
Vol.:(0123456789)

Automated Software Engineering (2022) 29:61
https://doi.org/10.1007/s10515-022-00365-7

1 3

SiaLog: detecting anomalies in software execution logs
using the siamese network

Shayan Hashemi1 · Mika Mäntylä1

Received: 31 August 2021 / Accepted: 18 September 2022 / Published online: 13 October 2022
© The Author(s) 2022

Abstract
Detecting anomalies in software logs has become a notable concern for software
engineers and maintainers as they represent anomalies in software execution paths
and states. This paper propose a novel anomaly detection approach based on the Sia-
mese network on top of Recurrent Neural Networks(RNN). Accordingly, we intro-
duce a novel training pair generation algorithm to train the Siamese network which
reduces generated training significantly while maintaining the F

1
 score. Addition-

ally, we propose a hybrid model by combining the Siamese network with a tradi-
tional feedforward neural network to make end-to-end training possible, reducing
engineering effort in setting up a deep-learning-based log anomaly detector. Fur-
thermore, we provides validations of the approach on the Hadoop Distributed File
System (HDFS), Blue Gene/L (BGL), and Hadoop map-reduce task log datasets.
To the best of our knowledge, the proposed approach outperforms other methods
on the same dataset at the F

1
 scores of respectively 0.99, 0.99, and 0.94 on HDFS,

BGL, and Hadoop datasets, resulting in a new state-of-the-art performance.To fur-
ther evaluate the proposed method, we examine our method’s robustness to log evo-
lutions by evaluating the model on synthetically evolved log sequences; we got the
F
1
 score of 0.95 on the HDFS dataset at the noise ratio of 20% . Finally, we dive deep

into some of the side benefits of the Siamese network. Accordingly, we introduce an
unsupervised log evolution monitoring method alongside a visualization technique
that facilitates model interpretability.

Keywords Log analysis · Anomaly detection · Siamese network · Deep learning

 * Shayan Hashemi
 shayan.hashemi@oulu.fi

 Mika Mäntylä
 mika.mantyla@oulu.fi

1 M3S Research Unit, ITEE, University of Oulu, Oulu, Finland

http://orcid.org/0000-0001-6031-1765
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00365-7&domain=pdf

 Automated Software Engineering (2022) 29:61

1 3

61 Page 2 of 28

1 Introduction

Log files are an unstructured text-based history of events that shed light on the
software state during its execution. Each line of log files indicates a different
event and may hold different types of information such as log-type, timestamp,
process ID, thread ID, and log message. Analyzing log events allows developers
to extract helpful information from the software state during the run-time. One of
the log analysis applications is anomaly detection. Log anomaly detection may
assist developers in software testing, debugging, or run-time monitoring.

Throughout recent years, deep learning has become the most predominant
method in almost every machine learning problem. They have been utilized in
tasks such as object detection and localization (Redmon et al. 2016; Liu et al.
2016), machine translation (Wu et al. 2016; Bahdanau et al. 2014), and action
recognition (Alhersh and Stuckenschmidt 2019; Jhuang et al. 2013). Furthermore,
they have been used to improve software testing, debugging, and stability. For
instance, Deep Neural Networks (DNNs) are used in applications such as soft-
ware defect prediction (Esteves et al. 2020), performance analysis (Velez et al.
2020), or reopened bugs accuracy prediction (Xia et al. 2015). Moreover, log
anomaly detection is no exception, and DNNs have been widely utilized in this
research area alongside other Machine Learning (ML) approaches.

There are two different approaches among the deep methods in log anomaly
detection (Chalapathy and Chawla 2019). The first one is a binary classification
task. It takes a sequence as input and outputs a binary value indicating if the
sequence is an anomaly. The latter approach is sequence modelling, which trains
only on the non-anomaly data and learns to model the system’s normal behaviour,
resulting in low probabilities for anomaly behaviour.

As non-anomaly data volume is significantly higher than anomaly data,
sequence modelling is more common in log anomaly detection. However, train-
ing solely on non-anomaly data may result in models being unaware of anom-
aly events, making the approach unreliable in anomaly situations. Furthermore,
since logs evolve due to software updates, models trained with non-anomaly data
have limited capabilities to detect anomaly situations in evolved non-anomaly
situations.

On the other hand, binary classification solves the previously mentioned prob-
lem by training the model on both anomaly and non-anomaly data. However, it
comes with its own challenges; one of them is training on an unbalanced dataset.
The obstacle comes into place when the proportion of anomaly to non-anomaly
data is too small. More specifically, datasets contain dramatically more anomaly
samples in comparison to non-anomaly ones.

Nonetheless, many solutions have been introduced to surmount the unbal-
anced data obstacle. Oversampling and undersampling are two straightforward
approaches that strive to equalize the number of samples in two classes. Another
way of dealing with unbalanced datasets is weighted training. It manipulates the
cost function so that both classes’ influences on the model’s parameters are equal.
However, setting training weights and oversampling may result in overfitting,

1 3

Automated Software Engineering (2022) 29:61 Page 3 of 28 61

while undersampling ignores a colossal proportion of negative samples during
the training process. A more steady solution may be synthetic data generation.
Furthermore, it eliminates the disadvantages of oversampling yet results in equi-
librium. However, it requires innovative methods to generate legitimate and reli-
able samples. This paper proposes a new approach based on the Siamese network
(Bromley et al. 1994) to handle the unbalanced data in log anomaly detection.

The primary purpose of the Siamese network is metric learning, and it is vastly
used in one-shot learning tasks such as face verification (Chopra et al. 2005; Wang
et al. 2014), signature verification (Dey et al. 2017; Ahrabian and BabaAli 2019),
and visual object tracking (Zhang et al. 2018; Bertinetto et al. 2016; Guo et al.
2017). Furthermore, it has also been utilized in video game anomaly detection
(Wilkins et al. 2020). The proposed Siamese network-based model takes advantage
of both non-anomaly and anomaly data while not demanding balanced training data.

More in-depth, we attempt to learn an embedding function for log sequences that
maps sequences of the same class (non-anomaly or anomaly) adjacent to each other
while maximizing the distance between opposing classes’ sequences. We also pro-
pose a sampling technique inspired by negative sampling (Mikolov et al. 2013) to
generate pairs for the Siamese network’s training process. The proposed algorithm
significantly reduces the training costs of the Siamese network.

Furthermore, we evaluate the proposed method through various experiments.
Accordingly, we examine the impact of different pair generation algorithms on the
Siamese network, try different classifiers on top of the embedding neural network,
and compare the best performer to state-of-the-art methods. Moreover, we evaluate
our model’s robustness on evolved log sequences and propose a method to moni-
tor log evolutions at production time. Besides, we reveal a solution to visualize the
embedded sequences to make human administration of log sequences possible.
Finally, we construct a hybrid model by imposing the Siamese network on a feedfor-
ward neural network, investigating the Siamese network’s positive impact. Replica-
tion package of our work is available1. Our main contribution is the Siamese net-
work utilization in the anomaly detection task RQ 1. We provide additional research
contributions via research questions RQ2 and RQ3:

RQ 1. Design: How could the Siamese network be employed for software log
anomaly detection task? We propose an architecture of an arbitrary classifier on
top of an embedding function, trained within the Siamese network, alongside a
pair generation algorithm. However, we need to answer two more subquestions to
respond to the question thoroughly:

RQ 1.1. Architecture: How could a proper neural network architecture be
found for the embedding function? We conduct an experiment to spot a high
performance architecture using the Hyperband algorithm, see Sect. 5.1.
RQ 1.2. Pair generation: How to generate pair for training the Siamese
network to avoid generating all possible pairs while maintaining the accu-
racy? We propose a new pair generation algorithm, named KPOne, to avoid

1 Replication package at https:// github. com/ M3SOu lu/ SiaLo gRepl icati onPac kage.

https://github.com/M3SOulu/SiaLogReplicationPackage.

 Automated Software Engineering (2022) 29:61

1 3

61 Page 4 of 28

training the Siamese network using all possible pairs. KPOne reduces the
required training pairs by several orders of magnitude, see Section 5.2, with
negligible classification accuracy loss, see Sect. 5.3.

