
Vol.:(0123456789)

Automated Software Engineering (2023) 30:8
https://doi.org/10.1007/s10515-022-00372-8

1 3

Madusa: mobile application demo generation based
on usage scenarios

Jaehyung Lee1 · Hangyeol Cho1 · Woosuk Lee1

Received: 15 March 2022 / Accepted: 20 November 2022 / Published online: 12 January 2023
© The Author(s) 2022

Abstract
Mobile applications have grown rapidly in size. This dramatic increases in size and
complexity make mobile applications less accessible to a broader scope of users.
The prevailing approach for better accessibility of mobile applications is to manu-
ally reimplement slimmed versions with a small but representative portion of a
regular original app. Unfortunately, this approach imposes significant burden on
developers. We propose a system called Madusa to enable developers to effectively
customize and reduce their mobile applications for Android. Madusa takes as input
an original app, an upper bound on the size of a reduced version, and usage sce-
narios as a high-level specification of its desired core functionality. The output is a
reduced version of the app that is still correct with respect to the specification while
not exceeding the size limit. Madusa constructs a graph representing dependencies
among methods and resources and identifies a sub-part of the graph using integer
linear programming to generate a reduced version that exhibits behaviors as similar
as possible to the original app. Our experimental evaluation on a suite of 19 Android
apps available on Google Play Store. Madusa effectively converges to the desired
simplified apps by reducing the app size by 40% on average (maximally by 60%).
We conclude our approach effectively removes redundant code and resources with
respect to given usage scenarios.

Keywords Demo generation · Mobile applications · Integer linear programming ·
Android · Static analysis for android

1 Introduction

Mobile applications (apps for short) have grown rapidly in size. The average
Android APK (Android application package) size has grown by over five times since
2012 (Henderson et al. 2018). In addition, the top 10 iPhone apps by downloads in

 * Woosuk Lee
 woosuk@hanyang.ac.kr

1 Department of Computer Science & Engineering, Hanyang University, Ansan, Korea

http://orcid.org/0000-0002-1884-619X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00372-8&domain=pdf

 Automated Software Engineering (2023) 30:8

1 3

8 Page 2 of 25

the U.S. for 2021 require 2.2 GB of storage in total, which is four times larger than
five years ago. A major part of this growth comes with the continuous addition of
new features. As a representative example, due to Gmail’s expanding feature set,
its mobile app is 18x larger than five years ago, growing from 19 to 355 MB as of
2021 (The iPhone’s Top Apps Are Nearly 4x Larger Than Five Years Ago 2021).

The dramatic increases in size and complexity make mobile applications less
accessible to a broader scope of users. A large application size demotivates users
to install the application because mobile data and device storage are both at a pre-
mium. Such a large app is particularly not accessible to low-end devices that have
limited computing resources. As a result, it is known that the application install rate
(the proportion of store visitors who install) is inversely proportional to application
size in general (Henderson et al. 2018).

The prevailing approach for better accessibility of mobile applications is to reim-
plement slimmed versions with a small but representative portion of a regular origi-
nal app, complying with restrictions over the size of the simplified versions. Repre-
sentative examples are Android instant app and iOS App Clip. An Android instant
app is a small application that enables end users to test out a portion of a native
Android app without installing it. Developers can choose to create an instant app
from scratch or transform a full-fledged app into an instant app. Turning a traditional
native app into an instant app requires developers to modularize the app into sepa-
rate code components. Instant apps should be smaller than 15 MB to launch quickly.
An iOS App Clip is a fast and lightweight small part of an original app. The goal is
similar to that of Android instant apps (i.e., enabling testing out a portion of an app
without installation). Apple App Clips also require developers to refactor apps’ code
to be modular and reusable. Uncompressed App Clips should be less than 10 MB to
launch instantly.

Unfortunately, refactoring original apps complying with the size restrictions at
the same time is quite non-trivial, which is why these features are sparingly used.
For example, less than 0.1% of all the Android applications except games provide
their instant applications (Android Instant Apps - Android SDK statistics 2021). In
addition, out of the 38 applications demonstrated as notable cases of Android instant
apps by Google (Apps to Try Now - Android Apps on Google Play 2021; Google
Play Instant Developer Success Stories 2021), only 19 instant applications remain
available to date. Similarly, only a handful of iOS apps currently provide their light-
weight versions for App Clips to date.

We present a useful system to enable users to customize and reduce Android
apps.1 The system takes as input an app to be simplified, an upper bound on the
size of the simplified version, and usage scenarios that exercise its desired core
functionality. Then the system generates a simplified version of the app that is
smaller than the size limit but still able to exercise the given usage scenarios.

Figure 1 depicts a high-level architecture of our system Madusa. As input,
Madusa takes an original app, an upper bound n of the size of a slimmed version,

1 Though our proof-of-concept targets Android, the approach is general and agnostic to the underlying
OS, thus we believe it will be potentially applicable to iOS as well.

1 3

Automated Software Engineering (2023) 30:8 Page 3 of 25 8

and usage scenarios demonstrating the desired functionality. We consider the set-
ting where apps are provided as APK files (i.e., already compiled and packaged),
so that Madusa can be generally applicable even when the entire source code is not
available for various reasons (e.g., apps using closed-source libraries, legacy apps).
In this setting, while exercising the usage scenarios, Madusa first measures code
coverage by instrumenting Dalvik bytecode in its smali (Github - smali 2021)
representation.

When with coverage information, an immediate method for generating a desired
lightweight version is to package an app with the instructions covered in the usage
scenarios. In addition to the code, additional resource files the code uses (e.g., bit-
map images, layout definitions) also would have to be included in the resulting app.

However, this simple-minded approach may compromise the robustness of the
resulting app because the usage scenarios may not be exhaustive enough to demon-
strate the desired functionality. For example, the resulting app may crash on events
never seen in the usage scenarios.

To improve the robustness, we include as much original instructions as possible
in the resulting app as long as the size limit is not exceeded. That is because the
more instructions are included in the resulting app, the more similar behaviors the
resulting app will exhibit compared to the original app.

We reduce this optimization problem into an integer linear programming (ILP)
instance: given instructions along with information about code coverage and
resource files the code uses, what are the maximum subset of the instructions that
can lead to an app smaller than the size limit? With a solution found by an off-the-
shelf ILP solver, Madusa effectively generates a reduced but robust app which can
exercise the desired functionality and comply with the size restriction at the same
time. No existing solution means the size constraint is too strict to be satisfied. Then,
Madusa increase the upper bound n and repeats the process.

We evaluate Madusa on a suite of 19 Android apps available on Google Play
Store. Madusa effectively converges to the desired simplified apps. It could reduce

Fig. 1 Overview of the Madusa system

 Automated Software Engineering (2023) 30:8

1 3

8 Page 4 of 25

the app size by 40% on average, (code reduction 25%, resource reduction 50% respec-
tively). The robustness of the reduced apps is validated by running a state-of-the-art
fuzzer Monkey (UI/Application Exerciser Monkey 2021) on the apps. The apps reduced
by our system did not crash in 96% of event sequences randomly generated by Monkey.

In summary, the paper makes the following contributions.

• We propose a general method for reducing the size of mobile applications. It
aims to remove unwanted functionalities from original mobile applications to
improve their accessibility to a broader scope of users.

• We evaluate Madusa using a set of real-world Android apps. Our experiments
show that it effectively reduces the size of apps. All the experimental data and
our tool are publicly available.2

2 Motivating example

We illustrate how Madusa enables users to customize and reduce apps using the
example of NOS, a Dutch news application. Suppose the user wants to obtain a sim-
plified version of NOS to generate an Android instant app to allow end users to use
a representative portion of the app. We need to trim the original app since the size
is 22 MB whereas any instant app should not exceed 15 MB. There exists an offi-
cial instant app of NOS, which was manually written by the original developers. We
demonstrate how to automatically obtain a reduced version that has the same func-
tionality as the instant app of NOS by using Madusa.

2.1 Inputs to Madusa

Before start, Madusa instruments the original APK file using an off-the-shelf code
coverage tool, so that it can measure code coverage and resource usage of the app
during the execution of the app. After the instrumentation, the user is required to
write an usage scenario that exercises the desired features of a lightweight applica-
tion. In particular, an input to Madusa is a specification comprising an entry point
(which is optional) and a sequence of events. The followings are such an input speci-
fication to generate a simplified version of NOS with the same functionality as the
official instant app that provides a feature of viewing one specific news article.

