
Vol.:(0123456789)

Automated Software Engineering (2022) 29:30
https://doi.org/10.1007/s10515-022-00331-3

1 3

Can we generate shellcodes via natural language?
An empirical study

Pietro Liguori1  · Erfan Al‑Hossami2 · Domenico Cotroneo1 · Roberto Natella1 ·
Bojan Cukic2 · Samira Shaikh2

Received: 14 July 2021 / Accepted: 6 February 2022 / Published online: 5 March 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Writing software exploits is an important practice for offensive security analysts to
investigate and prevent attacks. In particular, shellcodes are especially time-con-
suming and a technical challenge, as they are written in assembly language. In this
work, we address the task of automatically generating shellcodes, starting purely
from descriptions in natural language, by proposing an approach based on Neural
Machine Translation (NMT). We then present an empirical study using a novel data-
set (Shellcode_IA32), which consists of 3200 assembly code snippets of real Linux/
x86 shellcodes from public databases, annotated using natural language. Moreover,
we propose novel metrics to evaluate the accuracy of NMT at generating shellcodes.
The empirical analysis shows that NMT can generate assembly code snippets from
the natural language with high accuracy and that in many cases can generate entire
shellcodes with no errors.

Keywords  Automatic exploit generation · Software exploits · Shellcode · Neural
machine translation · Assembly

 *	 Pietro Liguori
	 pietro.liguori@unina.it

	 Erfan Al‑Hossami
	 ealhossa@uncc.edu

	 Domenico Cotroneo
	 cotroneo@unina.it

	 Roberto Natella
	 roberto.natella@unina.it

	 Bojan Cukic
	 bcukic@uncc.edu

	 Samira Shaikh
	 samirashaikh@uncc.edu

1	 University of Naples Federico II, Naples, Italy
2	 University of North Carolina at Charlotte, Charlotte, NC, USA

http://orcid.org/0000-0001-5579-1696
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00331-3&domain=pdf

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 2 of 34

1  Introduction

Nowadays, software security plays a crucial role in our society. Software vendors
and users are in an arms race against cybercriminals, investing significant efforts
towards identifying vulnerabilities and patching them, sometimes releasing updates
mere hours after a release. The exploitation of software vulnerabilities is today a
common offensive security practice for security analysts, to understand how attack-
ers take advantage of vulnerabilities, and to motivate vendors and users to patch
them (Arce 2004; McGraw 2004; Hackerone 2021). For example, in June 2021,
GitHub updated its policy on malware and exploit research by allowing and even
encouraging users to post proof-of-concept (PoC) exploits or vulnerabilities on the
platform (Mike 2021).

Among software exploits, code-injection attacks are considered the most dan-
gerous ones, since they have the worst consequences on the victim organizations
(Mason et al. 2009). Moreover, code-injection attacks have been drastically increas-
ing with the growth of applications exposed to the Internet (Ray and Ligatti 2012),
as shown by statistics from the Common Vulnerabilities and Exposures (CVE) data-
base (CVE 2021). These attacks deliver and run malicious code (payload) on the
victims’ machine, in order to give attackers control of the target system. Since the
payload is typically designed to launch a command shell, the hacking community
generically refers to the payload portion of a code-injection attack as a shellcode.
Other objectives of shellcodes include killing or restarting other processes, caus-
ing a denial-of-service (e.g., a fork bomb), leaking secret data, etc. Listing 1 shows
an example of shellcode1 in assembly for Linux OS running on the 32-bit Intel
Architecture).

The development of software exploits is a technically difficult activity. Shellcodes
are typically written in assembly language, in order to gain full control on the layout
of code and data in stack and heap memory, to make the shellcode more compact,
to obfuscate the code, and to perform low-level operations on data representation
(Deckard 2005; Foster 2005; Anley et al. 2007; Megahed 2018). However, program-
ming in assembly is time-consuming and has low productivity compared to high-
level languages (Dandamudi 2005; Jamwal 2014; Pyeatt 2016).

