
Vol.:(0123456789)

Automated Software Engineering (2022) 29:52
https://doi.org/10.1007/s10515-022-00350-0

1 3

Detecting non‑natural language artifacts for de‑noising
bug reports

Thomas Hirsch1 · Birgit Hofer1

Received: 31 March 2022 / Accepted: 5 August 2022 / Published online: 24 August 2022
© The Author(s) 2022

Abstract
Textual documents produced in the software engineering process are a popular tar-
get for natural language processing (NLP) and information retrieval (IR) approaches.
However, issue tickets often contain artifacts such as code snippets, log outputs
and stack traces. These artifacts not only inflate the issue ticket sizes, but also can
this noise constitute a real problem for some NLP approaches, and therefore has to
be removed in the pre-processing of some approaches. In this paper, we present a
machine learning based approach to classify textual content into natural language
and non-natural language artifacts at line level. We show how data from GitHub
issue trackers can be used for automated training set generation, and present a cus-
tom preprocessing approach for the task of artifact removal. The training sets are
automatically created from Markdown annotated issue tickets and project documen-
tation files. We use these generated training sets to train a Markdown agnostic model
that is able to classify un-annotated content. We evaluate our approach on issue tick-
ets from projects written in C++, Java, JavaScript, PHP, and Python. Our approach
achieves ROC-AUC scores between 0.92 and 0.96 for language-specific models. A
multi-language model trained on the issue tickets of all languages achieves ROC-
AUC scores between 0.92 and 0.95. The provided models are intended to be used as
noise reduction pre-processing steps for NLP and IR approaches working on issue
tickets.

Keywords  NLP · Bug reports · Issue tickets · Data cleaning · Artifact removal ·
De-noising

 *	 Birgit Hofer
	 bhofer@ist.tugraz.at

	 Thomas Hirsch
	 thirsch@ist.tugraz.at

1	 Institute of Software Technology, Graz University of Technology, Inffeldgasse 16b, 8010 Graz,
Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00350-0&domain=pdf

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 2 of 29

1  Introduction

Textual documents produced during the software development process are increas-
ingly popular targets for natural language processing (NLP) and information
retrieval (IR) approaches. Specifically issue tickets have drawn the attention of
researchers and practitioners. Such techniques are applied to issue tickets to catego-
rize the impact and root causes of bugs (Zhou et al. 2021), to classify bugs accord-
ing to the Orthogonal Defect Classification (ODC) scheme (Thung et al. 2012), to
assign programmers to bug reports (Mani et al. 2019; Devaiya et al. 2021), to locate
the source code that needs to be changed to fix a bug (Zhou et al. 2012; Saha et al.
2013; Ye et al. 2016), to label the severity of a bug (Kumar et al. 2021; Kukkar et al.
2019), to prioritize bugs (Ortu et al. 2016), to detect duplicates (Kukkar et al. 2020),
to distinguish bug reports from other issues (Chawla and Singh 2015), and to find
security related bug reports (Goseva-Popstojanova and Tyo 2018).

Unfortunately, issue tickets are often cluttered with non-natural language artifacts
such as code snippets, stack traces, log outputs, and configuration files. Such arti-
facts inflate the size of issue tickets1 and pose a problem for some of the above men-
tioned tasks. Some approaches require that all artifacts are removed from the text,
e.g. analysis of developers’ personalities (Calefato et al. 2019) and language identifi-
cation (Jauhiainen et al. 2017). In other approaches, the artifacts should not be elimi-
nated, but processed separately. For example, Bacchelli et al. (2012) investigated the
content of development emails and argued that source code, stack traces, and other
artifacts should not be part of the same bag of words as natural language. In our
approach on multi-class root cause classification based on bug reports (Hirsch and
Hofer 2022a), we have observed that artifacts have an impact on specific classes’
performance, either being beneficial or detrimental to its performance.

Since artifacts also decrease readability for humans, issue trackers usually pro-
vide formatting mechanisms, such as Markdown, that allow authors to format their
issue tickets accordingly. Parsing issue tickets along these formatting rules and
markup languages is probably the simplest and easiest form of artifact detection.
Unfortunately, not all ticket authors use these formatting tools properly.2 Therefore,
formatting alone is not a viable option for reliable artifact detection.

Researchers developed numerous techniques for identifying and parsing such
non-natural language artifacts. A popular technique are regular expressions tai-
lored to the underlying dataset (Tan et al. 2014; Ray et al. 2014; Soltani et al. 2020).
Although labor intensive, this approach works reasonably well for homogeneous
datasets containing a rather small set of different types of artifacts, e.g., data origi-
nating from only a small number of software projects that are composed in the same
programming language and targeting the same execution platform.

However, such sets of regular expressions lack in transferability to other, or new
data, and have to be adapted accordingly. To the best of our knowledge, there is no
standard corpus of regular expressions for this task. Manual identification of artifact

1  see e.g. https://​github.​com/​redis​son/​redis​son/​issues/​2291 with 200 kB of uncompressed text
2  see e.g. https://​github.​com/​haral​dk/​Twelv​eMonk​eys/​issues/​37

https://github.com/redisson/redisson/issues/2291
https://github.com/haraldk/TwelveMonkeys/issues/37

1 3

Automated Software Engineering (2022) 29:52	 Page 3 of 29  52

patterns in new data combined with the adaption or expansion of the set of regular
expressions is time-consuming, as pointed out by Mäntylä et al. (2018). Manually
created rule sets do not scale to larger, heterogeneous datasets due to the size and
number of required regular expressions necessary to account for different logging
frameworks, code style guidelines, built systems, configuration file formats, under-
lying OSs, and IDEs. These scalability and portability issues led researchers to the
application of machine learning (ML) techniques (Mäntylä et al. 2018; Bacchelli
et al. 2012). While ML approaches circumvent the manual creation of rules, they
introduce the need for manually annotated training sets.

In this work, we propose a supervised machine learning approach combined with
an automated training set creation process implemented in Python. Our approach
does not require extensive knowledge about the artifacts that are supposed to be
removed, while providing good classification performance at a low computational
cost once trained. Our automated training set creation process locates instances in
the dataset that can be labeled using heuristics based on GitHub Markdown. The
resulting fractions of the original data sets are used to train models with the pur-
pose of generalizing the classification problem again to the whole range of input
data. Our models can classify inputs that are not Markdown annotated. In contrast to
general purpose NLP pipelines, we perform custom, task specific, tokenization. We
evaluate our models on manually annotated validation sets randomly sampled from
our original datasets.

This paper is based on previous work (Hirsch and Hofer 2021) presented at the
2nd International Workshop on Software Engineering Automation: A Natural Lan-
guage Perspective (NLP-SEA 2021) co-hosted with ASE. While the workshop paper
focused on the comparison with existing work (Mäntylä et al. 2018), we now focus
on the portability of the approach. For this purpose, we extend our evaluation from
Java projects to projects written in four popular programming languages, namely
C++, JavaScript, PHP, and Python. We answer the following research questions in
this journal paper:

•	 RQ1: Do different underlying programming languages affect the perfor-
mance of our artifact detection approach? While we have designed our
approach to be language independent, we have not empirically evaluated this
aspect in the workshop paper. However, it is important to empirically evaluate
this aspect, because syntax and stack traces differ for different programming
languages and it is unclear whether the used features are well suited for other
programming languages. For example, curly brackets and semicolons are heavily
used in C++ and Java, but these symbols are rarely used in Python.

•	 RQ2: Are artifact detection models trained on one programming language
transferable to other programming languages? Here, we investigate if a
model trained on bug reports of projects written in one programming language
can be used to correctly detect artifacts originating from other programming lan-
guages.

•	 RQ3: What is the performance of a multi-language model for artifact detec-
tion? In practice, projects are often written in several programming languages
and therefore bug reports might contain code snippets and stack traces of several

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 4 of 29

programming languages. A multi-language model might be particularly useful in
such scenarios.

Since we already compared our approach to NLoN (Mäntylä et al. 2018) in the
workshop paper (Hirsch and Hofer 2021), the comparison of our approach and
NLoN is not part of this journal paper and we refer the interested reader to the work-
shop paper.

The remainder of this paper is structured as follows: Sect. 2 discusses the related
work. Section 3 describes the problem of distinguishing natural and non-natural lan-
guage parts and we define where we draw the line between natural language and
artifact. Section 4 explains the automatic creation of the training set, the features
used in the ML approach, the preprocessing steps, and the used machine learning
models. Section 5 deals with the setup and the results of the empirical evaluation.
Section 6 concludes the paper.