Entry point: “nl.nos.app.activity.ArticlePagerActivity” (Data for the Entry Point:
“https://nos.nl/artikel/2370183-...open.html”)

Event seqence: Touch (1) - Drag (2) - Touch (3) - Touch (3) - Touch (4) - Push
Back Button - Drag (5) - Touch (6)

The input comprises two parts. First, the user needs to specify an entry point of
the desired app. This information is required only if the desired app is to start from
an activity other than the original main activity (the entry point is considered the
main activity unless otherwise specified). In this example, we specify a specific
entry point since we want the user to experience the core feature from the beginning

2 Available at https:// github. com/ astea n1001/ madusa

https://github.com/astean1001/madusa

1 3

Automated Software Engineering (2023) 30:8 Page 5 of 25 8

(i.e., reading the news article) without going through any preparation steps (e.g.,
signing in to an account) as in the original app. The “Data for the Entry Point” is
required only if there is additional data necessary to initialize the starting activity. In
this case, we provide a link to an article that we want to show to the user.

The usage scenario as an event sequence is visualized in Fig. 2. After the starting
activity launches, the event sequence exercising the core feature includes touching
the thumbnail of a news video (event 1), playing and stopping the video (event 2 and
3), switching to the full screen mode (event 4), scrolling down to the bottom of the
article (event 5), and clicking the link to another related article (event 6).

Ideally, such usage scenarios should extensively exercise the entire functionalities of
the desired simplified apps. However, it is not always possible to devise such exhaus-
tive event sequences. We will show how our ILP-based method can compensate for such
insufficiency to the extent that the size restriction (less than 15 MB) allows.

2.2 Our ILP‑based reducing

From the usage scenario, Madusa first measures code coverage by running the usage
scenario on the original application. Madusa currently measures the coverage at the
method level, which can be done by using an existing tool for measuring code coverage of
Android apps (Pilgun et al. 2020), however, any code coverage tool can be used.

Next, Madusa analyzes the original app and obtains resource usage informa-
tion, which concerns resources (e.g., bitmaps) used by each individual method. Such
information can be obtained by analyzing code and XML files in the app.

Given the information of code coverage and resource usage, Madusa constructs
a directed graph we call application dependency graph (ADG). In this graph, each
node represents either a method or a resource file in the application. A node for
methods (method node) contains information about a fully qualified method name
and whether or not the method is covered (i.e., executed) while running the scenario.
A node for resources (resource node) contains information about type and size of
a resource file. Each directed edge from method node A to method node B means

Fig. 2 Visualization of the example usage scenario

 Automated Software Engineering (2023) 30:8

1 3

8 Page 6 of 25

that method A calls method B. Each directed edge from method node A to resource
node B means that method A uses resource B. Each directed edge from resource A to
resource B means that resource A references another resource B. Lastly, there cannot
be an edge from a resource node to a method node.

Figure 3 shows a sub-part of the ADG for NOS. Each square node represents a
method node, and each round node corresponds to a resource node. Dotted and solid
edges represent resource uses, and method invocations, respectively. Nodes in green
and red are covered and uncovered methods while running the scenario respectively.

With this information, an immedate method for generating a trimmed version of
the original app is to include only methods covered by the usage scenario along with
resources used by the methods. In this approach, the resulting app would include
methods in green (M#3191, M#3201, M#3321, M#3322) and resources reachable
from those methods (R#10, R#313, R#321, R#102, R#103).

However, this approach based solely on code coverage may lead to a brittle app
which may easily crash on events never seen in the specific usage scenario. For
example, the methods onRestart (M#3192) and mute (M#3323) will not be
included in the resulting app, thus the app may abnormally terminate if the user
presses home button and comes back to the video screen (which would invoke onRe-
start) or touches the mute button (which would invoke mute).

In order to enhance robustness, our key idea is to include as many methods/resources
as possible while complying with the 15 MB size contraint via integer linear program-
ming (ILP). For the given ADG, Madusa generates a trimmed version of the app by solv-
ing an ILP instance. We aim to find a maximum subset of nodes in the ADG sastisfying
the following constraints.

Fig. 3 Example application dependency graph

1 3

Automated Software Engineering (2023) 30:8 Page 7 of 25 8

• Methods covered by the usage scenario (green nodes in Fig. 3) must be
included.

• If a method is included and it uses resources, all the used resources must be
included.

• If a method is included and it has callers, at least one of the caller methods
must be included.

• If a resource is included and it references other resources, all the referenced
resources must be included.

• The sum of the sizes of included nodes must not exceed the size limit.

A solution of the ILP problem represents a set of methods and resources that should
exist in the simplified app. We generate a lightweight version of the app by sim-
ply excluding methods and resources not existing in the ILP solution. In this exam-
ple, methods onRestart and mute are included in the solution because the size
increase caused by including them is not significant (only resources R#344 and
R#104 should be additionally included at the cost of additional 90 bytes). There-
fore, the app can be more robust than the one could be generated solely based on
coverage.

Note that our method naturally prioritizes methods and resources closely related
to covered methods. For example, method moveBar (M#11) has not been included
since the cost outweighs the benefit. Adding the method would require to add all
the transitive callees of it (M#2374, M#3324) and the used resource (R#204) which
takes 1 MB. However, method onRestart has been included because it “shares”
resources with another covered method onCreate.

After removing the methods and resources not to be included, we can obtain a
lightweight app that provides the desired functionality while not violating the size
restriction. From the 22MB-sized original app (6 MB of code, 16 MB of resources)
Madusa successfully generates a 10 MB-sized (6MB of code, 4MB of resources)
lightweight application within 2 h. We confirm the Madusa-generated version
behaves exactly same as the official instant app of NOS.

3 Our approach

In this section, we formally describe our reducing method for mobile applications.

3.1 Application dependency graph

To represent mobile apps at the granularity of methods and resources, we view apps as
weighted directed graphs that consist of a set of vertices with real-valued weights and a
set of edges. An edge from p to q is denoted p → q . We will write p →

∗ q if there exist
edges leading from p to q.

We are interested in identifying a sub-part of an original app which can be considered
an induced subgraph. Given a subset V ′ of V, an induced graph G[V �] is a graph whose

 Automated Software Engineering (2023) 30:8

1 3

8 Page 8 of 25

vertex set is V ′ and whose edge set comprises all of the edges in E that have both end-
points in V ′ . In other words, for any two vertices v1, v2 ∈ V � , v1 and v2 are adjacent in
G[V �] iff they are adjancent in G.

A mobile app will be represented as a graph we call application dependency graph.

Definition 1 (Application Dependency Graph (ADG)) An ADG G = ⟨V ,E,w⟩ is a
directed graph where each vertex in V ⊆ M ∪ R is either a method in M or a resource
in R, E ⊆ V × V , and w ∶ V → ℝ

+ is a function that gives a weight (i.e., size) of for
a given vertex. Using w, we can measure the size of an ADG G (denoted |G|) which
is
∑

v∈V w(v) . For all methods and resources, the following should hold.

The above formula says if an ADG contains a method m, any resources neces-
sary for executing the method should also exist in the ADG.

We can define induced subgraphs of ADGs as follows:

Definition 2 (Induced ADG) Given an ADG G = ⟨V ,E,w⟩ , an induced ADG of G
whose vertices are V ′ ⊆ V is a tuple ⟨G[V �],w⟩ where G[V �] is an induced subgraph
of ⟨V ,E⟩.

3.2 Problem statement

Given an ADG G = ⟨V = M ∪ R,E,w⟩ representing an original app, VC ⊆ V which
is a set of vertices that must be included (i.e., methods covered while running
user-provided usage scenarios), and � ∈ ℝ

+ , our goal is to identify a maximum
induced ADG ⟨G[V �],w⟩ such that

• VC ⊆ V ′

• |G[V �]| ≤ �

• G[V �] has as many vertices as possible.

This problem is NP-hard for the following reason.

Theorem 1 Given an ADG G = ⟨V ,E,w⟩ , VC ⊆ V , and � ∈ ℝ
+ , finding a maximum

induced ADG of G of size ≤ � is NP-hard.