In order to make assembly programming easier and more efficient, we inves-
tigate the use of Neural Machine Translation (NMT) for the generation of shell-
codes. In general, NMT translates between different languages (including natu-
ral and programming languages), using Natural Language Processing (NLP) and
Deep Learning (DL) techniques (Goodfellow et al. 2016; Bahdanau et al. 2015;
Wu et al. 2016; Bojar et al. 2016), in order to learn the typical idioms of a target
programming language from datasets of annotated programs. NMT is an emerg-
ing approach for code generation (Yin et al. 2017; Ling et al. 2016) and other
programming tasks, such as code completion (Drosos et al. 2020; Shi et al. 2020),
the generation of UNIX commands (Lin et al. 2017a, 2018) or commit messages

1  Shellcode collected from https://​www.​explo​it-​db.​com/​shell​codes/​48703.

https://www.exploit-db.com/shellcodes/48703

1 3

Automated Software Engineering (2022) 29:30	 Page 3 of 34  30

(Jiang et al. 2017; Liu et al. 2018; Jung 2021), etc. However, NMT techniques
have not heretofore been applied in the field of software security to generate soft-
ware exploits. In our case, developers would translate a description (intent) of a
piece of code in English, into the corresponding code snippet in assembly lan-
guage. For example, developers can use NMT to generate code snippets that they
could not recall, or that are not yet confident to write themselves, similarly to que-
rying a search engine, with the additional benefit of tailoring the code according
to th tailoring the code according to their query.

In this paper, we introduce a novel approach for generating shellcodes in assem-
bly language, from their description in natural language. Differing from previous
research, which adopts static and/or dynamic program analysis (e.g., fuzzing, pro-
gram synthesis, etc.), we adopt a novel statistical, data-driven approach. Specifically,

Listing 1   Assembly code used to generate a shellcode on Linux OS running on 32bit Intel Architecture.
Lines 5–6, 11–12, 15–16, 19–20, 21–22–23, 24–25, 27–28–29 aremulti-line snippets generated by seven
different intents

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 4 of 34

our approach leverages state-of-the-art NMT techniques. Since NMT has never been
applied to low-level languages such as assembly, our approach extends NMT by
introducing an Intent Parser specialized for the assembly language and adopts trans-
fer learning to bootstrap an NMT model from a training set of shellcodes. Then, the
paper presents an extensive evaluation of the NMT approach. As there is no unique
metric able to comprehensively represent the quality of translations, we introduce
new metrics for this purpose. Indeed, the generated assembly code can have high
accuracy compared to the ground truth, yet it may not be a working shellcode. Or,
the generated program can be compilable and executable, but it may not implement
the intended shellcode. Or again, the generated program does not exactly match the
ground truth, but it can still be a correct shellcode (e.g., by using alternate valid
labels or addressing modes), and so on. Therefore, we evaluate NMT from several
points of view.

In summary, this work provides the following key contributions:

•	 We propose a novel approach for translating natural language into shellcode in
assembly language, based on NMT. The approach improves the state-of-the-art
by using a novel, specialized Intent Parser and transfer learning. To the best of
our knowledge, this is the first effort towards applying NMT to automatically
generate code for security purposes;

•	 We release a curated, substantive corpus of real shellcodes from public data-
bases, in order to support the training and evaluation of NMT systems for shell-
code generation;

•	 We propose novel metrics to evaluate the performance of NMT systems for
shellcode generation. Different from the metrics commonly used in other code
generation tasks, the metrics proposed in this work go beyond evaluating perfor-
mance on single-line snippets of code and also encompass the ability to generate
entire, compilable shellcodes. Moreover, we look at the semantic correctness of
the generated shellcode;

•	 We present an extensive empirical analysis of NMT techniques at generating
shellcodes, supported by the proposed metrics and dataset.

In the following, Sect. 2 discusses related work; Sect. 3 introduces background con-
cepts; Sect. 4 presents the proposed approach; Sect. 5 describes the dataset; Sects. 6
experimentally evaluates the approach; Sect. 7 describes the ethical considerations;
Sect. 8 discusses the threats to validity of the work; Sect. 9 concludes the paper.

2 � Related work

Our work is situated at the intersection of machine translation and code/exploit gen-
eration, by applying NLP techniques to software security. Accordingly, we review
related work in these areas.