2 � Related work

Natural Language Processing (NLP) and Information Retrieval (IR) approaches on
textual documents from software development processes often require identification
of non-natural language portions or identification of specific types of artifacts. Reg-
ular expressions and island parsers (Bettenburg et al. 2008; Bacchelli et al. 2011;
Rigby and Robillard 2013) are currently amongst the most popular methods to per-
form such a separation. While these methods can be implemented in a reasonable
amount of time for a homogenous set of issue tickets concerning a single language
and similar context, they do not scale well for a large number of issue tickets from
heterogeneous sources, spanning multiple domains, companies, and programming
languages (Calefato et al. 2019).

InfoZilla (Bettenburg et al. 2008) extracts structural information such as stack
traces, source code, patches, and enumerations from bug reports using regular
expressions, island parsing and heuristics. The approach was evaluated by manually
classifying 800 bug reports from the Eclipse issue tracking system.

Bacchelli et al. (2011) used island parsing to extract structured data from natu-
ral language documents. They evaluated their approach on the mailing lists of three
large open-source Java projects. In later work, they proposed a supervised ML
approach to classify the content of emails line-by-line into natural language, junk,
code, patch and stack trace. To train and test the classifier, they manually classified
the content of nearly 1500 emails from four software systems (Bacchelli et al. 2012).

Rigby and Robillard (2013) developed an island parsing-based tool called Auto-
mated Code element Extractor (ACE) that automatically extracts code elements such
as packages, types, and methods. They empirically evaluated ACE on StackOver-
flow posts that used one of the tags HttpClient, Hibernate, or Android.

Ponzanelli et al. (2015) used island parsing to identify Java code, stack traces,
XML/HTML elements and JSON fragments in natural language text. They pro-
vide a parsed dataset, named Stack Overflow Ready Made Data (StORMeD), that

1 3

Automated Software Engineering (2022) 29:52	 Page 5 of 29  52

contains heterogeneous abstract syntax trees for the identified non-natural language
fragments.

Calefato et al. (2019) reported on their experiences when using regular expres-
sions to remove code snippets from email text: they found this approach does not
scale well enough—in particular when several programming languages are used.
This highlights the need for more generic approaches for artifact detection such as
machine learning.

Ye et al. (2017) use a semi-supervised machine learning approach to detect API
mentions in text written on social platforms. They evaluated their approach on Stack
Overflow posts to identify API mentions of three well-known Python libraries.

While the above described approaches aim at identifying certain types of artifacts
(e.g. stack traces Bettenburg et al. 2008; Bacchelli et al. 2011; Ponzanelli et al. 2015,
JSON fragments Ponzanelli et al. 2015, or API mentions Ye et al. 2017), we aim at
separating natural language from non-natural language artifacts in general, indiffer-
ent to the specific type of the artifact. Due to the differing goals and scopes, we can-
not quantitatively compare our approach to the above solutions.

The work that is closest to ours is the Natural Language or Not (NLoN) Pack-
age (Mäntylä et al. 2018). This R package classifies text lines into text or artifact by
using eleven language features and character tri-grams. The approach is trained and
evaluated on three data sources (i.e. comments from the Mozilla issue tracker, chat
entries from Kubernetes, and emails from Apache Lucene’s mailing list archive),
each containing 2000 data samples that were manually labeled as natural text or arti-
fact. The major differences between NLoN and our approach are the explicit lan-
guage features used in NLoN, and the training set creation process: While NLoN
relies on a manually labeled training set, we automatically generate the training
sets. NLoN’s hard coded features makes it applicable to C++, Java and similar lan-
guages, but would require adaptions to be used for Python. Further, we implemented
our approach in Python, as Python has surpassed R in popularity.3

3 � Problem definition

This paper proposes an automated approach to distinguish natural language text por-
tions from non-natural language artifacts on a line-by-line basis. Table 1 illustrates
this distinction on an excerpt from Bazel issue 3906.4

Our intuition tells us that the line between natural language or non-natural lan-
guage should be a clear cut. However, closer investigation reveals the complexity
of this problem and gray areas where the two categories overlap. Examples of such
border cases are code comments and issue ticket templates: Comments contained in
code snippets are natural language texts. However, they may not have been authored
by the issue reporter. Issue ticket templates consist of headers, questions, and other

3  see Stackoverflow 2021 Developer Survey https://​insig​hts.​stack​overf​low.​com/​survey/​2021#​most-​popul​
ar-​techn​ologi​es-​langu​age
4  https://​github.​com/​bazel​build/​bazel/​issues/​3906

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://github.com/bazelbuild/bazel/issues/3906

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 6 of 29

texts (see header lines starting with ### in Table 1 for an example). While they are
natural language, they are again not written by the issue reporter and are to be con-
sidered automatically generated text. Migration from other issue tracking systems
often introduces generated text portions. They are also natural language, but their
origin is artificial. Such text portions are highly repetitive and may add very little
value to the downstream NLP or IR task. Product and version numbers are another
example of text that is difficult to distinguish on a line by line basis. While short
identifiers like Windows 10 are often seen as human-written, verbose and detailed
version identifiers often seem to be copy-pasted. In particular when the version

Table 1   Natural language and artifacts (shaded in gray) categorization for an excerpt of Bazel issue 3906

1 3

Automated Software Engineering (2022) 29:52	 Page 7 of 29  52

numbers of several programs, apps, or environment settings are listed5, it is more
likely that the information was copy-pasted. As far as we are aware, there exists no
formal definition, established guideline, or agreement within the research commu-
nity working with textual issue tickets on what is to be considered natural language
when dealing with issue tickets.

For this work, we define artifacts and natural language portions of issue tickets
as indicated in Table 2. We consider text that was typed by the reporter of the issue
ticket as natural language, and content that was originating from an IDE, terminal,
or other tool to be an artifact. Automatically generated natural language text of the
issue tracking tool, template, or migration processes is considered natural language.
Comments in pasted code snippets, elaborate natural language logging messages and
error messages are considered artifacts. Further, we consider standalone URLs and
Markdown links as artifacts. We treat standalone numbers such as version numbers
as artifacts, but the combination of product names and version numbers as natural
language.

Occurrences of non-natural language portions in a natural language sentence are
mostly limited to variable names, class names, and short formulas or mathemati-
cal equations. Removing such occurrences may render a natural language sentence
syntactically and semantically incorrect and unreadable for a human. We therefore
consider a line of natural language text interweaved with non-natural language por-
tions as natural language.

We approach the task as a line by line binary classification problem, similar to
Mäntylä et al. (2018). While intuitive, as log outputs or code snippets always start
on a new line, distinguishing classes based on an isolated line can be challenging

Table 2   Categorization into natural language and artifacts

Natural language

Text typed by issue reporter
Issue ticket template text
Natural language sentence containing variable names
Natural language sentence containing URLs/Markdown links
Natural language text migrated from other issue tracking systems
Product name and version number

Artifact

Content originating from IDE, terminal, …
Code snippets and code comments
Error messages, stack traces
Standalone URLs/Markdown links
Log output
Standalone numbers, e.g., version numbers

5  see e.g. https://​github.​com/​nextc​loud/​server/​issues/​16415

https://github.com/nextcloud/server/issues/16415

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 8 of 29

due to lack of contextual information. Examples for such cases are code comments,
and natural language error messages contained in log outputs.

4 � Approach

Our approach essentially consists of three steps: (1) our automated training set crea-
tion process, described in detail in Sect. 4.1, (2) feature engineering, as discussed
in Sect. 4.2, and (3) our preprocessing and supervised machine learning pipeline,
presented in Sect. 4.3.

4.1 � Automated training set creation

A major advantage of our approach is that manual annotation of a training set is
not required. Instead, we rely on Markdown annotated portions of the input dataset
to automate the training set creation process. GitHub’s built-in issue tracker offers
Markdown6 to format issue reports. Given our task at hand, we focus mainly on
the following Markdown features: Triple ticks that start and end a code highlight-
ing block, indentation by four spaces signaling a code block, lines that are entirely
in quotes, Markdown style links, tables, URLs, and embedded images. Markdown
code block highlighting features are extremely well suited for our purpose of build-
ing a line by line approach. For example triple tick code blocks have their Markdown
annotations signaling begin and end in separate lines. Having no inline markup
annotations and formatting rules inside of such code blocks, prevents formatting
information leaking into the contained lines, and prevents overfitting on Markdown
features.

