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Abstract
Detecting anomalies in software logs has become a notable concern for software 
engineers and maintainers as they represent anomalies in software execution paths 
and states. This paper propose a novel anomaly detection approach based on the Sia-
mese network on top of Recurrent Neural Networks(RNN). Accordingly, we intro-
duce a novel training pair generation algorithm to train the Siamese network which 
reduces generated training significantly while maintaining the F

1
 score. Addition-

ally, we propose a hybrid model by combining the Siamese network with a tradi-
tional feedforward neural network to make end-to-end training possible, reducing 
engineering effort in setting up a deep-learning-based log anomaly detector. Fur-
thermore, we provides validations of the approach on the Hadoop Distributed File 
System (HDFS), Blue Gene/L (BGL), and Hadoop map-reduce task log datasets. 
To the best of our knowledge, the proposed approach outperforms other methods 
on the same dataset at the F

1
 scores of respectively 0.99, 0.99, and 0.94 on HDFS, 

BGL, and Hadoop datasets, resulting in a new state-of-the-art performance.To fur-
ther evaluate the proposed method, we examine our method’s robustness to log evo-
lutions by evaluating the model on synthetically evolved log sequences; we got the 
F
1
 score of 0.95 on the HDFS dataset at the noise ratio of 20% . Finally, we dive deep 

into some of the side benefits of the Siamese network. Accordingly, we introduce an 
unsupervised log evolution monitoring method alongside a visualization technique 
that facilitates model interpretability.
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1 Introduction

Log files are an unstructured text-based history of events that shed light on the 
software state during its execution. Each line of log files indicates a different 
event and may hold different types of information such as log-type, timestamp, 
process ID, thread ID, and log message. Analyzing log events allows developers 
to extract helpful information from the software state during the run-time. One of 
the log analysis applications is anomaly detection. Log anomaly detection may 
assist developers in software testing, debugging, or run-time monitoring.

Throughout recent years, deep learning has become the most predominant 
method in almost every machine learning problem. They have been utilized in 
tasks such as object detection and localization (Redmon et  al. 2016; Liu et  al. 
2016), machine translation (Wu et  al. 2016; Bahdanau et  al. 2014), and action 
recognition (Alhersh and Stuckenschmidt 2019; Jhuang et al. 2013). Furthermore, 
they have been used to improve software testing, debugging, and stability. For 
instance, Deep Neural Networks (DNNs) are used in applications such as soft-
ware defect prediction (Esteves et  al. 2020), performance analysis (Velez et  al. 
2020), or reopened bugs accuracy prediction (Xia et  al. 2015). Moreover, log 
anomaly detection is no exception, and DNNs have been widely utilized in this 
research area alongside other Machine Learning (ML) approaches.

There are two different approaches among the deep methods in log anomaly 
detection (Chalapathy and Chawla 2019). The first one is a binary classification 
task. It takes a sequence as input and outputs a binary value indicating if the 
sequence is an anomaly. The latter approach is sequence modelling, which trains 
only on the non-anomaly data and learns to model the system’s normal behaviour, 
resulting in low probabilities for anomaly behaviour.

As non-anomaly data volume is significantly higher than anomaly data, 
sequence modelling is more common in log anomaly detection. However, train-
ing solely on non-anomaly data may result in models being unaware of anom-
aly events, making the approach unreliable in anomaly situations. Furthermore, 
since logs evolve due to software updates, models trained with non-anomaly data 
have limited capabilities to detect anomaly situations in evolved non-anomaly 
situations.

On the other hand, binary classification solves the previously mentioned prob-
lem by training the model on both anomaly and non-anomaly data. However, it 
comes with its own challenges; one of them is training on an unbalanced dataset. 
The obstacle comes into place when the proportion of anomaly to non-anomaly 
data is too small. More specifically, datasets contain dramatically more anomaly 
samples in comparison to non-anomaly ones.

Nonetheless, many solutions have been introduced to surmount the unbal-
anced data obstacle. Oversampling and undersampling are two straightforward 
approaches that strive to equalize the number of samples in two classes. Another 
way of dealing with unbalanced datasets is weighted training. It manipulates the 
cost function so that both classes’ influences on the model’s parameters are equal. 
However, setting training weights and oversampling may result in overfitting, 
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while undersampling ignores a colossal proportion of negative samples during 
the training process. A more steady solution may be synthetic data generation. 
Furthermore, it eliminates the disadvantages of oversampling yet results in equi-
librium. However, it requires innovative methods to generate legitimate and reli-
able samples. This paper proposes a new approach based on the Siamese network 
(Bromley et al. 1994) to handle the unbalanced data in log anomaly detection.

The primary purpose of the Siamese network is metric learning, and it is vastly 
used in one-shot learning tasks such as face verification (Chopra et al. 2005; Wang 
et al. 2014), signature verification (Dey et al. 2017; Ahrabian and BabaAli 2019), 
and visual object tracking (Zhang et  al. 2018; Bertinetto et  al. 2016; Guo et  al. 
2017). Furthermore, it has also been utilized in video game anomaly detection 
(Wilkins et al. 2020). The proposed Siamese network-based model takes advantage 
of both non-anomaly and anomaly data while not demanding balanced training data.

More in-depth, we attempt to learn an embedding function for log sequences that 
maps sequences of the same class (non-anomaly or anomaly) adjacent to each other 
while maximizing the distance between opposing classes’ sequences. We also pro-
pose a sampling technique inspired by negative sampling (Mikolov et al. 2013) to 
generate pairs for the Siamese network’s training process. The proposed algorithm 
significantly reduces the training costs of the Siamese network.

Furthermore, we evaluate the proposed method through various experiments. 
Accordingly, we examine the impact of different pair generation algorithms on the 
Siamese network, try different classifiers on top of the embedding neural network, 
and compare the best performer to state-of-the-art methods. Moreover, we evaluate 
our model’s robustness on evolved log sequences and propose a method to moni-
tor log evolutions at production time. Besides, we reveal a solution to visualize the 
embedded sequences to make human administration of log sequences possible. 
Finally, we construct a hybrid model by imposing the Siamese network on a feedfor-
ward neural network, investigating the Siamese network’s positive impact. Replica-
tion package of our work is available1. Our main contribution is the Siamese net-
work utilization in the anomaly detection task RQ 1. We provide additional research 
contributions via research questions RQ2 and RQ3:

RQ 1. Design: How could the Siamese network be employed for software log 
anomaly detection task? We propose an architecture of an arbitrary classifier on 
top of an embedding function, trained within the Siamese network, alongside a 
pair generation algorithm. However, we need to answer two more subquestions to 
respond to the question thoroughly:

RQ 1.1. Architecture: How could a proper neural network architecture be 
found for the embedding function? We conduct an experiment to spot a high 
performance architecture using the Hyperband algorithm, see Sect. 5.1.
RQ 1.2. Pair generation: How to generate pair for training the Siamese 
network to avoid generating all possible pairs while maintaining the accu-
racy? We propose a new pair generation algorithm, named KPOne, to avoid 

1 Replication package at https:// github. com/ M3SOu lu/ SiaLo gRepl icati onPac kage.

https://github.com/M3SOulu/SiaLogReplicationPackage.
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training the Siamese network using all possible pairs. KPOne reduces the 
required training pairs by several orders of magnitude, see Section 5.2, with 
negligible classification accuracy loss, see Sect. 5.3.