Neural Machine Translation for Code Generation There are several recent works
that focus on generating code from natural language (Yin and Neubig 2019; Dong
and Lapata 2018; Rabinovich et al. 2017). Ling et al. (2016) and Yin et al. (2017)

1 3

Automated Software Engineering (2022) 29:30	 Page 5 of 34  30

proposed a novel neural architecture for code generation, while Xu et al. (2020)
incorporated pre-training and fine-tuning of a model to generate Python snippets
from natural language using the CoNaLa dataset (Yin et al. 2018). Furthermore,
Gemmell et al. (2020) used a transformer architecture with relevance feedback
for code generation, and reported improvements over state-of-the-art on several
datasets.

There also exist approaches that perform the reverse task, i.e., generating natu-
ral language from code. Oda et al. (2015) pioneered the task of translating python
code to pseudo-code while others proposed an n-gram language model to generate
comments from source code (Movshovitz-Attias and Cohen 2013). Iyer et al. (2016)
proposed an attention model that summarizes code. Code2Seq (Alon et al. 2018)
embeds abstract syntax tree paths to encode context and was used for code docu-
mentation generation (generating natural language from code) and code summari-
zation. A notable example of applying code documentation generation in software
engineering is generating git commit messages from git-tracked codebase changes
(Jiang et al. 2017).

NMT has been widely adopted also for different programming tasks. For exam-
ple, Lin et al. (2018) presented new data and semantic parsing methods to address
the problem of mapping English sentences to bash commands, and Zhong et al.
(2017) generated SQL queries from natural language. Tufano et al. (2019) inves-
tigated the ability of the NMT to learn how to automatically apply code changes
implemented by developers during pull requests. The authors trained the model on
a dataset containing pairs of code components before and after the implementation
of the changes provided in the pull requests and showed that the NMT can accu-
rately replicate the changes implemented by developers. Hata et al. (2018) presented
Ratchet, an NMT-based technique that generates a fixed code for a given bug-prone
code query. The technique uses a Seq2Seq model trained on pre-correction and post-
correction code in past fixes. To prove the feasibility of the approach, the authors
performed an empirical study on five open source projects, showing that Ratchet can
generate syntactically valid statements with high accuracy.

Our empirical analysis investigates these recent advances in NMT in the context
of the open problem of generating shellcodes in assembly language, from natural
language intents.

Automated Exploit Generation The task of exploit generation via automatic tech-
niques has been addressed in several ways. ShellSwap (Bao et al. 2017) is a sys-
tem that generates new exploits based on existing ones, by modifying the original
shellcode with arbitrary replacement shellcode. Hu et al. (2015) developed a novel
approach to construct data-oriented exploits through data flow stitching, by com-
posing the benign data flows in an application via a memory error. They built a
prototype attack generation tool that operates directly on Windows and Linux x86
binaries. Avgerinos et al. (2011) developed an end-to-end system for automatic
exploit generation (AEG) on real programs by exploring execution paths. Given the
potentially buggy program in source form, their proposal automatically looks for
bugs, determines whether the bug is exploitable, and produces a working control-
flow hijack exploit string. SemFuzz (You et al. 2017) extracts necessary information
from non-code text related to a vulnerability, using natural language processing and

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 6 of 34

a semantics-based fuzzing process, in order to discover and trigger deep bugs. Chen
et al. (2011) presented techniques to find out the gadgets, i.e., the basic building
block in Jump Oriented Programming (JOP), and showed these gadgets are Turing
complete. They implemented an automatic tool able to generate JOP shellcodes.
Ding et al. (2014) proposed a reverse derivation of a transformation method driven
by state machines indicating the status of data flows, in order to transform the origi-
nal shellcode into printable Return Oriented Programming (ROP) payload. Chain-
saw (Alhuzali et al. 2016) is a tool for analyzing web applications and generating
injection exploits. The tool performs static analysis and defines a model of the appli-
cation behavior to generate injection exploits, by leveraging application workflow
structures and database schemes. Brumley et al. (2008) proposed an approach for
Automatic Patch-based Exploit Generation (APEG). Starting from a program and
its patched version, the approach identifies the security checks added by the patch
and automatically generates inputs to fail the checks. Huang et al. (2014) intro-
duced a method to automatically generate exploits based on software crash analysis.
This method analyzes software crashes using a symbolic failure model, to generate
exploits from crash inputs and existing exploits for several types of applications. Xu
et al. (2018) developed a tool to find buffer overflow vulnerabilities in binary pro-
grams and automatically generate exploits using a constraint solver. Vulnerability
detection is achieved through symbolic execution and the exploit generated by this
tool can bypass different types of protection.

