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Abstract
Textual documents produced in the software engineering process are a popular tar-
get for natural language processing (NLP) and information retrieval (IR) approaches. 
However, issue tickets often contain artifacts such as code snippets, log outputs 
and stack traces. These artifacts not only inflate the issue ticket sizes, but also can 
this noise constitute a real problem for some NLP approaches, and therefore has to 
be removed in the pre-processing of some approaches. In this paper, we present a 
machine learning based approach to classify textual content into natural language 
and non-natural language artifacts at line level. We show how data from GitHub 
issue trackers can be used for automated training set generation, and present a cus-
tom preprocessing approach for the task of artifact removal. The training sets are 
automatically created from Markdown annotated issue tickets and project documen-
tation files. We use these generated training sets to train a Markdown agnostic model 
that is able to classify un-annotated content. We evaluate our approach on issue tick-
ets from projects written in C++, Java, JavaScript, PHP, and Python. Our approach 
achieves ROC-AUC scores between 0.92 and 0.96 for language-specific models. A 
multi-language model trained on the issue tickets of all languages achieves ROC-
AUC scores between 0.92 and 0.95. The provided models are intended to be used as 
noise reduction pre-processing steps for NLP and IR approaches working on issue 
tickets.
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1  Introduction

Textual documents produced during the software development process are increas-
ingly popular targets for natural language processing (NLP) and information 
retrieval (IR) approaches. Specifically issue tickets have drawn the attention of 
researchers and practitioners. Such techniques are applied to issue tickets to catego-
rize the impact and root causes of bugs (Zhou et al. 2021), to classify bugs accord-
ing to the Orthogonal Defect Classification (ODC) scheme (Thung et al. 2012), to 
assign programmers to bug reports (Mani et al. 2019; Devaiya et al. 2021), to locate 
the source code that needs to be changed to fix a bug (Zhou et al. 2012; Saha et al. 
2013; Ye et al. 2016), to label the severity of a bug (Kumar et al. 2021; Kukkar et al. 
2019), to prioritize bugs (Ortu et al. 2016), to detect duplicates (Kukkar et al. 2020), 
to distinguish bug reports from other issues (Chawla and Singh 2015), and to find 
security related bug reports (Goseva-Popstojanova and Tyo 2018).

Unfortunately, issue tickets are often cluttered with non-natural language artifacts 
such as code snippets, stack traces, log outputs, and configuration files. Such arti-
facts inflate the size of issue tickets1 and pose a problem for some of the above men-
tioned tasks. Some approaches require that all artifacts are removed from the text, 
e.g. analysis of developers’ personalities (Calefato et al. 2019) and language identifi-
cation (Jauhiainen et al. 2017). In other approaches, the artifacts should not be elimi-
nated, but processed separately. For example, Bacchelli et al. (2012) investigated the 
content of development emails and argued that source code, stack traces, and other 
artifacts should not be part of the same bag of words as natural language. In our 
approach on multi-class root cause classification based on bug reports (Hirsch and 
Hofer 2022a), we have observed that artifacts have an impact on specific classes’ 
performance, either being beneficial or detrimental to its performance.

Since artifacts also decrease readability for humans, issue trackers usually pro-
vide formatting mechanisms, such as Markdown, that allow authors to format their 
issue tickets accordingly. Parsing issue tickets along these formatting rules and 
markup languages is probably the simplest and easiest form of artifact detection. 
Unfortunately, not all ticket authors use these formatting tools properly.2 Therefore, 
formatting alone is not a viable option for reliable artifact detection.

Researchers developed numerous techniques for identifying and parsing such 
non-natural language artifacts. A popular technique are regular expressions tai-
lored to the underlying dataset (Tan et al. 2014; Ray et al. 2014; Soltani et al. 2020). 
Although labor intensive, this approach works reasonably well for homogeneous 
datasets containing a rather small set of different types of artifacts, e.g., data origi-
nating from only a small number of software projects that are composed in the same 
programming language and targeting the same execution platform.

However, such sets of regular expressions lack in transferability to other, or new 
data, and have to be adapted accordingly. To the best of our knowledge, there is no 
standard corpus of regular expressions for this task. Manual identification of artifact 

1  see e.g. https://​github.​com/​redis​son/​redis​son/​issues/​2291 with 200 kB of uncompressed text
2  see e.g. https://​github.​com/​haral​dk/​Twelv​eMonk​eys/​issues/​37

https://github.com/redisson/redisson/issues/2291
https://github.com/haraldk/TwelveMonkeys/issues/37
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patterns in new data combined with the adaption or expansion of the set of regular 
expressions is time-consuming, as pointed out by Mäntylä et al. (2018). Manually 
created rule sets do not scale to larger, heterogeneous datasets due to the size and 
number of required regular expressions necessary to account for different logging 
frameworks, code style guidelines, built systems, configuration file formats, under-
lying OSs, and IDEs. These scalability and portability issues led researchers to the 
application of machine learning (ML) techniques (Mäntylä et  al. 2018; Bacchelli 
et  al. 2012). While ML approaches circumvent the manual creation of rules, they 
introduce the need for manually annotated training sets.

In this work, we propose a supervised machine learning approach combined with 
an automated training set creation process implemented in Python. Our approach 
does not require extensive knowledge about the artifacts that are supposed to be 
removed, while providing good classification performance at a low computational 
cost once trained. Our automated training set creation process locates instances in 
the dataset that can be labeled using heuristics based on GitHub Markdown. The 
resulting fractions of the original data sets are used to train models with the pur-
pose of generalizing the classification problem again to the whole range of input 
data. Our models can classify inputs that are not Markdown annotated. In contrast to 
general purpose NLP pipelines, we perform custom, task specific, tokenization. We 
evaluate our models on manually annotated validation sets randomly sampled from 
our original datasets.

This paper is based on previous work (Hirsch and Hofer 2021) presented at the 
2nd International Workshop on Software Engineering Automation: A Natural Lan-
guage Perspective (NLP-SEA 2021) co-hosted with ASE. While the workshop paper 
focused on the comparison with existing work (Mäntylä et al. 2018), we now focus 
on the portability of the approach. For this purpose, we extend our evaluation from 
Java projects to projects written in four popular programming languages, namely 
C++, JavaScript, PHP, and Python. We answer the following research questions in 
this journal paper:

•	 RQ1: Do different underlying programming languages affect the perfor-
mance of our artifact detection approach? While we have designed our 
approach to be language independent, we have not empirically evaluated this 
aspect in the workshop paper. However, it is important to empirically evaluate 
this aspect, because syntax and stack traces differ for different programming 
languages and it is unclear whether the used features are well suited for other 
programming languages. For example, curly brackets and semicolons are heavily 
used in C++ and Java, but these symbols are rarely used in Python.

•	 RQ2: Are artifact detection models trained on one programming language 
transferable to other programming languages? Here, we investigate if a 
model trained on bug reports of projects written in one programming language 
can be used to correctly detect artifacts originating from other programming lan-
guages.