RQ 2. Performance: How does the proposed methods perform in terms of 
accuracy and computational cost? We divide this question into following mul-
tiple more specific subquestions:

RQ 2.1. Accuracy: How accurately does the proposed method perform in 
open public datasets compared to the state-of-the-art methods? We present 
the state-of-the-art performance for three open public datasets, see Sect. 5.4.
RQ 2.2. Low-cost model: Is it possible to produce a low-cost embedding 
function for the Siamese network at a low accuracy loss? We show that in 
some cases SiaLog hyper-parameter search results in a low-cost model by 
default (BGL and Hadoop). However, when it is not achieved, a low-cost 
model could be handcrafted (HDFS), see Sect. 5.5.
RQ 2.3. Hybrid model: Is it possible to merge the Siamese network’s archi-
tecture and a feedforward model into a single deep neural network? Yes, we 
propose an architecture (SiaLog Hybrid) to train the Siamese network and 
a neural network-based classifier together to make the end-to-end training 
possible. Furthermore, since the classification model is a single deep neural 
network it could benefit from parallelization of the GPU during inference, 
see Sect. 5.6.

RQ 3. Side benefits: What are side benefits of using the Siamese network other 
than anomaly detection? With every machine learning innovations comes new 
research questions and concerns. Thus, we choose three of the most impor-
tant research questions that could be resolve as a side benefit of the proposed 
method. Research questions are listed as follow:

RQ 3.1. Robustness: How accurately does SiaLog perform in noisy envi-
ronments? We examine noisy log sequences on three different datasets. The 
investigations show that performance to noise is data specific. In some cases 
(Hadoop), even a small noise ratio of 5% results in low performance ( F1 
of around 0.85 and lower), while the impact is significantly lower for other 
data sets (HDFS, BGL), see Sect. 6.1.
RQ 3.2.Unsupervised log evolution monitoring: Is it possible to monitor 
log evolutions without the need for labeled data? Yes, we introduce a met-
ric (fitness score) to monitor log evolutions using the embedded sequences 
based on mixture of gaussians and negative log probability. The fitness 
score demonstrates the embedding function’s adaptiveness with the distribu-
tion of evolved logs, see Sect. 6.2.
RQ 3.4.Visualization: How do the Siamese network embedded sequences 
are visualized in a plot? For all datasets, we illustrate a visualization of the 
embedded sequences using three different dimension reduction algorithms 
(PCA, UMAP, and T-SNE), revealing that anomaly sequences are readily 
separable from non-anomaly ones. Furthermore, such visualizations could 
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be a valuable part of a log analyzer tool in future studies, see Sect. 6.3 and 
Fig. 7.

The remainder of the paper is organized as follow: Sect. 2 is dedicated to explaining 
required knowledge, reviewing famous previous works, and discussing datasets. The 
Siamese network, the methodology, and pair generation algorithms are explained 
in Section 3. The preprocessing, datasets, and evaluation metrics are discussed in 
Sect.  4. Section  5 comprises the reports of various experiments investigating the 
proposed method on deeper levels, while additional practical advantages are men-
tioned in Sect. 6. Finally, the conclusion and future work proposals are offered in 
Sect. 7.

2  Background and related works

2.1  General log analyzer architecture

Log anomaly detectors consist of multiple components, which are visualized in 
Fig. 1. The figure illuminates four components of log anomaly detectors: preproces-
sor, log parser, log vectorizer, and classifier.

The first component, the preprocessor,’s mission is to prepare log events for sub-
sequent components. The preparations may include eliminating unnecessary infor-
mation (such as IP addresses or invalid characters), extracting features from times-
tamps and log levels, and clustering logs based on their threads or process IDs. The 
preprocessor unit’s output is passed to the next component, the Log parser (Zhu 
et al. 2019). The log parser identifies the log message parameters and extracts tem-
plates. Log message event types could be inferred by matching a log message with 
identified templates. Depending on the vectorizer’s capabilities, which is the next 
component, event parameters might be carried along with the event type. The log 
vectorizer produces vectors from event types and parameters (if any). The vectors 
may take the form of one-hot encoded, semantic, or template IDs, depending on 
the classifier’s architecture. Then, vectors are given to the classifier, which is the 
last component. The classifier’s goal is to distinguish anomalous vectors. Machine 

Fig. 1  System log anomaly detector’s architecture as in Zhang et al. (2019)
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learning algorithms are prevalent for this component, as they have shown promising 
results in sequence modelling and classification.

2.2  Related works

One of the most well-known and effective anomaly detection methods is Princi-
pal Component Analysis (PCA), mentioned by Xu et al. (2009b). The method first 
forms a session-event matrix, similar to the document-term matrix in Natural Lan-
guage Processing (NLP), where each cell indicates the number of occurrences of a 
particular event that occurred in an individual session. Next, the matrix is passed 
to an analysis of principal components. Then the anomalies are detected by distin-
guishing the session vector’s projection length in the residual space.

In another approach, Lou et  al. (2010) uses the session-event matrix and mine 
invariants that satisfy the majority of the sessions. Thus, anomalies occur in sessions 
that lack the satisfaction of the mined invariants. While all mentioned works focus 
on designing general-purpose algorithms, Yu et  al. (2016) presents a method that 
compares the log messages to a set of automata to calculate the workflow divergence 
and is labeled as an anomaly as a result. However, it focuses on the log anomaly 
detection in OpenStack’s logs specifically.

As the Deep Neural Networks have grown more mature in recent years, they have 
gained popularity among log anomaly detection research. Many approaches are lev-
eraging different types of Recurrent Neural Networks (RNNs) such as Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) or Gated Recurrent 
Unit (GRU) (Chung et  al. 2014), while others are detecting anomalies by making 
use of Convolutional Neural Networks (CNNs) (LeCun et al. 2015b).

DeepLog, as the most well-known log anomaly detection method, proposed by 
Du et al. (2017), uses DNN in the classifier component. After parsing log events, 
DeepLog encodes the event types and parameters into vectors. Next, the model, 
which is based on LSTM, trains on data from non-anomaly execution only to predict 
the next log event given previous events. After the training, the model predicts a low 
probability for some events in anomaly sequences as it has trained on non-anomaly 
data only.