RQ 2. Performance: How does the proposed methods perform in terms of
accuracy and computational cost? We divide this question into following mul-
tiple more specific subquestions:

RQ 2.1. Accuracy: How accurately does the proposed method perform in
open public datasets compared to the state-of-the-art methods? We present
the state-of-the-art performance for three open public datasets, see Sect. 5.4.
RQ 2.2. Low-cost model: Is it possible to produce a low-cost embedding
function for the Siamese network at a low accuracy loss? We show that in
some cases SiaLog hyper-parameter search results in a low-cost model by
default (BGL and Hadoop). However, when it is not achieved, a low-cost
model could be handcrafted (HDFS), see Sect. 5.5.
RQ 2.3. Hybrid model: Is it possible to merge the Siamese network’s archi-
tecture and a feedforward model into a single deep neural network? Yes, we
propose an architecture (SiaLog Hybrid) to train the Siamese network and
a neural network-based classifier together to make the end-to-end training
possible. Furthermore, since the classification model is a single deep neural
network it could benefit from parallelization of the GPU during inference,
see Sect. 5.6.

RQ 3. Side benefits: What are side benefits of using the Siamese network other
than anomaly detection? With every machine learning innovations comes new
research questions and concerns. Thus, we choose three of the most impor-
tant research questions that could be resolve as a side benefit of the proposed
method. Research questions are listed as follow:

RQ 3.1. Robustness: How accurately does SiaLog perform in noisy envi-
ronments? We examine noisy log sequences on three different datasets. The
investigations show that performance to noise is data specific. In some cases
(Hadoop), even a small noise ratio of 5% results in low performance (F1
of around 0.85 and lower), while the impact is significantly lower for other
data sets (HDFS, BGL), see Sect. 6.1.
RQ 3.2.Unsupervised log evolution monitoring: Is it possible to monitor
log evolutions without the need for labeled data? Yes, we introduce a met-
ric (fitness score) to monitor log evolutions using the embedded sequences
based on mixture of gaussians and negative log probability. The fitness
score demonstrates the embedding function’s adaptiveness with the distribu-
tion of evolved logs, see Sect. 6.2.
RQ 3.4.Visualization: How do the Siamese network embedded sequences
are visualized in a plot? For all datasets, we illustrate a visualization of the
embedded sequences using three different dimension reduction algorithms
(PCA, UMAP, and T-SNE), revealing that anomaly sequences are readily
separable from non-anomaly ones. Furthermore, such visualizations could

1 3

Automated Software Engineering (2022) 29:61 Page 5 of 28 61

be a valuable part of a log analyzer tool in future studies, see Sect. 6.3 and
Fig. 7.

The remainder of the paper is organized as follow: Sect. 2 is dedicated to explaining
required knowledge, reviewing famous previous works, and discussing datasets. The
Siamese network, the methodology, and pair generation algorithms are explained
in Section 3. The preprocessing, datasets, and evaluation metrics are discussed in
Sect. 4. Section 5 comprises the reports of various experiments investigating the
proposed method on deeper levels, while additional practical advantages are men-
tioned in Sect. 6. Finally, the conclusion and future work proposals are offered in
Sect. 7.

2 Background and related works

2.1 General log analyzer architecture

Log anomaly detectors consist of multiple components, which are visualized in
Fig. 1. The figure illuminates four components of log anomaly detectors: preproces-
sor, log parser, log vectorizer, and classifier.

The first component, the preprocessor,’s mission is to prepare log events for sub-
sequent components. The preparations may include eliminating unnecessary infor-
mation (such as IP addresses or invalid characters), extracting features from times-
tamps and log levels, and clustering logs based on their threads or process IDs. The
preprocessor unit’s output is passed to the next component, the Log parser (Zhu
et al. 2019). The log parser identifies the log message parameters and extracts tem-
plates. Log message event types could be inferred by matching a log message with
identified templates. Depending on the vectorizer’s capabilities, which is the next
component, event parameters might be carried along with the event type. The log
vectorizer produces vectors from event types and parameters (if any). The vectors
may take the form of one-hot encoded, semantic, or template IDs, depending on
the classifier’s architecture. Then, vectors are given to the classifier, which is the
last component. The classifier’s goal is to distinguish anomalous vectors. Machine

Fig. 1 System log anomaly detector’s architecture as in Zhang et al. (2019)

 Automated Software Engineering (2022) 29:61

1 3

61 Page 6 of 28

learning algorithms are prevalent for this component, as they have shown promising
results in sequence modelling and classification.

2.2 Related works

One of the most well-known and effective anomaly detection methods is Princi-
pal Component Analysis (PCA), mentioned by Xu et al. (2009b). The method first
forms a session-event matrix, similar to the document-term matrix in Natural Lan-
guage Processing (NLP), where each cell indicates the number of occurrences of a
particular event that occurred in an individual session. Next, the matrix is passed
to an analysis of principal components. Then the anomalies are detected by distin-
guishing the session vector’s projection length in the residual space.

In another approach, Lou et al. (2010) uses the session-event matrix and mine
invariants that satisfy the majority of the sessions. Thus, anomalies occur in sessions
that lack the satisfaction of the mined invariants. While all mentioned works focus
on designing general-purpose algorithms, Yu et al. (2016) presents a method that
compares the log messages to a set of automata to calculate the workflow divergence
and is labeled as an anomaly as a result. However, it focuses on the log anomaly
detection in OpenStack’s logs specifically.

As the Deep Neural Networks have grown more mature in recent years, they have
gained popularity among log anomaly detection research. Many approaches are lev-
eraging different types of Recurrent Neural Networks (RNNs) such as Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) or Gated Recurrent
Unit (GRU) (Chung et al. 2014), while others are detecting anomalies by making
use of Convolutional Neural Networks (CNNs) (LeCun et al. 2015b).

DeepLog, as the most well-known log anomaly detection method, proposed by
Du et al. (2017), uses DNN in the classifier component. After parsing log events,
DeepLog encodes the event types and parameters into vectors. Next, the model,
which is based on LSTM, trains on data from non-anomaly execution only to predict
the next log event given previous events. After the training, the model predicts a low
probability for some events in anomaly sequences as it has trained on non-anomaly
data only.

Although the methods mentioned before accurately detect log anomalies, Zhang
et al. (2019) suggests that advances made by previous works are based on a close(d)-
world assumption where logs are static, while, in real-world applications, logs are
continuously evolving. Log evolutions are considered undoubtedly important these
days, as many companies are continuously delivering software updates to their
customers (Leppänen et al. 2015). Thus, Zhang et al. (2019) suggest LogRobust,
a novel method for log anomaly detection. LogRobust proposes a new vectoriza-
tion technique called “semantic vectorization” to approximately compensates for the
evolution of log messages. It also suggests utilizing the attention-based Bidirectional
Long Short-Term Memory (Bi-LSTM) to encounter the execution path evolutions.
Furthermore, the authors present a technique to emulate log evolutions by applying
noise.

1 3

Automated Software Engineering (2022) 29:61 Page 7 of 28 61

LogAnomaly (Meng et al. 2019) presents another novel yet practical approach
for vectorization called “template2vec” that takes synonyms and antonyms into
account, making the vectorization process more reliable. Furthermore, LogAnomaly
claims that it can detect sequential anomalies as well as quantitive ones. While every
previously mentioned deep method applies LSTM to model log sequences (predict
the next log event), LogAnomaly uses an LSTM on Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) vectors to construct a binary classifier.

On the other end of the spectrum, Lu et al. (2018) applies CNN instead of LSTM
to form a binary classifier. The research also introduces an effective embedding
method to transform one-hot encoded log events to vectors called “log-key2vec”.
This method results in efficient dimension reduction of one-hot encoded vectors.

Logsy (Nedelkoski et al. 2020) is a first paper proposing the use of Transformer
(Devlin et al. 2018). Logsy embeds log messages into a vector space so that the non-
anomaly messages congregate around the origin while anomaly messages embed
with some distance from the origin. Its contributions also include a novel loss func-
tion, which makes the learning process of embedding operation possible.