•	 RQ3: What is the performance of a multi-language model for artifact detec-
tion? In practice, projects are often written in several programming languages 
and therefore bug reports might contain code snippets and stack traces of several 
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programming languages. A multi-language model might be particularly useful in 
such scenarios.

Since we already compared our approach to NLoN (Mäntylä et  al. 2018) in the 
workshop paper (Hirsch and Hofer 2021), the comparison of our approach and 
NLoN is not part of this journal paper and we refer the interested reader to the work-
shop paper.

The remainder of this paper is structured as follows: Sect. 2 discusses the related 
work. Section 3 describes the problem of distinguishing natural and non-natural lan-
guage parts and we define where we draw the line between natural language and 
artifact. Section  4 explains the automatic creation of the training set, the features 
used in the ML approach, the preprocessing steps, and the used machine learning 
models. Section 5 deals with the setup and the results of the empirical evaluation. 
Section 6 concludes the paper.

2 � Related work

Natural Language Processing (NLP) and Information Retrieval (IR) approaches on 
textual documents from software development processes often require identification 
of non-natural language portions or identification of specific types of artifacts. Reg-
ular expressions and island parsers (Bettenburg et  al. 2008; Bacchelli et  al. 2011; 
Rigby and Robillard 2013) are currently amongst the most popular methods to per-
form such a separation. While these methods can be implemented in a reasonable 
amount of time for a homogenous set of issue tickets concerning a single language 
and similar context, they do not scale well for a large number of issue tickets from 
heterogeneous sources, spanning multiple domains, companies, and programming 
languages (Calefato et al. 2019).

InfoZilla (Bettenburg et  al. 2008) extracts structural information such as stack 
traces, source code, patches, and enumerations from bug reports using regular 
expressions, island parsing and heuristics. The approach was evaluated by manually 
classifying 800 bug reports from the Eclipse issue tracking system.

Bacchelli et al. (2011) used island parsing to extract structured data from natu-
ral language documents. They evaluated their approach on the mailing lists of three 
large open-source Java projects. In later work, they proposed a supervised ML 
approach to classify the content of emails line-by-line into natural language, junk, 
code, patch and stack trace. To train and test the classifier, they manually classified 
the content of nearly 1500 emails from four software systems (Bacchelli et al. 2012).

Rigby and Robillard (2013) developed an island parsing-based tool called Auto-
mated Code element Extractor (ACE) that automatically extracts code elements such 
as packages, types, and methods. They empirically evaluated ACE on StackOver-
flow posts that used one of the tags HttpClient, Hibernate, or Android.

Ponzanelli et  al. (2015) used island parsing to identify Java code, stack traces, 
XML/HTML elements and JSON fragments in natural language text. They pro-
vide a parsed dataset, named Stack Overflow Ready Made Data (StORMeD), that 
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contains heterogeneous abstract syntax trees for the identified non-natural language 
fragments.

Calefato et al. (2019) reported on their experiences when using regular expres-
sions to remove code snippets from email text: they found this approach does not 
scale well enough—in particular when several programming languages are used. 
This highlights the need for more generic approaches for artifact detection such as 
machine learning.

Ye et al. (2017) use a semi-supervised machine learning approach to detect API 
mentions in text written on social platforms. They evaluated their approach on Stack 
Overflow posts to identify API mentions of three well-known Python libraries.

While the above described approaches aim at identifying certain types of artifacts 
(e.g. stack traces Bettenburg et al. 2008; Bacchelli et al. 2011; Ponzanelli et al. 2015, 
JSON fragments Ponzanelli et al. 2015, or API mentions Ye et al. 2017), we aim at 
separating natural language from non-natural language artifacts in general, indiffer-
ent to the specific type of the artifact. Due to the differing goals and scopes, we can-
not quantitatively compare our approach to the above solutions.

The work that is closest to ours is the Natural Language or Not (NLoN) Pack-
age (Mäntylä et al. 2018). This R package classifies text lines into text or artifact by 
using eleven language features and character tri-grams. The approach is trained and 
evaluated on three data sources (i.e. comments from the Mozilla issue tracker, chat 
entries from Kubernetes, and emails from Apache Lucene’s mailing list archive), 
each containing 2000 data samples that were manually labeled as natural text or arti-
fact. The major differences between NLoN and our approach are the explicit lan-
guage features used in NLoN, and the training set creation process: While NLoN 
relies on a manually labeled training set, we automatically generate the training 
sets. NLoN’s hard coded features makes it applicable to C++, Java and similar lan-
guages, but would require adaptions to be used for Python. Further, we implemented 
our approach in Python, as Python has surpassed R in popularity.3

3 � Problem definition

This paper proposes an automated approach to distinguish natural language text por-
tions from non-natural language artifacts on a line-by-line basis. Table 1 illustrates 
this distinction on an excerpt from Bazel issue 3906.4

Our intuition tells us that the line between natural language or non-natural lan-
guage should be a clear cut. However, closer investigation reveals the complexity 
of this problem and gray areas where the two categories overlap. Examples of such 
border cases are code comments and issue ticket templates: Comments contained in 
code snippets are natural language texts. However, they may not have been authored 
by the issue reporter. Issue ticket templates consist of headers, questions, and other 

3  see Stackoverflow 2021 Developer Survey https://​insig​hts.​stack​overf​low.​com/​survey/​2021#​most-​popul​
ar-​techn​ologi​es-​langu​age
4  https://​github.​com/​bazel​build/​bazel/​issues/​3906

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://github.com/bazelbuild/bazel/issues/3906
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texts (see header lines starting with ### in Table 1 for an example). While they are 
natural language, they are again not written by the issue reporter and are to be con-
sidered automatically generated text. Migration from other issue tracking systems 
often introduces generated text portions. They are also natural language, but their 
origin is artificial. Such text portions are highly repetitive and may add very little 
value to the downstream NLP or IR task. Product and version numbers are another 
example of text that is difficult to distinguish on a line by line basis. While short 
identifiers like Windows 10 are often seen as human-written, verbose and detailed 
version identifiers often seem to be copy-pasted. In particular when the version 

Table 1   Natural language and artifacts (shaded in gray) categorization for an excerpt of Bazel issue 3906
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numbers of several programs, apps, or environment settings are listed5, it is more 
likely that the information was copy-pasted. As far as we are aware, there exists no 
formal definition, established guideline, or agreement within the research commu-
nity working with textual issue tickets on what is to be considered natural language 
when dealing with issue tickets.

For this work, we define artifacts and natural language portions of issue tickets 
as indicated in Table 2. We consider text that was typed by the reporter of the issue 
ticket as natural language, and content that was originating from an IDE, terminal, 
or other tool to be an artifact. Automatically generated natural language text of the 
issue tracking tool, template, or migration processes is considered natural language. 
Comments in pasted code snippets, elaborate natural language logging messages and 
error messages are considered artifacts. Further, we consider standalone URLs and 
Markdown links as artifacts. We treat standalone numbers such as version numbers 
as artifacts, but the combination of product names and version numbers as natural 
language.