Although the methods mentioned before accurately detect log anomalies, Zhang 
et al. (2019) suggests that advances made by previous works are based on a close(d)-
world assumption where logs are static, while, in real-world applications, logs are 
continuously evolving. Log evolutions are considered undoubtedly important these 
days, as many companies are continuously delivering software updates to their 
customers (Leppänen et  al. 2015). Thus, Zhang et  al. (2019) suggest LogRobust, 
a novel method for log anomaly detection. LogRobust proposes a new vectoriza-
tion technique called “semantic vectorization” to approximately compensates for the 
evolution of log messages. It also suggests utilizing the attention-based Bidirectional 
Long Short-Term Memory (Bi-LSTM) to encounter the execution path evolutions. 
Furthermore, the authors present a technique to emulate log evolutions by applying 
noise.
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LogAnomaly (Meng et  al. 2019) presents another novel yet practical approach 
for vectorization called “template2vec” that takes synonyms and antonyms into 
account, making the vectorization process more reliable. Furthermore, LogAnomaly 
claims that it can detect sequential anomalies as well as quantitive ones. While every 
previously mentioned deep method applies LSTM to model log sequences (predict 
the next log event), LogAnomaly uses an LSTM on Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) vectors to construct a binary classifier.

On the other end of the spectrum, Lu et al. (2018) applies CNN instead of LSTM 
to form a binary classifier. The research also introduces an effective embedding 
method to transform one-hot encoded log events to vectors called “log-key2vec”. 
This method results in efficient dimension reduction of one-hot encoded vectors.

Logsy (Nedelkoski et al. 2020) is a first paper proposing the use of Transformer 
(Devlin et al. 2018). Logsy embeds log messages into a vector space so that the non-
anomaly messages congregate around the origin while anomaly messages embed 
with some distance from the origin. Its contributions also include a novel loss func-
tion, which makes the learning process of embedding operation possible.

All previous deep-learning-based methods, regardless of their core components, 
obeyed one of the two previously mentioned approaches. They either applied binary 
classification or modeled the sequence. However, this paper presents a third option 
that utilizes the Siamese network to circumvent the previously mentioned challenges 
in a different matter. Harnessing the Siamese network’s power, our method proposes 
a new approach to embed the log sequences into vectors, so that embedded sequence 
vectors of different classes are readily separable and classifiable in the new space.

3  Proposed method

As earlier mentioned, previous deep methods either train on non-anomaly events 
only or apply binary classification to detect anomalies. However, both of those 
approaches are prone to deficiencies.

In the first (non-anomaly events only) approach, the model training would not 
encounter log events that only occurred in an anomaly situation. For instance, in a 
distributed data storage solution software, a hard drive failure event is not a regu-
lar event by any means. Furthermore, in the HDFS dataset, from the twenty-nine 
total events, only nineteen of them occurred in non-anomaly situations. Not training 
on a proportion of the input space may result in unexpected model behavior. Going 
more in-depth, as the model has not been trained on anomaly-only events, it shows 
random behavior at the time of facing those events. In the latter (binary classifica-
tion) approach, the model’s training suffers from the unbalanced dataset. Although 
some solutions have been discussed for the unbalanced data problem, all of them are 
accompanied by their limitations.

Throughout the rest of the section, we propose a novel approach based on the 
Siamese networks due to their excellent performance in one-shot learning problems 
(Chopra et  al. 2005; Wang et  al. 2014; Zhang et  al. 2018; Bertinetto et  al. 2016; 
Guo et al. 2017) and their stability on unbalanced data (Sun et al. 2019). Our pro-
posed method takes advantage of both data classes without any sampling tricks or 
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weighted training. Figure  2 demonstrates the steps required to achieve anomaly 
detection using the Siamese network. After acquiring the proper data, training pairs 
are generated from it, the Siamese network is trained on pairs, the embedding model 
is extracted from the Siamese network, the data is embedded to vectors using the 
embedding model, and an arbitrarily classifier is trained using the embedded vectors.

3.1  The Siamese network

The Siamese network, illuminated in Fig. 3, was initially invented to resolve the one-
shot learning problem (Bromley et al. 1994) by forming a similarity-based embed-
ding function. It packs two neural networks with shared weights (they are indeed 
the same neural networks and may be considered one; however, discriminating them 
makes the Siamese network’s architecture more interpretable) and a similarity met-
ric. During the training, at first, pairs of samples are passed to the neural networks. 
Next, the neural network embeds them into vectors. Then, the similarities between 
the vectors are measured. Lastly, the optimization process updates the weights of the 
neural networks with respect to the fact that similar pairs (same class) should hold 
high similarity values for their output vectors, while it is the contrary for dissimi-
lar pairs (pair from different classes). At the end of the training process, the model 
embeds the same class samples close to each other while different class samples are 
embedded away from each other. In this paper, we use the Siamese network to train 
a deep embedding neural network that transforms log sequences into vectors so that 
embedded vectors of sequences of the same class are close to each other while being 
apart from the other class.

Fig. 2  The proposed method’s step-by-step overall view

Fig. 3  The Siamese network’s architecture
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After the Siamese network converges, we extract the embedding neural network 
and embed all training sequences into vectors. As the embedded vectors of different 
classes are well separated, they are excellent training data for an arbitrary classifier. 
So, we train a classifier to work on top of the embedding neural network to form 
an anomaly detection method. During the test time, the embedding neural network 
transforms the input sequences into vectors and passes them to the classifier to be 
classified as non-anomaly or anomaly sequences.

Since the invention of the Siamese network, different loss function has emerged 
for it. One of them is the contrastive loss function (Hadsell et al. 2006). It operates 
utilizing the Euclidean distance, confirming enough space between embedded vec-
tors of different classes while keeping vectors from the same class close to each 
other. However, during our experiments, we inquired about another loss function 
based on the sigmoid of inner product and cross-entropy loss function (LeCun et al. 
2015a), which performed better than the contrastive loss. Going more in-depth, we 
use the sigmoid function on embedded sequences’ inner product to construct a simi-
larity measure. Supposing x1 and x2 are respectively the first and second embedded 
vectors, the measure may be formulated as:

On top of the similarity measure, we use the cross-entropy loss function. So, the 
final loss function may be formulated as:

3.2  Pair generation

As the Siamese network requires its training input to be in pairs, a proper pair gen-
eration method is required. Generated training pairs must include two types of pairs 
in order to train the Siamese network. The first type is similar pairs in which the 
entities are from the same class, with the training target being one. The second type 
is dissimilar pairs in which the entities are from different classes, with the train-
ing target set to zero. To shed more light, assume that A is an anomaly sequence, 
while N is a non-anomaly sequence. From four possible pair permutations, (A, A) 
and (N, N) are considered as similar pairs, while (A, N) and (N, A) are dissimilar 
ones. The following paragraphs contain two pair generation algorithms for training 
the Siamese network.

sim(x1, x2) = �(x1 ⋅ x2).