Similar to our previous work (Liguori et al. 2021b), our approach uses natural
language statements to generate exploits and adopts neither a static nor dynamic
program analysis approach (e.g., fuzzing, program synthesis, etc.), but a statistical,
data-driven approach.

3 � Background

This section introduces background concepts on neural machine translation (NMT).
We follow the notation defined by Eisenstein (2018).

Machine translation refers to the translation of a language into another by the
means of a computerized system (Dorr et al. 1999). It is defined as an optimiza-
tion problem, which maximizes the conditional probability that a sentence �(t) in the
target language is the likely translation of a sentence �(s) in the source language, by
using a scoring function �:

The resolution of the problem requires a decoding algorithm for computing 𝜔̂(t) , and
a learning algorithm for estimating the parameters of the scoring function �.

Neural network models for machine translation are based on the encoder-decoder
architecture Cho et al. (2014). The encoder network converts the source language
sentence into a context vector or matrix representation z of fixed length. The decoder
network then converts the encoding into a sentence in the target language by defin-
ing the conditional probability p(�(t)|�(s)).

(1)𝜔̂(t) = argmax
𝜔(t)

𝜓(𝜔(s),𝜔(t))

1 3

Automated Software Engineering (2022) 29:30	 Page 7 of 34  30

The decoder is typically a recurrent neural network, which generates the target
language sentence one word at a time, while recurrently updating a hidden state. The
encoder and decoder networks are trained end-to-end from parallel sentences. If the
output layer of the decoder is a logistic function, then the entire architecture can be
trained to maximize the conditional log-likelihood:

where the hidden state h(t)
m−1

 is a recurrent function of the previously generated text
�
(t)

1∶m−1
 and the encoding z, while � ∈ R(V (t)×K) is the matrix of output word vectors for

the V (t) words in the target language vocabulary, and K is the dimension of the hid-
den state.

Seq2Seq The simplest encoder-decoder architecture is the sequence-to-sequence
model Sutskever et al. (2014). In this model, the encoder is set to the final hidden
state of a long short-term memory (LSTM) Hochreiter and Schmidhuber (1997) on
the source sentence:

where x(s)
m

 is the embedding2 of the target language word �(s)
m

 . The encoding then
provides the initial hidden state for the decoder LSTM:

where x(t)
m

 is the embedding of the target language word �(t)
m

 . Sequence-to-Sequence
translation is nothing more than wiring together two LSTMs: one to read the source,
and another to generate the target.

Attention Mechanism The weakness of using a fixed-length context vector is the
difficulty to remember long sentences. Indeed, in the traditional Seq2Seq model,
the intermediate states of the encoder are discarded, and only the final states (vec-
tor) are used to initialize the decoder. To overcome this limitation, Bahdanau et al.
(2015) proposed the attention mechanism, i.e., a solution that uses a context vector
to align the source sentence and target sentence. The context vector holds the infor-
mation from all hidden states from the encoder and aligns them with the current

(2)log p(�(t)|�(s)) =

M(t)∑

m=1

p(�(t)
m
|�(t)

1∶m−1
, z)

(3)p(�(t)
m
|�(t)

1∶m−1
,�(s)) ∝ exp(�

�
(t)
m
⋅ h

(t)

m−1
)

(4)h(s)
m

= LSTM(x(s)
m
, h

(s)

m−1
)

(5)z ≜ h
(s)

M(s)

(6)h
(t)

0
=z

(7)h(t)
m

=LSTM(x(t)
m
, h

(t)

m−1
)

2  The name is due to the fact that each word is embedded in a continuous vector space.

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 8 of 34

target output. By using this mechanism, the model is able to look at a specific part
of the source sentence and better understand the relationship between the source and
target.