All previous deep-learning-based methods, regardless of their core components,
obeyed one of the two previously mentioned approaches. They either applied binary
classification or modeled the sequence. However, this paper presents a third option
that utilizes the Siamese network to circumvent the previously mentioned challenges
in a different matter. Harnessing the Siamese network’s power, our method proposes
a new approach to embed the log sequences into vectors, so that embedded sequence
vectors of different classes are readily separable and classifiable in the new space.

3 Proposed method

As earlier mentioned, previous deep methods either train on non-anomaly events
only or apply binary classification to detect anomalies. However, both of those
approaches are prone to deficiencies.

In the first (non-anomaly events only) approach, the model training would not
encounter log events that only occurred in an anomaly situation. For instance, in a
distributed data storage solution software, a hard drive failure event is not a regu-
lar event by any means. Furthermore, in the HDFS dataset, from the twenty-nine
total events, only nineteen of them occurred in non-anomaly situations. Not training
on a proportion of the input space may result in unexpected model behavior. Going
more in-depth, as the model has not been trained on anomaly-only events, it shows
random behavior at the time of facing those events. In the latter (binary classifica-
tion) approach, the model’s training suffers from the unbalanced dataset. Although
some solutions have been discussed for the unbalanced data problem, all of them are
accompanied by their limitations.

Throughout the rest of the section, we propose a novel approach based on the
Siamese networks due to their excellent performance in one-shot learning problems
(Chopra et al. 2005; Wang et al. 2014; Zhang et al. 2018; Bertinetto et al. 2016;
Guo et al. 2017) and their stability on unbalanced data (Sun et al. 2019). Our pro-
posed method takes advantage of both data classes without any sampling tricks or

 Automated Software Engineering (2022) 29:61

1 3

61 Page 8 of 28

weighted training. Figure 2 demonstrates the steps required to achieve anomaly
detection using the Siamese network. After acquiring the proper data, training pairs
are generated from it, the Siamese network is trained on pairs, the embedding model
is extracted from the Siamese network, the data is embedded to vectors using the
embedding model, and an arbitrarily classifier is trained using the embedded vectors.

3.1 The Siamese network

The Siamese network, illuminated in Fig. 3, was initially invented to resolve the one-
shot learning problem (Bromley et al. 1994) by forming a similarity-based embed-
ding function. It packs two neural networks with shared weights (they are indeed
the same neural networks and may be considered one; however, discriminating them
makes the Siamese network’s architecture more interpretable) and a similarity met-
ric. During the training, at first, pairs of samples are passed to the neural networks.
Next, the neural network embeds them into vectors. Then, the similarities between
the vectors are measured. Lastly, the optimization process updates the weights of the
neural networks with respect to the fact that similar pairs (same class) should hold
high similarity values for their output vectors, while it is the contrary for dissimi-
lar pairs (pair from different classes). At the end of the training process, the model
embeds the same class samples close to each other while different class samples are
embedded away from each other. In this paper, we use the Siamese network to train
a deep embedding neural network that transforms log sequences into vectors so that
embedded vectors of sequences of the same class are close to each other while being
apart from the other class.

Fig. 2 The proposed method’s step-by-step overall view

Fig. 3 The Siamese network’s architecture

1 3

Automated Software Engineering (2022) 29:61 Page 9 of 28 61

After the Siamese network converges, we extract the embedding neural network
and embed all training sequences into vectors. As the embedded vectors of different
classes are well separated, they are excellent training data for an arbitrary classifier.
So, we train a classifier to work on top of the embedding neural network to form
an anomaly detection method. During the test time, the embedding neural network
transforms the input sequences into vectors and passes them to the classifier to be
classified as non-anomaly or anomaly sequences.

Since the invention of the Siamese network, different loss function has emerged
for it. One of them is the contrastive loss function (Hadsell et al. 2006). It operates
utilizing the Euclidean distance, confirming enough space between embedded vec-
tors of different classes while keeping vectors from the same class close to each
other. However, during our experiments, we inquired about another loss function
based on the sigmoid of inner product and cross-entropy loss function (LeCun et al.
2015a), which performed better than the contrastive loss. Going more in-depth, we
use the sigmoid function on embedded sequences’ inner product to construct a simi-
larity measure. Supposing x1 and x2 are respectively the first and second embedded
vectors, the measure may be formulated as:

On top of the similarity measure, we use the cross-entropy loss function. So, the
final loss function may be formulated as:

3.2 Pair generation

As the Siamese network requires its training input to be in pairs, a proper pair gen-
eration method is required. Generated training pairs must include two types of pairs
in order to train the Siamese network. The first type is similar pairs in which the
entities are from the same class, with the training target being one. The second type
is dissimilar pairs in which the entities are from different classes, with the train-
ing target set to zero. To shed more light, assume that A is an anomaly sequence,
while N is a non-anomaly sequence. From four possible pair permutations, (A, A)
and (N, N) are considered as similar pairs, while (A, N) and (N, A) are dissimilar
ones. The following paragraphs contain two pair generation algorithms for training
the Siamese network.

sim(x1, x2) = �(x1 ⋅ x2).

J(x1, x2, y) = −(y. log (sim(x1, x2)) + (1 − y). log (1 − sim(x1, x2))).

 Automated Software Engineering (2022) 29:61

1 3

61 Page 10 of 28

Algorithm 1: Generating pairs using the All algorithm
GenerateAllPairs (D)

inputs : The dataset D, which contains sequences denoted by s and
targets denoted by t

output: Pairs generated using the All algorithm
foreach (s1, t1) ∈ D do

foreach (s2, t2) ∈ D do
if t1 == t2 then

addPair(s1, s2, 1)
if t1! = t2 then

addPair(s1, s2, 0)

The first approach, which is quite straightforward, generates every possible pair.
Going more in-depth, every sequence in the dataset pairs with all other sequences
except for itself. The pseudo-code could be seen in Algorithm 1. Although this
method is sensible and easy to implement, it is impractical for massive datasets.
Alongside the exponential growth of pairs quantity, this approach generates dramati-
cally more similar pairs than dissimilar ones. We call this approach the “All” pair
generation algorithm.

Algorithm 2: Generating pairs using the KPOne algorithm
GenerateKPOnePairs (N,P,K)

inputs : The data subsets N and P , which subsequently contain negative
(non-anomaly) and positive (anomaly) sequences. The constant
K where K ∈ N and is the proportion of dissimilar to similar
pairs.

output: Pairs generated using the KPOne algorithm
foreach n ∈ N do

sn = sampleSet(N);
addPair(n, sn, 1);
for 0 to K do

sp = sampleSet(P);
addPair(n, sp, 0);

foreach p ∈ P do
sp = sampleSet(P);
addPair(p, sp, 1);
for 0 to K do

sn = sampleSet(N);
addPair(p, sn, 0);

The second approach focuses on training efficiency. In this approach, which is
inspired by Mikolov et al. (2013), for each sequence within the dataset, we sample

1 3

Automated Software Engineering (2022) 29:61 Page 11 of 28 61

one sequence from the same class and K sequences from the different class, gener-
ating K + 1 pairs for each sequence. In other words, this approach samples a sub-
set of all pairs instead of generating them all. The pseudo-code is observable in
Algorithm 2. This method reduces training time and computational cost, making it
feasible for training the Siamese network. We name this approach the "K Plus One
(KPOne)" pair generation algorithm. As the K value increases, so does the computa-
tional effort. We noticed improvements in our experiments while increasing K until
K = 3.

The number of samples generated in each epoch, and the computational cost
accordingly, may vary significantly based on the choice of the pair generation algo-
rithm. Assuming that nn and na are subsequently the number of non-anomaly and
anomaly samples within a dataset. The number of pairs generated by the All algo-
rithm is

, while the number of generated pairs for the KPOne algorithm is

when K is the dissimilar samples count. It is blindingly obvious that for large num-
bers of na and nn , the value of NKPOne is dramatically smaller than Nall . So, the com-
putational cost of the All pair generation algorithm is larger than the KPOne.

4 Data and Performance measures

This section explains the datasets, preprocessing steps, and evaluation metric in our
experiments.