J(x1, x2, y) = −(y. log (sim(x1, x2)) + (1 − y). log (1 − sim(x1, x2))).
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Algorithm 1: Generating pairs using the All algorithm
GenerateAllPairs (D)

inputs : The dataset D, which contains sequences denoted by s and
targets denoted by t

output: Pairs generated using the All algorithm
foreach (s1, t1) ∈ D do

foreach (s2, t2) ∈ D do
if t1 == t2 then

addPair(s1, s2, 1)
if t1! = t2 then

addPair(s1, s2, 0)

The first approach, which is quite straightforward, generates every possible pair. 
Going more in-depth, every sequence in the dataset pairs with all other sequences 
except for itself. The pseudo-code could be seen in Algorithm  1. Although this 
method is sensible and easy to implement, it is impractical for massive datasets. 
Alongside the exponential growth of pairs quantity, this approach generates dramati-
cally more similar pairs than dissimilar ones. We call this approach the “All” pair 
generation algorithm.

Algorithm 2: Generating pairs using the KPOne algorithm
GenerateKPOnePairs (N,P,K)

inputs : The data subsets N and P , which subsequently contain negative
(non-anomaly) and positive (anomaly) sequences. The constant
K where K ∈ N and is the proportion of dissimilar to similar
pairs.

output: Pairs generated using the KPOne algorithm
foreach n ∈ N do

sn = sampleSet(N);
addPair(n, sn, 1);
for 0 to K do

sp = sampleSet(P);
addPair(n, sp, 0);

foreach p ∈ P do
sp = sampleSet(P);
addPair(p, sp, 1);
for 0 to K do

sn = sampleSet(N);
addPair(p, sn, 0);

The second approach focuses on training efficiency. In this approach, which is 
inspired by Mikolov et al. (2013), for each sequence within the dataset, we sample 
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one sequence from the same class and K sequences from the different class, gener-
ating K + 1 pairs for each sequence. In other words, this approach samples a sub-
set of all pairs instead of generating them all. The pseudo-code is observable in 
Algorithm 2. This method reduces training time and computational cost, making it 
feasible for training the Siamese network. We name this approach the "K Plus One 
(KPOne)" pair generation algorithm. As the K value increases, so does the computa-
tional effort. We noticed improvements in our experiments while increasing K until 
K = 3.

The number of samples generated in each epoch, and the computational cost 
accordingly, may vary significantly based on the choice of the pair generation algo-
rithm. Assuming that nn and na are subsequently the number of non-anomaly and 
anomaly samples within a dataset. The number of pairs generated by the All algo-
rithm is

, while the number of generated pairs for the KPOne algorithm is

when K is the dissimilar samples count. It is blindingly obvious that for large num-
bers of na and nn , the value of NKPOne is dramatically smaller than Nall . So, the com-
putational cost of the All pair generation algorithm is larger than the KPOne.

4  Data and Performance measures

This section explains the datasets, preprocessing steps, and evaluation metric in our 
experiments.

4.1  Datasets

As we strive to assess the authenticity of the proposed method, we evaluate our 
method on multiple publicly available datasets. We chose HDDS, BGL, and Hadoop 
datasets as they possess labels for anomalous log events. In what comes next, the 

NAll = n2
a
+ n2

n
+ 2nann − na − nn

NKPOne = Kna + Knn + na + nn

Table 1  The explanation of the datasets used for SiaLog experiments

Dataset Name Samples Sequence creation method

Anomaly Non-anomaly

HDFS Xu et al. (2009a) 16838 558223 block_id

Hadoop Lin et al. (2016) 3328 78829 Log file
BGL Oliner and Stearley (2007) 7632 72257 Label locality
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datasets, which are provided by He et al. (2020), are explained, while Table 1 sum-
marizes all informations.

HDFS: Hadoop Distributed File System (HDFS) is a distributed file system that 
is significantly fault-tolerant and low-cost to deploy. The dataset was first introduced 
by Xu et  al. (2009a) and later considered a benchmark in log anomaly detection 
domain. It is produced by running map-reduce tasks on more than 200 Amazon’s 
EC2 nodes and labelled via Hadoop domain experts. The sequences are created 
based on the block ID of each log message. After the preprocessing, we encountered 
16838 anomaly and 558223 non-anomaly samples.

Hadoop: Hadoop is a big data processing framework allowing distributed pro-
cessing of extensive data. The dataset, launched by Lin et al. (2016), contains a five-
machine Hadoop cluster log, each having an Intel(R) Core(TM) i7-3770 CPU and 
16GB of RAM. The logs are generated by running two separate applications, Word 
Count, which counts the number of words in the input, and Page Rank, an algorithm 
used by search engines. The anomalies in the dataset are machine down, network 
disconnection, and disk full. However, we merge these three types of anomaly into 
one. Furthermore, as some sequences in the dataset are too long, we produced subse-
quences from them using a sliding window(window size of 100). The outcome was 
comprised of 78829 anomaly samples and 3328 non-anomaly samples after the pre-
processing. As the number of anomaly samples was more than non-anomaly ones, 
as anomalies are a combination of multiple anomaly classes, we invert the dataset’s 
target variable (changing anomalies to non-anomalies and vice versa) to preserve the 
anomaly detection task’s nature.

BGL: The dataset, produced by Oliner and Stearley (2007), is collected from a 
BlueGene/L supercomputer at Lawrence Livermore National Labs (LLNL) in Liv-
ermore, California, with 131,072 CPUs and 32,768GB of RAM. The sequence crea-
tion process was based on the label locality of log events. Furthermore, as some 
sequences became too long, we generated subsequences utilizing a sliding window 
(windows size of 300 and stride of 50) from them. We ended up with 7632 anomaly 
and 72257 non-anomaly samples.

4.2  Preprocessing

As previously mentioned, experiments use HDFS, BGL, and Hadoop log datasets. 
As our research focuses on classification, we prepare a vectorized variant for each 
dataset. For the HDFS, we use a vectorized dataset provided by He et  al. (2020), 
while for BGL and Hadoop, we parse the data using the Drain algorithm (He et al. 
2017), as it performs better according to Zhu et al. (2019).

Although the datasets are preprocessed, parsed, vectorized, and ready for clas-
sification, we discovered many redundant sequences, especially in the HDFS data-
set. Redundancy not only raises the required processing power for training but also 
compromises the authenticity of the evaluation as some test samples may appear 
in the training set. So, our first and only step of pretraining is to remove redundant 
sequences. After removing the redundant sequences, the HDFS dataset contained 
4,124 unique anomaly and 14,259 unique non-anomaly sequences, while the number 
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of non-anomaly and anomaly samples are 350 and 22,262 consequently in the BGL 
dataset. Furthermore, the Hadoop dataset contained 3,328 anomaly and 78,829 non-
anomaly samples after removing redundancies.