Proof We show the NP-hardness by a reduction from the problem of finding a
maximum common induced subgraph of two graphs of which goal is to find an
induced subgraph of both G1 = ⟨V1,E1⟩ and G2 = ⟨V2,E2⟩ and that has as many
vertices as possible. Finding such a graph is NP-hard.

We can construct an ADG G = ⟨V1 ∪ V2,E1 ∪ E2,w⟩ where w is defined to as
follows:

∀m ∈ M, r ∈ R. m ∈ V � ∧ m →
∗ r in G ⟹ r ∈ V �.

1 3

Automated Software Engineering (2023) 30:8 Page 9 of 25 8

In other words, we assign 1 as weight only to vertices that may be included in any
common induced subgraph, and the other remaining vertices are assigned a large
weight. In this setting, if we find a maximum induced ADG of G of size ≤ |V1 ∪ V2|
(where VC = �), such an ADG will contain only vertices in a common induced sub-
graph of G1 and G2 (because the size constraint will be violated if any vertex exclu-
sive to only G1 or G2 is chosen). And the ADG will have as many such vertices as
possible. Therefore, the maximum induced ADG corresponds to the maximum com-
mon induced subgraph of G1 and G2 , which concludes the proof. ◻

3.3 Finding a maximum induced ADG via ILP

We present how to find a maximum induced ADG from a given ADG G by
encoding the problem into ILP. Informally, an ILP instance is a set of inequalities
and equalities, where variables and constants are supposed to be integers.

Definition 3 (ILP) Given are a matrix A and a vector b. Decide whether there exists
a non-negative integer vector x such that Ax ≥ b.

It is well known that the ILP problem is NP-hard (Papadimitriou 1981) as is the
maximum induced ADG problem, which justifes our approach using ILP.

Figure 4 depicts our ILP encoding given an ADG G = ⟨V = M ∪ R,E,w⟩ , VC ⊆ V ,
and � ∈ ℝ

+ . For each vertex v ∈ V , we introduce a variable xv with values in {0, 1} .
Each xv holds 1 if and only if v is included in the final maximum induced ADG (i.e.,
xv ≠ 0 ⟺ v ∈ V � where ⟨G[V �],w⟩ denotes the maximum induced ADG we aspire

w(v) =

{
1 ∃v� ∈ V1 ∩ V2. {(v, v

�), (v�, v)} ∩ (E1 ∩ E2) ≠ �

|V1 ∪ V2| + 1 (otherwise.)

Variables:

x

v for each v ∈ V with the following meaning.

xv �= 0 ⇐⇒ v ∈ V ′

where V ′ ⊆ V is the set of vertices of a resulting maximum induced ADG.

Objective: maximize V ′

Subject to:

xv = 1 (for all v ∈ VC) (1)
(
∑

mp s.t. mp→m xmp
)− xm ≥ 0 (m,mp ∈ M,∃mp. mp → m) (2)

xr − xm ≥ 0 (for r ∈ R,m ∈ M,m → r) (3)
xrp − xr ≥ 0 (for r, rp ∈ R, rp → r) (4)

(
∑

v∈V w(v) · xv) ≤ θ (5)

Fig. 4 Given an ADG G = ⟨M ∪ R,E,w⟩ , V
C
⊆ V , and � ∈ ℝ

+ , finding a maximum induced ADG
⟨G[V �],w⟩ by solving an ILP instance. All variables take values in {0, 1}

 Automated Software Engineering (2023) 30:8

1 3

8 Page 10 of 25

to). The constraint (1) says each vertex in VC should be included in V ′ because they are
essential to replay the usage scenarios. The constraint (2) says if a method is included,
and the method has callers (i.e., predecessors in the ADG) which invoke it, at least one
caller should also be in the result. This condition is to avoid adding unreachable methods
into the result. The constraint (3) says a method is included, every resource used by the
method should also be included. The constraint (4) says if a resource is included, every
resource used by the resource should also be included. Lastly, the constraint (5) enforces
the result not to exceed the size limit �.

Example 1 For the ADG depicted in Fig. 3, we generate the following ILP
constraints where xmi and xri denotes variables for methods and resources of ID i
respectively.

3.4 Main algorithm

Algorithm 1 The Madusa Algorithm
Input: An original app Apk and a set S of usage scenarios
Input: An upper bound of size of the final app n
Output: A simplified app apk whose size is not larger than n
1: apk ← ⊥
2: lb ← 0 θ ← n ub ← SizeOf(UnpackAPK(Apk))
3: C ← MeasureCodeCoverage(Apk, S)
4: G ← GetADG(Apk,C)
5: repeat
6: G′ ← FindMaximumInducedADG(G, θ)
7: if G′ = ⊥ then
8: lb; ← θ θ ← (lb+ ub)/2
9: else

10: Apk′ ← ApkOfADG(G′)
11: if SizeOf(Apk′) ≤ n then
12: apk ← Apk′

13: lb ← θ; θ ← (ub+ θ)/2
14: else
15: ub ← θ; θ ← (lb+ ub)/2
16: end if
17: end if
18: until time budget expires (or lb = ub)
19: return apk

Finding a maximum induced ADG does not suffice for obtaining the desired simpli-
fied app satisfying the size constraint. That is because an Android app is usually
a single compressed container file in the APK file format into which all of code,
resources, certificates, and manifest files are packaged. Because the size constraint

From (1) in Fig. 4 From (2) in Fig. 4 From (3) and (4) in Fig. 4

x
m3191 = 1 x

m3191 + x
m3192 − x

m3201 ≥ 0 x
m3201 − x

m3323 ≥ 0

x
m3201 = 1 x

m3191 + x
m3192 − x

m3201 ≥ 0 x
r103 − x

m3322 ≥ 0

x
m3321 = 1 x

m3201 − x
m3321 ≥ 0 x

r103 − x
m3322 ≥ 0

x
m3322 = 1 x

m3201 − x
m3323 ≥ 0 x

r104 − x
m3323 ≥ 0

⋮ ⋮ ⋮

1 3

Automated Software Engineering (2023) 30:8 Page 11 of 25 8

is over the size of a final APK file rather than the sum of sizes of its parts, it is
not straightforward how to determine the size limit for finding a maximum induced
ADG. Our key idea to resolve this issue is to adopt binary search to find a proper size
upper bound for a maximum induced ADG. Our method is based on the assumption
that the compression program for packaging apps is generally monotone: the order
in size between two unpackaged apps (i.e., apps not compressed into an APK file) is
preserved after compression. We observe this assumption is often true in practice.

Algorithm 1 depicts our main algorithm. The algorithm takes an original app
Apk, a set S of usage scenarios, and a size upper bound n of the final app as input.
The goal is to generate a simplified app apk whose size is not larger than n. The
result apk is initialized to be ⊥ (line 1) which means a failure, and to be updated
when the desired app is found. The variables lb and ub represent an upper bound and
a lower bound of the size � of the the desired maximum induced ADG, respectively.
The variables lb and ub are initialized to be 0 and the sum of the sizes of all parts
of the app which can be obtained by decompressing the APK file (line 2). � is ini-
tially set to be n, which means we first attempt to find an ADG of size ≤ n . Then, we
measure code coverage by replaying the usage scenarios on the original app (line 3).
From the code coverage information and the original app, we construct an ADG
(line 4). When constructing an ADG, we statically analyze the app’s code to identify
relationships among different methods and resources, which will be detailed in the
next section. Equipped with the ADG, the algorithm repeats the main loop (lines
5–18) until a time budget expires or the lower and upper bounds become equal.
The main loop starts with obtaining a maximum induced ADG (line 6) by invok-
ing an off-the-shelf ILP solver as already described in Sect. 3.3. No solution to the
ILP instance can be found (line 7) if the size restriction is too restrictive. Then, the
size limit � is increased by taking the middle point of the upper half of the interval
[lb, ub] (line 8). If a solution G′ to the ILP instance exists (line 9), we construct a
simplified version of the app by packaging only methods and resources existing in
the solution into an APK file (line 10). Next, we check if the APK file satisfies the
size constraint (line 11). If so, we record the app as the best result obtained so far
(line 12), and increase � similarly to line 8 (line 13), hoping to find another new app
containing more methods/resources while still satisfying the size constraint. Other-
wise, we decrease the upper bound by taking the middle point of the lower half of
the interval [lb, ub] to search for a smaller sized ADG that can satisfy the size con-
straint (line 15). After the main loop terminates, the algorithm returns the best result
obtained so far (line 19) (if no app could be found, it returns ⊥).