4.1 Datasets

As we strive to assess the authenticity of the proposed method, we evaluate our
method on multiple publicly available datasets. We chose HDDS, BGL, and Hadoop
datasets as they possess labels for anomalous log events. In what comes next, the

NAll = n2
a
+ n2

n
+ 2nann − na − nn

NKPOne = Kna + Knn + na + nn

Table 1 The explanation of the datasets used for SiaLog experiments

Dataset Name Samples Sequence creation method

Anomaly Non-anomaly

HDFS Xu et al. (2009a) 16838 558223 block_id

Hadoop Lin et al. (2016) 3328 78829 Log file
BGL Oliner and Stearley (2007) 7632 72257 Label locality

 Automated Software Engineering (2022) 29:61

1 3

61 Page 12 of 28

datasets, which are provided by He et al. (2020), are explained, while Table 1 sum-
marizes all informations.

HDFS: Hadoop Distributed File System (HDFS) is a distributed file system that
is significantly fault-tolerant and low-cost to deploy. The dataset was first introduced
by Xu et al. (2009a) and later considered a benchmark in log anomaly detection
domain. It is produced by running map-reduce tasks on more than 200 Amazon’s
EC2 nodes and labelled via Hadoop domain experts. The sequences are created
based on the block ID of each log message. After the preprocessing, we encountered
16838 anomaly and 558223 non-anomaly samples.

Hadoop: Hadoop is a big data processing framework allowing distributed pro-
cessing of extensive data. The dataset, launched by Lin et al. (2016), contains a five-
machine Hadoop cluster log, each having an Intel(R) Core(TM) i7-3770 CPU and
16GB of RAM. The logs are generated by running two separate applications, Word
Count, which counts the number of words in the input, and Page Rank, an algorithm
used by search engines. The anomalies in the dataset are machine down, network
disconnection, and disk full. However, we merge these three types of anomaly into
one. Furthermore, as some sequences in the dataset are too long, we produced subse-
quences from them using a sliding window(window size of 100). The outcome was
comprised of 78829 anomaly samples and 3328 non-anomaly samples after the pre-
processing. As the number of anomaly samples was more than non-anomaly ones,
as anomalies are a combination of multiple anomaly classes, we invert the dataset’s
target variable (changing anomalies to non-anomalies and vice versa) to preserve the
anomaly detection task’s nature.

BGL: The dataset, produced by Oliner and Stearley (2007), is collected from a
BlueGene/L supercomputer at Lawrence Livermore National Labs (LLNL) in Liv-
ermore, California, with 131,072 CPUs and 32,768GB of RAM. The sequence crea-
tion process was based on the label locality of log events. Furthermore, as some
sequences became too long, we generated subsequences utilizing a sliding window
(windows size of 300 and stride of 50) from them. We ended up with 7632 anomaly
and 72257 non-anomaly samples.

4.2 Preprocessing

As previously mentioned, experiments use HDFS, BGL, and Hadoop log datasets.
As our research focuses on classification, we prepare a vectorized variant for each
dataset. For the HDFS, we use a vectorized dataset provided by He et al. (2020),
while for BGL and Hadoop, we parse the data using the Drain algorithm (He et al.
2017), as it performs better according to Zhu et al. (2019).

Although the datasets are preprocessed, parsed, vectorized, and ready for clas-
sification, we discovered many redundant sequences, especially in the HDFS data-
set. Redundancy not only raises the required processing power for training but also
compromises the authenticity of the evaluation as some test samples may appear
in the training set. So, our first and only step of pretraining is to remove redundant
sequences. After removing the redundant sequences, the HDFS dataset contained
4,124 unique anomaly and 14,259 unique non-anomaly sequences, while the number

1 3

Automated Software Engineering (2022) 29:61 Page 13 of 28 61

of non-anomaly and anomaly samples are 350 and 22,262 consequently in the BGL
dataset. Furthermore, the Hadoop dataset contained 3,328 anomaly and 78,829 non-
anomaly samples after removing redundancies.

4.3 Data splitting

We split each dataset into train and test sets (90% for training and 10% for testing)
using simple random sampling technique, mentioned by Reitermanova et al. (2010).
The trainset is used to train the Siamese network and classifiers, while the test set is
used exclusively for evaluation. However, before training the Siamese network, we
take a small portion of the training data (equal to 3% of all data) and use it as the
validation set. Then we start training the Siamese network utilizing a pair-generation
algorithm. The validation set’s purpose is to find the most suitable neural network
architecture and hyper-parameters and control the embedding function and classi-
fier overfitting. After founding proper architecture and hyper-parameters, the valida-
tion set serves no purpose. Thus, it is merged into the training set for retraining the
neural network. Figure 4 illuminates an overview of data splitting and experiments
processes, presenting an overall view of the whole process.

4.4 Performance measure

The nature of the anomaly detection task is unbalanced, meaning that there are sig-
nificantly more negative samples in comparison to positive ones. In such circum-
stances, the binary classification accuracy is not a valid metric for measuring per-
formance. So, we use another metric called “ F1 score” to measure and compare
performance. Suppose TP, TN, FP, and FN are respectively true positives, true neg-
atives, false positives, and false negatives. The “precision” metric formulated as

Fig. 4 Overall view of data splitting and experiments

 Automated Software Engineering (2022) 29:61

1 3

61 Page 14 of 28

shows the accuracy of the model’s positive prediction. On the other hand, the
“recall” metric demonstrates the model’s reliability in predicting all positive sam-
ples and formulates as

Finally, the F1 score is the harmonic mean of precision and recall simplified to

However, we multiply F1 scores by one hundred to expose more details in the results.

5 Experiments, results, and comparisons

This section focuses on spotting a proper architecture for embedding neural net-
works, validating different pair generation algorithms, analysing different classifiers,
comparing our method to other state-of-the-art methods, and introducing low-cost
and hybrid models.

5.1 Embedding neural network’s architecture

Motivation: As the heart of our method is the embedding neural network trained
inside the Siamese network, we want the embedding neural network to perform at
its best. Spotting an optimal architecture and hyper-parameters is a challenging

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2 ⋅
precision ⋅ recall

precision + recall

Table 2 The embedding neural network’s architecture found by the Hyperband algorithm the HDFS
dataset, described layer by layer

Property 1
st

2
nd

3
rd

4
th

5
th

6
th

7
th

Layer type Embedding Bi-LSTM Bi-LSTM LSTM Dense Dense Dense
Output units 32 128 128 64 128 640 128
Activation N.A Tanh Tanh Tanh ReLU ReLU Linear

Table 3 The embedding neural
network’s architecture found by
the Hyperband algorithm for the
BGL dataset, described layer
by layer

Property 1
st

2
nd

3
rd

4
th

5
th

Layer type Embedding LSTM Dense Dense Dense
Output units 128 128 128 128 128
Activation N.A Tanh ReLU ReLU Linear

1 3

Automated Software Engineering (2022) 29:61 Page 15 of 28 61

step in deep learning projects. So, our goal is to spot a suitable architecture and
hyper-parameters.

Method: Multiple algorithms, such as Grid Search, Random Search, Bayesian
Optimization, and Evolutionary Optimization, have been proposed to tune neural
network architecture and hyper-parameters. However, we choose the Hyperband
algorithm (Li et al. 2017) for its performance and computational efficiency to attain
a solid architecture along with its hyper-parameters. The Hyperband algorithm was
executed three times (to avoid local optima) with default parameters on all available
pairs in the training set to minimise the Siamese loss on the validation set. In other
words, Hyperband used the training set to train multiple different architectures and
the validation set to compare the architectures to find the best performance.

Findings: Tables 2, 3, and 4 contain details of embedding neural networks
architectures and hyper-parameters found by the Hyperband algorithm. Tables 2
shows that multiple layers of LSTMs are required to achieve decent results on the
HDFS dataset. On the other hand, Table 4 show the model performs better using
GRU layers on Hadoop. Moreover, Table 3 reveals that only one LSTM layer is
enough for the BGL Datasets, as anomalies in that dataset is more reliant on indi-
vidual events rather than entire sequences.