Fig. 1   Eclipse-vertx vert.x issue 2887 (https://​github.​com/​eclip​se-​vertx/​vert.x/​issues/​2887) as an exam-
ple of an issue ticket that should have used Markdown to highlight code

6  https://​guides.​github.​com/​featu​res/​maste​ring-​markd​own/

https://github.com/eclipse-vertx/vert.x/issues/2887
https://guides.github.com/features/mastering-markdown/

1 3

Automated Software Engineering (2022) 29:52	 Page 9 of 29  52

If all issue reporters would adhere to formatting rules and apply these Markdown
features to wrap non-natural language artifacts, the task of artifact removal would
be trivial. Unfortunately, this is not the case (see Fig. 1, and Table 1 for examples).7

Due to inconsistencies in Markdown usage, simple Markdown parsing to identify
artifacts is insufficient. However, we can leverage the issue tickets that do contain
Markdown code highlighting features to create an annotated data set to be used in
training ML classifiers. Figure 2 illustrates this process. We use all issue tickets that
contain blocks wrapped in triple ticks. Triple tick code blocks have to be deliber-
ately put in place by the issue reporter, showing some awareness to Markdown of
the author, in contrast to code block highlighting by indentation. We then split the
content of these issue tickets into natural language and non-natural language por-
tions. To do so, we employ a small set of six regular expressions to capture the var-
ious Markdown annotated artifacts discussed above. This process is based on the
assumption that if reporters utilize Markdown in their issue ticket, they will do so
consistently.

However, this assumption does not always hold, and therefore produces sup-
posedly natural language text portions that in fact are artifacts of some kind. To
reduce the resulting noise in the natural language portion of the dataset, we apply
a set of regular expressions to remove common artifact types. Each line is applied
to a sequence of regular expressions, either matching it as an artifact and therefore
removing the line, or labeling it natural language if no regular expressions match.
The first part of these regular expressions can be easily reused in any context: Two
regular expressions remove Unix and Windows style prompts, two regular expres-
sions remove json and xml like content, one regular expression for invalid Mark-
down quoted text, and one regular expression for hexadecimal numbers. The second
part of regular expressions stem from our initial target consisting of Java projects:
Four regular expressions specifically aim at Java code, and four regular expressions
target logging formats. While our Java specific regular expressions to some degree
work to identify C++, PHP, and JavaScript code (e.g. line ending with semicolon or
curly bracket), they are unsuitable to identify Python code, and unsuitable to identify
logging output from these other languages. We finally use two regular expressions

Fig. 2   Automated separation of human-written text and artifacts

7  We evaluate Markdown usage in our mined dataset in Sect. 5.3.

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 10 of 29

to remove lines whose formatting does not allow to distinguish them via regular
expressions (e.g. Markdown block quotes using ‘>’ are used to highlight text8, for
reply or followup in conversations9, and to quote excerpts from the documentation10
as well as for code highlighting or error messages11). Despite our cleaning efforts,
the resulting training sets might be noisy. We will evaluate the amount of noise in
the resulting training sets in Sect. 5.3.

The process described in Fig. 2 is only applied to those issue tickets which con-
tain Markdown triple ticks. All other issue tickets are discarded and therefore are not
part of the training set (see Fig. 3). Besides issue tickets, we use documentation files
in Markdown syntax found in the projects’ repositories to augment our training set.
The rationale behind this is that project maintainers utilize Markdown consistently
in their documentation files. We employ the same approach for the separation of
artifacts from natural language as described above for the issue tickets.

The resulting collection of natural language lines and artifact lines is imbalanced.
Since the machine learning algorithms used in this work are sensitive to such imbal-
ance, we apply downsampling. We described our sampling strategy in more detail in
Sect. 5.3.

4.2 � Feature selection

Humans can separate artifacts from natural language without actually reading a text.
We therefore attempt to identify the features that enable humans to perform this task
so easily.

Formatting and structure in particular help humans to classify text segments
very fast. For example, indentation of code snippets provides a very good indicator.
Therefore, we will include representations of whitespaces in the feature vectors used
by the ML classifier.

Fig. 3   Training set creation process where M ↓ represents the process of Fig. 2

8  see e.g. http://​github.​com/​realm/​realm-​java/​issues/​3728
9  see e.g. http://​github.​com/​realm/​realm-​java/​issues/​3047
10  see e.g. https://​github.​com/​React​iveX/​RxJava/​issues/​6390
11  see e.g. http://​github.​com/​dbeav​er/​dbeav​er/​issues/​5156

http://github.com/realm/realm-java/issues/3728
http://github.com/realm/realm-java/issues/3047
https://github.com/ReactiveX/RxJava/issues/6390
http://github.com/dbeaver/dbeaver/issues/5156

1 3

Automated Software Engineering (2022) 29:52	 Page 11 of 29  52

A closer look at artifacts further reveals that frequency and position of special
characters also carry a significant amount of information for our task. While the
most common special characters in English text are ‘,’ and ‘.’, the characters ‘<’,
‘>’, and ‘/’ are probably the most common in XML. For this reason, we tokenize
special characters to include them in the feature vectors.

Further, we replace occurrences of camel cased words, underscored words, and
numbers with respective tokens, as their type as such, carries more information, than
their actual value. The full replacement table can be found in the online appendix;
an excerpt of this table is shown in Table 3.

Further, the position of a special character contains useful information for the
task at hand. Lines of natural language will often end with ‘.’, ‘?’, and ‘!’, while lines
of Java code will often end with ‘{’, ‘}’ or ‘;’ but ‘.’ is used to call objects’ meth-
ods. A bag of words (unigram) approach is not suitable to encapsulate such position
information. Thus, we add tokens that represent the beginning and end of a line, and
employ tri-gram vectorization.

4.3 � Preprocessing and machine learning approach

We use supervised machine learning classification algorithms and NLP preproc-
essing steps from an established machine learning library for Python. For detailed
background information, we refer the interested reader to Baeza-Yates and Ribeiro-
Neto (1999) for an introduction into natural language processing and information
retrieval, as well as James et al. (2013) and Bishop (2006) for a more detailed intro-
duction on machine learning.

Table 3   Excerpt of introduced
tokens

Character/regex Token

 (two whitespaces) Jdoublespace
∖t Jtabulator
* Jasterisk
(Jroundbracketopen
= Jequals
+ Jplus
{ Jcurlybracketopen
; Jsemicolon
: Jcolon
? Jquestion
([A-Z]?[a-z0-9]+)([A-Z][a-z0-
9]*)+

Jcamelcased

([a-zA-Z0-9]+_)+[a-zA-Z0-9]+ Junderscored
[0-9]+ Jnumber
0x[a-f0-9]+ Jhex

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 12 of 29

We use regular expressions and basic string operations to perform the replace-
ments discussed in Sect. 4.2. This step is implemented as a scikit-learn transformer.
Doing so enables us to utilize standard tokenization and vectorization functions.

We do not perform stop word removal. Examples for such words in the English
language would include articles and pronouns (e.g. “the”, “it”, “we”). Removal of
stop words is very commonplace in most NLP and IR applications as they are con-
sidered noise with little informational value. However, they provide valuable fea-
tures for our task, as they are very common in natural language text, and mostly
scarce in non-natural language artifacts.

Further, we do not perform case folding, as this also carries some information for
the task at hand (e.g. all caps words are more common in artifacts). To encapsulate
positional information of the tokens in the feature vectors (as discussed in Sect. 4.2),
we vectorize into uni-, bi-, and tri-grams that are combined into a single feature vec-
tor using a simple count vectorizer.

We use classic ML models as Support Vector Machines (SVM), Random For-
rest Classifier (RFC), Logistic Regression Classifier (LRC), and Multinomial Naive
Bayes (MNB), due to their ease of use and little requirements in terms of compu-
tational resources for training and prediction. We do not perform hyperparameter
tuning, and keep the default values of the classifiers in the used library (MNB:
alpha = 1.0 , SVM: C = 1.0 , RFC: nEstimators = 100 , LRC: C = 1.0 ). While auto-
mated hyperparameter tuning can offer higher model performance, it comes with a
high cost in terms of runtime and increases the risk of overfitting. In this work we
chose to use the available time to perform more experiments, e.g. Bootstrap with
more repetitions, to increase the sample size of performance scores and confidence
in our results.

In a preliminary experiment, the classification performance and capabilities of
all classifiers were very similar, but the prediction and training times varied. Given
the similarity in classification performances, we chose SVM for the following
experiments.