4.3  Data splitting

We split each dataset into train and test sets (90% for training and 10% for testing) 
using simple random sampling technique, mentioned by Reitermanova et al. (2010). 
The trainset is used to train the Siamese network and classifiers, while the test set is 
used exclusively for evaluation. However, before training the Siamese network, we 
take a small portion of the training data (equal to 3% of all data) and use it as the 
validation set. Then we start training the Siamese network utilizing a pair-generation 
algorithm. The validation set’s purpose is to find the most suitable neural network 
architecture and hyper-parameters and control the embedding function and classi-
fier overfitting. After founding proper architecture and hyper-parameters, the valida-
tion set serves no purpose. Thus, it is merged into the training set for retraining the 
neural network. Figure 4 illuminates an overview of data splitting and experiments 
processes, presenting an overall view of the whole process.

4.4  Performance measure

The nature of the anomaly detection task is unbalanced, meaning that there are sig-
nificantly more negative samples in comparison to positive ones. In such circum-
stances, the binary classification accuracy is not a valid metric for measuring per-
formance. So, we use another metric called “ F1 score” to measure and compare 
performance. Suppose TP, TN, FP, and FN are respectively true positives, true neg-
atives, false positives, and false negatives. The “precision” metric formulated as

Fig. 4  Overall view of data splitting and experiments
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shows the accuracy of the model’s positive prediction. On the other hand, the 
“recall” metric demonstrates the model’s reliability in predicting all positive sam-
ples and formulates as

Finally, the F1 score is the harmonic mean of precision and recall simplified to

However, we multiply F1 scores by one hundred to expose more details in the results.

5  Experiments, results, and comparisons

This section focuses on spotting a proper architecture for embedding neural net-
works, validating different pair generation algorithms, analysing different classifiers, 
comparing our method to other state-of-the-art methods, and introducing low-cost 
and hybrid models.

5.1  Embedding neural network’s architecture

Motivation: As the heart of our method is the embedding neural network trained 
inside the Siamese network, we want the embedding neural network to perform at 
its best. Spotting an optimal architecture and hyper-parameters is a challenging 

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2 ⋅
precision ⋅ recall

precision + recall

Table 2  The embedding neural network’s architecture found by the Hyperband algorithm the HDFS 
dataset, described layer by layer

Property 1
st

2
nd

3
rd

4
th

5
th

6
th

7
th

Layer type Embedding Bi-LSTM Bi-LSTM LSTM Dense Dense Dense
Output units 32 128 128 64 128 640 128
Activation N.A Tanh Tanh Tanh ReLU ReLU Linear

Table 3  The embedding neural 
network’s architecture found by 
the Hyperband algorithm for the 
BGL dataset, described layer 
by layer

Property 1
st

2
nd

3
rd

4
th

5
th

Layer type Embedding LSTM Dense Dense Dense
Output units 128 128 128 128 128
Activation N.A Tanh ReLU ReLU Linear
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step in deep learning projects. So, our goal is to spot a suitable architecture and 
hyper-parameters.

Method: Multiple algorithms, such as Grid Search, Random Search, Bayesian 
Optimization, and Evolutionary Optimization, have been proposed to tune neural 
network architecture and hyper-parameters. However, we choose the Hyperband 
algorithm (Li et al. 2017) for its performance and computational efficiency to attain 
a solid architecture along with its hyper-parameters. The Hyperband algorithm was 
executed three times (to avoid local optima) with default parameters on all available 
pairs in the training set to minimise the Siamese loss on the validation set. In other 
words, Hyperband used the training set to train multiple different architectures and 
the validation set to compare the architectures to find the best performance.

Findings: Tables  2, 3, and 4 contain details of embedding neural networks 
architectures and hyper-parameters found by the Hyperband algorithm. Tables 2 
shows that multiple layers of LSTMs are required to achieve decent results on the 
HDFS dataset. On the other hand, Table 4 show the model performs better using 
GRU layers on Hadoop. Moreover, Table 3 reveals that only one LSTM layer is 
enough for the BGL Datasets, as anomalies in that dataset is more reliant on indi-
vidual events rather than entire sequences.

5.2  Pair generation algorithms comparison

Motivation As discussed before, generating pairs using the All pair generation 
algorithm is computationally expensive. Therefore, we proposed an algorithm for 

Table 4  The embedding neural 
network’s architecture found by 
the Hyperband algorithm the 
Hadoop dataset, described layer 
by layer

Property 1
st

2
nd

3
rd

4
th

5
th

6
th

Layer type Embedding GRU Dense Dense Dense Dense
Output units 64 64 64 64 64 64
Activation N.A Tanh SiLU SiLU SiLU Linear

Table 5  The results shows the performance of the Siamese network on different datasets using different 
pair generation algorithms

Dataset Algorithm Loss Pairs k value Reduction factor

Train Test

HDFS All ∼0.00 0.002 211,231,337 3 3,302
KPOne 0.01 0.03 63,968

BGL All 0.004 0.005 503,488,232 3 5,566
KPOne 0.005 0.013 90,448

Hadoop All ∼0.00 ∼0.00 6,487,347,580 10 7,178
KPOne 0.015 0.016 903,727
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generating pairs to reduce the computational cost. In this experiment, we aim to 
compare the two pair generation algorithms.

Method We trained two models for each dataset with the same architecture found 
in the previous experiment, using pairs generated with the All and KPOne pair 
generation algorithms. Furthermore, we tried different values of K in the KPOne 
algorithm and found out that k = 3 works the best for the HDFS and BGL datasets 
while k = 10 performed better for Hadoop. After the training, we compare the Sia-
mese network’s loss value and the classifiers’ accuracy across the models. It must 
be stated that the test loss value is calculated after the hyper-parameter optimization 
process in the previous section. In fact, the Hyperband algorithm neither trained nor 
optimized based on any pairs containing any sequence from the test set.

Findings Table 5 shows that the All pair generation algorithm results in smaller 
loss values for the Siamese network. However, the difference in the number of gen-
erated pairs is significant. Furthermore, Table  6 (in the next subsection) demon-
strates that the classification result differences are negligible. All in all, considering 
the computational cost, the All algorithm might not fit into as many cases.

5.3  Classifiers comparison

Motivation: A classifier is needed to classify the embedded sequences after training 
the embedding neural network within the Siamese network. In this experiment, we 
aim to evaluate several classifiers for this purpose.