An attention function can be described as mapping a query and a set of key-value
pairs to an output, where the query, keys, values, and output are all vectors. The
key-value-query concepts come from retrieval systems. For example, when a user
types a query to search for a resource (value) on a contents-sharing platform, the
search engine maps the query against a set of keys associated with the resources in
the database of the platform and will show to the user the best-matched resource.
Formally speaking, for each key n, the attention mechanism assigns a score
�a(m, n) with respect to the query m, based on how much they match. In Bahdan-
au’s paper, the score is parametrized by a feed-forward network with a single hid-
den layer. The output of this activation function is a vector of non-negative numbers
[�m→1, �m→2,… , �m→N]

T , with length N equal to the size of the memory (i.e., the
space of all the generated words). Each value in the memory vn is multiplied by
the attention �m→n ; the sum of these scaled values is the output. At each step m in
decoding, the attentional state is computed by executing a query, which is equal to
the state of the decoder, h(t)

m
 . The resulting compatibility scores are:

Transformer In the encoder-decoder model, the keys and values used in the attention
mechanism are the hidden state representations in the encoder network z, and the
queries are state representations in the decoder network h(t) . Vaswani et al. (2017)
proposed a new model architecture, the Transformer, that does not rely on the recur-
rent neural networks by applying self-attentionLin et al. 2017b; Kim et al. 2017)
within the encoder and decoder. For level i, the basic equations of the encoder side
of the transformer are:

For each token m at level i, we compute self-attention over the entire source sen-
tence. The keys, values, and queries are all projections of the vector h(i−1) . The
attention scores �(i)

m→n are computed using a scaled form of softmax attention. This
encourages the attention to be more evenly dispersed across the input. Self-attention
is applied across multiple ‘heads’, each using different projections of h(i−1) to form
the keys, values, and queries. The output of the self-attentional layer is the represen-
tation z(i)

m
 , which is then passed through a two-layer feed-forward network, yielding

the input to the next layer h(i).
The Transformer architecture first refines the input embedding of each token, by

combining it with a positional encoding vector. The architecture has a different posi-
tional encoding vector for each position of the sentence, in order to enrich the input
embedding with positional information. Then, the transformed input embeddings

(8)��(m, n) = v� ⋅ tanh(Θ�|h(t)m ;h(s)
n
)

(9)z(i)
m
=

M(s)∑

n=1

�(i)
m→n

(Θvh
(i−1)
n

)

(10)h(i)
m
=Θ2ReLU(Θ1z

(i)
m
+ b1) + b2

1 3

Automated Software Engineering (2022) 29:30	 Page 9 of 34  30

sequentially go through the stacked encoder layers, which all apply a self-attention
process. The self-attention further refines an input embedding, by combining it with
the other input embeddings for the sentence in a weighted way, in order to account
for correlations among the words (e.g., to get information for a pronoun from the
noun it refers to, the input embedding of the noun is given a large weight).

For more detailed information on NMT models, we refer the reader to the work of
Eisenstein (2018).

4 � Approach

We leverage neural machine translation (NMT) to automatically generate shellcodes
starting from their natural language description. Following prior work (e.g., Luong
et al. 2015), we build a neural network that directly models the conditional prob-
ability of translating an intent, in natural language into a code snippet in assembly
language.

The main challenge towards the goal of automatically generating shellcodes
is represented by the programming language, i.e., the assembly. This language is
significantly different from other languages addressed so far by research on NMT,
which focused so far on mainstream imperative languages such as Python and Java.
Assembly is a low-level programming language with many syntactical differences
from these languages. For example, assembly does not provide the concept of vari-
able, which is instead replaced by registers, memory addresses, addressing modes,
and labels. Moreover, some programming constructs in assembly require multiple
statements, which instead could be expressed with only one statement of other pro-
gramming languages. To address this new language for NMT, we opted to base our
solution on existing deep neural network architectures: Seq2Seq with Attention, and
CodeBERT.