3.5 Implementation

In this section, we discuss noteworthy implementation details.

3.5.1 Call graph analysis

To construct an ADG, we identify calling relationships between methods through
a call graph analysis. We perform the standard Class Hierarchy Analysis (CHA) to

 Automated Software Engineering (2023) 30:8

1 3

8 Page 12 of 25

resolve virtual call sites. This approach may lead to an overapproximation of calling
relationships.

Note that the precision of a used call graph analysis does not affect the correct-
ness of our method. It will never generate an app violating the size constraint or
unable to replay given usage scenarios. That is due to the constraint (1) in Fig. 4
and line 11 in Algorithm 1. On the other hand, the precision of a used call graph
analysis may let the algorithm generate an app unnecessarily containing unreachable
methods.

Example 2 Suppose there is a method A which is determined to exist in the result
(i.e., xA = 1 according to an ILP solution), and there is a unique caller B that invokes
A. In addition, let us assume our CHA-based call graph analysis concludes two
methods B and C may invoke A due to its inherent imprecision. A possible solution
satisfying the constraint (2) in Fig. 4 is xA = 1, xB = 0, xC = 1 , which says only
methods A and C without B are included in the result. In such a case, the A method
will be unreachable in the resulting app since the C method is not an actual caller
whereas the B method, the actual caller, is missing.

If we use a more precise call graph analysis such as pointer analysis-based one for
Android (Arzt et al. 2014), we can better mitigate the above problem. However, in the
experiment, we note our CHA-based call graph analysis is precise enough to avoid add-
ing too many unreachable methods and resources.

3.5.2 Identifying resource uses

Next, to identify dependencies between resources and methods, we conduct a simple
static analysis. First we obtain all resource IDs by parsing res/values/public.
xml that stores resource IDs. And parsing the resource xml files to identify reference
relationship between resources. And for each method, we collect hard-coded resource
IDs to exactly identify used resources. Additionally, through a simple intra-procedural
static analysis to track possible string values for each program variable, we identify
possible string arguments to the getIdentifier Android API method, which are
used to construct a fully quantified resource name. A complication that arises here is
that such string arguments may be obfuscated, which makes it difficult to identify exact
resources.

For a better understanding, Listing 1 shows three cases of referencing resources. The
first case shows the easiest case where the getResourcebyId method is invoked
with a fixed resource ID which is a 8 digit number. From the ID, we can easily iden-
tify the used resource. The second case shows the necessity of tracking possible string
values for each program variable. The getIdentifier method is invoked with string
variables as arguments to identify a resource ID. To track possible string values for
each program variable, we perform a simple intra-procedural analysis with the prefix
abstract domain (Costantini et al. 2011) which approximates strings by their prefix. For
example, an abstract domain element “ abc ∗ ” represents all the strings which begin
with “abc”, including “abc” itself. In this case, all of the three variables have constant

1 3

Automated Software Engineering (2023) 30:8 Page 13 of 25 8

values, so that we can simply identify a fully quantified resource name without using
the power of the prefix abstract domain. On the other hand, a complication arises when
arguments to the getIdentifier method are obfuscated as shown in the third case.
The resource name represented as variable v3 is composed of “flag”, “-” and some
string value obfuscated through a complicated expression. Through the string analysis,
we infer the value of v3 starts with “flag-”, which is represented as “flag-*” in the pre-
fix abstract domain. In case of no prefix cannot be known as in the case of variable v4,
the abstract value is represented as just “*” which can be any string. From this informa-
tion, any resources of which name begin with “flag-” are considered to be potentially
used.

In our implementation, to prevent the analysis from tracking excessively long string
prefixes, we limit the maximum prefix size to be 5.

4 Evaluation

We experimentally evaluated our method to answer the following research questions:

• RQ1 - Effectiveness: How effectively does Madusa reduce a given application in
terms of reduction quality?

• RQ2 - Robustness: How robust is the reduced version generated by Madusa
against new unseen events?

4.1 Setting

4.1.1 Implementation

Madusa consists of 1.5K lines of Python code. We used a code coverage tool called
aCVTool and GLPK, an open source ILP solver. Madusa first parses public.
xml that has a pair of a resource ID and a resource name to obtain mapping from
resource names to IDs. Then, Madusa performs a CHA-based analysis to identify

 Automated Software Engineering (2023) 30:8

1 3

8 Page 14 of 25

relationships between methods, and invokes aCVTool to obtain code coverage
information. For ILP solving, Madusa invokes GLPK to find a solution of an ILP
instance. Lastly, we use APKTool Apktool (2021) to build the final debloated appli-
cation from the code and resources.

All experiments were conducted on a MacBook Pro with CPUs of 2.6 GHz and
16GB memory.

4.1.2 Benchmarks

Table 1 shows the characteristics of 19 applications in our benchmark suite. We
first collected 235 applications that can be supported by aCVTool from CICMal-
Droid benign dataset (CICMalDroid 2020), F-Droid (F-Droid 2021) and Google
Play Store (Google Play Store 2021). aCVTool cannot support MultiDEX appli-
cations of which code is splitted into multiple DEX (Dalvik Executable) files
because aCVTool can measure coverage of a single DEX file. Furthermore,
applications using native libraries through JNI are also out of the scope of aCV-
Tool since it cannot measure coverage of native libraries. These limitations of
aCVTool make it challeging to conduct experiments on large-sized applications
which are often out of the scope of aCVTool. Among 235 applications, we chose
15 moderate-sized applications on which aCVTool runs successfully. In addi-
tion to this set, we also collected four applications (nos, wego, naukri, and
vimeo) which officially provide Google Play Instant versions.(Lee et al. 2022)

4.1.3 Baseline

We compare Madusa against a variant of Madusa (denoted CoV from now on)
that generates a simplified app only based on code coverage without relying on
the ILP solving. In other words, this ablation simply removes all methods and
resources not used while replaying given usage scenarios. This comparison is
for an ablation study to show if our ILP-based method is effective in enhancing
robustness.

4.1.4 Specifications

Table 2 gives the details of the usage scenarios we used for the experiments. The
columns “# of Activities” and “# of UI events” show the number of activities visited
and UI events exercised in the scenarios, respectively. For each application, we pro-
vide a sequence of events as an usage scenario that visits up to two screens (or win-
dows) based on our observation about instant apps available in Google Play Store.
After inspecting 38 instant apps in the Google Play Instant promotion collection, we
realize they provide representative features that can be usually experienced in 1–2
screens. Based on this observation, for each application, we devise event sequences
that can visit only a few screens and exercise most of the runnable features on those
screens.

1 3

Automated Software Engineering (2023) 30:8 Page 15 of 25 8

The reader may wonder how representative the usage scenarios are of the main
functionalities of the apps. Though it is difficult to quantify the complexity of usage
scenarios, the ratio between the original code size and the code size of app reduced
by the CoV variant can be a proxy for the complexity. In general, the more complex
usage scenarios, the more code is executed. That is because the complex usage
scenarios are likely to exercise a majority of features of the app. Likewise, if usage
scenarios are simple, we can expect the size of an app debloated by CoV, which
solely relies on the code coverage, to be small. However, even this parameter is not
always accurate because there may exist a significant portion of unconditionally
executed code (e.g., code for initialization and preparation steps). Therefore, we
publicize recorded screens showing our usage scenarios, so that the reader can
evaluate the complexity and representativeness.3

4.2 Effectiveness of reduction

We first evaluate the effectiveness of Madusa in terms of reduction size (Table 3).
For each benchmark, the size limit is first set to be 50% of the original size, and
incrementally increased if a solution cannot be found as already described in the

Table 1 Characteristics of the benchmark apps. Size gives the size of an APK file