5.2 Pair generation algorithms comparison

Motivation As discussed before, generating pairs using the All pair generation
algorithm is computationally expensive. Therefore, we proposed an algorithm for

Table 4 The embedding neural
network’s architecture found by
the Hyperband algorithm the
Hadoop dataset, described layer
by layer

Property 1
st

2
nd

3
rd

4
th

5
th

6
th

Layer type Embedding GRU Dense Dense Dense Dense
Output units 64 64 64 64 64 64
Activation N.A Tanh SiLU SiLU SiLU Linear

Table 5 The results shows the performance of the Siamese network on different datasets using different
pair generation algorithms

Dataset Algorithm Loss Pairs k value Reduction factor

Train Test

HDFS All ∼0.00 0.002 211,231,337 3 3,302
KPOne 0.01 0.03 63,968

BGL All 0.004 0.005 503,488,232 3 5,566
KPOne 0.005 0.013 90,448

Hadoop All ∼0.00 ∼0.00 6,487,347,580 10 7,178
KPOne 0.015 0.016 903,727

 Automated Software Engineering (2022) 29:61

1 3

61 Page 16 of 28

generating pairs to reduce the computational cost. In this experiment, we aim to
compare the two pair generation algorithms.

Method We trained two models for each dataset with the same architecture found
in the previous experiment, using pairs generated with the All and KPOne pair
generation algorithms. Furthermore, we tried different values of K in the KPOne
algorithm and found out that k = 3 works the best for the HDFS and BGL datasets
while k = 10 performed better for Hadoop. After the training, we compare the Sia-
mese network’s loss value and the classifiers’ accuracy across the models. It must
be stated that the test loss value is calculated after the hyper-parameter optimization
process in the previous section. In fact, the Hyperband algorithm neither trained nor
optimized based on any pairs containing any sequence from the test set.

Findings Table 5 shows that the All pair generation algorithm results in smaller
loss values for the Siamese network. However, the difference in the number of gen-
erated pairs is significant. Furthermore, Table 6 (in the next subsection) demon-
strates that the classification result differences are negligible. All in all, considering
the computational cost, the All algorithm might not fit into as many cases.

5.3 Classifiers comparison

Motivation: A classifier is needed to classify the embedded sequences after training
the embedding neural network within the Siamese network. In this experiment, we
aim to evaluate several classifiers for this purpose.

Method: We choose Logistic Regression (LR), Support Vector Machine (SVM),
K Nearest Neighbours (KNN), and multi-layer neural networks as candidate clas-
sifiers, as we found them more popular compared to other classifiers. The neural
networks classifier consists of two layers. The first one is activated using the Recti-
fier Linear Unit (ReLU), while the second layer (output layer) leverages the sigmoid
activation function for binary classification. At first, we embed all train sequences

Table 6 The accuracy
comparison between different
classifiers and embedding
SiaLog (NN) trained using
different pair generation
algorithm. The first model
is trained using the All pair
generation algorithm while the
second one is trained using the
KPOne

Dataset Classifier F
1
 Score

All algorithm KPOne algorithm

HDFS SiaLog (KNN) 99.39 99.39
SiaLog (SVM) 99.57 99.51
SiaLog (NN) 99.62 99.51
SiaLog (LR) 99.39 99.39

BGL SiaLog (KNN) 98.11 98.00
SiaLog (SVM) 96.89 96.47
SiaLog (NN) 96.89 95.76
SiaLog (LR) 99.47 99.31

Hadoop SiaLog (KNN) 94.69 93.44
SiaLog (SVM) 95.01 94.23
SiaLog (NN) 95.82 94.21
SiaLog (LR) 94.69 93.17

1 3

Automated Software Engineering (2022) 29:61 Page 17 of 28 61

into vectors. Then, train the classifiers on the embedded sequences. During the test
time, each sequence is embedded using the embedding neural network and passed to
the classifier for prediction.

Findings: As Table 6 exposes the results, all classifiers achieve outstanding
results. SiaLog achieved F1 scores between 99.39 to 99.62 on the HDFS, 95.76 to
99.47 on BGL, and 93.17 to 95.82 on Hadoop with four different classifiers. Fur-
thermore, we found the difference between the All and KPOne pair generation
algorithms is negligible. Achieving accurate and consistent results among different
classifiers bears witness to the fact that the embedding neural network is working
precisely and as expected. For each dataset, we choose the classifier with the best
results as SiaLog for upcoming experiments.

5.4 Comparison to state‑of‑the‑art methods

Motivation: This section compares the Best performers from the previous subsec-
tion against state-of-the-art deep log anomaly detection approaches.

Method: We bring SiaLog results from the previous experiment and select Dee-
pLog (Du et al. 2017), LogRobust (Zhang et al. 2019), LogAnomaly (Meng et al.
2019), and CNNLog (Lu et al. 2018) as competitors. We also train a neural network
with the same architecture as combining the embedding and classifier neural net-
works into a single unit. This neural network, mentioned as the Feedforward model,
allows us to investigate if utilizing the Siamese network yields any benefit.

All competitor methods are reimplemented in our environment. However, we
replaced custom parsers and vectorizers in compatitors with the standard parser
and vectorizer. In particular, LogAnomaly and LogRobust use a novel vectorizer
approach alongside a custom parsing method. On the other hand, our approach and

Table 7 The comparison of
SiaLog and other state-of-the-art
deep methods

* Custom parsers and vectorizers of LogRobust and LogAnomaly
are replaced with standard parsers

Dataset Method Precision Recall F1 Score

HDFS DeepLog 0.90 0.81 0.85
LogRobust∗ 0.97 0.98 0.98

LogAnomaly∗ 0.89 0.81 0.85
CNNLog 0.99 0.97 0.98
SiaLog 0.99 0.99 0.99
Feedforward model 0.89 0.95 0.97

BGL LogRobust∗ 0.87 0.9 0.88
CNNLog 0.93 0.97 0.95
SiaLog 0.98 1.00 0.99
Feedforward model 0.98 0.98 0.98

Hadoop LogRobust∗ 0.82 0.99 0.90
CNNLog 0.99 0.85 0.92
SiaLog 0.93 0.94 0.94
Feedforward model 0.90 0.91 0.91

 Automated Software Engineering (2022) 29:61

1 3

61 Page 18 of 28

environment uses standard parser and vectorizer. So, we evaluated them by replac-
ing their parsers and vectorizers with standard components of our test environment
while keeping their deep neural network architecture.

Findings: Table 7 shows that our SiaLog outperform all previous methods and its
Feedforward rival. We see that, in the HDFS dataset, SiaLog has the F1 score of 0.99
followed by LogRobust and CNNLog with the F1 score of 0.98, the Feedforward
model (F1 score 0.97), and eventually DeepLog and LogAnomaly with the F1 score
of 0.95. Nevertheless, to the best of our knowledge, SiaLog achieves the best results
ever on the HDFS dataset when redundant sequences have been removed. For the
BGL dataset, SiaLog, with the F1 score of 0.99, outperforms other approaches fol-
lowed by the Feedforward model, CNNLog, and LogRobust, F1 scores of 0.98, 0.95,
and 0.88 respectively. Furthermore, it was the same story for the Hadoop datasets.
However, since the dataset is more complicated compared to BGL, due to longer
sequences and larger number of event types, most methods performed less accu-
rately compared to BGL and HDFS. In this dataset, SiaLog performed the best at the
F1 score of 0.94, followed by the CNNLog, Feedforward model and LogRobust, F1
scores of 0.92, 0.91, and 0.90. All in all, SiaLog outperformed both their Feedfor-
ward rivals and the state-of-the-art methods in all evaluations.

5.5 SiaLog low‑cost

Motivation: In previous experiments, we found an architecture offering the state of
the art performance for anomaly detection in the HDFS, BGL, and Hadoop datasets.
However, training a model with architectures found by Hyperband is expensive for
the HDFS dataset and was done in an HPC environment. In this experiment, we
endeavour to handcraft a new architecture that is less taxing to train. After all, the
software industry might not have the possibility or time to train models in an HPC
environment. Furthermore, experiments, development, and utilization are cheaper
and faster for the low-cost model. Finally, as the low-cost model is computationally
less demanding, it is economical, fast, and scalable at the production time. However,
despite all benefits, the low-cost model sacrifices accuracy to achieve the aforemen-
tioned goals.