We refrained from proposing a new architecture, for several reasons: (i) using an
existing, well-tested architecture can be used with more confidence in a comparative
setting in which numerical issues (such as, the vanishing gradient) can be prevented;
(ii) existing architectures were shown to perform well when translating from English
descriptions, which is also the case of our problem; (iii) using an existing archi-
tecture enables us to reuse pre-trained models, which are costly to pre-train from
scratch in terms of data size, computational time, and resources.

Furthermore, assembly is a low-resource programming language and its code-
bases are scarce data compared to mainstream program languages and, therefore,
it would be a challenge to pre-train a model from scratch on assembly-based shell-
code bases. Since NMT for assembly code-based shellcodes is not investigated in
prior works, there are limited resources for processing assembly codebases such as
abstract syntax trees (AST), which are abundant for other programming languages
and provide domain knowledge for some existing code generation architectures.
Due to these reasons, we hence wanted to thoroughly investigate the strengths and
weaknesses of current architectures. In the following, we briefly describe these
architectures.

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 10 of 34

Seq2Seq is a common model used in a variety of neural machine translation tasks.
Similar to the encoder-decoder architecture with Bahdanau’s attention mechanism
Bahdanau et al. (2015), we use a bi-directional LSTM as the encoder, to trans-
form an embedded intent sequence into a vector of hidden states with equal length.
Within the bidirectional LSTM encoder, each hidden state corresponds to an embed-
ded token. The encoder LSTM is bidirectional, which means it reads the source
sequence ordered from left to right and from right to left. To combine both direc-
tions, each hidden state for the bidirectional LSTM encoder is computed by concat-
enating the forward and backward hidden states in the encoder.

CodeBERT Feng et al. (2020) is a large multi-layer bidirectional Transformer
architecture Vaswani et al. (2017). Like Seq2Seq, the Transformer architecture
is made up of encoders and decoders. CodeBERT has 12 stacked encoders and 6
stacked decoders. Compared to Seq2Seq, the Transformer architecture introduces
mechanisms to address key issues in machine translation: (i) the translation of a
word depends on its position within the sentence; (ii) in the target language, the
order of the words (e.g., adjectives before a noun) can be different from the order
of words in the source language (e.g., adjectives after a noun); (iii) several words in
the same sentence can be correlated (e.g., pronouns). These problems are especially
important when dealing with long sentences. Different from Seq2Seq, CodeBERT
also comes with a pre-trained neural network model, learned from large amounts of
code snippets and their descriptions in the English language, and covering six differ-
ent programming languages, including Python, Java, Javascript, Go, PHP, and Ruby.
The goal of pre-training is to bootstrap the training process, by establishing an initial
version of the neural network, to be further trained for the specific task of inter-
est (Peters et al. 2018; Liu et al. 2019; Devlin et al. 2019; Brown et al. 2020). This
approach is called transfer learning. In our case, we train the CodeBERT model to
translate English intents to assembly code snippets using our dataset (see Sect. 5).

To better support such existing models at performing a new translation task,
we extended the process with data processing. Data processing is an essential step
to support the NMT models in the automatic code generation and refers to all the
operations performed on the data used to train, validate and test the models. These
operations strongly depend on the specific source and target languages to translate
(in our case, English and assembly language). We process data through a pipeline
of steps, which we tailored for the task of generating assembly code snippets. The
data processing steps are performed both before translation (pre-processing), to train
the NMT model and prepare the input data, and after translation (post-processing),
to improve the quality and the readability of the code in output. Figure 1 shows the
architecture of our approach, along with an example of inputs and outputs at each
step, further discussed in the following.

4.1 � Pre‑processing

The pre-processing starts with the stopwords filtering, i.e., by removing a set of cus-
tom compiled words (e.g., the, each, onto), in order to include only relevant data
for machine translation. This phase also includes the identification of tokens, i.e.,

1 3

Automated Software Engineering (2022) 29:30	 Page 11 of 34  30

basic units which need not be decomposed in subsequent processing. Therefore, the
input sequences of natural language tokens and assembly code are split in a process
called tokenization. The tokenizer converts the input strings into their byte represen-
tations, and learns to break down a word into subword tokens (e.g., lower becomes
[low,er]. We tokenize intents using the nltk word tokenizer Loper and Bird
(2002) and snippets using the Python tokenize package Python (2020).