Occurrences of non-natural language portions in a natural language sentence are 
mostly limited to variable names, class names, and short formulas or mathemati-
cal equations. Removing such occurrences may render a natural language sentence 
syntactically and semantically incorrect and unreadable for a human. We therefore 
consider a line of natural language text interweaved with non-natural language por-
tions as natural language.

We approach the task as a line by line binary classification problem, similar to 
Mäntylä et al. (2018). While intuitive, as log outputs or code snippets always start 
on a new line, distinguishing classes based on an isolated line can be challenging 

Table 2   Categorization into natural language and artifacts

Natural language

Text typed by issue reporter
Issue ticket template text
Natural language sentence containing variable names
Natural language sentence containing URLs/Markdown links
Natural language text migrated from other issue tracking systems
Product name and version number

Artifact

Content originating from IDE, terminal, …
Code snippets and code comments
Error messages, stack traces
Standalone URLs/Markdown links
Log output
Standalone numbers, e.g., version numbers

5  see e.g. https://​github.​com/​nextc​loud/​server/​issues/​16415

https://github.com/nextcloud/server/issues/16415


	 Automated Software Engineering (2022) 29:52

1 3

52  Page 8 of 29

due to lack of contextual information. Examples for such cases are code comments, 
and natural language error messages contained in log outputs.

4 � Approach

Our approach essentially consists of three steps: (1) our automated training set crea-
tion process, described in detail in Sect. 4.1, (2)  feature engineering, as discussed 
in Sect.  4.2, and (3)  our preprocessing and supervised machine learning pipeline, 
presented in Sect. 4.3.

4.1 � Automated training set creation

A major advantage of our approach is that manual annotation of a training set is 
not required. Instead, we rely on Markdown annotated portions of the input dataset 
to automate the training set creation process. GitHub’s built-in issue tracker offers 
Markdown6 to format issue reports. Given our task at hand, we focus mainly on 
the following Markdown features: Triple ticks that start and end a code highlight-
ing block, indentation by four spaces signaling a code block, lines that are entirely 
in quotes, Markdown style links, tables, URLs, and embedded images. Markdown 
code block highlighting features are extremely well suited for our purpose of build-
ing a line by line approach. For example triple tick code blocks have their Markdown 
annotations signaling begin and end in separate lines. Having no inline markup 
annotations and formatting rules inside of such code blocks, prevents formatting 
information leaking into the contained lines, and prevents overfitting on Markdown 
features.

Fig. 1   Eclipse-vertx vert.x issue 2887 (https://​github.​com/​eclip​se-​vertx/​vert.x/​issues/​2887) as an exam-
ple of an issue ticket that should have used Markdown to highlight code

6  https://​guides.​github.​com/​featu​res/​maste​ring-​markd​own/

https://github.com/eclipse-vertx/vert.x/issues/2887
https://guides.github.com/features/mastering-markdown/


1 3

Automated Software Engineering (2022) 29:52	 Page 9 of 29  52

If all issue reporters would adhere to formatting rules and apply these Markdown 
features to wrap non-natural language artifacts, the task of artifact removal would 
be trivial. Unfortunately, this is not the case (see Fig. 1, and Table 1 for examples).7

Due to inconsistencies in Markdown usage, simple Markdown parsing to identify 
artifacts is insufficient. However, we can leverage the issue tickets that do contain 
Markdown code highlighting features to create an annotated data set to be used in 
training ML classifiers. Figure 2 illustrates this process. We use all issue tickets that 
contain blocks wrapped in triple ticks. Triple tick code blocks have to be deliber-
ately put in place by the issue reporter, showing some awareness to Markdown of 
the author, in contrast to code block highlighting by indentation. We then split the 
content of these issue tickets into natural language and non-natural language por-
tions. To do so, we employ a small set of six regular expressions to capture the var-
ious Markdown annotated artifacts discussed above. This process is based on the 
assumption that if reporters utilize Markdown in their issue ticket, they will do so 
consistently.

However, this assumption does not always hold, and therefore produces sup-
posedly natural language text portions that in fact are artifacts of some kind. To 
reduce the resulting noise in the natural language portion of the dataset, we apply 
a set of regular expressions to remove common artifact types. Each line is applied 
to a sequence of regular expressions, either matching it as an artifact and therefore 
removing the line, or labeling it natural language if no regular expressions match. 
The first part of these regular expressions can be easily reused in any context: Two 
regular expressions remove Unix and Windows style prompts, two regular expres-
sions remove json and xml like content, one regular expression for invalid Mark-
down quoted text, and one regular expression for hexadecimal numbers. The second 
part of regular expressions stem from our initial target consisting of Java projects: 
Four regular expressions specifically aim at Java code, and four regular expressions 
target logging formats. While our Java specific regular expressions to some degree 
work to identify C++, PHP, and JavaScript code (e.g. line ending with semicolon or 
curly bracket), they are unsuitable to identify Python code, and unsuitable to identify 
logging output from these other languages. We finally use two regular expressions 

Fig. 2   Automated separation of human-written text and artifacts

7  We evaluate Markdown usage in our mined dataset in Sect. 5.3.
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to remove lines whose formatting does not allow to distinguish them via regular 
expressions (e.g. Markdown block quotes using ‘>’ are used to highlight text8, for 
reply or followup in conversations9, and to quote excerpts from the documentation10 
as well as for code highlighting or error messages11). Despite our cleaning efforts, 
the resulting training sets might be noisy. We will evaluate the amount of noise in 
the resulting training sets in Sect. 5.3.

The process described in Fig. 2 is only applied to those issue tickets which con-
tain Markdown triple ticks. All other issue tickets are discarded and therefore are not 
part of the training set (see Fig. 3). Besides issue tickets, we use documentation files 
in Markdown syntax found in the projects’ repositories to augment our training set. 
The rationale behind this is that project maintainers utilize Markdown consistently 
in their documentation files. We employ the same approach for the separation of 
artifacts from natural language as described above for the issue tickets.

The resulting collection of natural language lines and artifact lines is imbalanced. 
Since the machine learning algorithms used in this work are sensitive to such imbal-
ance, we apply downsampling. We described our sampling strategy in more detail in 
Sect. 5.3.

4.2 � Feature selection

Humans can separate artifacts from natural language without actually reading a text. 
We therefore attempt to identify the features that enable humans to perform this task 
so easily.

Formatting and structure in particular help humans to classify text segments 
very fast. For example, indentation of code snippets provides a very good indicator. 
Therefore, we will include representations of whitespaces in the feature vectors used 
by the ML classifier.