Method: We choose Logistic Regression (LR), Support Vector Machine (SVM), 
K Nearest Neighbours (KNN), and multi-layer neural networks as candidate clas-
sifiers, as we found them more popular compared to other classifiers. The neural 
networks classifier consists of two layers. The first one is activated using the Recti-
fier Linear Unit (ReLU), while the second layer (output layer) leverages the sigmoid 
activation function for binary classification. At first, we embed all train sequences 

Table 6  The accuracy 
comparison between different 
classifiers and embedding 
SiaLog (NN) trained using 
different pair generation 
algorithm. The first model 
is trained using the All pair 
generation algorithm while the 
second one is trained using the 
KPOne

Dataset Classifier F
1
 Score

All algorithm KPOne algorithm

HDFS SiaLog (KNN) 99.39 99.39
SiaLog (SVM) 99.57 99.51
SiaLog (NN) 99.62 99.51
SiaLog (LR) 99.39 99.39

BGL SiaLog (KNN) 98.11 98.00
SiaLog (SVM) 96.89 96.47
SiaLog (NN) 96.89 95.76
SiaLog (LR) 99.47 99.31

Hadoop SiaLog (KNN) 94.69 93.44
SiaLog (SVM) 95.01 94.23
SiaLog (NN) 95.82 94.21
SiaLog (LR) 94.69 93.17
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into vectors. Then, train the classifiers on the embedded sequences. During the test 
time, each sequence is embedded using the embedding neural network and passed to 
the classifier for prediction.

Findings: As Table  6 exposes the results, all classifiers achieve outstanding 
results. SiaLog achieved F1 scores between 99.39 to 99.62 on the HDFS, 95.76 to 
99.47 on BGL, and 93.17 to 95.82 on Hadoop with four different classifiers. Fur-
thermore, we found the difference between the All and KPOne pair generation 
algorithms is negligible. Achieving accurate and consistent results among different 
classifiers bears witness to the fact that the embedding neural network is working 
precisely and as expected. For each dataset, we choose the classifier with the best 
results as SiaLog for upcoming experiments.

5.4  Comparison to state‑of‑the‑art methods

Motivation: This section compares the Best performers from the previous subsec-
tion against state-of-the-art deep log anomaly detection approaches.

Method: We bring SiaLog results from the previous experiment and select Dee-
pLog (Du et al. 2017), LogRobust (Zhang et al. 2019), LogAnomaly (Meng et al. 
2019), and CNNLog (Lu et al. 2018) as competitors. We also train a neural network 
with the same architecture as combining the embedding and classifier neural net-
works into a single unit. This neural network, mentioned as the Feedforward model, 
allows us to investigate if utilizing the Siamese network yields any benefit.

All competitor methods are reimplemented in our environment. However, we 
replaced custom parsers and vectorizers in compatitors with the standard parser 
and vectorizer. In particular, LogAnomaly and LogRobust use a novel vectorizer 
approach alongside a custom parsing method. On the other hand, our approach and 

Table 7  The comparison of 
SiaLog and other state-of-the-art 
deep methods

* Custom parsers and vectorizers of LogRobust and LogAnomaly 
are replaced with standard parsers

Dataset Method Precision Recall F1 Score

HDFS DeepLog 0.90 0.81 0.85
LogRobust∗ 0.97 0.98 0.98

LogAnomaly∗ 0.89 0.81 0.85
CNNLog 0.99 0.97 0.98
SiaLog 0.99 0.99 0.99
Feedforward model 0.89 0.95 0.97

BGL LogRobust∗ 0.87 0.9 0.88
CNNLog 0.93 0.97 0.95
SiaLog 0.98 1.00 0.99
Feedforward model 0.98 0.98 0.98

Hadoop LogRobust∗ 0.82 0.99 0.90
CNNLog 0.99 0.85 0.92
SiaLog 0.93 0.94 0.94
Feedforward model 0.90 0.91 0.91
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environment uses standard parser and vectorizer. So, we evaluated them by replac-
ing their parsers and vectorizers with standard components of our test environment 
while keeping their deep neural network architecture.

Findings: Table 7 shows that our SiaLog outperform all previous methods and its 
Feedforward rival. We see that, in the HDFS dataset, SiaLog has the F1 score of 0.99 
followed by LogRobust and CNNLog with the F1 score of 0.98, the Feedforward 
model ( F1 score 0.97), and eventually DeepLog and LogAnomaly with the F1 score 
of 0.95. Nevertheless, to the best of our knowledge, SiaLog achieves the best results 
ever on the HDFS dataset when redundant sequences have been removed. For the 
BGL dataset, SiaLog, with the F1 score of 0.99, outperforms other approaches fol-
lowed by the Feedforward model, CNNLog, and LogRobust, F1 scores of 0.98, 0.95, 
and 0.88 respectively. Furthermore, it was the same story for the Hadoop datasets. 
However, since the dataset is more complicated compared to BGL, due to longer 
sequences and larger number of event types, most methods performed less accu-
rately compared to BGL and HDFS. In this dataset, SiaLog performed the best at the 
F1 score of 0.94, followed by the CNNLog, Feedforward model and LogRobust, F1 
scores of 0.92, 0.91, and 0.90. All in all, SiaLog outperformed both their Feedfor-
ward rivals and the state-of-the-art methods in all evaluations.

5.5  SiaLog low‑cost

Motivation: In previous experiments, we found an architecture offering the state of 
the art performance for anomaly detection in the HDFS, BGL, and Hadoop datasets. 
However, training a model with architectures found by Hyperband is expensive for 
the HDFS dataset and was done in an HPC environment. In this experiment, we 
endeavour to handcraft a new architecture that is less taxing to train. After all, the 
software industry might not have the possibility or time to train models in an HPC 
environment. Furthermore, experiments, development, and utilization are cheaper 
and faster for the low-cost model. Finally, as the low-cost model is computationally 
less demanding, it is economical, fast, and scalable at the production time. However, 
despite all benefits, the low-cost model sacrifices accuracy to achieve the aforemen-
tioned goals.

Method: With the goal to find a suitable architecture, we first handcraft differ-
ent architectures that are significantly less expensive to train than the architecture 
found by the Hyperband. Later, we train all models and choose the best architecture 
according to the F1 scores. Alongside the F1 score, we record two different metrics 

Table 8  The handcrafted embedding neural network’s architecture found by cross-validation between ten 
different candidate models for SiaLog Low-cost

Property 1
st

2
nd

3
rd

4
th

5
th

Layer type Embedding Bi-LSTM Dense Dense Dense
Output units 24 64 ( 32 × 2) 64 64 64
Activation N.A Tanh Leaky ReLU Leaky ReLU Linear
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for both models. The first metric is the number of floating-point operations (FLOPS) 
for one forward pass of the neural network. FLOPS is an implicit indication of com-
putational cost during both development and production. Additionally, we calculate 
the number of parameters for each model. The number of parameters specifies the 
memory amount required to store and load the model and explicitly affects the train-
ing speed. Finally, we compare training time in a typical deep learning machine’s 
hardware (a fourteen-cores Intel Xeon CPU paired up with two Nvidia Tesla P100 
GPUs).

Findings: Table  8 demonstrates the chosen handcrafted architecture for the 
HDFS dataset while Table  9 compares the Best Performer model and low-cost 
model in computational cost, model size, and accuracy. The comparison sheds light 
on the fact that despite being computationally more affordable, three times less 
floating-point operation, 30 times fewer parameters, and reducing the training time 
by the factor of 13, the low-cost architecture does not considerably compromise the 
F1 score, from 99.62 to 98.78. For example, the low-cost model could be retrained 
overnight with typical hardware while it is not possible for the best performer in 
typical hardware. The low computational cost makes the low-cost model suitable for 
environments where logs evolve rapidly, but less accuracy is tolerated.