Method: With the goal to find a suitable architecture, we first handcraft differ-
ent architectures that are significantly less expensive to train than the architecture
found by the Hyperband. Later, we train all models and choose the best architecture
according to the F1 scores. Alongside the F1 score, we record two different metrics

Table 8 The handcrafted embedding neural network’s architecture found by cross-validation between ten
different candidate models for SiaLog Low-cost

Property 1
st

2
nd

3
rd

4
th

5
th

Layer type Embedding Bi-LSTM Dense Dense Dense
Output units 24 64 (32 × 2) 64 64 64
Activation N.A Tanh Leaky ReLU Leaky ReLU Linear

1 3

Automated Software Engineering (2022) 29:61 Page 19 of 28 61

for both models. The first metric is the number of floating-point operations (FLOPS)
for one forward pass of the neural network. FLOPS is an implicit indication of com-
putational cost during both development and production. Additionally, we calculate
the number of parameters for each model. The number of parameters specifies the
memory amount required to store and load the model and explicitly affects the train-
ing speed. Finally, we compare training time in a typical deep learning machine’s
hardware (a fourteen-cores Intel Xeon CPU paired up with two Nvidia Tesla P100
GPUs).

Findings: Table 8 demonstrates the chosen handcrafted architecture for the
HDFS dataset while Table 9 compares the Best Performer model and low-cost
model in computational cost, model size, and accuracy. The comparison sheds light
on the fact that despite being computationally more affordable, three times less
floating-point operation, 30 times fewer parameters, and reducing the training time
by the factor of 13, the low-cost architecture does not considerably compromise the
F1 score, from 99.62 to 98.78. For example, the low-cost model could be retrained
overnight with typical hardware while it is not possible for the best performer in
typical hardware. The low computational cost makes the low-cost model suitable for
environments where logs evolve rapidly, but less accuracy is tolerated.

Note: Accordingly, the architecture found by Hyperband was cheap enough
for the BGL and Hadoop datasets. Thus, neither Hadoop nor BGL datasets were
involved in this experiment, and this experiment is for HDFS only.

Table 9 The table is the comparison of low-cost architecture with the architecture found by Hyperband.
FLOPS column indicates the amount of floating-point operations required for the embedding neural
network to transform a sequence into a vector. Moreover, the Parameters column reveals the number of
trainable parameters in each architecture. Furthermore, the required training time for each architecture is
mentioned in the Training time column

Architecture F
1
 Score FLOPS Parameters Training time

SiaLog 99.62 222K 805K 150h 42min
SiaLog Low-cost 98.78 71K 27K 11h 17min

Fig. 5 The modified Siamese network’s architecture for end-to-end training

 Automated Software Engineering (2022) 29:61

1 3

61 Page 20 of 28

5.6 SiaLog hybrid ‑ combining the siamese and feedforward networks

Motivation: As previous experiments indicate, neural networks have been one of
the well-performing classifiers in all datasets. Since the embedding function and the
classifier could be neural networks, we strive to train them together, making end-to-
end training possible. The end-to-end architecture may reduce design and engineer-
ing efforts as the classifier and embedding neural networks train simultaneously.

Method: Before training, we place the classifier network after the last component
of the embedding neural network in the Siamese network. Therefore, the modified
Siamese network is going to have two outputs. The first one is the similarity indi-
cator, while the second one is the predicted label for the first entry of the Siamese
network. Therefore, the modified Siamese network’s loss is the cumulative loss of
the Siamese network and cross-entropy classification. Figure 5 visualizes the archi-
tecture the modified Siamese network. Furthermore, to analyze the impact of the
Siamese network on the accuracy, we compare the Hybrid model with the Best per-
former and Feedforward model mentioned in 5.4.

Findings: Table 10 confirms that the Hybrid model performs better than the
Feedforward model and is almost on par with the Best performer.

6 Practical advantages

This section notes some practical advantages that become possible with the Siamese
network. The first two advantages are related to log evolution, while the last one is
related to visualization.

6.1 Robustness

Motivation: Software logs are continually evolving due to execution environ-
ments variations or developers’ updates (Zhang et al. 2019). As training deep
models is dramatically power consuming, it is not feasible to train the model for

Table 10 The comparison
of end-to-end training model
(training classifier alongside
the embedding neural network)
with the best performer and
feedforward model

Dataset Model Precision Recall F
1
 Score

HDFS SiaLog Hybrid 0.99 0.98 0.99
SiaLog 0.99 0.99 0.99
Feedforward model 0.99 0.95 0.97

BGL SiaLog Hybrid 0.98 0.99 0.99
SiaLog 0.98 1.00 0.99
Feedforward model 0.98 0.98 0.98

Hadoop SiaLog Hybrid 0.92 0.93 0.93
SiaLog 0.93 0.94 0.94
Feedforward model 0.90 0.91 0.91

1 3

Automated Software Engineering (2022) 29:61 Page 21 of 28 61

every minor software update or modification in execution environments. Accord-
ingly, Zhang et al. (2019) introduces three methods for emulating log evolution
synthetically by adding noise to log sequences. It is not rational to train models
on synthetically generated data. However, synthetically generated data may help
in evaluating and analyzing model performance on evolved logs.

Method: In this experiment, we apply the three methods of adding noise to
log sequences (Zhang et al. 2019) to imitate log sequence evolutions. The meth-
ods comprise of duplicating, removing, and shuffling one or multiple element(s)
within a sequence. Since generating a noisy dataset is a random process, we per-
formed each test five times and calculated the results’ averages.

Findings: Table 11 shows the classifiers’ evaluation of synthetically evolved
log sequences with different noise ratios. Harnessing the power of the Siamese
network, classifiers maintained their accuracy formidably despite the evolutions.
In the HDFS dataset, the F1 score dropped from 0.99 to 0.92 in all classifiers
when moving from the noise ratio of 0% to 30%, while in previous works, as
show in Table 11, the F1 score dropped from 0.98 to 0.84. Furthermore, in the
Hadoop dataset, the F1 score dropped from 0.94 to 0.84 in our method, while
the accuracy loss was from 0.90 to 0.77 for previous work (LogRobust). This
experiment shows our method’s robustness appears to be stronger than previous
works in the HDFS and Hadoop datasets.

Note: As the BGL is an event-based dataset, the F1 score did not alter at all
with any noise ratio, as noising methods were targeting sequences, not events.

Table 11 The evaluation results
of different classifiers on
synthetically evolved datasets.
The noise ration indicates the
ratio of the test set samples
that are affected by synthetic
log evolutions. Furthermore,
all numbers are multiplied by
one hundred to expose more
information

Dataset Method F
1
 Score / Noise Ratio

0% 5% 10% 20% 30%

HDFS SiaLog (KNN) 99.39 97.97 97.07 95.30 92.77
SiaLog (SVM) 99.51 97.92 97.11 95.16 92.68
SiaLog (NN) 99.51 97.92 97.11 95.16 92.68
SiaLog (LR) 99.39 98.02 97.11 95.43 93.07
LogRobust 98.20 95.93 93.83 88.74 84.83

BGL SiaLog (KNN) 98.00 98.00 98.00 98.00 98.00
SiaLog (SVM) 96.47 96.47 96.47 96.47 96.47
SiaLog (NN) 95.76 95.76 95.76 95.76 95.76
SiaLog (LR) 95.35 95.35 95.35 95.35 95.35
LogRobust 95.35 95.35 95.35 95.35 95.35

Hadoop SiaLog (KNN) 93.44 93.28 91.88 88.64 85.20
SiaLog (SVM) 94.23 93.24 91.99 88.82 84.01
SiaLog (NN) 94.21 93.65 92.27 89.09 84.75
SiaLog (LR) 93.17 93.56 92.15 89.05 85.23
LogRobust 90.17 88.16 86.13 81.36 77.42

 Automated Software Engineering (2022) 29:61

1 3

61 Page 22 of 28

6.2 Unsupervised log evolution monitoring

Motivation: In the previous experiment, we confirmed that the proposed model
is considerably robust to log sequence evolution. However, if log sequences pro-
ceed to evolve, the retraining process is inevitable. Since the retraining process
is computationally expensive and time-consuming, we strive to find a solution to
avoid unnecessary retraining. More in-depth, we seek a numeral value to present
the trained model’s reliability on evolved sequences. Although the F1 score accu-
racy is the best measurement for this affair, we do not possess the sequence labels
in the production time as the incoming data is entirely new. Hence, we require a
new metric that indicates reliability without any labelling requirement.