App name Version Description Size

com.hrs.b2c.android 7.3.0 Hotel search 15.08 MB
com.mediadjz.pianomixer 1.3 DJ mixing app 15.21 MB
nl.nos.app 5.7.1 News 22.07 MB
naukriApp.appModules.login 12.6 Online job search 6.34 MB
com.wego.android 6.0.0 Hotels & flights booking 11.81 MB
com.google.samples.apps.topeka – Quiz 3.98 MB
com.vimeo.android.videoapp 3.14.0 Video viewing 17.47 MB
bbc.mobile.news.ww 4.0.0.80 GNL News 15.25 MB
com.royalapp.vanlentineframes 1.0 Photography 15.18 MB
com.oliveyoung 2.4.20 Shopping 13.86 MB
com.huffingtonpost.android 26.17.0 News 34.37 MB
com.ft.news 2.217.0 News 8.19 MB
com.topten10mall.mallapp 1.0.0.79 Shopping 6.28 MB
de.hosenhasser.funktrainer 1.3.1.4 Quiz 29.67 MB
eu.veldsoft.complica4 1.3 Game 3.66 MB
link.standen.michael.fatesheets 1.2 Character sheets 2.19 MB
com.games.boardgames.aeonsend 1.0 Boardgame wiki 4.14 MB
com.alaskalinuxuser.justchess 2.0 Chess 3.39 MB
com.daniel.mobilepauker2 2.2.0 Flashcards 4.80 MB

3 Available at https:// doi. org/ 10. 5281/ zenodo. 72722 54

https://doi.org/10.5281/zenodo.7272254

 Automated Software Engineering (2023) 30:8

1 3

8 Page 16 of 25

main algorithm (Fig. 1). The reason for targetting 50% reduction is as follows.
According to Google’s internal research, when the size of the application is reduced
from 10 to 5 MB, application install rate (the proportion of store visitors who install)
increases by about 20%, which is a significant improvement (our benchmark apps
are 12.3 MB on average). Of course larger reduction may lead to a better application
install rate, but an excessively reduced application would be very likely to be brit-
tle. Therefore, we conjecture 50% reduction strikes a good balance between apps’
robustness and accessibility.

Figure 5 shows the results. It shows an average reduction rate of 39.7% and
the maximum reduction rate of more than 60%. In most apps, the reduction rate
for resources is higher than that for code. In topeka, wego, and valentine-
frames since the usage scenarios exercise almost all of the apps’ features, Madusa
barely reduces the app sizes. However, in the other remaining apps, Madusa shows
significant reduction rates. In particular, we can see a remarkable reduction for nos.
In this app, there are many icon images taking a large portion of the entire size.
Madusa removes a lot of them which are not used for replaying our usage scenario.
We also note that in many cases, by removing methods unnecessary for the desired
features, Madusa subsequently removes resources used by those removed methods,
which leads to a significant reduction.

However, Madusa cannot significantly reduce the size of an app when the usage
scenario exercises almost all the features of the app because there is not much room
for reduction. Apps naukri, wego, and vanlentineframes fall into this
category.

Also, for huffingtonpost and funktrainer, Madusa cannot significantly
reduce the size. In case of huffingtonpost, most of the library code is used in
the app, and it is difficult to remove the code. That is because all the web UI-related
libraries are used immediately after the app is launched. In addition, the code of the
libraries takes a large portion of the app size. That is why Madusa fails to reduce the
size despite the significant reduction of the resources.

Similarly, in case of funktrainer, the code for loading UI components is exe-
cuted immediately after the app is launched, and the code takes a significant portion
of the app size.

These cases show that Madusa cannot reduce the size of an app if the code for
initializing the app takes a large portion of the app size.

Answer to Q1: Madusa is effective in reducing the sizes of apps (with an average
reduction rate of 40%).

4.3 Application robustness

We measure the robustness of the Madusa-generated apps by comparing against
apps simplified by the CoV variant, which does not use our ILP-based method but
just rely on code coverage information. We manually confirmed that applications
generated by both tools work well for usage scenarios. We evaluate the robustness
of the applications generated by the tools with Monkey (UI/Application Exerciser

1 3

Automated Software Engineering (2023) 30:8 Page 17 of 25 8

Ta
bl

e
2

 D
es

cr
ip

tio
ns

 o
f t

he
 u

sa
ge

 sc
en

ar
io

s

A
pp

of

 A
ct

iv
iti

es

of
 U

I e
ve

nt
s

Sc
en

ar
io

 d
es

cr
ip

tio
n

H
rs

5
9

Se
ar

ch
 h

ot
el

s i
n

B
er

lin
 a

nd
 N

ew
yo

rk
, g

o
to

 “
H

R
S

D
ea

ls
”

an
d

ta
b

on
e

of
 th

e
ho

te
ls

 in
 d

ea
ls

Pi
an

om
ix

er
3

13
Pl

ay
 so

m
e

pi
an

os
 a

nd
 w

at
ch

 a
n

ad
s

N
os

3
11

V
ie

w
 a

 n
ew

s a
rti

cl
e

an
d

vi
de

os
, c

lic
k

lin
ks

 to
 o

th
er

 a
rti

cl
es

N
au

kr
i

3
13

Se
ar

ch
 fo

r f
ro

nt
-e

nd
 d

ev
el

op
er

 jo
bs

 in
 D

el
hi

 a
nd

 c
lic

k
a

se
ar

ch
 re

su
lt

W
eg

o
10

41
Se

ar
ch

 fo
r fl

ig
ht

s f
ro

m
 IC

N
 to

 N
RT

, c
lic

k
a

se
ar

ch
 re

su
lt,

 se
ar

ch
 fo

r h
ot

el
s i

n
B

us
an

, a
nd

 ta
b

a
se

ar
ch

re

su
lt

To
pe

ka
2

7
Si

gn
 in

 a
nd

 c
lic

k
“F

oo
d

&
 D

rin
k”

 c
at

eg
or

y
an

d
co

m
e

ba
ck

 to
 th

e
m

ai
n

pa
ge

V
im

eo
3

14
Pl

ay
 a

 v
id

eo
 a

nd
 to

uc
h

“S
ha

re
 a

nd
 li

ke
”

bu
tto

n,
 ta

b
an

ot
he

r v
id

eo
s i

n
th

e
m

ai
n

pa
ge

B
bc

3
9

G
o

to
 “

V
id

eo
”

ta
b,

 c
lic

k
on

e
of

 th
e

to
p-

ra
nk

ed
 v

id
eo

s t
o

pl
ay

 it
Va

nl
en

tin
ef

ra
m

es
4

8
Tu

rn
 o

n
th

e
ca

m
er

a
O

liv
ey

ou
ng

3
9

V
ie

w
 a

 p
ro

du
ct

 p
ag

e
an

d
w

at
ch

 p
ro

du
ct

 d
et

ai
le

d
in

fo
H

uffi
ng

to
np

os
t

2
7

V
ie

w
 a

 n
ew

s a
rti

cl
e

an
d

cl
ic

k
lin

ks
 to

 o
th

er
 a

rti
cl

es
Ft

4
12

V
ie

w
 a

 n
ew

s a
rti

cl
e

an
d

sw
ip

e
to

 w
at

ch
 a

no
th

er
 n

ew
s a

rti
cl

es
To

pt
en

10
m

al
l

2
12

V
ie

w
 a

 e
ve

nt
 p

ag
e

an
d

cl
ic

k
lin

ks
 to

 a
 p

ro
du

ct
Fu

nk
tra

in
er

2
5

C
lic

k
“B

et
rie

bl
ic

he
 K

en
nt

ni
ss

e”
 a

nd
 ta

ke
 so

m
e

qu
iz

C
om

pl
ic

a4
1

3
Pl

ay
 a

 fu
ll

ga
m

e
Fa

te
sh

ee
ts

2
13

To
uc

h
flo

at
in

g
bu

tto
n

an
d

ad
d

a
ch

ar
ac

te
r a

nd
 c

om
e

ba
ck

 to
 m

ai
n

pa
ge

A
eo

ns
en

d
2

6
V

ie
w

 so
m

e
ca

rd
 in

fo
 p

ag
e

an
d

co
m

 b
ac

k
to

 m
ai

n
pa

ge
Ju

stc
he

ss
2

8
To

uc
h

2
pl

ay
er

 g
am

e
an

d
pl

ay
 c

he
ss

 3
 tu

rn
s

M
ob

ile
pa

uk
er

2
3

12
A

dd
 a

 fl
as

hc
ar

d
an

d
ta

ke
 m

em
or

y
te

st

 Automated Software Engineering (2023) 30:8

1 3

8 Page 18 of 25

Monkey 2021), which generates random streams of user events such as clicks,
touches, or gestures, as well as other system-level events. For 1000 streams of user