5 � Results and discussion

We present our research questions in Sect. 5.1, followed by a brief description of the
metrics and statistical tests used to evaluate our approach in Sect. 5.2. In Sect. 5.3,
we outline the creation process of the datasets and numerically describe the gen-
erated training sets, and the manually labeled validation sets in detail. Finally, we
present the results of the empirical evaluation in Sect. 5.4 and discuss the threats to
validity in Sect. 5.5.

5.1 � Research questions

This paper investigates the portability and transferability of our approach onto other
programming languages. We address the following three research questions:

1 3

Automated Software Engineering (2022) 29:52	 Page 13 of 29  52

RQ1: Do different underlying programming languages affect the perfor-
mance of our artifact detection approach? To answer RQ1, we collect issue tick-
ets from projects written in C++, Java, JavaScript, PHP, and Python. We create
manually labeled validation sets for each language. We apply our approach to each
language and evaluate it on the corresponding validation set. We plot the learning
curves for each language and compute the ROC-AUC values. Further, we discuss
performance in terms of training time, prediction time, and resulting model size.

RQ2: Are artifact detection models trained on one programming language
transferable to other programming languages? To answer RQ2, we train lan-
guage specific models and evaluate their classification performance on all validation
sets. We select a suitable training set size based on our findings in RQ1, and lock it
for all experiments to enable comparison.

RQ3: What is the performance of a multi-language model for artifact detec-
tion? To answer RQ3, we train models on mixed training sets and evaluate their
classification performance on each language validation set. We keep the same train-
ing set size that we used in RQ2. We create a training set from equal sized portions
from each language specific dataset and apply our approach.

Exclusions: This journal paper focuses on the portability and transferability
of our approach and we do not compare our approach to any baseline or existing
approach for the following reasons:

First, there exists only one similar approach, namely NLON (Mäntylä et al.
2018), and a detailed comparison and cross evaluation of our approach to NLON
was performed in our previous work (Hirsch and Hofer 2021). The excessive runt-
ime requirements for training NLON on big datasets make it infeasible to evaluate
the approach on the bigger datasets used in this work. We therefore refer the inter-
ested reader to our previous work (Hirsch and Hofer 2021).

Second, we exclude performance comparison with regex based solutions because
there is no standard corpus of regular expressions for the task of artifact removal.
The regex sets used by other researchers for the same task are ad-hoc implementa-
tions that are either minimalistic, tightly tuned to their specific datasets, or unavail-
able. The achievable performance of custom regex sets for a given dataset is only
limited by time and effort. This voids any meaningful and objective comparison of
our models’ performance to existing and custom build regex solutions.

5.2 � Evaluation metrics and statistical tests

We use the following metrics and statistical tests in our evaluations:
True Positives. True Positives (TP) is the number of instances that are correctly

identified.
False Positives. False Positives FP) is the number of instances incorrectly identi-

fied as this type.
False Negatives False Negatives (FN) is the number of instances of a specific

type that were not identified.
True Negatives True Negatives (TN) is the number of instances not belonging to a

specific type that were not identified as that type.

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 14 of 29

Precision. The precision indicates the proportion of correctly identified instances
based on all instances reported to be of this type, and is computed as follows:

Recall. The recall indicates what proportion of all instances of a type have been
classified as such:

ROC-AUC. The Receiver Operating Characteristics (ROC) curve illustrates the ratio
of the false positive rate (  FP

FP+TN
 ) to the true positive rate (  TP

TP+FN
 ) for different thresh-

olds. The Area Under the Curve (AUC) measures the area of the ROC curve and
expresses how good a classifier distinguishes the classes. It has a value between 0
and 1 where a value of 1 means perfect prediction of the classes, while a value below
0.5 indicates that the classification model performs worse than random choice.

Cohen’s Kappa. The Cohen’s Kappa coefficient � measures the inter-rater agree-
ment corrected for agreement by chance. It is computed based on the proportion of
items where both raters agree ( p

0
 ), and the proportion of times where agreement is

expected by chance ( pc ) (Cohen 1960) and is computed as follows:

� values between 0.41 < 𝜅 < 0.60 are considered as moderate, 0.61 < 𝜅 < 0.80 as
substantial, and 0.81 < 𝜅 < 1.00 as almost perfect agreement (Landis and Koch
1977).

Student’s T-test and Wilcoxon signed-rank test. To investigate the significance
of differing performance scores of our various models, we perform statistical tests.
Whenever the underlying performance scores are normally distributed we report
p-values from Student’s T-test. This is the case for all models’ performance scores
on a single language validation set. However, if the underlying data is not normal
distributed—as is the case for the mean performance over all languages—we per-
form Wilcoxon signed-rank test. The null hypothesis assumes that the models have
the same mean value and the alternative hypothesis assumes that the mean of the
first model is greater than the mean of the second model. If the p-value is smaller
than a predefined threshold, the null hypothesis can be rejected. We choose as
threshold 0.05.

5.3 � Datasets

We create separate datasets for C++, Java, JavaScript, PHP, and Python. We
decided to focus on these programming languages, since they are popular in practice

(1)Precision =
TP

TP + FP
.

(2)Recall =
TP

TP + FN
.

(3)� =
p
0
− pc

1 − pc

1 3

Automated Software Engineering (2022) 29:52	 Page 15 of 29  52

(see Stack Overflow 2021 Developer Survey12) and research (in particular C++ and
Java).

We build our datasets by mining GitHub repositories. We select the 30 most-
starred projects for each programming language13 excluding educational and non-
English projects. The selected projects cover a wide variety of software domains,
ranging from server side applications, database applications, ML frameworks, test-
ing frameworks, to mobile applications and games. A complete list of projects can
be found in the online appendix. We used the GitHub API to crawl all closed issue

Table 4   Summary of the training and validation sets

C++ Java JavaScript PHP Python

Number of issues 41 542 131 329 187 340 108 568 159 760
Issues containing MD codeblocks 9 400 46 079 66 319 46 523 95 676
Training set issue tickets
Number of issues 9 343 45 980 66 231 46 422 95 521
Artifact lines 327 615 1 975 090 2 043 327 1 773 366 4 085 192
Natural language lines 82 155 431 281 682 452 529 900 1 716 916
% of natural language lines 20.05 % 17.92 % 25.04 % 23.00 % 29.59 %
Documentation
Number of files 618 683 2 373 511 825
Artifact lines 20 719 27 372 139 937 16 335 37 447
Natural language lines 34 782 36 482 109 988 30 864 51 596
% of natural language lines 62.67 % 57.13 % 44.01 % 65.39 % 57.95 %
Full training set
Lines total 465 271 2 470 225 2 975 704 2 350 465 5 891 151
Artifact lines 348 334 2 002 462 2 183 264 1 789 701 4 122 639
Natural language lines 116 937 467 763 792 440 560 764 1 768 512
% of natural language lines 25.13 % 18.94 % 26.63 % 23.86 % 30.02 %
Validation set
Number of issues 250 250 250 250 250
Artifact lines researcher 1 3 708 4 688 3 240 4 226 8 342
Natural language lines researcher 1 1 708 1 887 1 930 1 964 2 559
Artifact lines researcher 2 3 719 4 672 3 225 4 198 8 427
Natural language researcher 2 1 699 1 906 1 942 1 991 2 556
Cohens Kappa 0.96 0.97 0.96 0.92 0.95
ROC-AUC​ 0.98 0.99 0.98 0.96 0.97

12  https://​insig​hts.​stack​overf​low.​com/​survey/​2021#​most-​popul​ar-​techn​ologi​es-​langu​age-​prof
13  https://​github.​com/​topics/​java?l=​java &o=​desc &s=​stars, https://​github.​com/​topics/​cpp?l=​cpp &o=​
desc &s=​stars, https://​github.​com/​topics/​python?​l=​pytho​n &o=​desc &s=​stars, https://​github.​com/​topics/​
php?l=​php &o=​desc &s=​stars, https://​github.​com/​topics/​javas​cript?l=​javas​cript​ &o=​desc &s=​stars, all
accessed in February 2022

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://github.com/topics/java?l=java%20&o=desc%20&s=stars
https://github.com/topics/cpp?l=cpp%20&o=desc%20&s=stars
https://github.com/topics/cpp?l=cpp%20&o=desc%20&s=stars
https://github.com/topics/python?l=python%20&o=desc%20&s=stars
https://github.com/topics/php?l=php%20&o=desc%20&s=stars
https://github.com/topics/php?l=php%20&o=desc%20&s=stars
https://github.com/topics/javascript?l=javascript%20&o=desc%20&s=stars

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 16 of 29

tickets regardless of labels (excluding pull requests), as well as the projects’ docu-
mentation files.14

Table 4 indicates the number of issue tickets crawled for each language and in
total. Although we have collected issue tickets from 30 projects for each language,
the number of issue tickets per language varies significantly with 41K issue tick-
ets for C++ and 187K issue tickets for JavaScript. From each dataset, we randomly
select 250 issue tickets to build the validation set. The remaining issue tickets form
the basis for the training sets as described in Sect. 4.1. The removal of data asso-
ciated with our training set creation approach can be observed in Table 4, with
40-60 % of issues being removed in the initial filtering step.