Fig. 3   Training set creation process where M ↓ represents the process of Fig. 2

8  see e.g. http://​github.​com/​realm/​realm-​java/​issues/​3728
9  see e.g. http://​github.​com/​realm/​realm-​java/​issues/​3047
10  see e.g. https://​github.​com/​React​iveX/​RxJava/​issues/​6390
11  see e.g. http://​github.​com/​dbeav​er/​dbeav​er/​issues/​5156

http://github.com/realm/realm-java/issues/3728
http://github.com/realm/realm-java/issues/3047
https://github.com/ReactiveX/RxJava/issues/6390
http://github.com/dbeaver/dbeaver/issues/5156
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A closer look at artifacts further reveals that frequency and position of special 
characters also carry a significant amount of information for our task. While the 
most common special characters in English text are ‘,’ and ‘.’, the characters ‘<’, 
‘>’, and ‘/’ are probably the most common in XML. For this reason, we tokenize 
special characters to include them in the feature vectors.

Further, we replace occurrences of camel cased words, underscored words, and 
numbers with respective tokens, as their type as such, carries more information, than 
their actual value. The full replacement table can be found in the online appendix; 
an excerpt of this table is shown in Table 3.

Further, the position of a special character contains useful information for the 
task at hand. Lines of natural language will often end with ‘.’, ‘?’, and ‘!’, while lines 
of Java code will often end with ‘{’, ‘}’ or ‘;’ but ‘.’ is used to call objects’ meth-
ods. A bag of words (unigram) approach is not suitable to encapsulate such position 
information. Thus, we add tokens that represent the beginning and end of a line, and 
employ tri-gram vectorization.

4.3 � Preprocessing and machine learning approach

We use supervised machine learning classification algorithms and NLP preproc-
essing steps from an established machine learning library for Python. For detailed 
background information, we refer the interested reader to Baeza-Yates and Ribeiro-
Neto (1999) for an introduction into natural language processing and information 
retrieval, as well as James et al. (2013) and Bishop (2006) for a more detailed intro-
duction on machine learning.

Table 3   Excerpt of introduced 
tokens

Character/regex Token

 (two whitespaces) Jdoublespace
∖t Jtabulator
* Jasterisk
( Jroundbracketopen
= Jequals
+ Jplus
{ Jcurlybracketopen
; Jsemicolon
: Jcolon
? Jquestion
([A-Z]?[a-z0-9]+)([A-Z][a-z0-
9]*)+

Jcamelcased

([a-zA-Z0-9]+_)+[a-zA-Z0-9]+ Junderscored
[0-9]+ Jnumber
0x[a-f0-9]+ Jhex
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We use regular expressions and basic string operations to perform the replace-
ments discussed in Sect. 4.2. This step is implemented as a scikit-learn transformer. 
Doing so enables us to utilize standard tokenization and vectorization functions.

We do not perform stop word removal. Examples for such words in the English 
language would include articles and pronouns (e.g. “the”, “it”, “we”). Removal of 
stop words is very commonplace in most NLP and IR applications as they are con-
sidered noise with little informational value. However, they provide valuable fea-
tures for our task, as they are very common in natural language text, and mostly 
scarce in non-natural language artifacts.

Further, we do not perform case folding, as this also carries some information for 
the task at hand (e.g. all caps words are more common in artifacts). To encapsulate 
positional information of the tokens in the feature vectors (as discussed in Sect. 4.2), 
we vectorize into uni-, bi-, and tri-grams that are combined into a single feature vec-
tor using a simple count vectorizer.

We use classic ML models as Support Vector Machines (SVM), Random For-
rest Classifier (RFC), Logistic Regression Classifier (LRC), and Multinomial Naive 
Bayes (MNB), due to their ease of use and little requirements in terms of compu-
tational resources for training and prediction. We do not perform hyperparameter 
tuning, and keep the default values of the classifiers in the used library (MNB: 
alpha = 1.0 , SVM: C = 1.0 , RFC: nEstimators = 100 , LRC: C = 1.0 ). While auto-
mated hyperparameter tuning can offer higher model performance, it comes with a 
high cost in terms of runtime and increases the risk of overfitting. In this work we 
chose to use the available time to perform more experiments, e.g. Bootstrap with 
more repetitions, to increase the sample size of performance scores and confidence 
in our results.

In a preliminary experiment, the classification performance and capabilities of 
all classifiers were very similar, but the prediction and training times varied. Given 
the similarity in classification performances, we chose SVM for the following 
experiments.

5 � Results and discussion

We present our research questions in Sect. 5.1, followed by a brief description of the 
metrics and statistical tests used to evaluate our approach in Sect. 5.2. In Sect. 5.3, 
we outline the creation process of the datasets and numerically describe the gen-
erated training sets, and the manually labeled validation sets in detail. Finally, we 
present the results of the empirical evaluation in Sect. 5.4 and discuss the threats to 
validity in Sect. 5.5.

5.1 � Research questions

This paper investigates the portability and transferability of our approach onto other 
programming languages. We address the following three research questions:
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RQ1: Do different underlying programming languages affect the perfor-
mance of our artifact detection approach? To answer RQ1, we collect issue tick-
ets from projects written in C++, Java, JavaScript, PHP, and Python. We create 
manually labeled validation sets for each language. We apply our approach to each 
language and evaluate it on the corresponding validation set. We plot the learning 
curves for each language and compute the ROC-AUC values. Further, we discuss 
performance in terms of training time, prediction time, and resulting model size.

RQ2: Are artifact detection models trained on one programming language 
transferable to other programming languages? To answer RQ2, we train lan-
guage specific models and evaluate their classification performance on all validation 
sets. We select a suitable training set size based on our findings in RQ1, and lock it 
for all experiments to enable comparison.

RQ3: What is the performance of a multi-language model for artifact detec-
tion? To answer RQ3, we train models on mixed training sets and evaluate their 
classification performance on each language validation set. We keep the same train-
ing set size that we used in RQ2. We create a training set from equal sized portions 
from each language specific dataset and apply our approach.

Exclusions: This journal paper focuses on the portability and transferability 
of our approach and we do not compare our approach to any baseline or existing 
approach for the following reasons:

First, there exists only one similar approach, namely NLON (Mäntylä et  al. 
2018), and a detailed comparison and cross evaluation of our approach to NLON 
was performed in our previous work (Hirsch and Hofer 2021). The excessive runt-
ime requirements for training NLON on big datasets make it infeasible to evaluate 
the approach on the bigger datasets used in this work. We therefore refer the inter-
ested reader to our previous work (Hirsch and Hofer 2021).

Second, we exclude performance comparison with regex based solutions because 
there is no standard corpus of regular expressions for the task of artifact removal. 
The regex sets used by other researchers for the same task are ad-hoc implementa-
tions that are either minimalistic, tightly tuned to their specific datasets, or unavail-
able. The achievable performance of custom regex sets for a given dataset is only 
limited by time and effort. This voids any meaningful and objective comparison of 
our models’ performance to existing and custom build regex solutions.

