topic should also
include a usability analysis of DifFuzzAR’s usage with a larger number of users. We
also believe that more work should be done to understand users’ motivations when
using software to automatically repair vulnerabilities. While there have been previ-
ous works done about refactoring there is still a gap in the literature when it comes
to tools os the same nature as DifFuzzAR.

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 30 of 37

Appendix 1: Java Code snippets used in user study scenarios

1 3

Automated Software Engineering (2024) 31:1 Page 31 of 37 1

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 32 of 37

1 3

Automated Software Engineering (2024) 31:1 Page 33 of 37 1

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 34 of 37

Appendix 2: Scenarios in user study

In the user study, participants were presented with two scenarios, one critical and
one non-critical. These scenarios are presented below.

1 3

Automated Software Engineering (2024) 31:1 Page 35 of 37 1

Critical Scenario

Imagine you are developing an application in Java. You write the code that
is used for the login module of your project. Your code receives a user-pro-
vided string and compares it with a secret password. After writing the code,
you think about whether you should use DifFuzzAR.

Non‑critical Scenario

Imagine you are developing an application in Java. You write the code that
is used for the GUI module of your project. Your code receives user-input
when a user clicks on the “dark mode” button and changes the interface
accordingly. After writing the code, you think about whether you should use
DifFuzzAR.

Acknowledgements We thank the anonymous reviewers of the previous version of this work (Lima et al.
2021) for their valuable and constructive comments. We also thank the anonymous reviewers of this
extended version for their comments, which substantially improved the paper. This work was partially
funded by the PassCert project, a CMU Portugal Exploratory Project funded by Fundação para a Ciência
e Tecnologia (FCT), with reference CMU/TIC/0006/2019 and supported by national funds through FCT
under project UIDB/50021/2020.

Funding Open access funding provided by FCT|FCCN (b-on).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Allamanis, M., Jackson-Flux, H., Brockschmidt, M.: Self-supervised bug detection and repair. In: Neu-
rIPS (2021)

Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: Decomposition instead
of self-composition for proving the absence of timing channels. ACM SIGPLAN Notices 52(6),
362–375 (2017)

Berry, D.M., Tichy, W.F.: Comments on “Formal methods application: an empirical tale of software
development’’. IEEE Trans. Softw. Eng. 29(6), 567–571 (2003)

Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw. 48(5), 701–716 (2005)
Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using quantitative Cartesian

Hoare logic. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 875–890. ACM (2017)

Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., Monperrus, M.: Sequencer:
sequence-to-sequence learning for end-to-end program repair. IEEE Trans. Softw. Eng. 47, 1943–
1959 (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Automated Software Engineering (2024) 31:1

1 3

 1 Page 36 of 37

Chen, Z., Kommrusch, S., Monperrus, M.: Neural transfer learning for repairing security vulnerabilities
in C code. arXiv preprint arXiv: 2104. 08308 (2021)

Ciolkowski, M., Laitenberger, O., Vegas, S., Biffl, S.: Practical Experiences in the Design and Conduct of
Surveys in Empirical Software Engineering. Springer, Berlin (2003)

Cloud Foundry: These are the top languages for enterprise application development and what that means
for business. Accessed 2020-08-17. https:// www. cloud found ry. org/ wp- conte nt/ uploa ds/ Devel oper-
Langu age- Report_ FINAL. pdf

Cornu, B., Durieux, T., Seinturier, L., Monperrus, M.: Npefix: Automatic runtime repair of null pointer
exceptions in java. arXiv preprint arXiv: 1512. 07423 (2015)

Cummings, R., Kaptchuk, G., Redmiles, E.M.: “I need a better description”: an investigation into user
expectations for differential privacy. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pp. 3037–3052 (2021)

DARPA: Space/time analysis for cybersecurity (STAC). Accessed 2020-08-17. https:// www. darpa. mil/
progr am/ space- time- analy sis- for- cyber secur ity

Eilertsen, M.: Improving the usability of refactoring tools for software change tasks. Ph.D. thesis, Univer-
sity of Bergen (2012)