One task for code generation systems is to prevent non-English tokens (e.g.,
_start) from getting transformed during the learning process. This process is
known as object standardization. Abstracting important words for the assembly
language can make it easier for the model to reuse existing structures learned from
other imperative languages, such as moving data and changing the control flow. To
perform the standardization, we adopt an intent parser, which takes in input a natural
language intents and provides as output a dictionary of standardizable tokens (i.e., it
identifies the correct names for the standardization process), such as the names of
the registers, the actions (e.g., /bin/sh), the hexadecimal values, etc. We imple-
ment the intent parser using spaCy, an open-source, industrial-strength Natural Lan-
guage Processing library written in Python and Cython. We also use custom rules
defined with regular expressions to identify hexadecimal values (e.g., 0xbb), strings
that fall between quotation marks, squared brackets, variable name notations (e.g.,
variableName, variable_name), function and register names, mathematical
expressions, and byte arrays (e.g., \xe3 \xa1). Hence, this component is tailored
for the task of generating shellcodes in assembly language starting from their natural
language description.

All tokens selected by the parser are therefore passed to the Standardizer. The
standardization process simply replaces the selected token in both the intent and
snippet with var#, with # denoting a number from 0 to |l|, and |l| is the number
of tokens to standardize. In Fig. 1, the intent parser identifies 0xf2, and _start

Fig. 1   Diagram showing the steps of the approach: (1) Pre-Processing of intent-code samples in both
training and validation sets, (2) translation of unseen intent samples from the validation-set, and lastly,
(3) Post-Processing applied to generated samples

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 12 of 34

as standardizable tokens and standardizes them to var0, and var1 respectively
(based on order of appearance in the intent). To improve the process, we prevent the
standardization of unimportant tokens, by compiling a dictionary of 45 assembly
keywords (e.g., register, address, byte, etc.) as non-standardizable tokens.
After the standardization process, both the original token and its standardized coun-
terpart (var#) are stored in a dictionary (named Slotmap) to be used during post-
processing to restore the original words.

Lastly, we create word embeddings, i.e., we map each token (in both the intent
and code snippet sequences) into a numerical id representation in order to capture
their semantic and syntactic information, where the semantic information correlates
with the meaning of the tokens, while the syntactic one refers to their structural roles
Li and Yang (2018).

4.2 � Post‑processing

Post-processing is an automatic post-editing process, applied during decoding in the
translation process (i.e., after the generation of the code snippet). This phase include
a Destandardizer, which uses the slot map dictionary generated by the parser to
replace all keys in the standardized intent (i.e., var0 and var1) with the corre-
sponding memorized values (i.e., 0xf2, and _start).

The generated snippets are then further post-processed using regular expres-
sions. This operation includes the removal of (any) extra-spaces in the output (e.g.,
between operations and operands), and the removal of (any) extra-backslashes in
escaped characters (e.g., \\n). Also, during the post-processing, newline characters
\n are replaced with new lines to generate multi-line snippets. As a final step, snip-
pet tokens are joined to form a complete code snippet.

5 � Dataset

We curated and released a dataset for, Shellcode_IA32Liguori et al. (2021a), spe-
cific to shellcode generation. This dataset consists of 3200 examples of instructions
in assembly language for IA-32 (the 32-bit version of the x86 Intel Architecture) col-
lected from publicly available security exploits. The x86 is a complex instruction set
computer (CISC), in which single instructions can perform several low-level opera-
tions (such as a load from memory, an arithmetic operation, and a memory store) or
are capable of multi-step operations or addressing modes within single instructions.
The dataset is comparable in size to the popular CoNaLa dataset Yin and Neubig
(2017) (2379 training and 500 test samples in the annotated version of the dataset),
which is the basis for state-of-the-art studies in NMT for Python code generation
(Yin et al. 2018; Yin and Neubig 2019; Gemmell et al. 2020).