Training set. The training set creation process is illustrated in Fig.3. We remove
all issue tickets that do not contain triple tick Markdown code blocks. The remaining
issues tickets are subject to the process described in Sect. 4.1, providing a collection
of lines labeled either natural language, or artifact. The resulting collections also dif-
fer in their size with the Python set as the largest set and the C++ set as the small-
est set. Further, all five datasets are imbalanced with natural language as minority
class. In order to obtain more natural language data, we include project documenta-
tion files. Inclusion of documentation files benefits the training set size most notably
for languages with a lower number of available issue tickets (C++) while being a
diminishing factor where many issue tickets are available (Python). Documentation
files are subjected to the same process as issue tickets as described in Sect. 4.1.

In order to create balanced training sets we perform downsampling. In detail, we
randomly sample with replacement n/2 lines from each side of a collection to create
a balanced training set with size n.

To evaluate the quality of the automatically created training sets, we randomly
sampled 500 lines containing artifacts and 500 natural language lines from the
collections for each programming language. Researcher 2 manually inspected the
samples and marked all lines that contain wrongly labeled data. Table 5 shows the
number of incorrectly labeled lines for each sample. The natural language samples
contain more noise than the artifact samples. This can be explained by our auto-
mated training set creation process: The artifacts side of our collections is sourced
from explicitly annotated portions of the input documents, the remainder of those
documents are the source for our natural language portion. While it is a rare sight

Table 5   Number of incorrect labeled items from a randomly selected subset of 500 lines of artifacts and
500 lines of natural language from the automatically created training sets

C++ Java JavaScript PHP Python

Artifacts 6 4 3 2 0
Natural language 21 18 13 11 4

14  We had to ignore the documentation dataset of MuseScore (https://​github.​com/​muses​core/​MuseS​core)
as this project repurposes the .md file ending for MuseData import files.

https://github.com/musescore/MuseScore

1 3

Automated Software Engineering (2022) 29:52	 Page 17 of 29  52

that Markdown code highlighting features are accidentally used for natural language
text, the omissions of such Markdown annotations for such artifacts happens far
more frequent.

Validation set. In order to evaluate our approach, a validation set containing the
ground truth is required. Due to the loss occurring in our automated training crea-
tion process, a classic test/training split on our training data would produce highly
skewed test sets that do not represent the real world. We therefore randomly sample
250 issue tickets from each unfiltered language data set, to be manually inspected
and annotated in order to create realistic validation sets. Both authors classified
the issue tickets of all five languages. It took each author between 2 and 3.5 hours
to classify 250 issue tickets per language. Therefore, a total of 1250 issue tickets,
accumulate to approximately 35.000 lines that were manually labeled. In total each
researcher spent about 13 hours for labeling all validation sets. The resulting train-
ing sets are imbalanced with non-natural language artifacts as the majority class.
(see Table 4) For each dataset, we achieved a Cohen’s Kappa interrater agreement
between 0.92 and 0.97 (see Table 4), indicating almost perfect agreement.

Table 6 provides details on the researchers’ classifications. About two thirds of
the lines were classified as artifacts by both researchers. We manually investigated
all lines where we disagreed on the classification. The main reasons for discrepan-
cies are:

•	 Moments of inadvertence where one researcher incorrectly labeled a line,
•	 Different opinions on how to classify lines written in other languages than Eng-

lish, e.g., Chinese, and
•	 Different opinions on how to classify lines containing only a few words and an

URL, e.g., ‘- Originally reported by: [mrexodia](http://bitbucket.org/mrexodia)’

Markdown usage. In Sect. 4.1, we have stated that only some of the issue report-
ers use Markdown and that Markdown might not be used consistently. To support
this claim, we have manually examined the quality of the issue tickets contained in
the validation sets. Researcher 2 manually inspected all issue tickets from the valida-
tion sets and classified them into two groups: issue tickets that use Markdown code
blocks and issue tickets that do not use Markdown code blocks. For the first group,
Researcher 2 inspected if Markdown was consistently and correctly used, i.e., if all
code snippets, error messages, log outputs, and stack traces are properly Markdown

Table 6   Validation set: agreement and disagreement of the researchers’ classification on 250 randomly
selected issue tickets for each language

Researcher 1 Researcher 2 C++ Java JavaScript PHP Python

Artifact Artifact 67.76 % 70.60 % 61.60 % 66.31 % 75.61 %
Artifact Natural language 0.70 % 0.70 % 1.05 % 1.94 % 0.92 %
Natural language Artifact 0.87 % 0.41 % 0.83 % 1.54 % 0.94 %
Natural language Natural language 30.67 % 28.29 % 36.53 % 30.22 % 22.54 %

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 18 of 29

annotated and if the Markdown annotated code blocks do not contain natural lan-
guage. Between 3.9 % and 9.2 % did not use Markdown consistently. For the second
group, Researcher 2 investigated if the issue tickets contain any code snippets, error
messages, log outputs, or stack traces that should have been Markdown annotated.
Between 7.4 % and 23.4 % of the issue tickets without Markdown code blocks con-
tain segments that should have been wrapped in a Markdown code block. Table 7
provides the detailed numbers for all validation sets. In general, this table supports
our claim that Markdown annotated issue tickets are cleaner than those without
annotations.

5.4 � Empirical results

RQ1: Do different underlying programming languages affect the performance
of our artifact detection approach? We created balanced training sets of different
sizes according to the process described in Sect. 5.3. The training set sizes n were
6 250, 12 500, 25 000, 50 000, 100 000, 200 000, 400 000, 800 000, 1 600 000, 3
200 000.15 We trained our models on these training sets and evaluated them using
the corresponding validation set. This experiment was performed 10 times for each
training set size n, while resampling the training set for each new iteration.

We performed our experiments on Manjaro Linux 21.1.6 in a Python 3.9 conda
environment on an AMD Ryzen 7 Pro 3700U Processor (2.30 GHz, up to 4.00 GHz
Max Boost, 4 Cores, 8 Threads, 4 MB Cache) with 16 GB RAM.

Figure 4 shows the results of this experiment. To increase readability, the graphs
were truncated at training set size n = 800 000 due to negligible changes in per-
formance beyond this point. The resulting model sizes increase nearly linearly with
training size n. A similar effect can be observed with the time required for training
these models. Both training time and model size are very similar for each underlying
programming language.

Table 7   Markdown usage in the issue tickets of validation set

C++ Java JavaScript PHP Python

Issue tickets using Markdown code blocks
Markdown consistently used 79 99 98 103 148
Markdown inconsistently used 7 10 4 8 8
% Markdown inconsistent 8.1 % 9.2 % 3.9 % 7.2 % 5.1 %
Issue tickets not using Markdown code blocks
Markdown not necessary 147 112 137 119 72
Markdown should have been used 17 29 11 20 22
% that should use Markdown 10.4 % 20.6 % 7.4 % 14.4 % 23.4 %

15  If the underlying data set was smaller than the desired training set size, the full data set size was used
for this final evaluation. This was the case for the C++ training set.

1 3

Automated Software Engineering (2022) 29:52	 Page 19 of 29  52

In order to compare the performance of our approach on different program-
ming languages, the respective models have to be trained with the same amount
of data. We chose a training set size of n = 200 000, as to provide reasonably
sized models to be used in practice or other research, and we again created train-
ing sets for each language according to the process described in Sect. 5.3, and
evaluated the trained models on the corresponding validation sets. However, this

Fig. 4   ROC-AUC learning curves and model size for each programming language

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 20 of 29

time we trained and evaluated each programming language model 100 times to
provide a bigger sample of performance scores.