Table 3 Detailed size of reduced applications

App Code Size Resource Size

Original CoV Madusa Original CoV Madusa

Hrs 3.53 MB 1.38 MB 3.44 MB 11.55 MB 2.94 MB 4.11 MB
Pianomixer 2.33 MB 701.56 KB 2.31 MB 12.89 MB 3.17 MB 3.59 MB
Nos 6.16 MB 2.00 MB 5.90 MB 15.91 MB 5.38 MB 4.04 MB
Naukri 3.54 MB 2.61 MB 2.85 MB 2.79 MB 1.44 MB 1.44 MB
Wego 6.59 MB 6.11 MB 6.33 MB 5.22 MB 5.11 MB 5.11 MB
Topeka 0.67 MB 0.63 MB 0.64 MB 3.31 MB 3.17 MB 3.17 MB
Vimeo 12.19 MB 11.18 MB 11.69 MB 5.27 MB 2.38 MB 2.39 MB
Bbc 5.11 MB 4.38 MB 4.73 MB 10.14 MB 5.26 MB 5.27 MB
Vanlentineframes 0.49 MB 0.11 MB 0.48 MB 14.69 MB 13.40 MB 13.42 MB
Oliveyoung 4.80 MB 3.24 MB 3.33 MB 9.07 MB 1.70 MB 1.76 MB
Huffingtonpost 25.37 MB 23.40 MB 23.54 MB 9.01 MB 2.29 MB 2.36 MB
Ft 6.22 MB 4.06 MB 4.34 MB 1.97 MB 0.82 MB 0.82 MB
Topten10 3.84 MB 1.41 MB 1.52 MB 2.44 MB 0.46 MB 0.46 MB
Funktrainer 19.97 MB 18.59 MB 18.62 MB 9.70 MB 0.51 MB 0.52 MB
Complica4 1.89 MB 0.56 MB 0.57 MB 1.77 MB 0.62 MB 0.63 MB
Fatesheets 1.58 MB 0.57 MB 0.63 MB 0.61 MB 0.50 MB 0.51 MB
Aeonsend 1.49 MB 0.45 MB 0.48 MB 2.66 MB 2.43 MB 2.44 MB
Chess 1.46 MB 0.48 MB 0.51 MB 1.94 MB 0.47 MB 0.47 MB
Pauker 4.21 MB 2.23 MB 2.26 MB 0.59 MB 0.56 MB 0.56 MB

App Name

0.00 KB

10.00 MB

20.00 MB

30.00 MB

40.00 MB

0.00 KB

10.00 MB

20.00 MB

30.00 MB

40.00 MB

hrs

pia
no

mixe
r

no
s

na
uk

riA
pp

weg
o

top
ek

a
vim

eo bb
c

va
nle

nti
ne

fra
mes

oli
ve

yo
un

g

hu
ffin

gto
np

os
t ft

top
ten

10

fun
ktr

ain
er

co
mpli

ca
4

fat
es

he
ets

ae
on

se
nd

ch
es

s

pa
uk

er

Reduced Resource Reduced Code Resource Code

Fig. 5 Effectiveness of Madusa in terms of reduction

1 3

Automated Software Engineering (2023) 30:8 Page 19 of 25 8

events generated by Monkey, we count how many times the applications reduced by
each tool abnormally terminate (i.e., crash). We provide the same fixed seed value
to Monkey to make it generate the same event sequences for both Madusa and CoV.
Thus, both tools are on equal footing.

Table 4 summarizes the results. In every benchmark, the app generated by CoV crashs
more often and we conclude that Madusa can effectively enhance the robustness of the
resulting applications through the ILP-based method. We observe apps generated by CoV
easily fail with new unseen events not existing in the provided usage scenarios.

We next investigate the results for each app in detail.
For apps hrs, nos, pianomixer, Madusa leads to better robustness than CoV

by generating larger apps by including as many methods and resources as possible.
We note the size differences bring a significant impact on the robustness of result-
ing apps. In particular, for nos, the CoV-generated version quickly crashes when
the user triggers unseen events such as clicking volume control/share buttons, or
swiping images. On the other hand, the Madusa-generated version contains all the
methods and resources relevant to such unseen events, thereby avoiding crashes.
For hrs, the CoV-generated app sometimes failed to fetch necessary data from the
server. That is because the server worked when the trimmed version was generated
whereas the server was down when we tested the app. This result shows the cover-
age based reducing is not robust against any nondeterministic behaviors that apps
may exhibit. On the other hand, the Madusa-generated app is robust against such
a situation by including error handling code (e.g., code for re-establishing the con-
nection to the server) in the original code. In addition, the Madusa-generated app is
robust against unseen events such as modifying the number of rooms, viewing avail-
able hotel lists on which the CoV-generated app crashes.

For apps topeka, vimeo, and bbc, Madusa shows better robustness despite
marginal differences in the sizes of resulting apps by mostly including code with-
out resources. For instance of topeka, the CoV-generated version crashes when
the logout button is clicked. Madusa keeps the code for signing out and does not
crash for the event. This enhanced robustness can be achieved with a marginal
increase in size since the code size is almost negligible. Similarly, for bbc, the
code for unseen events such as moving to other articles and playing videos is
added in the Madusa-generated app on the contrary to the CoV-generated app.
The vimeo case is also similar: various error handling code is included in the
Madusa-generated without adding resources.

We also note that the Madusa-generated versions for the four applications (nos,
wego, naukri, and vimeo) exhibit almost the same functionalities as their offi-
cial instant apps only with marginal differences. For example, the official instant app
for naukri provides UI components not existing in the original app and that for
wego provides a feature for sharing news articles to others which is not supported in
the Madusa-generated version.

For apps naukri, chess, the Madusa-generated version also crashes more
than 10%. In the case of naukri, there are buttons that exercise lots of code and
resources but are not exercised by the usage scenario. For example, social login
buttons (which reference whole Google/Facebook authentication library and
resources) and featured page buttons (which reference another page layouts) are

 Automated Software Engineering (2023) 30:8

1 3

8 Page 20 of 25

such buttons. These buttons take a large portion in a screen, so that many randomly
generated streams of events cause the app to crash. Also, in the case of chess there
are very few crashes during game itself. There also are some buttons such as single
play button (which references whole chess ai related methods) and the single play
button make up a large part of the main page, it makes our crash rate relatively high.
We do not delete layout elements that are not included in usage scneario in current
implementation, by Adding this feature in future might be able to lower the crash
rate.

Answer to Q2: Apps generated by Madusa are more robust to unseen events than
those directly derived from code coverage.

5 Threats to validity

There are several issues that cause threats to the validity or generality of our
approach. We outline these next along with proposals to mitigate them.

• Build Integrity Verification: To improve security, android apps often adopt a build
integrity verification to detect any changes to application source code. Because

Table 4 Robustness of reduced applications with their sizes.

(#Crashes / #Events) gives the ratio between the number of crashes and the number of random event
sequences generated by Monkey for each app

App Size (#Crashes / #Events)

Original CoV Madusa Original CoV Madusa

Hrs 15.08 MB 4.31 MB 7.55 MB 0% 31% 3.5%
Pianomixer 15.21 MB 3.88 MB 5.90 MB 0% 9.3% 1.1%
Nos 22.07 MB 7.38 MB 9.94 MB 0% 60.5% 7.1%
Naukri 6.34 MB 4.05 MB 4.29 MB 0% 13.1% 11.1%
Wego 11.81 MB 11.26 MB 11.44 MB 0% 5.8% 2.7%
Topeka 3.98 MB 3.80 MB 3.81 MB 0% 23.2% 8.5%
Vimeo 17.47 MB 14.01 MB 14.08 MB 0% 15.6% 2%
Bbc 15.25 MB 9.70 MB 9.99 MB 0% 24.7% 0.2%
Vanlentineframes 15.18 MB 13.51 MB 13.90 MB 0% 8.5% 1.6%
Oliveyoung 13.86 MB 4.94 MB 5.10 MB 0% 3.8% 2.9%
Huffingtonpost 34.37 MB 25.68 MB 25.90 MB 0% 9.9% 2.4%
Ft 8.19 MB 4.88 MB 5.16 MB 0% 5.6% 3.8%
Topten10 6.28 MB 1.87 MB 1.98 MB 0% 10.8% 4.6%
Funktrainer 29.67 MB 19.11 MB 19.14 MB 0% 0.6% 0.3%
Complica4 3.66 MB 1.19 MB 1.20 MB 0% 0% 0%
Fatesheets 2.19 MB 1.06 MB 1.14 MB 0% 6.6% 1.5%
Aeonsend 4.14 MB 2.89 MB 2.92 MB 0% 14.7% 7.4%
Chess 3.39 MB 0.95 MB 0.97 MB 0% 11.4% 11.4%
Pauker 4.80 MB 2.79 MB 2.82 MB 0% 12.5% 8.4%

1 3

Automated Software Engineering (2023) 30:8 Page 21 of 25 8

Madusa modifies application resources and code, it may not work for apps with this
security measure. This issue can be easily mitigated by asking original developers to
confirm the changes and equip the app with a new checksum.