Note: Accordingly, the architecture found by Hyperband was cheap enough 
for the BGL and Hadoop datasets. Thus, neither Hadoop nor BGL datasets were 
involved in this experiment, and this experiment is for HDFS only.

Table 9  The table is the comparison of low-cost architecture with the architecture found by Hyperband. 
FLOPS column indicates the amount of floating-point operations required for the embedding neural 
network to transform a sequence into a vector. Moreover, the Parameters column reveals the number of 
trainable parameters in each architecture. Furthermore, the required training time for each architecture is 
mentioned in the Training time column

Architecture F
1
 Score FLOPS Parameters Training time

SiaLog 99.62 222K 805K 150h 42min
SiaLog Low-cost 98.78 71K 27K 11h 17min

Fig. 5  The modified Siamese network’s architecture for end-to-end training
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5.6  SiaLog hybrid ‑ combining the siamese and feedforward networks

Motivation: As previous experiments indicate, neural networks have been one of 
the well-performing classifiers in all datasets. Since the embedding function and the 
classifier could be neural networks, we strive to train them together, making end-to-
end training possible. The end-to-end architecture may reduce design and engineer-
ing efforts as the classifier and embedding neural networks train simultaneously.

Method: Before training, we place the classifier network after the last component 
of the embedding neural network in the Siamese network. Therefore, the modified 
Siamese network is going to have two outputs. The first one is the similarity indi-
cator, while the second one is the predicted label for the first entry of the Siamese 
network. Therefore, the modified Siamese network’s loss is the cumulative loss of 
the Siamese network and cross-entropy classification. Figure 5 visualizes the archi-
tecture the modified Siamese network. Furthermore, to analyze the impact of the 
Siamese network on the accuracy, we compare the Hybrid model with the Best per-
former and Feedforward model mentioned in 5.4.

Findings: Table  10 confirms that the Hybrid model performs better than the 
Feedforward model and is almost on par with the Best performer.

6  Practical advantages

This section notes some practical advantages that become possible with the Siamese 
network. The first two advantages are related to log evolution, while the last one is 
related to visualization.

6.1  Robustness

Motivation: Software logs are continually evolving due to execution environ-
ments variations or developers’ updates (Zhang et  al. 2019). As training deep 
models is dramatically power consuming, it is not feasible to train the model for 

Table 10  The comparison 
of end-to-end training model 
(training classifier alongside 
the embedding neural network) 
with the best performer and 
feedforward model

Dataset Model Precision Recall F
1
 Score

HDFS SiaLog Hybrid 0.99 0.98 0.99
SiaLog 0.99 0.99 0.99
Feedforward model 0.99 0.95 0.97

BGL SiaLog Hybrid 0.98 0.99 0.99
SiaLog 0.98 1.00 0.99
Feedforward model 0.98 0.98 0.98

Hadoop SiaLog Hybrid 0.92 0.93 0.93
SiaLog 0.93 0.94 0.94
Feedforward model 0.90 0.91 0.91
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every minor software update or modification in execution environments. Accord-
ingly, Zhang et al. (2019) introduces three methods for emulating log evolution 
synthetically by adding noise to log sequences. It is not rational to train models 
on synthetically generated data. However, synthetically generated data may help 
in evaluating and analyzing model performance on evolved logs.

Method: In this experiment, we apply the three methods of adding noise to 
log sequences (Zhang et al. 2019) to imitate log sequence evolutions. The meth-
ods comprise of duplicating, removing, and shuffling one or multiple element(s) 
within a sequence. Since generating a noisy dataset is a random process, we per-
formed each test five times and calculated the results’ averages.

Findings: Table 11 shows the classifiers’ evaluation of synthetically evolved 
log sequences with different noise ratios. Harnessing the power of the Siamese 
network, classifiers maintained their accuracy formidably despite the evolutions. 
In the HDFS dataset, the F1 score dropped from 0.99 to 0.92 in all classifiers 
when moving from the noise ratio of 0% to 30%, while in previous works, as 
show in Table 11, the F1 score dropped from 0.98 to 0.84. Furthermore, in the 
Hadoop dataset, the F1 score dropped from 0.94 to 0.84 in our method, while 
the accuracy loss was from 0.90 to 0.77 for previous work (LogRobust). This 
experiment shows our method’s robustness appears to be stronger than previous 
works in the HDFS and Hadoop datasets.

Note: As the BGL is an event-based dataset, the F1 score did not alter at all 
with any noise ratio, as noising methods were targeting sequences, not events.

Table 11  The evaluation results 
of different classifiers on 
synthetically evolved datasets. 
The noise ration indicates the 
ratio of the test set samples 
that are affected by synthetic 
log evolutions. Furthermore, 
all numbers are multiplied by 
one hundred to expose more 
information

Dataset Method F
1
 Score / Noise Ratio

0% 5% 10% 20% 30%

HDFS SiaLog (KNN) 99.39 97.97 97.07 95.30 92.77
SiaLog (SVM) 99.51 97.92 97.11 95.16 92.68
SiaLog (NN) 99.51 97.92 97.11 95.16 92.68
SiaLog (LR) 99.39 98.02 97.11 95.43 93.07
LogRobust 98.20 95.93 93.83 88.74 84.83

BGL SiaLog (KNN) 98.00 98.00 98.00 98.00 98.00
SiaLog (SVM) 96.47 96.47 96.47 96.47 96.47
SiaLog (NN) 95.76 95.76 95.76 95.76 95.76
SiaLog (LR) 95.35 95.35 95.35 95.35 95.35
LogRobust 95.35 95.35 95.35 95.35 95.35

Hadoop SiaLog (KNN) 93.44 93.28 91.88 88.64 85.20
SiaLog (SVM) 94.23 93.24 91.99 88.82 84.01
SiaLog (NN) 94.21 93.65 92.27 89.09 84.75
SiaLog (LR) 93.17 93.56 92.15 89.05 85.23
LogRobust 90.17 88.16 86.13 81.36 77.42
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6.2  Unsupervised log evolution monitoring

Motivation: In the previous experiment, we confirmed that the proposed model 
is considerably robust to log sequence evolution. However, if log sequences pro-
ceed to evolve, the retraining process is inevitable. Since the retraining process 
is computationally expensive and time-consuming, we strive to find a solution to 
avoid unnecessary retraining. More in-depth, we seek a numeral value to present 
the trained model’s reliability on evolved sequences. Although the F1 score accu-
racy is the best measurement for this affair, we do not possess the sequence labels 
in the production time as the incoming data is entirely new. Hence, we require a 
new metric that indicates reliability without any labelling requirement.