Table 8 shows the mean performance scores resulting from this experiment.
Figure 5 shows the bootstrap confidence intervals ( � = 0.95 ) of our models’ ROC-
AUC scores on Researcher 1 validation sets. Our models’ performance depends
on the projects’ programming language that source our datasets. Our approach
performs best for C++, followed by Java, JavaScript, PHP, and Python in that
order. The differences between each of the performance samples is statistically
significant. One sided Student’s T-test performed on each neighboring language
pair shows that C++ performance is better than Java ( p = 2 ∗ 10−22 ), and simi-
larly for each consecutive language pair in the above ranking (Java vs. JavaScript
p = 6 ∗ 10−12 , JavaScript vs. PHP p = 4 ∗ 10−117 , PHP vs. Python p = 2 ∗ 10−79).

Table 8   Mean performance (100 repetitions) using training set size n = 200 000 for each programming
language

C++ Java JavaScript PHP Python

ROC-AUC reseacher 1 0.96 0.96 0.95 0.93 0.92
ROC-AUC reseacher 2 0.95 0.96 0.96 0.91 0.91
Artifact precision researcher 1 0.98 0.99 0.98 0.99 0.99
Artifact precision researcher 2 0.98 0.99 0.98 0.97 0.98
Artifact recall researcher 1 0.96 0.94 0.95 0.89 0.88
Artifact recall researcher 2 0.95 0.94 0.95 0.88 0.87
Model size (MiB) 35.92 42.92 42.54 37.13 34.58
Training time (s) 110.16 68.57 62.59 90.31 85.77
Prediction time per 5000 lines (s) 0.44 0.35 0.30 0.30 0.31

Fig. 5   ROC-AUC bootstrap confidence interval ( � = 0.95 , 100 repetitions) on Researcher 1 validation
sets using training set size n = 200 000 for each programming language

1 3

Automated Software Engineering (2022) 29:52	 Page 21 of 29  52

We observe no correlation of these performance scores to inconsistent usage of
Markdown in their corresponding datasets (see Table 7). Further, language features
as semicolon line terminators and usage of curly brackets do not seem to be the
distinguishing factor in classification performance. PHP syntax features both while

Fig. 6   Examples of lines consisting of product and version number to be considered part of natural lan-
guage, and part of a log-output artifact

Table 9   Examples of lines misclassified as natural language text

Artifact Origin

Conflict: multiple assets emit to the same filename 75002edf.chunk.js JS
ArrayUtils.sol:34:32: TypeError: Invalid type for argument in function call. Invalid implicit

conversion from function (uint256) pure returns (uint256) to function (uint256) pure external
returns (uint256) requested.

C++

Cannot determine embedded database driver class for database type NONE. If you want an
embedded database please put a supported one on the classpath.

Java

Checking for update of app ”activity” in appstore PHP
You must be using the interactive console to authenticate PHP
- Theming: 1.12.0 PHP
Matplotlib: 1.4.3 Python
http://www.pcl-users.org/3rd-party-include- file-in-pcl-recognition-missing-if-pkg- config-not-

available-td4031656.html
CPP

0x00007ffff6252acf in ?? () from /usr/lib/pymodules/python2.6/numpy/core /umath.so Python
DEBUG [main] - <== Total: 1 Java

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 22 of 29

significantly performing worse than JavaScript that does not require semicolons as
line terminators.

The precision for artifacts of PHP and Python models is comparable with the
other languages as shown in Table 8. However, PHP and Python show a signifi-
cantly lower recall for artifacts. This leads to an increased number of artifacts being
wrongly classified as text.

We manually investigated the lines misclassified by our models. The following
types of artifacts were often misclassified as natural language text:

•	 Log outputs that closely resemble natural language, contain, or constitute syntac-
tically correct English sentences,

•	 Product names and corresponding version numbers, separated by colons (They
are often composed by issue reporters and we do not consider them artifacts (see
Sect. 3). However, such formatted lines also often occur in log outputs and envi-
ronment specification files.), and

•	 URLs and other artifacts that contain a significant amount of English words.

The remaining misclassifications were obvious errors of the models.
Examples of such misclassifications are shown in Table 9. Although rare, obvi-

ous mistakes and URLs shown at the bottom of Table 9, seem to occur in all lan-
guage models. However, the majority of misclassifications on our PHP validation
sets stem from log outputs that closely resemble or constitute English sentences.
Further, product and version number combinations make up the absolute majority
of misclassifications on our Python validation sets and also often occur in our PHP
validation sets. In Sect. 3 we formulated that we consider product/version number
combinations as natural language, as such segments occurring in Java issue tickets

Fig. 7   ROC-AUC matrix of models trained on a specific language ( n = 200 000, 100 repetitions) scored
against each language specific Researcher 1 validation set

1 3

Automated Software Engineering (2022) 29:52	 Page 23 of 29  52

are mostly short, human written, and surrounded by natural language. However, as
the comparison of the bug reports1617 in Fig. 6 highlights, Python and PHP issue
tickets contain such product/version number combinations often as parts of console
outputs and log outputs that we considered non-natural language artifacts. Manual
annotation of our validation sets was performed on an issue ticket level, providing
the annotators the necessary context information to decide if a specific line is part of
such a console output artifact or not. This contextual information is not available to
our line-by-line classifier models.

Both problems are not solvable with our current approach given our definition of
non-natural-language artifacts in Sect. 3. However, depending on the downstream
task’s requirements, this definition and our approach could be modified to consider
all occurrences of product/version number combinations as non-natural artifacts.

RQ2: Are artifact detection models trained on one programming language
transferable to other programming languages? Along the lines of our experi-
ment for RQ1, we keep the training set size fixed at n = 200 000. Again we apply
our approach and train each language model 100 times. In contrast to RQ1, we now
evaluate the resulting models on all languages’ validation sets to measure model
transferability.

Figure 7 shows the mean ROC-AUC performance of models trained on a spe-
cific language performing predictions on the validation set of each language.
Java, JavaScript, and C++ form a group that performs rather well when cross val-
idated against each other. However, transfer of these models to PHP and Python
is penalized by a significant drop in performance. Interestingly, while Python and
PHP models do not start off with high performance on their respective language

Fig. 8   ROC-AUC bootstrap confidence interval ( � = 0.95 , n = 200 000, 100 repetitions) comparing the
multi-language model to language specific models on the language specific Researcher 1 validation sets

16  https://​github.​com/​dbeav​er/​dbeav​er/​issues/​5156
17  https://​github.​com/​pandas-​dev/​pandas/​issues/​14262

https://github.com/dbeaver/dbeaver/issues/5156
https://github.com/pandas-dev/pandas/issues/14262

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 24 of 29

validation sets, their performance transfers well onto Java, JavaScript, and C++
validation sets.

RQ3: What is the performance of a multi-language model for artifact
detection? We create a multi-language training set by taking equal sized and bal-
anced samples from each language. Again, we keep the training set size fixed at
n = 200 000 to enable comparison to the models produced in RQ2, therefore con-
taining 40 000 items from each of our five language specific data sets. Evaluation
has been performed on Researcher 1 validation sets.

Figure 8 shows the bootstrap confidence intervals and means of the multi-
language models’ performance compared to the language specific models’ per-
formance on their respective languages. The language specific models’ perfor-
mance on its own language validation set is statistically significant better than the
multi-language models’ performance (Student’s T-test: C++ p = 5 ∗ 10−82 , Java
p = 10−17 , JavaScript p = 2 ∗ 10−35 , PHP p = 3 ∗ 10−30 , Python p = 5 ∗ 10−33).

Table 10 shows the performance of our models average over all languages
validations sets. While the ROC-AUC performance scores of models evaluated
on a specific language validation set are normal distributed, this is no longer the
case when accumulating all validation sets’ scores. We therefore use one-sided
Wilcoxon signed-rank test to compare the single language models accumulated
scores again those of our multi-language models. The null hypothesis being that
the single language model performs better or equal to the multi-language model,
the corresponding p-values are shown in Table 10 for each model.

While the language specific models perform better on their specific language
than the multi-language model (see Figure 8), the multi-language model performs
better on average over all languages validation sets than any of the single lan-
guage models (see Table 10). The implications for practical use of our models
are: If the target dataset is sourced from projects with the same programming
language, a single language model for this specific language is best. However, if
the target dataset is spanning multiple programming languages, it may be unfeasi-
ble to use multiple single language models and separate the dataset to apply them
accordingly. In such a scenario a multi-language model will perform significantly
better than any standalone single language model.