EvoSuite: Automatic test suite generation for Java. Accessed 2020-08-27. https:// www. evosu ite. org/
Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming approach to automated soft-

ware repair. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computa-
tion, pp. 947–954 (2009)

GitHub: the state of the octoverse. Accessed 2019-10-07. https:// octov erse. github. com/ proje cts# langu
ages

Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE Symposium on Secu-
rity and Privacy, p. 11. IEEE (1982)

Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun. ACM 62(12), 56–65
(2019)

Gupta, R., Pal, S., Kanade, A., Shevade, S.: Deepfix: fixing common C language errors by deep learning.
In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

Hainmueller, J., Hangartner, D., Yamamoto, T.: Validating vignette and conjoint survey experiments
against real-world behavior. Proc. Natl. Acad. Sci. 112(8), 2395–2400 (2015)

IBM: Modern languages for the modern enterprise. Accessed 2020-08-17. https:// devel oper. ibm. com/
artic les/d- modern- langu age- modern- enter prise/

IVC Wiki: Xbox 360 timing attack. Accessed 2020-08-17. https:// beta. ivc. no/ wiki/ index. php/ Xbox_ 360_
Timing_ Attack

Kersten, R., Luckow, K., Păsăreanu, C.S.: Poster: Afl-based fuzzing for java with kelinci. In: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2511–
2513. ACM (2017)

Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written patches. In:
2013 35th International Conference on Software Engineering (ICSE), pp. 802–811. IEEE (2013)

Koeune, F., Standaert, F.-X.: A tutorial on physical security and side-channel attacks. In: Foundations of
Security Analysis and Design III, pp. 78–108. Springer, Berlin (2005)

Lavrakas, P.J.: Encyclopedia of Survey Research Methods. Sage publications, Los Angeles (2008)
Lawson, N.: Timing attack in Google Keyczar library. Accessed 2020-08-17. https:// rdist. root. org/ 2009/

05/ 28/ timing- attack- in- google- keycz ar- libra ry/
Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human–computer Interaction. Morgan Kauf-

mann, Boston (2017)
Lima, R., Ferreira, J.F., Mendes, A.: Automatic repair of Java code with timing side-channel vulnerabili-

ties. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering Work-
shops (ASEW), pp. 1–8 (2021). https:// doi. org/ 10. 1109/ ASEW5 2652. 2021. 00014

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for automatic software
repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2011)

Lima, R.: Automatic repair of Java code with timing side-channel vulnerabilities. Master’s thesis, Insti-
tuto Superior Técnico, University of Lisbon (January 2021). https:// fenix. tecni co. ulisb oa. pt/ cursos/
meic-t/ disse rtacao/ 11282 53548 921982

Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: Tbar: revisiting template-based automated program
repair. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 31–42 (2019)

http://arxiv.org/abs/2104.08308
https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf
https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf
http://arxiv.org/abs/1512.07423
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.evosuite.org/
https://octoverse.github.com/projects#languages
https://octoverse.github.com/projects#languages
https://developer.ibm.com/articles/d-modern-language-modern-enterprise/
https://developer.ibm.com/articles/d-modern-language-modern-enterprise/
https://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
https://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://doi.org/10.1109/ASEW52652.2021.00014
https://fenix.tecnico.ulisboa.pt/cursos/meic-t/dissertacao/1128253548921982
https://fenix.tecnico.ulisboa.pt/cursos/meic-t/dissertacao/1128253548921982

1 3

Automated Software Engineering (2024) 31:1 Page 37 of 37 1

Lutellier, T., Pham, H.V., Pang, L., Li, Y., Wei, M., Tan, L.: Coconut: combining context-aware neural
translation models using ensemble for program repair. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 101–114 (2020)

Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch synthesis via sym-
bolic analysis. In: Proceedings of the 38th International Conference on Software Engineering, pp.
691–701 (2016)

Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv. (2015). https:// doi. org/
10. 1145/ 31059 06

Monperrus, M.: The living review on automated program repair. Technical Report hal-01956501, HAL
Archives Ouvertes (2018). https:// www. monpe rrus. net/ martin/ repair- living- review. pdf

Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. IEEE Trans. Softw. Eng.
38(1), 5–18 (2011)

Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair via semantic analysis.
In: 2013 35th International Conference on Software Engineering (ICSE), pp. 772–781. IEEE (2013)

Nilizadeh, S., Noller, Y., Păsăreanu, C.S.: Diffuzz: differential fuzzing for side-channel analysis. In: Pro-
ceedings of the 41st International Conference on Software Engineering, pp. 176–187. IEEE Press
(2019)

Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a library for implementing
analyses and transformations of Java source code. Softw. Pract. Exp. 46, 1155–1179 (2015). https://
doi. org/ 10. 1002/ spe. 2346

Pereira, R.B., Ferreira, J.F., Mendes, A., Abreu, R.: Extending EcoAndroid with automated detection of
resource leaks. In: 9th IEEE/ACM International Conference on Mobile Software Engineering and
Systems 2022 (MobileSoft) (2022)

Redmiles, E.M., Acar, Y., Fahl, S., Mazurek, M.L.: A summary of survey methodology best practices for
security and privacy researchers. Technical report (2017)

Ribeiro, A., Ferreira, J.F., Mendes, A.: EcoAndroid: an android studio plugin for developing energy-effi-
cient Java mobile applications. In: 2021 IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), pp. 62–69 (2021). https:// doi. org/ 10. 1109/ QRS54 544. 2021. 00017

Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks using program repair.
In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 15–26 (2018)

Xuan, J., Martinez, M., Demarco, F., Clement, M., Marcote, S.L., Durieux, T., Le Berre, D., Monperrus,
M.: Nopol: automatic repair of conditional statement bugs in java programs. IEEE Trans. Softw.
Eng. 43(1), 34–55 (2016)

Yasunaga, M., Liang, P.: Graph-based, self-supervised program repair from diagnostic feedback. In:
International Conference on Machine Learning, pp. 10799–10808. PMLR (2020)

Yasunaga, M., Liang, P.: Break-it-fix-it: unsupervised learning for program repair. In: International Con-
ference on Machine Learning (ICML) (2021)

Ye, H., Martinez, M., Monperrus, M.: Neural program repair with execution-based backpropagation.
arXiv preprint arXiv: 2105. 04123 (2021)

Zalewski, M.: American fuzzy lop (2017)
Zhou, Y., Feng, D.: Side-channel attacks: ten years after its publication and the impacts on cryptographic

module security testing. IACR Cryptol. ePrint Archive 2005, 388 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://www.monperrus.net/martin/repair-living-review.pdf
https://doi.org/10.1002/spe.2346
https://doi.org/10.1002/spe.2346
https://doi.org/10.1109/QRS54544.2021.00017
http://arxiv.org/abs/2105.04123

	DifFuzzAR: automatic repair of timing side-channel vulnerabilities via refactoring
	Abstract
	1 Introduction
	1.1 Structure of the paper

	2 Background and related work
	2.1 Timing side-channel vulnerabilities
	2.1.1 Early-exit vulnerabilities
	2.1.2 Control-flow based vulnerabilities
	2.1.3 Mixed vulnerabilities

	2.2 Detection of timing side-channel vulnerabilities
	2.3 Automated repair tools
	2.4 Automated repair of timing side-channel vulnerabilities

	3 System overview
	4 Identification of vulnerable methods
	5 Correction of vulnerabilities
	5.1 Correcting early-exit timing side-channel vulnerabilities
	5.2 Correcting control-flow timing side-channel vulnerabilities
	5.3 Correcting mixed timing side-channel vulnerabilities

	6 Evaluation
	6.1 Testing the tool
	6.1.1 Dataset used
	6.1.2 Semantics preservation
	6.1.3 Vulnerability correction

	6.2 User study
	6.2.1 Motivation
	6.2.2 Goals
	6.2.3 Design and methods used
	6.2.4 Results
	6.2.5 Discussion

	7 Threats to validity
	8 Conclusions
	8.1 System limitations
	8.2 Future work

	Appendix 1: Java Code snippets used in user study scenarios
	Appendix 2: Scenarios in user study
	Critical Scenario
	Non-critical Scenario

	Acknowledgements
	References