• Reducing Natively Compiled Libraries: Madusa debloats applications based on
code coverage obtained at the level of dalvik bytecode, thereby being unable to obtain
coverage information of natively compiled libraries that communicates with the app
through JNI (Java Native Interface). For apps using popular natively compiled librar-
ies such as Flutter or React, Madusa may not work effectively by giving up debloating
such library code. To the best of our knowledge, no known code coverage tools for
Android can support native libraries. We believe this issue will be resolved by using a
more advanced code coverage tool supporting native libraries in the future.

• Exceeding 64K methods: aCVTool (Pilgun et al. 2020) we use for measuring code
coverage adds extra methods for instrumentation. Any coverage tools that add extra
methods for instrumentation may fail when there are about 64K methods in an app.
Listing 2 shows a method newly inserted by aCVTool for instrumentation, which is
for recording whether each instruction is executed or not. It adds other several new
methods to write coverage information into files. This addition may let the app exceed
65,536 methods which is the allowed limit per single DEX (Android Dalvik Execut-
able) file. In this case, the methods should be split into multiple DEX files. Currently
we cannot obtain code coverage information in such a case because aCVTool does
not support apps with multiple DEX files. We hope this issue can be resolved by using
a more advanced code coverage tool with multidex support in the future.

Listing 2: Instrumentation by ACVTool
// Or i g i na l Android Method
c l a s s MainActivity {

i n t OnPressButton () {
some code ()
ACVTool . i sExecuted (MainActivity , OnPressButton ,

1)
some code ()
ACVTool . i sExecuted (MainActivity , OnPressButton ,

2)
some code ()
ACVTool . i sExecuted (MainActivity , OnPressButton ,

3)
. . .

}
}

// Methods added by ACVTool
c l a s s ACVTool {

void i sExecuted (class name , method name ,
l ine number) {
CoverageStorage . save (c lass name , method name ,

l ine number , t rue)
}
. . .

}

 Automated Software Engineering (2023) 30:8

1 3

8 Page 22 of 25

6 Related work

We discuss related work on reducing mobile app sizes, program debloating, and
code coverage measurement for Android.

6.1 App size reduction

There have been various attempts for reducing the sizes of mobile apps, but the exist-
ing approaches require developers’ significant manual efforts, which has led to their
sparing use. On the other hand, our method only requires usage scenarios, which can
be easily provided by the users without much effort. App thinning (Anders Bertelrud
2015) in iOS is for reducing the app size by automatically detecting the user’s device
kind and only downloading relevant content for the device. This feature requires
developers to tag their app to identify correspondences. Google’s Instant App and
Huawei’s Quick App (Quick Apps 2021) provide a way to generate simplified ver-
sions of apps that can run without installation. Generating instant apps requires a
significant amount of refactorings such as adding an instant support app bundle,
modifying configurations such as a degree of network security, and adding logic for
the instant experience workflow. To obtain Quick apps, developers have to create
HTML5-based new apps in Javascript and CSS after learning to use a custom IDE.
Proguard (Proguard 2021) is a tool for optimizing and debloating Android apps, but
it aims for a different goal. Proguard preserves all the functionality of the original
application by removing only unused and duplicated code. However, Madusa is
more aggressive in debloating by removing even used code if it is not used in the
usage scenarios, thereby removing unwanted functionality. In addition, it requires
detailed processing rules specifying classes and methods that must not be discarded
when shrinking apps, whereas Madusa only requires usage scenarios from the user.

6.2 Program debloating

Though various methods for software debloating have been proposed to automati-
cally reduce program sizes, their goal is different from ours.

Madusa is more flexible than XDebloat (Tang et al. 2021) and ACVCut (Pilgun
2020) which also aggressively debloat android application by leaving only user-
specified features. XDebloat tries to find a lightweight version of an original appli-
cation that still exercise desired features specified by the user. ACVCut aims to trim-
ming untested code based on code coverage measured from testing scenarios. On
the contrary to those tools which leave minimal features necessary for satisfying the
specifications, Madusa can leave extra features which are not in the specifications
but helpful for making apps as robust as possible.

Xie et al. (2021), JRED (Jiang et al. 2016) and RedDroid (Jiang et al. 2018)
soundly trim unused methods and classes from Java and Android applications.
Quach et al. (2018) also use a sound static analysis to identify only necessary sub-
parts of libraries based on function-level dependencies. The goal of these sound

1 3

Automated Software Engineering (2023) 30:8 Page 23 of 25 8

debloating methods is to reduce program sizes without losing any existing features
of original programs, whereas Madusa aims at more aggressive size reduction by
leaving only representative features of original programs. Heo et al. (2018) and
Qian et al. (2019) are similar to our approach in that they also aggressively debloat
programs by leaving only features necessary for satisfying user-provided specifica-
tions. Chisel tries to find a minimal version of an original program that still exercise
desired functionalities specified by the user. Razor aims to obtain a minimal version
of an original binary executable based on a given set of test cases and control-flow-
based heuristics. However, the difference between Madusa and those tools is that
Madusa generates lightweight versions smaller than a size limit whereas they try to
find minimal programs. This difference leads to different methods for guaranteeing
robustness of simplified versions. Madusa aims at finding apps of which sizes are as
close to a given size limit as possible by adding existing components of the original
app as many as possible. On the other hand, Chisel adopts a feedback loop using
static and dynamic analysis tools to improve robustness. For a generated simplified
version, it identifies any potential bugs and add constraints to avoid the bugs in the
specification, hoping to generate more robust programs in the next iterations.

6.3 Android code coverage

Though Madusa currently uses aCVTool which works at the level of methods and
smali, the potential user of Madusa can freely choose other coverage tool at other
different levels of languages or granularities. Jacoco (2021) measures code coverage
for Java and Kotlin programs, so that it can be potentially used if app debloating is
to be done in the source code level. However, in such a case, Madusa may not be
able to trim third-party libraries without sources, which is why we choose to work
at the smali level. There are also other code coverage tools for smali such as
ELLA (ELLA 2021), InsDal (Liu et al. 2017), CovDroid (Yeh and Huang 2015),
and COSMO (Romdhana et al. 2021) Madusa can potentially use.

7 Conclusion

We have presented Madusa that adopts an ILP-based algorithm for reducing
Android apps into demo app. Our approach is shown to effectively remove redun-
dant code and resources with respect to given usage scenarios. Our ILP-based algo-
rithm is effective in improving the robustness of reduced versions by including as
many code and resources as possible while complying with a constraint over the size
of the result. Our method is general in that it is potentially applicable to another OS
for mobile devices such as iOS only if a proper code coverage tool is available.

Acknowledgements The first two authors major in Bio Artificial Intelligence at Hanyang University.
This research was supported by the National Research Foundation of Korea (NRF) grant (No.

 Automated Software Engineering (2023) 30:8

1 3

8 Page 24 of 25

2020R1C1C1014518, 2021R1A5A1021944) and Institute for Information & communications
Technology Promotion (IITP) grant (No. 2021-0-00758) funded by the Korea government (MSIT).