5.2 � Evaluation metrics and statistical tests

We use the following metrics and statistical tests in our evaluations:
True Positives. True Positives (TP) is the number of instances that are correctly 

identified.
False Positives. False Positives FP) is the number of instances incorrectly identi-

fied as this type.
False Negatives False Negatives (FN) is the number of instances of a specific 

type that were not identified.
True Negatives True Negatives (TN) is the number of instances not belonging to a 

specific type that were not identified as that type.
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Precision. The precision indicates the proportion of correctly identified instances 
based on all instances reported to be of this type, and is computed as follows:

Recall. The recall indicates what proportion of all instances of a type have been 
classified as such:

ROC-AUC. The Receiver Operating Characteristics (ROC) curve illustrates the ratio 
of the false positive rate (  FP

FP+TN
 ) to the true positive rate (  TP

TP+FN
 ) for different thresh-

olds. The Area Under the Curve (AUC) measures the area of the ROC curve and 
expresses how good a classifier distinguishes the classes. It has a value between 0 
and 1 where a value of 1 means perfect prediction of the classes, while a value below 
0.5 indicates that the classification model performs worse than random choice.

Cohen’s Kappa. The Cohen’s Kappa coefficient � measures the inter-rater agree-
ment corrected for agreement by chance. It is computed based on the proportion of 
items where both raters agree ( p

0
 ), and the proportion of times where agreement is 

expected by chance ( pc ) (Cohen 1960) and is computed as follows:

� values between 0.41 < 𝜅 < 0.60 are considered as moderate, 0.61 < 𝜅 < 0.80 as 
substantial, and 0.81 < 𝜅 < 1.00 as almost perfect agreement (Landis and Koch 
1977).

Student’s T-test and Wilcoxon signed-rank test. To investigate the significance 
of differing performance scores of our various models, we perform statistical tests. 
Whenever the underlying performance scores are normally distributed we report 
p-values from Student’s T-test. This is the case for all models’ performance scores 
on a single language validation set. However, if the underlying data is not normal 
distributed—as is the case for the mean performance over all languages—we per-
form Wilcoxon signed-rank test. The null hypothesis assumes that the models have 
the same mean value and the alternative hypothesis assumes that the mean of the 
first model is greater than the mean of the second model. If the p-value is smaller 
than a predefined threshold, the null hypothesis can be rejected. We choose as 
threshold 0.05.

5.3 � Datasets

We create separate datasets for C++, Java, JavaScript, PHP, and Python. We 
decided to focus on these programming languages, since they are popular in practice 

(1)Precision =
TP

TP + FP
.

(2)Recall =
TP

TP + FN
.

(3)� =
p
0
− pc

1 − pc
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(see Stack Overflow 2021 Developer Survey12) and research (in particular C++ and 
Java).

We build our datasets by mining GitHub repositories. We select the 30  most-
starred projects for each programming language13 excluding educational and non-
English projects. The selected projects cover a wide variety of software domains, 
ranging from server side applications, database applications, ML frameworks, test-
ing frameworks, to mobile applications and games. A complete list of projects can 
be found in the online appendix. We used the GitHub API to crawl all closed issue 

Table 4   Summary of the training and validation sets

C++ Java JavaScript PHP Python

Number of issues 41 542 131 329 187 340 108 568 159 760
Issues containing MD codeblocks 9 400 46 079 66 319 46 523 95 676
Training set issue tickets
Number of issues 9 343 45 980 66 231 46 422 95 521
Artifact lines 327 615 1 975 090 2 043 327 1 773 366 4 085 192
Natural language lines 82 155 431 281 682 452 529 900 1 716 916
% of natural language lines 20.05 % 17.92 % 25.04 % 23.00 % 29.59 %
Documentation
Number of files 618 683 2 373 511 825
Artifact lines 20 719 27 372 139 937 16 335 37 447
Natural language lines 34 782 36 482 109 988 30 864 51 596
% of natural language lines 62.67 % 57.13 % 44.01 % 65.39 % 57.95 %
Full training set
Lines total 465 271 2 470 225 2 975 704 2 350 465 5 891 151
Artifact lines 348 334 2 002 462 2 183 264 1 789 701 4 122 639
Natural language lines 116 937 467 763 792 440 560 764 1 768 512
% of natural language lines 25.13 % 18.94 % 26.63 % 23.86 % 30.02 %
Validation set
Number of issues 250 250 250 250 250
Artifact lines researcher 1 3 708 4 688 3 240 4 226 8 342
Natural language lines researcher 1 1 708 1 887 1 930 1 964 2 559
Artifact lines researcher 2 3 719 4 672 3 225 4 198 8 427
Natural language researcher 2 1 699 1 906 1 942 1 991 2 556
Cohens Kappa 0.96 0.97 0.96 0.92 0.95
ROC-AUC​ 0.98 0.99 0.98 0.96 0.97

12  https://​insig​hts.​stack​overf​low.​com/​survey/​2021#​most-​popul​ar-​techn​ologi​es-​langu​age-​prof
13  https://​github.​com/​topics/​java?l=​java &o=​desc &s=​stars, https://​github.​com/​topics/​cpp?l=​cpp &o=​
desc &s=​stars, https://​github.​com/​topics/​python?​l=​pytho​n &o=​desc &s=​stars, https://​github.​com/​topics/​
php?l=​php &o=​desc &s=​stars, https://​github.​com/​topics/​javas​cript?l=​javas​cript​ &o=​desc &s=​stars, all 
accessed in February 2022

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://github.com/topics/java?l=java%20&o=desc%20&s=stars
https://github.com/topics/cpp?l=cpp%20&o=desc%20&s=stars
https://github.com/topics/cpp?l=cpp%20&o=desc%20&s=stars
https://github.com/topics/python?l=python%20&o=desc%20&s=stars
https://github.com/topics/php?l=php%20&o=desc%20&s=stars
https://github.com/topics/php?l=php%20&o=desc%20&s=stars
https://github.com/topics/javascript?l=javascript%20&o=desc%20&s=stars
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tickets regardless of labels (excluding pull requests), as well as the projects’ docu-
mentation files.14

Table 4 indicates the number of issue tickets crawled for each language and in 
total. Although we have collected issue tickets from 30 projects for each language, 
the number of issue tickets per language varies significantly with 41K issue tick-
ets for C++ and 187K issue tickets for JavaScript. From each dataset, we randomly 
select 250 issue tickets to build the validation set. The remaining issue tickets form 
the basis for the training sets as described in Sect. 4.1. The removal of data asso-
ciated with our training set creation approach can be observed in Table  4, with 
40-60 % of issues being removed in the initial filtering step.

Training set. The training set creation process is illustrated in Fig.3. We remove 
all issue tickets that do not contain triple tick Markdown code blocks. The remaining 
issues tickets are subject to the process described in Sect. 4.1, providing a collection 
of lines labeled either natural language, or artifact. The resulting collections also dif-
fer in their size with the Python set as the largest set and the C++ set as the small-
est set. Further, all five datasets are imbalanced with natural language as minority 
class. In order to obtain more natural language data, we include project documenta-
tion files. Inclusion of documentation files benefits the training set size most notably 
for languages with a lower number of available issue tickets (C++) while being a 
diminishing factor where many issue tickets are available (Python). Documentation 
files are subjected to the same process as issue tickets as described in Sect. 4.1.