Method: Since the embedding neural network transforms sequences into vec-
tors, we may exploit embedded vectors’ distribution to monitor log sequences’
evolution. Thus, we introduce the fitness score as the indication of evolutions in
log sequences. At first, the training sequences are embedded into vectors using
the embedding neural network and modelled by a Gaussian mixture. Accordingly,
the fitness score is computed as the average log-likelihood of embedded vectors
of evolved sequences. The more the log sequences evolve, the lower the fitness
value will be. Possessing such a metric, we may define a threshold and avoid the
retraining process for trivial evolutions in production. Moreover, we may retrain
the model as soon as the fitness score surpassed the threshold number. Need-
less to say, the threshold number might vary from task to task or even dataset to
dataset.

Findings: We used the previously mentioned methods to imitate log evo-
lutions and recorded the fitness score as the evolutions increased. Figure 6

Fig. 6 The purge in fitness score as the noise ratio increase. It should be noted that positive scores are
due to computing scores using probability density function

1 3

Automated Software Engineering (2022) 29:61 Page 23 of 28 61

visualizes the purge in fitness score as the evolutions grow. The purge might be
an indication of the fitness score’s reliability.

Note1: As the BGL is an event-based dataset, the fitness score did not alter
dramatically with any noise ratio, as noising methods were targeting sequences,
not events.

Note2: The fitness scores of the HDFS and Hadoop datasets range were dif-
ferent from each other. However, we scale their range to fit into a single plot.

Fig. 7 The visualization of embedded sequences for different datasets. The dimension reduction hap-
pened using PCA, UMAP, and T-SNE algorithms. The blue dots represent normal sequences while the
red dots represent anomalous sequences

 Automated Software Engineering (2022) 29:61

1 3

61 Page 24 of 28

6.3 Sequence visualization

Motivation: We have proposed multiple methods of evaluating the authenticity and
reliability of the embedding neural network and model in previous experiments.
However, human supervision for AI systems can bring brighter insights. One of the
best solutions to human supervision is visualization. Furthermore, the visualization
(of the embedding neural network’s output in our case) gives humans the ability to
supervise the embedding neural network’s output and allows manual analysis.

Method: As the trained embedding network allows us to transform log sequences
into vectors, we can use dimension reduction algorithms such as T-SNE (Maaten
and Hinton 2008), UMAP (McInnes et al. 2018), and PCA (Abdi and Williams
2010) to reduce embedded sequences dimensions so they become visualizable and
perceptible for humans. Accordingly, we embed all sequences from the train and test
sets to vectors, reduce their dimensions, and plot the results on a canvas.

Findings: Figure 7 visualizes the embedded sequences using different dimension
reduction methods on different datasets. The embedded non-anomaly sequences are
coloured as blue, while the anomaly ones are coloured as red. The figure demon-
strates that embedded sequences of different classes (non-anomaly/anomaly) are
readily separable regardless of the dimension reduction algorithm. This fact might
explain the high accuracy among all the classifiers.

7 Threats to validity

Though SiaLog outperformers almost every other method of software log anomaly
detection task in various public open datasets, we believe there are a couple of limi-
tations that come with it. Regarding technical limitations, the first important limita-
tion is the computational cost. Since SiaLog trains a Siamese Network internally and
all samples are trained in pairs, it comes with a hefty computational cost. Addition-
ally, SiaLog uses RNN layers (LSTM and GRU) within the embedding neural net-
work, making training longer as it reduces the ability to train the embedding neural
network in parallel.

Second, the lack of advanced mechanisms in the embedding function, such as
residual layers and attention, makes SiaLog more vulnerable to noise. Utilizing
advanced layers and mechanisms could resolve this issue. However, the computa-
tional cost will further increase. Moreover, SiaLog demands lots of labeled datasets.
Although all previous methods require labeled data somehow, SiaLog requires a fair
share of anomaly data to produce a sufficient amount of pairs to train the Siamese
Network, which we consider a limitation.

Third, the last technical limitation is the development complexity. As SiaLog is
composed of multiple components and training the Siamese Network is more com-
plicated than a regular deep neural network or a classic machine learning model, we
found the implementation of our method more complex compared to the previous
methods.

Regarding internal validity, We believe our work scores high since we tested our
approach in multiple scenarios, including various datasets, model capabilities, and

1 3

Automated Software Engineering (2022) 29:61 Page 25 of 28 61

noisy environments. Achieving consistent scores in different scenarios bears witness
to the fact that our proposed method works as expected and results in more accurate
software log anomaly detection. We also offer replication package though which our
internal validity can be further scrutinized2.

Regarding external validity, we think it could be higher as we did not have access
to any suitable industrial dataset. This makes it hard to argue how our approach
would work in industrial context. On the other hand, the purpose of this work was to
present novel approach to anomaly detection and its initial validation. Future studies
are needed to investigate the benefits and drawbacks of SiaLog or similar Siamese
architectures in software log anomaly detection.

8 Future works

Although we introduced various benefits for SiaLog alongside anomaly detection,
interesting future investigations remained. Future works may apply different side
applications such as Root Cause Analysis by applying the Siamese network. On
the other hand, More computationally cost-efficient neural networks such as CNNs
might be applied inside the Siamese neural network to further reduce the compu-
tational cost in future studies. Furthermore, we think utilizing and benchmarking
custom log parsers or even pair generation algorithm are also fruitful areas for future
researches as well.

9 Conclusion

This paper proposed a novel approach to detect anomalies in software execution
logs using the Siamese network structure combined with LSTM and GRU layers.
We compared the results to the state-of-the-art deep-learning-based methods on the
HDFS, BGL, and Hadoop log dataset for anomaly detection and showed that the
proposed method achieves the best results on the aforenamed dataset. Furthermore,
we conclude that the ability to achieve state-of-the-art performance is due to the Sia-
mese network as the Feedforward neural network with the same architecture offered
a considerably lower F1-score (0.996 vs 0.973). Furthermore, we proposed a novel
algorithm to generate pairs to train the Siamese network. The algorithm reduces the
training process’s computational cost while maintaining accuracy. We also showed
that the Siamese network achieves satisfactory results with smaller and computa-
tionally cheaper neural networks as well.

Moreover, we introduced multiple practical advantages of the Siamese network.
We assess the robustness of our model to log evolutions. Additionally, we intro-
duced an unsupervised method for log evolution measurement. Finally, we visualize
the embedding function’s output vectors using dimension reduction algorithms to
make the neural network’s output more perceptible.

2 Replication package at https:// github. com/ M3SOu lu/ SiaLo gRepl icati onPac kage.

https://github.com/M3SOulu/SiaLogReplicationPackage.

 Automated Software Engineering (2022) 29:61

1 3

61 Page 26 of 28

It is worth mentioning that the improvements made by SiaLog are not the most
significant in this domain. However, it could be argued that room for improvements
in the available datasets was small. On the other hand, SiaLog’s practical advantages
are, to the best of our knowledge and by the time of writing this paper, not offered
by any counterpart method or technique. This bears witness to the fact that SiaLog
could be a rational consideration for pragmatic software log anomaly detection.

Acknowledgements This work has been supported by the Academy of Finland (grant IDs 298020 and
328058). Additionally, the authors gratefully acknowledge CSC - IT Center for Science, Finland, for their
generous computational resources.