We conclude that our multi-language model outperforms all single language
models when confronted with documents from multiple languages. However,

Table 10   Model performance
averaged over all languages
Researcher 1 validation sets,
p-values for null hypothesis
that the model performs better
than the multi-language model
(Wilcoxon signed-rank test)

Model language Mean ROC-AUC​ p

C++ 0.93 2 ∗ 10−18

Java 0.92 10−11

JavaScript 0.93 7 ∗ 10−18

PHP 0.91 10−15

Python 0.92 10−16

Multi-language 0.94

1 3

Automated Software Engineering (2022) 29:52	 Page 25 of 29  52

given only a single target language, the language specific models outperform our
multi-language model.

5.5 � Threats to validity

The biggest threat to internal validity are the static validation sets. While the train-
ing sets are repeatedly randomly sampled, the validation sets remain the same. We
counteract this threat by creating rather big validation sets from 250 issue tickets for
each of our target languages, with resulting sizes ranging between 5 000 and 10 000
lines per language. Further, manually labeling the validation sets is subject to human
error, and also subject to human preference regarding what is actually considered an
artifact or natural language. Therefore, two researchers independently classified the
bug reports for the validation sets and we computed the inter-rater agreements on
the validation sets to serve as indicator for dataset quality.

The biggest threat to external validity is the generalizability to other program-
ming languages. While we conducted experiments with issue tickets of projects
written in five different programming languages, the results might not be transfer-
able to other programming languages. However, during the manual labeling of the
validation sets, we observed that many similar artifacts are contained in issue tickets
of all programming languages, e.g., html, xml and json snippets.

Furthermore, we used in our experiments only issue tickets from open source
projects that are hosted on GitHub. Therefore, we cannot generalize our results to
closed source projects and to projects hosted on other platforms where there might
be other practices and habits for reporting and formatting issue tickets.

Another threat to the external validity is restriction to English projects where the
majority of the issue tickets are written in English. It is up to future work to evaluate
the performance of our approach on projects and issue tickets addressing different
languages.

6 � Conclusion

We investigated the application of ML models to distinguish natural language por-
tions of issue tickets from non-natural language artifacts. Our approach is comprised
of an automated training set creation process, a custom preprocessing pipeline for
the task, and a supervised ML model. In our previously published work (Hirsch and
Hofer 2021), we performed this task on a dataset created from Java open source
projects and compared our approach to NLoN (Mäntylä et al. 2018). In this work we
focused on the portability and transferability of our models on five datasets spanning
five different programming languages, based on our manually annotated validation
sets. Our approach works best on data from C++, Java, and JavaScript, and moder-
ate for PHP and Python data sets because artifacts in PHP and Python more often
than in other languages, either closely resemble, or constitute proper English lan-
guage sentences.

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 26 of 29

In practical application such a classifier may be used on data from projects
spanning multiple programming languages, we therefore cross evaluated our
models on documents for other programming languages. We observed that C++,
Java, and JavaScript models performed well on each others’ documents, while
dropping in performance when used on documents from PHP and Python, and
vice versa.

As none of these single language models transferred well to all five program-
ming languages, we investigated the applicability of multi-language models. Single
language models slightly out-performed the multi-language models when evaluated
on their native programming language. However, the average performance of multi-
language models over all languages was significantly better than any of the single
language models for the same use case. Based on the data that is to be processed, the
user has to decide whether a single language model or multi-language model is bet-
ter suited for the task.

Our models are intended to be used for preprocessing issue tickets and bug tick-
ets, to remove noise that may negatively affect downstream NLP and IR applica-
tions. The supplied models’ classification performance is high, they are fast in pre-
diction, while at the same time having a rather small memory footprint. However,
the main advantage of our models arises from our automated training set creation
process: the application of our models requires only little manual labor and effort,
compared to the labor-intensive creation of regular expressions for the same task.
While some Markdown annotated bug reports are required for training, the resulting
models are agnostic to Markdown annotations and can classify inputs lacking such
annotations.

The application of NLP and IR approaches on textual bug reports and issue tick-
ets is an active research field. These methods are applied to solve a wide variety
of tasks, for example, classification (Zhou et al. 2021; Thung et al. 2012; Chawla
and Singh 2015), automated assignment (Mani et al. 2019; Devaiya et al. 2021),
and fault localization (Zhou et al. 2012; Saha et al. 2013; Ye et al. 2016). Some
approaches require non-natural artifacts to be removed or treated separately, for
example, language identification (Jauhiainen et al. 2017), bug type classification
(Hirsch and Hofer 2022a), and personality analysis (Calefato et al. 2019). This work
intends to provide an alternative to labor intensive creation of regex for the task of
artifact removal. Our models are implemented in Python 3, and we made all data,
models, and implementations publicly available, including pretrained models ready
to be used as a preprocessor for downstream tasks. We hope that this work and the
resulting implementation and models can help other researchers in their work on
textual bug reports.

In future work, we will investigate the application of our noise removal approach
in practice and the resulting performance implications on a number of existing NLP
and IR tasks, for example, language detection, automated ODC classification, root
cause classification, and IR based fault localization. We will extend our approach to
multi-class classification, in order to allow identification of specific types of artifacts
as required for some tasks (e.g., stack traces for IR based fault localization). We will
further expand our evaluations onto more datasets from various programming lan-
guages and other markup languages and data formats used in bug trackers.

1 3

Automated Software Engineering (2022) 29:52	 Page 27 of 29  52

Acknowledgements  The work described in this paper has been funded by the Austrian Science Fund
(FWF): P 32653-N (Automated Debugging in Use).

Author contributions  Thomas Hirsch wrote the code for mining the data used in the evaluation and coded
the approach. Both authors individually created the validation sets. Birgit Hofer wrote Sections 1-3 and
5.1-5.3; Thomas Hirsch write Sections 4, 5.4, 5.5 and 6. Both authors reviewed the manuscript.

Funding  Open access funding provided by Austrian Science Fund (FWF). The work described in this
paper has been funded by the Austrian Science Fund (FWF): P 32653-N (Automated Debugging in Use).

Data availability  All accompanying datasets and implementations, including processed analysis targets
and result data, are made publicly available on Zenodo (Hirsch and Hofer 2022b). Further, all implemen-
tations and results are also made available on GitHub. (https://​github.​com/​Amade​usBug​Proje​ct/​artif​act_​
detec​tion/​relea​ses/​tag/​v1.2)

Declarations 

Conflict of interest  The work described in this paper has been funded by the Austrian Science Fund
(FWF): P 32653-N (Automated Debugging in Use). The authors have no other relevant financial or non-
financial interests to disclose. The authors have no competing interests.

Ethical approval  We carefully conducted all experiments and honestly reported the results. Since there are
neither humans nor animals involved in the experiments, the study has not been approved by any ethics
committee.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Bacchelli, A., Sasso, T.D., D’Ambros, M., Lanza, M.: Content classification of development emails. In:
34th International Conference on Software Engineering (ICSE), pp. 375–385 (2012). https://​doi.​org/​
10.​1109/​ICSE.​2012.​62271​77

Bacchelli, A., Cleve, A., Lanza, M., Mocci, A.: Extracting structured data from natural language docu-
ments with island parsing. In: 26th International Conference on Automated Software Engineering
(ASE), pp. 476–479 (2011). https://​doi.​org/​10.​1109/​ASE.​2011.​61001​03

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval (1999)
Bettenburg, N., Zimmermann, T., Premraj, R., Kim, S.: Extracting structural information from bug

reports. In: International Conference on Software Engineering (ICSE), pp. 27–30 (2008). https://​doi.​
org/​10.​1145/​13707​50.​13707​57

Bishop, C.M.: Pattern recognition and machine learning (2006). https://​doi.​org/​10.​1007/​
978-0-​387-​45528-0

Calefato, F., Lanubile, F., Vasilescu, B.: A large-scale, in-depth analysis of developers’ personalities in
the Apache ecosystem. Inf. Softw. Technol. 114, 1–20 (2019). https://​doi.​org/​10.​1016/J.​INFSOF.​
2019.​05.​012

https://github.com/AmadeusBugProject/artifact_detection/releases/tag/v1.2
https://github.com/AmadeusBugProject/artifact_detection/releases/tag/v1.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSE.2012.6227177
https://doi.org/10.1109/ICSE.2012.6227177
https://doi.org/10.1109/ASE.2011.6100103
https://doi.org/10.1145/1370750.1370757
https://doi.org/10.1145/1370750.1370757
https://doi.org/10.1007/978-0-387-45528-0
https://doi.org/10.1007/978-0-387-45528-0
https://doi.org/10.1016/J.INFSOF.2019.05.012
https://doi.org/10.1016/J.INFSOF.2019.05.012