In order to create balanced training sets we perform downsampling. In detail, we 
randomly sample with replacement n/2 lines from each side of a collection to create 
a balanced training set with size n.

To evaluate the quality of the automatically created training sets, we randomly 
sampled 500 lines containing artifacts and 500 natural language lines from the 
collections for each programming language. Researcher  2 manually inspected the 
samples and marked all lines that contain wrongly labeled data. Table 5 shows the 
number of incorrectly labeled lines for each sample. The natural language samples 
contain more noise than the artifact samples. This can be explained by our auto-
mated training set creation process: The artifacts side of our collections is sourced 
from explicitly annotated portions of the input documents, the remainder of those 
documents are the source for our natural language portion. While it is a rare sight 

Table 5   Number of incorrect labeled items from a randomly selected subset of 500 lines of artifacts and 
500 lines of natural language from the automatically created training sets

C++ Java JavaScript PHP Python

Artifacts 6 4 3 2 0
Natural language 21 18 13 11 4

14  We had to ignore the documentation dataset of MuseScore (https://​github.​com/​muses​core/​MuseS​core) 
as this project repurposes the .md file ending for MuseData import files.

https://github.com/musescore/MuseScore
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that Markdown code highlighting features are accidentally used for natural language 
text, the omissions of such Markdown annotations for such artifacts happens far 
more frequent.

Validation set. In order to evaluate our approach, a validation set containing the 
ground truth is required. Due to the loss occurring in our automated training crea-
tion process, a classic test/training split on our training data would produce highly 
skewed test sets that do not represent the real world. We therefore randomly sample 
250 issue tickets from each unfiltered language data set, to be manually inspected 
and annotated in order to create realistic validation sets. Both authors classified 
the issue tickets of all five languages. It took each author between 2 and 3.5 hours 
to classify 250 issue tickets per language. Therefore, a total of 1250 issue tickets, 
accumulate to approximately 35.000 lines that were manually labeled. In total each 
researcher spent about 13 hours for labeling all validation sets. The resulting train-
ing sets are imbalanced with non-natural language artifacts as the majority class. 
(see Table 4) For each dataset, we achieved a Cohen’s Kappa interrater agreement 
between 0.92 and 0.97 (see Table 4), indicating almost perfect agreement.

Table 6 provides details on the researchers’ classifications. About two thirds of 
the lines were classified as artifacts by both researchers. We manually investigated 
all lines where we disagreed on the classification. The main reasons for discrepan-
cies are:

•	 Moments of inadvertence where one researcher incorrectly labeled a line,
•	 Different opinions on how to classify lines written in other languages than Eng-

lish, e.g., Chinese, and
•	 Different opinions on how to classify lines containing only a few words and an 

URL, e.g., ‘- Originally reported by: [mrexodia](http://bitbucket.org/mrexodia)’

Markdown usage. In Sect. 4.1, we have stated that only some of the issue report-
ers use Markdown and that Markdown might not be used consistently. To support 
this claim, we have manually examined the quality of the issue tickets contained in 
the validation sets. Researcher 2 manually inspected all issue tickets from the valida-
tion sets and classified them into two groups: issue tickets that use Markdown code 
blocks and issue tickets that do not use Markdown code blocks. For the first group, 
Researcher 2 inspected if Markdown was consistently and correctly used, i.e., if all 
code snippets, error messages, log outputs, and stack traces are properly Markdown 

Table 6   Validation set: agreement and disagreement of the researchers’ classification on 250 randomly 
selected issue tickets for each language

Researcher 1 Researcher 2 C++ Java JavaScript PHP Python

Artifact Artifact 67.76 % 70.60 % 61.60 % 66.31 % 75.61 %
Artifact Natural language 0.70 % 0.70 % 1.05 % 1.94 % 0.92 %
Natural language Artifact 0.87 % 0.41 % 0.83 % 1.54 % 0.94 %
Natural language Natural language 30.67 % 28.29 % 36.53 % 30.22 % 22.54 %
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annotated and if the Markdown annotated code blocks do not contain natural lan-
guage. Between 3.9 % and 9.2 % did not use Markdown consistently. For the second 
group, Researcher 2 investigated if the issue tickets contain any code snippets, error 
messages, log outputs, or stack traces that should have been Markdown annotated. 
Between 7.4 % and 23.4 % of the issue tickets without Markdown code blocks con-
tain segments that should have been wrapped in a Markdown code block. Table 7 
provides the detailed numbers for all validation sets. In general, this table supports 
our claim that Markdown annotated issue tickets are cleaner than those without 
annotations.

5.4 � Empirical results

RQ1: Do different underlying programming languages affect the performance 
of our artifact detection approach? We created balanced training sets of different 
sizes according to the process described in Sect. 5.3. The training set sizes n were 
6 250, 12 500, 25 000, 50 000, 100 000, 200 000, 400 000, 800 000, 1 600 000, 3 
200 000.15 We trained our models on these training sets and evaluated them using 
the corresponding validation set. This experiment was performed 10 times for each 
training set size n, while resampling the training set for each new iteration.

We performed our experiments on Manjaro Linux 21.1.6 in a Python 3.9 conda 
environment on an AMD Ryzen 7 Pro 3700U Processor (2.30 GHz, up to 4.00 GHz 
Max Boost, 4 Cores, 8 Threads, 4 MB Cache) with 16 GB RAM.

Figure 4 shows the results of this experiment. To increase readability, the graphs 
were truncated at training set size n = 800 000 due to negligible changes in per-
formance beyond this point. The resulting model sizes increase nearly linearly with 
training size n. A similar effect can be observed with the time required for training 
these models. Both training time and model size are very similar for each underlying 
programming language.

Table 7   Markdown usage in the issue tickets of validation set

C++ Java JavaScript PHP Python

Issue tickets using Markdown code blocks
Markdown consistently used 79 99 98 103 148
Markdown inconsistently used 7 10 4 8 8
% Markdown inconsistent 8.1 % 9.2 % 3.9 % 7.2 % 5.1 %
Issue tickets not using Markdown code blocks
Markdown not necessary 147 112 137 119 72
Markdown should have been used 17 29 11 20 22
% that should use Markdown 10.4 % 20.6 % 7.4 % 14.4 % 23.4 %

15  If the underlying data set was smaller than the desired training set size, the full data set size was used 
for this final evaluation. This was the case for the C++ training set.
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In order to compare the performance of our approach on different program-
ming languages, the respective models have to be trained with the same amount 
of data. We chose a training set size of n = 200 000, as to provide reasonably 
sized models to be used in practice or other research, and we again created train-
ing sets for each language according to the process described in Sect.  5.3, and 
evaluated the trained models on the corresponding validation sets. However, this 

Fig. 4   ROC-AUC learning curves and model size for each programming language
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time we trained and evaluated each programming language model 100 times to 
provide a bigger sample of performance scores.