Funding Open Access funding provided by University of Oulu including Oulu University Hospital.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Abdi, Hervé, Williams, Lynne J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat.
2(4), 433–459 (2010)

Ahrabian, Kian, BabaAli, Bagher: Usage of autoencoders and siamese networks for online handwritten
signature verification. Neural Comput. Appl. 31(12), 9321–9334 (2019)

Alhersh, T., Stuckenschmidt, H.: On the combination of imu and optical flow for action recognition. In:
2019 IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pages 17–21. IEEE, (2019)

Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate.
arXiv preprintarXiv:1409.0473, (2014)

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., Torr, P. H.: Fully-convolutional siamese net-
works for object tracking. In: European conference on computer vision, pages 850–865. Springer,
(2016)

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese”
time delay neural network. In: Advances in neural information processing systems, pages 737–744,
(1994)

Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey. arXiv pre-
printarXiv:1901.03407, (2019)

Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face
verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), volume 1, pages 539–546. IEEE, (2005)

Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprintarXiv:1412.3555, (2014)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprintarXiv:1810.04805, (2018)

Dey, S., Dutta, A., Toledo, J. I., Ghosh, S. K., Lladós, J., Pal, U.: Signet: Convolutional siamese network
for writer independent offline signature verification. arXiv preprintarXiv:1707.02131, (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Automated Software Engineering (2022) 29:61 Page 27 of 28 61

Du, ., Li, F., Zheng, G., Srikumar, V.: Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1285–1298, (2017)

Esteves, Geanderson, Figueiredo, Eduardo, Veloso, Adriano, Viggiato, Markos, Ziviani, Nivio: Under-
standing machine learning software defect predictions. Autom. Softw. Eng. 27(3), 369–392 (2020).
https:// doi. org/ 10. 1007/ s10515- 020- 00277-4. (ISSN 1573-7535)

Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for
visual object tracking. In: The IEEE International Conference on Computer Vision (ICCV), (2017)

Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol-
ume 2, pages 1735–1742. IEEE, (2006)

He, P., Zhu, J., Zheng, Z., Lyu, M. R.: Drain: An online log parsing approach with fixed depth tree. In:
2017 IEEE International Conference on Web Services (ICWS), pages 33–40, (2017). https:// doi.
org/ 10. 1109/ ICWS. 2017. 13

He, S., Zhu, J., He, P., Lyu, M. R.: Loghub: A large collection of system log datasets towards auto-
mated log analytics, (2020)

Hochreiter, Sepp, Schmidhuber, Jürgen.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M. J.: Towards understanding action recognition. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV), (2013)

LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey: Deep learning. Nature 521(7553), 436–444 (2015)
LeCun, Yann et al.: Lenet-5, convolutional neural networks. 20 (5):14, (2015b), http:// yann. lecun.

com/ exdb/ lenet
Leppänen, Marko Mäkinen., Simo, Pagels, Max, Eloranta, Veli-Pekka, Itkonen, Juha, Mäntylä.: Mika

V, Männistö, Tomi: The highways and country roads to continuous deployment. IEEE Software
32(2), 64–72 (2015)

Li, Lisha, Jamieson, Kevin, DeSalvo, Giulia, Rostamizadeh, Afshin, Talwalkar, Ameet: Hyperband: a
novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–
6816 (2017)

Lin, Q., Zhang, H., Lou, J., Zhang, Y., Chen, X.: Log clustering based problem identification for
online service systems. In: 2016 IEEE/ACM 38th International Conference on Software Engi-
neering Companion (ICSE-C), pages 102–111, (2016)

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A. C.: Ssd: Single shot
multibox detector. In: European conference on computer vision, pages 21–37. Springer, (2016)

Lou, J.-G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system problem
detection. In: USENIX Annual Technical Conference, pages 1–14, (2010)

Lu, S., Wei, X., Li, Y., Wang, L.: Detecting anomaly in big data system logs using convolutional neu-
ral network. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing,
16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/Cyber-
SciTech), pages 151–158. IEEE, (2018)

McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for
dimension reduction. arXiv preprintarXiv:1802.03426, (2018)

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S., Sun, P., et al.:
Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured
logs. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, vol-
ume 7, pages 4739–4745, (2019)

Mikolov,Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, Dean, Jeff: Distributed representa-
tions of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Well-
ing, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 3111–3119. Curran Associates, Inc., (2013). http:// papers. nips. cc/ paper/ 5021-
distr ibuted- repre senta tions- of- words- and- phras es- and- their- compo sitio nality. pdf

Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., Kao, O.: Self-attentive classification-based
anomaly detection in unstructured logs. arXiv preprintarXiv:2008.09340, (2020)

Oliner, A., Stearley, J.: What supercomputers say: A study of five system logs. In: 37th Annual IEEE/
IFIP International Conference on Dependable Systems and Networks (DSN’07), pages 575–584,
(2007). https:// doi. org/ 10. 1109/ DSN. 2007. 103

https://doi.org/10.1007/s10515-020-00277-4
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICWS.2017.13
http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1109/DSN.2007.103

 Automated Software Engineering (2022) 29:61

1 3

61 Page 28 of 28

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (2016)

Reitermanova, Zuzana, et al.: Data splitting. WDS 10, 31–36 (2010)
Sun, D., Wu, Z., Wang, Y., Lv, Q., Hu, B.: Risk prediction for imbalanced data in cyber security : A

siamese network-based deep learning classification framework. In: 2019 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8, (2019)

van der Laurens, Maaten, Geoffrey, Hinton: Visualizing data using t-sne. J. Mach. Learn. Res. 9(Nov),
2579–2605 (2008)

Velez, Miguel, Jamshidi, Pooyan, Sattler, Florian, Siegmund, Norbert, Apel, Sven, Kästner, Christian:
Configcrusher: towards white-box performance analysis for configurable systems. Autom. Softw.
Eng. 27(3), 265–300 (2020). https:// doi. org/ 10. 1007/ s10515- 020- 00273-8

Wang, W., Yang, J., Xiao, J., Li, S., Zhou, D.: Face recognition based on deep learning. In: International
Conference on Human Centered Computing, pages 812–820. Springer, (2014)

Wilkins, B., Watkins, C., Stathis, K.: Anomaly detection in video games. arXiv preprintarXiv:2005.10211,
(2020)

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al.: Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprintarXiv:1609.08144, (2016)

Xia, Xin, Lo, David, Shihab, Emad, Wang, Xinyu, Zhou, Bo.: Automatic, high accuracy prediction of
reopened bugs. Autom. Softw. Eng. 22(1), 75–109 (2015). https:// doi. org/ 10. 1007/ s10515- 014-
0162-2. (ISSN 1573-7535)

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M. I.: Detecting large-scale system problems by min-
ing console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 117–132, (2009a)

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M. I.: Detecting large-scale system problems by min-
ing console logs. In:Proceedings of the ACM SIGOPS 22nd symposium on Operating systems prin-
ciples, pages 117–132, (2009b)

Xiao, Yu., Joshi, Pallavi, Jianwu, Xu., Jin, Guoliang, Zhang, Hui, Jiang, Guofei: Cloudseer: workflow
monitoring of cloud infrastructures via interleaved logs. ACM SIGARCH Comput. Archit. News
44(2), 489–502 (2016)

Zhang, Xu, Xu, Yong, Lin, Qingwei, Qiao, Bo, Zhang, Hongyu, Dang, Yingnong, Xie, Chunyu, Yang,
Xinsheng, Cheng, Qian, Li, Ze, et al.: Robust log-based anomaly detection on unstable log data. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 807–817, (2019)

Zhang, Y., Wang, L., Qi, J., Wang, D., Feng, M., Lu, H.: Structured siamese network for real-time visual
tracking. In: Proceedings of the European conference on computer vision (ECCV), pages 351–366,
(2018)

Zhu, Jieming, He, Shilin, Liu, Jinyang, He, Pinjia, Xie, Qi, Zheng, Zibin, Lyu, Michael R: Tools and
benchmarks for automated log parsing. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), pages 121–130. IEEE, (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/s10515-020-00273-8
https://doi.org/10.1007/s10515-014-0162-2
https://doi.org/10.1007/s10515-014-0162-2

	SiaLog: detecting anomalies in software execution logs using the siamese network
	Abstract
	1 Introduction
	2 Background and related works
	2.1 General log analyzer architecture
	2.2 Related works

	3 Proposed method
	3.1 The Siamese network
	3.2 Pair generation

	4 Data and Performance measures
	4.1 Datasets
	4.2 Preprocessing
	4.3 Data splitting
	4.4 Performance measure

	5 Experiments, results, and comparisons
	5.1 Embedding neural network’s architecture
	5.2 Pair generation algorithms comparison
	5.3 Classifiers comparison
	5.4 Comparison to state-of-the-art methods
	5.5 SiaLog low-cost
	5.6 SiaLog hybrid - combining the siamese and feedforward networks

	6 Practical advantages
	6.1 Robustness
	6.2 Unsupervised log evolution monitoring
	6.3 Sequence visualization

	7 Threats to validity
	8 Future works
	9 Conclusion
	Acknowledgements
	References