Declarations

 Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Anders Bertelrud, P.H.: App Thinning in Xcode. https:// devel oper. apple. com/ videos/ play/ wwdc2 015/
404/. [Online; accessed 01-October-2021] (2015)

Android Instant Apps - Android SDK statistics. https:// www. appbr ain. com/ stats/ libra ries/ detai ls/ insta nt-
apps/ andro id- insta nt- apps. [Online; accessed 01-October-2021] (2021)

Apktool - A tool for reverse engineering 3rd party, closed, binary Android apps. https:// ibotp eaches.
github. io/ Apkto ol/. [Online; accessed 01-October-2021] (2021)

Apps to Try Now - Android Apps on Google Play. https:// play. google. com/ store/ apps/ colle ction/ promo
tion_ 3002d 0f_ insta ntapps_ featu redap ps. [Online; accessed 01-October-2021] (2021)

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., McDaniel, P.:
Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Not. 49(6), 259–269 (2014)

CICMalDroid 2020. https:// www. unb. ca/ cic/ datas ets/ maldr oid- 2020. html. [Online; accessed
01-October-2021] (2020)

Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S., Qiu, Z. (eds.) Formal
methods and software engineering, pp. 505–521. Springer, Berlin, Heidelberg (2011)

ELLA: a tool for binary instrumentation of android apps. https:// github. com/ saswa tanand/ ella. [Online;
accessed 01-October-2021]

F-Droid - Free and open source android app repository. https://f- droid. org/. [Online; accessed
01-October-2021]

Github - smali. https:// github. com/ Jesus Freke/ smali. [Online; accessed 01-October-2021] (2021)
Google Play Instant Developer Success Stories. https:// devel oper. andro id. com/ topic/ google- play- insta nt#

devel oper- succe ss- stori es. [Online; accessed 01-October-2021] (2021)
Google Play Store. https:// play. google. com/ store/ apps. [Online; accessed 01-October-2021]
Henderson, M., Glick, K., Ng, K., Nikolic, M.: The future of apps on Android and Google Play: Modular,

instant, and dynamic (Google I/O ’18). https:// www. youtu be. com/ watch?v= 0raqV ydJmNE. [Online;
accessed 01-October-2021] (2018)

Heo, K., Lee, W., Pashakhanloo, P., Naik, M.: Effective program debloating via reinforcement learning.
In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security.
CCS ’18, pp. 380–394. Association for Computing Machinery, New York, NY, USA (2018). https://
doi. org/ 10. 1145/ 32437 34. 32438 38

Jacoco - Java code coverage for eclipse. https:// www. jacoco. org/. [Online; accessed 01-October-2021]
Jiang, Y., Bao, Q., Wang, S., Liu, X., Wu, D.: Reddroid: Android application redundancy customization

based on static analysis. In: 2018 IEEE 29th international symposium on software reliability
engineering (ISSRE), pp. 189–199 (2018). https:// doi. org/ 10. 1109/ ISSRE. 2018. 00029

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://developer.apple.com/videos/play/wwdc2015/404/
https://developer.apple.com/videos/play/wwdc2015/404/
https://www.appbrain.com/stats/libraries/details/instant-apps/android-instant-apps
https://www.appbrain.com/stats/libraries/details/instant-apps/android-instant-apps
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://play.google.com/store/apps/collection/promotion_3002d0f_instantapps_featuredapps
https://play.google.com/store/apps/collection/promotion_3002d0f_instantapps_featuredapps
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://github.com/saswatanand/ella
https://f-droid.org/
https://github.com/JesusFreke/smali
https://developer.android.com/topic/google-play-instant#developer-success-stories
https://developer.android.com/topic/google-play-instant#developer-success-stories
https://play.google.com/store/apps
https://www.youtube.com/watch?v=0raqVydJmNE
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://www.jacoco.org/
https://doi.org/10.1109/ISSRE.2018.00029

1 3

Automated Software Engineering (2023) 30:8 Page 25 of 25 8

Jiang, Y., Wu, D., Liu, P.: Jred: Program customization and bloatware mitigation based on static analysis,
In 2016 IEEE 40th annual computer software and applications conference (COMPSAC), pp. 12–21
(2016). https:// doi. org/ 10. 1109/ COMPS AC. 2016. 146

Lee, J., Cho, H., Lee, W.: Artifact of MADUSA: Mobile Application Demo Generation based on Usage
Scenarios. Zenodo (2022). https:// doi. org/ 10. 5281/ zenodo. 72722 54

Liu, J., Wu, T., Deng, X., Yan, J., Zhang, J.: Insdal: A safe and extensible instrumentation tool on dalvik
byte-code for android applications. In: 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER), pp. 502–506 (2017). https:// doi. org/ 10. 1109/
SANER. 2017. 78846 62

Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981). https://
doi. org/ 10. 1145/ 322276. 322287

Pilgun, A.: Don’t trust me, test me: 100% code coverage for a 3rd-party android app. In: 2020 27th Asia-
Pacific Software Engineering Conference (APSEC), pp. 375–384 (2020). IEEE

Pilgun, A., Gadyatskaya, O., Zhauniarovich, Y., Dashevskyi, S., Kushniarou, A., Mauw, S.: Fine-grained
code coverage measurement in automated black-box android testing. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 29(4), 1–35 (2020)

Proguard – The Java optimizer for Android apps. https:// www. guard square. com/ progu ard. [Online;
accessed 01-October-2021] (2021)

Qian, C., Hu, H., Alharthi, M., Chung, P.H., Kim, T., Lee, W.: RAZOR: A framework for post-
deployment software debloating. In: 28th USENIX security symposium (USENIX Security 19),
pp. 1733–1750. USENIX Association, Santa Clara, CA (2019). https:// www. usenix. org/ confe rence/
useni xsecu rity19/ prese ntati on/ qian

Quach, A., Prakash, A., Yan, L.: Debloating software through piece-wise compilation and loading. In:
27th USENIX security symposium (USENIX Security 18), pp. 869–886. USENIX Association,
Baltimore, MD (2018). https:// www. usenix. org/ confe rence/ useni xsecu rity18/ prese ntati on/ quach

Quick Apps - HUAWEI Developers. https:// devel oper. huawei. com/ consu mer/ en/ huawei- quick App/.
[Online; accessed 01-October-2021]

Romdhana, A., Ceccato, M., Georgiu, G., Merlo, A., Tonella, P.: Cosmo: Code coverage made easier
for android. In 2021 14th IEEE conference on software testing, verification and validation (ICST)
(2021). https:// doi. org/ 10. 1109/ ICST4 9551. 2021. 00053

Tang, Y., Zhou, H., Luo, X., Chen, T., Wang, H., Xu, Z., Cai, Y.: Xdebloat: Towards automated feature-
oriented app debloating. IEEE Trans. Softw. Eng. (2021)

The iPhone’s Top Apps Are Nearly 4x Larger Than Five Years Ago. https:// senso rtower. com/ blog/ ios-
app- size- growth- 2021. [Online; accessed 01-October-2021] (2021)

UI/Application exerciser monkey. http:// devel oper. andro id. com/ tools/ help/ monkey. html. [Online;
accessed 01-October-2021] (2021)

Xie, Q., Gong, Q., He, X., Chen, Y., Wang, X., Zheng, H., Zhao, B.: Trimming mobile applications for
bandwidth-challenged networks in developing regions. IEEE Trans. Mobile Comput. (2021)

Yeh, C.-C., Huang, S.-K.: Covdroid: A black-box testing coverage system for android. In: 2015 IEEE
39th annual computer software and applications conference, vol. 3, pp. 447–452 (2015). https:// doi.
org/ 10. 1109/ COMPS AC. 2015. 125

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.5281/zenodo.7272254
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1145/322276.322287
https://doi.org/10.1145/322276.322287
https://www.guardsquare.com/proguard
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://developer.huawei.com/consumer/en/huawei-quickApp/
https://doi.org/10.1109/ICST49551.2021.00053
https://sensortower.com/blog/ios-app-size-growth-2021
https://sensortower.com/blog/ios-app-size-growth-2021
http://developer.android.com/tools/help/monkey.html
https://doi.org/10.1109/COMPSAC.2015.125
https://doi.org/10.1109/COMPSAC.2015.125

	Madusa: mobile application demo generation based on usage scenarios
	Abstract
	1 Introduction
	2 Motivating example
	2.1 Inputs to Madusa
	2.2 Our ILP-based reducing

	3 Our approach
	3.1 Application dependency graph
	3.2 Problem statement
	3.3 Finding a maximum induced ADG via ILP
	3.4 Main algorithm
	3.5 Implementation
	3.5.1 Call graph analysis
	3.5.2 Identifying resource uses

	4 Evaluation
	4.1 Setting
	4.1.1 Implementation
	4.1.2 Benchmarks
	4.1.3 Baseline
	4.1.4 Specifications

	4.2 Effectiveness of reduction
	4.3 Application robustness

	5 Threats to validity
	6 Related work
	6.1 App size reduction
	6.2 Program debloating
	6.3 Android code coverage

	7 Conclusion
	Acknowledgements
	References