Method: Since the embedding neural network transforms sequences into vec-
tors, we may exploit embedded vectors’ distribution to monitor log sequences’ 
evolution. Thus, we introduce the fitness score as the indication of evolutions in 
log sequences. At first, the training sequences are embedded into vectors using 
the embedding neural network and modelled by a Gaussian mixture. Accordingly, 
the fitness score is computed as the average log-likelihood of embedded vectors 
of evolved sequences. The more the log sequences evolve, the lower the fitness 
value will be. Possessing such a metric, we may define a threshold and avoid the 
retraining process for trivial evolutions in production. Moreover, we may retrain 
the model as soon as the fitness score surpassed the threshold number. Need-
less to say, the threshold number might vary from task to task or even dataset to 
dataset.

Findings: We used the previously mentioned methods to imitate log evo-
lutions and recorded the fitness score as the evolutions increased. Figure  6 

Fig. 6  The purge in fitness score as the noise ratio increase. It should be noted that positive scores are 
due to computing scores using probability density function
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visualizes the purge in fitness score as the evolutions grow. The purge might be 
an indication of the fitness score’s reliability.

Note1: As the BGL is an event-based dataset, the fitness score did not alter 
dramatically with any noise ratio, as noising methods were targeting sequences, 
not events.

Note2: The fitness scores of the HDFS and Hadoop datasets range were dif-
ferent from each other. However, we scale their range to fit into a single plot.

Fig. 7  The visualization of embedded sequences for different datasets. The dimension reduction hap-
pened using PCA, UMAP, and T-SNE algorithms. The blue dots represent normal sequences while the 
red dots represent anomalous sequences
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6.3  Sequence visualization

Motivation: We have proposed multiple methods of evaluating the authenticity and 
reliability of the embedding neural network and model in previous experiments. 
However, human supervision for AI systems can bring brighter insights. One of the 
best solutions to human supervision is visualization. Furthermore, the visualization 
(of the embedding neural network’s output in our case) gives humans the ability to 
supervise the embedding neural network’s output and allows manual analysis.

Method: As the trained embedding network allows us to transform log sequences 
into vectors, we can use dimension reduction algorithms such as T-SNE (Maaten 
and Hinton 2008), UMAP (McInnes et  al. 2018), and PCA (Abdi and Williams 
2010) to reduce embedded sequences dimensions so they become visualizable and 
perceptible for humans. Accordingly, we embed all sequences from the train and test 
sets to vectors, reduce their dimensions, and plot the results on a canvas.

Findings: Figure 7 visualizes the embedded sequences using different dimension 
reduction methods on different datasets. The embedded non-anomaly sequences are 
coloured as blue, while the anomaly ones are coloured as red. The figure demon-
strates that embedded sequences of different classes (non-anomaly/anomaly) are 
readily separable regardless of the dimension reduction algorithm. This fact might 
explain the high accuracy among all the classifiers.

7  Threats to validity

Though SiaLog outperformers almost every other method of software log anomaly 
detection task in various public open datasets, we believe there are a couple of limi-
tations that come with it. Regarding technical limitations, the first important limita-
tion is the computational cost. Since SiaLog trains a Siamese Network internally and 
all samples are trained in pairs, it comes with a hefty computational cost. Addition-
ally, SiaLog uses RNN layers (LSTM and GRU) within the embedding neural net-
work, making training longer as it reduces the ability to train the embedding neural 
network in parallel.

Second, the lack of advanced mechanisms in the embedding function, such as 
residual layers and attention, makes SiaLog more vulnerable to noise. Utilizing 
advanced layers and mechanisms could resolve this issue. However, the computa-
tional cost will further increase. Moreover, SiaLog demands lots of labeled datasets. 
Although all previous methods require labeled data somehow, SiaLog requires a fair 
share of anomaly data to produce a sufficient amount of pairs to train the Siamese 
Network, which we consider a limitation.

Third, the last technical limitation is the development complexity. As SiaLog is 
composed of multiple components and training the Siamese Network is more com-
plicated than a regular deep neural network or a classic machine learning model, we 
found the implementation of our method more complex compared to the previous 
methods.

Regarding internal validity, We believe our work scores high since we tested our 
approach in multiple scenarios, including various datasets, model capabilities, and 
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noisy environments. Achieving consistent scores in different scenarios bears witness 
to the fact that our proposed method works as expected and results in more accurate 
software log anomaly detection. We also offer replication package though which our 
internal validity can be further scrutinized2.

Regarding external validity, we think it could be higher as we did not have access 
to any suitable industrial dataset. This makes it hard to argue how our approach 
would work in industrial context. On the other hand, the purpose of this work was to 
present novel approach to anomaly detection and its initial validation. Future studies 
are needed to investigate the benefits and drawbacks of SiaLog or similar Siamese 
architectures in software log anomaly detection.

8  Future works

Although we introduced various benefits for SiaLog alongside anomaly detection, 
interesting future investigations remained. Future works may apply different side 
applications such as Root Cause Analysis by applying the Siamese network. On 
the other hand, More computationally cost-efficient neural networks such as CNNs 
might be applied inside the Siamese neural network to further reduce the compu-
tational cost in future studies. Furthermore, we think utilizing and benchmarking 
custom log parsers or even pair generation algorithm are also fruitful areas for future 
researches as well.

9  Conclusion

This paper proposed a novel approach to detect anomalies in software execution 
logs using the Siamese network structure combined with LSTM and GRU layers. 
We compared the results to the state-of-the-art deep-learning-based methods on the 
HDFS, BGL, and Hadoop log dataset for anomaly detection and showed that the 
proposed method achieves the best results on the aforenamed dataset. Furthermore, 
we conclude that the ability to achieve state-of-the-art performance is due to the Sia-
mese network as the Feedforward neural network with the same architecture offered 
a considerably lower F1-score (0.996 vs 0.973). Furthermore, we proposed a novel 
algorithm to generate pairs to train the Siamese network. The algorithm reduces the 
training process’s computational cost while maintaining accuracy. We also showed 
that the Siamese network achieves satisfactory results with smaller and computa-
tionally cheaper neural networks as well.

Moreover, we introduced multiple practical advantages of the Siamese network. 
We assess the robustness of our model to log evolutions. Additionally, we intro-
duced an unsupervised method for log evolution measurement. Finally, we visualize 
the embedding function’s output vectors using dimension reduction algorithms to 
make the neural network’s output more perceptible.

2 Replication package at https:// github. com/ M3SOu lu/ SiaLo gRepl icati onPac kage.

https://github.com/M3SOulu/SiaLogReplicationPackage.
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It is worth mentioning that the improvements made by SiaLog are not the most 
significant in this domain. However, it could be argued that room for improvements 
in the available datasets was small. On the other hand, SiaLog’s practical advantages 
are, to the best of our knowledge and by the time of writing this paper, not offered 
by any counterpart method or technique. This bears witness to the fact that SiaLog 
could be a rational consideration for pragmatic software log anomaly detection.
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