Table  8 shows the mean performance scores resulting from this experiment. 
Figure 5 shows the bootstrap confidence intervals ( � = 0.95 ) of our models’ ROC-
AUC scores on Researcher 1 validation sets. Our models’ performance depends 
on the projects’ programming language that source our datasets. Our approach 
performs best for C++, followed by Java, JavaScript, PHP, and Python in that 
order. The differences between each of the performance samples is statistically 
significant. One sided Student’s T-test performed on each neighboring language 
pair shows that C++ performance is better than Java ( p = 2 ∗ 10−22 ), and simi-
larly for each consecutive language pair in the above ranking (Java vs. JavaScript 
p = 6 ∗ 10−12 , JavaScript vs. PHP p = 4 ∗ 10−117 , PHP vs. Python p = 2 ∗ 10−79).

Table 8   Mean performance (100 repetitions) using training set size n = 200 000 for each programming 
language

C++ Java JavaScript PHP Python

ROC-AUC reseacher 1 0.96 0.96 0.95 0.93 0.92
ROC-AUC reseacher 2 0.95 0.96 0.96 0.91 0.91
Artifact precision researcher 1 0.98 0.99 0.98 0.99 0.99
Artifact precision researcher 2 0.98 0.99 0.98 0.97 0.98
Artifact recall researcher 1 0.96 0.94 0.95 0.89 0.88
Artifact recall researcher 2 0.95 0.94 0.95 0.88 0.87
Model size (MiB) 35.92 42.92 42.54 37.13 34.58
Training time (s) 110.16 68.57 62.59 90.31 85.77
Prediction time per 5000 lines (s) 0.44 0.35 0.30 0.30 0.31

Fig. 5   ROC-AUC bootstrap confidence interval ( � = 0.95 , 100 repetitions) on Researcher  1 validation 
sets using training set size n = 200 000 for each programming language
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We observe no correlation of these performance scores to inconsistent usage of 
Markdown in their corresponding datasets (see Table 7). Further, language features 
as semicolon line terminators and usage of curly brackets do not seem to be the 
distinguishing factor in classification performance. PHP syntax features both while 

Fig. 6   Examples of lines consisting of product and version number to be considered part of natural lan-
guage, and part of a log-output artifact

Table 9   Examples of lines misclassified as natural language text

Artifact Origin

Conflict: multiple assets emit to the same filename 75002edf.chunk.js JS
ArrayUtils.sol:34:32: TypeError: Invalid type for argument in function call. Invalid implicit 

conversion from function (uint256) pure returns (uint256) to function (uint256) pure external 
returns (uint256) requested.

C++

Cannot determine embedded database driver class for database type NONE. If you want an 
embedded database please put a supported one on the classpath.

Java

Checking for update of app ”activity” in appstore PHP
You must be using the interactive console to authenticate PHP
- Theming: 1.12.0 PHP
Matplotlib: 1.4.3 Python
http://www.pcl-users.org/3rd-party-include- file-in-pcl-recognition-missing-if-pkg- config-not-

available-td4031656.html
CPP

0x00007ffff6252acf in ?? () from /usr/lib/pymodules/python2.6/numpy/core /umath.so Python
DEBUG [main] - <== Total: 1 Java
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significantly performing worse than JavaScript that does not require semicolons as 
line terminators.

The precision for artifacts of PHP and Python models is comparable with the 
other languages as shown in Table  8. However, PHP and Python show a signifi-
cantly lower recall for artifacts. This leads to an increased number of artifacts being 
wrongly classified as text.

We manually investigated the lines misclassified by our models. The following 
types of artifacts were often misclassified as natural language text:

•	 Log outputs that closely resemble natural language, contain, or constitute syntac-
tically correct English sentences,

•	 Product names and corresponding version numbers, separated by colons (They 
are often composed by issue reporters and we do not consider them artifacts (see 
Sect. 3). However, such formatted lines also often occur in log outputs and envi-
ronment specification files.), and

•	 URLs and other artifacts that contain a significant amount of English words.

The remaining misclassifications were obvious errors of the models.
Examples of such misclassifications are shown in Table 9. Although rare, obvi-

ous mistakes and URLs shown at the bottom of Table 9, seem to occur in all lan-
guage models. However, the majority of misclassifications on our PHP validation 
sets stem from log outputs that closely resemble or constitute English sentences. 
Further, product and version number combinations make up the absolute majority 
of misclassifications on our Python validation sets and also often occur in our PHP 
validation sets. In Sect. 3 we formulated that we consider product/version number 
combinations as natural language, as such segments occurring in Java issue tickets 

Fig. 7   ROC-AUC matrix of models trained on a specific language ( n = 200 000, 100 repetitions) scored 
against each language specific Researcher 1 validation set
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are mostly short, human written, and surrounded by natural language. However, as 
the comparison of the bug reports1617 in Fig.  6 highlights, Python and PHP issue 
tickets contain such product/version number combinations often as parts of console 
outputs and log outputs that we considered non-natural language artifacts. Manual 
annotation of our validation sets was performed on an issue ticket level, providing 
the annotators the necessary context information to decide if a specific line is part of 
such a console output artifact or not. This contextual information is not available to 
our line-by-line classifier models.

Both problems are not solvable with our current approach given our definition of 
non-natural-language artifacts in Sect.  3. However, depending on the downstream 
task’s requirements, this definition and our approach could be modified to consider 
all occurrences of product/version number combinations as non-natural artifacts.

RQ2: Are artifact detection models trained on one programming language 
transferable to other programming languages? Along the lines of our experi-
ment for RQ1, we keep the training set size fixed at n = 200 000. Again we apply 
our approach and train each language model 100 times. In contrast to RQ1, we now 
evaluate the resulting models on all languages’ validation sets to measure model 
transferability.

Figure 7 shows the mean ROC-AUC performance of models trained on a spe-
cific language performing predictions on the validation set of each language. 
Java, JavaScript, and C++ form a group that performs rather well when cross val-
idated against each other. However, transfer of these models to PHP and Python 
is penalized by a significant drop in performance. Interestingly, while Python and 
PHP models do not start off with high performance on their respective language 

Fig. 8   ROC-AUC bootstrap confidence interval ( � = 0.95 , n = 200 000, 100 repetitions) comparing the 
multi-language model to language specific models on the language specific Researcher 1 validation sets

16  https://​github.​com/​dbeav​er/​dbeav​er/​issues/​5156
17  https://​github.​com/​pandas-​dev/​pandas/​issues/​14262

https://github.com/dbeaver/dbeaver/issues/5156
https://github.com/pandas-dev/pandas/issues/14262
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validation sets, their performance transfers well onto Java, JavaScript, and C++ 
validation sets.

RQ3: What is the performance of a multi-language model for artifact 
detection? We create a multi-language training set by taking equal sized and bal-
anced samples from each language. Again, we keep the training set size fixed at 
n = 200 000 to enable comparison to the models produced in RQ2, therefore con-
taining 40 000 items from each of our five language specific data sets. Evaluation 
has been performed on Researcher 1 validation sets.