	 Automated Software Engineering (2022) 29:52

1 3

52  Page 28 of 29

Chawla, I., Singh, S.K.: An automated approach for bug categorization using fuzzy logic. In: 8th India
Software Engineering Conference (ISEC 2015), pp. 90–99 (2015). https://​doi.​org/​10.​1145/​27237​42.​
27237​51

Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960).
https://​doi.​org/​10.​1177/​00131​64460​02000​104

Devaiya, D., Anvik, J., Bheree, M., Yeasmin Omee, F.: Evaluating a Tool for Creating Bug Report
Assignment Recommenders. In: 33rd International Conference on Software Engineering and
Knowledge Engineering (2021). https://​doi.​org/​10.​18293/​SEKE2​021-​163

Goseva-Popstojanova, K., Tyo, J.: Identification of Security related Bug Reports via Text Mining using
Supervised and Unsupervised Classification. In: International Conference on Software Quality,
Reliability and Security (QRS), pp. 344–355 (2018). https://​doi.​org/​10.​1109/​QRS.​2018.​00047

Hirsch, T., Hofer, B.: Using textual bug reports to predict the fault category of software bugs. Array 15
(2022). https://​doi.​org/​10.​1016/J.​ARRAY.​2022.​100189

Hirsch, T., Hofer, B.: Identifying non-natural language artifacts in bug reports. In: 2nd International
Workshop on Software Engineering Automation: A Natural Language Perspective (NLP-SEA)
- 36th IEEE/ACM International Conference on Automated Software Engineering Workshops
(ASEW), pp. 191–197 (2021). https://​doi.​org/​10.​1109/​ASEW5​2652.​2021.​00046

Hirsch, T., Hofer, B.: artifact_detection - A tool for NLP tasks on textual bug reports. Zenodo (2022).
https://​doi.​org/​10.​5281/​zenodo.​63931​29

James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning (2013). https://​
link.​sprin​ger.​com/​conte​nt/​pdf/​10.​1007/​978-1-​0716-​1418-1.​pdf

Jauhiainen, T., Lindén, K., Jauhiainen, H.: Evaluation of language identification methods using 285 lan-
guages. In: 21st Nordic Conference on computational linguistics, pp. 183–191 (2017)

Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal, M., Kwak, K.S.: Duplicate bug report detection
and classification system based on deep learning technique. IEEE Access 8, 200749–200763 (2020).
https://​doi.​org/​10.​1109/​ACCESS.​2020.​30330​45

Kukkar, A., Mohana, R., Nayyar, A., Kim, J., Kang, B.-G., Chilamkurti, N.: A novel deep-learning-based
bug severity classification technique using convolutional neural networks and random forest with
boosting. Sensors 19(13), 2964 (2019). https://​doi.​org/​10.​3390/​S1913​2964

Kumar, L., Dastidar, T.G., Murthy Neti, L.B., Satapathy, S.M., Misra, S., Kocher, V., Padmanabhuni,
S.: Deep-Learning Approach with DeepXplore for Software Defect Severity Level Prediction. In:
International Conference on computational science and its applications (ICCSA 2021), pp. 398–410
(2021). https://​doi.​org/​10.​1007/​978-3-​030-​87007-2_​28

Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1),
159 (1977). https://​doi.​org/​10.​2307/​25293​10

Mani, S., Sankaran, A., Aralikatte, R.: DeepTriage: Exploring the effectiveness of deep learning for bug
triaging. In: India Joint International Conference on Data Science and Management of Data (CoDS-
COMAD), pp. 171–179 (2019). https://​doi.​org/​10.​1145/​32970​01.​32970​23

Mäntylä, M., Calefato, F., Claes, M.: Natural Language or Not (NLoN) - A Package for Software Engi-
neering Text Analysis Pipeline. In: IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pp. 387–391 (2018)

Ortu, M., Destefanis, G., Swift, S., Marchesi, M.: Measuring high and low priority defects on traditional
and mobile open source software. In: 7th International Workshop on Emerging Trends in Software
Metrics (WETSoM), pp. 1–7 (2016). https://​doi.​org/​10.​1145/​28976​95.​28976​96

Ponzanelli, L., Mocci, A., Lanza, M.: StORMeD: Stack overflow ready made data. In: International
Working Conference on Mining Software Repositories (MSR), vol. 2015-Augus, pp. 474–477
(2015). https://​doi.​org/​10.​1109/​MSR.​2015.​67

Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming languages and code
quality in GitHub. In: ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE’14), pp. 155–165 (2014). https://​doi.​org/​10.​1145/​26358​68.​26359​22

Rigby, P.C., Robillard, M.P.: Discovering essential code elements in informal documentation. In: 35th
International Conference on Software Engineering (ICSE 2013), pp. 832–841 (2013). https://​doi.​
org/​10.​1109/​ICSE.​2013.​66066​29

Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using structured informa-
tion retrieval. In: 28th International Conference on Automated Software Engineering (ASE), pp.
345–355 (2013). https://​doi.​org/​10.​1109/​ASE.​2013.​66930​93

Soltani, M., Hermans, F., Bäck, T.: The significance of bug report elements. Empir. Softw. Eng. 25(6),
5255–5294 (2020). https://​doi.​org/​10.​1007/​S10664-​020-​09882-Z

https://doi.org/10.1145/2723742.2723751
https://doi.org/10.1145/2723742.2723751
https://doi.org/10.1177/001316446002000104
https://doi.org/10.18293/SEKE2021-163
https://doi.org/10.1109/QRS.2018.00047
https://doi.org/10.1016/J.ARRAY.2022.100189
https://doi.org/10.1109/ASEW52652.2021.00046
https://doi.org/10.5281/zenodo.6393129
https://link.springer.com/content/pdf/10.1007/978-1-0716-1418-1.pdf
https://link.springer.com/content/pdf/10.1007/978-1-0716-1418-1.pdf
https://doi.org/10.1109/ACCESS.2020.3033045
https://doi.org/10.3390/S19132964
https://doi.org/10.1007/978-3-030-87007-2_28
https://doi.org/10.2307/2529310
https://doi.org/10.1145/3297001.3297023
https://doi.org/10.1145/2897695.2897696
https://doi.org/10.1109/MSR.2015.67
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1109/ICSE.2013.6606629
https://doi.org/10.1109/ICSE.2013.6606629
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1007/S10664-020-09882-Z

1 3

Automated Software Engineering (2022) 29:52	 Page 29 of 29  52

Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open source software. Emp.
Softw. Eng. 19(6), 1665–1705 (2014). https://​doi.​org/​10.​1007/​s10664-​013-​9258-8

Thung, F., Lo, D., Jiang, L.: Automatic defect categorization. In: working conference on reverse engi-
neering (WCRE), pp. 205–214 (2012). https://​doi.​org/​10.​1109/​WCRE.​2012.​30

Ye, D., Xing, Z., Foo, C.Y., Li, J., Kapre, N.: Learning to extract API mentions from informal natural
language discussions. In: IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 389–399 (2017). https://​doi.​org/​10.​1109/​ICSME.​2016.​11

Ye, X., Shen, H., Ma, X., Bunescu, R., Liu, C.: From Word Embeddings To Document Similarities for
Improved Information Retrieval in Software Engineering. In: 38th International Conference on Soft-
ware Engineering (ICSE), pp. 404–415 (2016). https://​doi.​org/​10.​1145/​28847​81.​28848​62

Zhou, C., Li, B., Sun, X., Bo, L.: Why and what happened? Aiding bug comprehension with automated
category and causal link identification. Emp. Softw. Eng. 26(6), 1–36 (2021). https://​doi.​org/​10.​
1007/​S10664-​021-​10010-8

Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? More accurate information retrieval-based
bug localization based on bug reports. In: International Conference on Software Engineering
(ICSE), pp. 14–24 (2012). https://​doi.​org/​10.​1109/​ICSE.​2012.​62272​10

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1109/WCRE.2012.30
https://doi.org/10.1109/ICSME.2016.11
https://doi.org/10.1145/2884781.2884862
https://doi.org/10.1007/S10664-021-10010-8
https://doi.org/10.1007/S10664-021-10010-8
https://doi.org/10.1109/ICSE.2012.6227210

	Detecting non-natural language artifacts for de-noising bug reports
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 Approach
	4.1 Automated training set creation
	4.2 Feature selection
	4.3 Preprocessing and machine learning approach

	5 Results and discussion
	5.1 Research questions
	5.2 Evaluation metrics and statistical tests
	5.3 Datasets
	5.4 Empirical results
	5.5 Threats to validity

	6 Conclusion
	Acknowledgements
	References