Figure  8 shows the bootstrap confidence intervals and means of the multi-
language models’ performance compared to the language specific models’ per-
formance on their respective languages. The language specific models’ perfor-
mance on its own language validation set is statistically significant better than the 
multi-language models’ performance (Student’s T-test: C++ p = 5 ∗ 10−82 , Java 
p = 10−17 , JavaScript p = 2 ∗ 10−35 , PHP p = 3 ∗ 10−30 , Python p = 5 ∗ 10−33).

Table  10 shows the performance of our models average over all languages 
validations sets. While the ROC-AUC performance scores of models evaluated 
on a specific language validation set are normal distributed, this is no longer the 
case when accumulating all validation sets’ scores. We therefore use one-sided 
Wilcoxon signed-rank test to compare the single language models accumulated 
scores again those of our multi-language models. The null hypothesis being that 
the single language model performs better or equal to the multi-language model, 
the corresponding p-values are shown in Table 10 for each model.

While the language specific models perform better on their specific language 
than the multi-language model (see Figure 8), the multi-language model performs 
better on average over all languages validation sets than any of the single lan-
guage models (see Table  10). The implications for practical use of our models 
are: If the target dataset is sourced from projects with the same programming 
language, a single language model for this specific language is best. However, if 
the target dataset is spanning multiple programming languages, it may be unfeasi-
ble to use multiple single language models and separate the dataset to apply them 
accordingly. In such a scenario a multi-language model will perform significantly 
better than any standalone single language model.

We conclude that our multi-language model outperforms all single language 
models when confronted with documents from multiple languages. However, 

Table 10   Model performance 
averaged over all languages 
Researcher 1 validation sets, 
p-values for null hypothesis 
that the model performs better 
than the multi-language model 
(Wilcoxon signed-rank test)

Model language Mean ROC-AUC​ p

C++ 0.93 2 ∗ 10−18

Java 0.92 10−11

JavaScript 0.93 7 ∗ 10−18

PHP 0.91 10−15

Python 0.92 10−16

Multi-language 0.94
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given only a single target language, the language specific models outperform our 
multi-language model.

5.5 � Threats to validity

The biggest threat to internal validity are the static validation sets. While the train-
ing sets are repeatedly randomly sampled, the validation sets remain the same. We 
counteract this threat by creating rather big validation sets from 250 issue tickets for 
each of our target languages, with resulting sizes ranging between 5 000 and 10 000 
lines per language. Further, manually labeling the validation sets is subject to human 
error, and also subject to human preference regarding what is actually considered an 
artifact or natural language. Therefore, two researchers independently classified the 
bug reports for the validation sets and we computed the inter-rater agreements on 
the validation sets to serve as indicator for dataset quality.

The biggest threat to external validity is the generalizability to other program-
ming languages. While we conducted experiments with issue tickets of projects 
written in five different programming languages, the results might not be transfer-
able to other programming languages. However, during the manual labeling of the 
validation sets, we observed that many similar artifacts are contained in issue tickets 
of all programming languages, e.g., html, xml and json snippets.

Furthermore, we used in our experiments only issue tickets from open source 
projects that are hosted on GitHub. Therefore, we cannot generalize our results to 
closed source projects and to projects hosted on other platforms where there might 
be other practices and habits for reporting and formatting issue tickets.

Another threat to the external validity is restriction to English projects where the 
majority of the issue tickets are written in English. It is up to future work to evaluate 
the performance of our approach on projects and issue tickets addressing different 
languages.

6 � Conclusion

We investigated the application of ML models to distinguish natural language por-
tions of issue tickets from non-natural language artifacts. Our approach is comprised 
of an automated training set creation process, a custom preprocessing pipeline for 
the task, and a supervised ML model. In our previously published work (Hirsch and 
Hofer 2021), we performed this task on a dataset created from Java open source 
projects and compared our approach to NLoN (Mäntylä et al. 2018). In this work we 
focused on the portability and transferability of our models on five datasets spanning 
five different programming languages, based on our manually annotated validation 
sets. Our approach works best on data from C++, Java, and JavaScript, and moder-
ate for PHP and Python data sets because artifacts in PHP and Python more often 
than in other languages, either closely resemble, or constitute proper English lan-
guage sentences.
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In practical application such a classifier may be used on data from projects 
spanning multiple programming languages, we therefore cross evaluated our 
models on documents for other programming languages. We observed that C++, 
Java, and JavaScript models performed well on each others’ documents, while 
dropping in performance when used on documents from PHP and Python, and 
vice versa.

As none of these single language models transferred well to all five program-
ming languages, we investigated the applicability of multi-language models. Single 
language models slightly out-performed the multi-language models when evaluated 
on their native programming language. However, the average performance of multi-
language models over all languages was significantly better than any of the single 
language models for the same use case. Based on the data that is to be processed, the 
user has to decide whether a single language model or multi-language model is bet-
ter suited for the task.

Our models are intended to be used for preprocessing issue tickets and bug tick-
ets, to remove noise that may negatively affect downstream NLP and IR applica-
tions. The supplied models’ classification performance is high, they are fast in pre-
diction, while at the same time having a rather small memory footprint. However, 
the main advantage of our models arises from our automated training set creation 
process: the application of our models requires only little manual labor and effort, 
compared to the labor-intensive creation of regular expressions for the same task. 
While some Markdown annotated bug reports are required for training, the resulting 
models are agnostic to Markdown annotations and can classify inputs lacking such 
annotations.

The application of NLP and IR approaches on textual bug reports and issue tick-
ets is an active research field. These methods are applied to solve a wide variety 
of tasks, for example, classification (Zhou et  al. 2021; Thung et  al. 2012; Chawla 
and Singh 2015), automated assignment (Mani et  al. 2019; Devaiya et  al. 2021), 
and fault localization (Zhou et  al. 2012; Saha et  al. 2013; Ye et  al. 2016). Some 
approaches require non-natural artifacts to be removed or treated separately, for 
example, language identification (Jauhiainen et  al. 2017), bug type classification 
(Hirsch and Hofer 2022a), and personality analysis (Calefato et al. 2019). This work 
intends to provide an alternative to labor intensive creation of regex for the task of 
artifact removal. Our models are implemented in Python 3, and we made all data, 
models, and implementations publicly available, including pretrained models ready 
to be used as a preprocessor for downstream tasks. We hope that this work and the 
resulting implementation and models can help other researchers in their work on 
textual bug reports.

In future work, we will investigate the application of our noise removal approach 
in practice and the resulting performance implications on a number of existing NLP 
and IR tasks, for example, language detection, automated ODC classification, root 
cause classification, and IR based fault localization. We will extend our approach to 
multi-class classification, in order to allow identification of specific types of artifacts 
as required for some tasks (e.g., stack traces for IR based fault localization). We will 
further expand our evaluations onto more datasets from various programming lan-
guages and other markup languages and data formats used in bug trackers.
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