We collected assembly programs used to generate shellcode from shell-storm
Shellstorm (2021) and from Exploit Database Exploitdb (2021), in the period
between August 2000 and July 2020. We focus on shellcode for Linux, the most
common OS for security-critical network services. Accordingly, we gathered

1 3

Automated Software Engineering (2022) 29:30	 Page 13 of 34  30

assembly instructions written for the Netwide Assembler (NASM) for Linux Dunte-
mann (2000). NASM is a line-based assembler. Figure 2 shows a simple example
of a NASM source line. Every source line contains a combination of four fields: an
optional label, to symbolically represent the address of an opcode or data location
defined by the line; a mnemonic or instruction, which identifies the purpose of the
statement and is optionally followed by operands specifying the data to be manipu-
lated; an optional comment, i.e., free text ignored by the compiler. A mnemonic is
not required if a line contains only a label or a comment.

The assembly programs collected in the dataset implement a varied set of shell-
code attacks. One of the most common and basic shellcodes is the execution of a
system shell (e.g., the /bin/sh command). This shellcode is often used in com-
bination with more sophisticated attacks. The main categories include: exfiltrating
password, e.g., from /etc/passwd (a plain text-based database that contains
information for all user accounts on the system); breaking a chroot jail (an addi-
tional layer of security to run untrusted programs, which can be evaded by invok-
ing vulnerable system calls with malicious inputs); running executables with the file
system permissions of the executable’s owner; flushing firewall rules (e.g., IPtables).
Another form of shellcodes is the egg hunter, i.e., a piece of code that when exe-
cuted looks for other pieces of code (usually bigger) called the egg and passes the
execution to the egg. This technique is usually used when the space of executing
shellcode is limited (the available space is less than the egg size) and it is possible
to inject the egg into another memory location. Shellcodes are also used to perform
denial-of-service (DoS) attacks, such as for the fork-bomb attack, in which a process
continually replicates itself to deplete system resources, slowing down or crashing
the system due to resource exhaustion. Among the most complex shellcodes, we
find the bind shell attacks. These attacks, which can easily reach hundreds of bytes,
are used to open up a port on the victim system and connect to it from the remote
attacking box. The complexity further increases when an attack redirects all inputs
and outputs to a socket (reverse shell) in order to evade firewalls.

Each sample of the Shellcode_IA32 dataset represents a snippet - intent pair.
The snippet is a line or a combination of multiple lines of assembly code, follow-
ing the NASM syntax. The intent is a comment in the English language (c.f. List-
ing 1). To take into account the variability of descriptions in natural language,
multiple authors described independently different samples of the dataset in the
English language. Where available, we used as natural language descriptions the
comments written by developers of the collected programs. Moreover, in the pre-
liminary phase of the dataset collection, we enriched the dataset with lines of
assembly code and their relative English comments extracted from popular tuto-
rials and books (Duntemann 2021; Kusswurm 2014; tutorialspoint 2020). This

Fig. 2   Layout of a NASM source line

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 14 of 34

helped us to learn the typical style for describing assembly code and to mitigate
bias in our descriptions in English of assembly code. Once we reached confidence
about the description style (i.e., the description style was recurring when adding
more samples), we focused our efforts on real shellcodes, by writing ourselves
the descriptions where no comment or documentation about the code snippet was
available. Our dataset consists of 10% of instructions collected from books and
guidelines, while the rest are from real shellcodes. However, there is no qualita-
tive difference between both sets.

Multi-line Snippets Since assembly is a low-level language, it is often necessary
to use multiple instructions to perform a given task. Thus, we go beyond one-to-one
mappings between a line of code and its comment/intent. For example, a common
operation in shellcodes is to save the ASCII string “/bin/sh” into a register. This
operation requires three distinct assembly instructions: push the hexadecimal values
of the words “/bin” and “//sh” onto the stack register before moving the contents of
the stack register into the destination register (lines 27-28-29 in Listing 1). It would
be meaningless to consider these three instructions as separate. To address such situ-
ations, we include 510 lines ( ∼ 16% of the dataset) of intents that generate multiple
lines of shellcodes (separated by the newline character \n). Table 1 shows two fur-
ther examples of multi-line snippets with their natural language intent.

Statistics Table 2 presents descriptive statistics of the Shellcode_IA32 data-
set. The dataset contains 52 distinct assembly mnemonics, excluding declarations
of functions, sections, and labels. The two most frequent assembly instructions are
mov ( ∼ 30 % frequency), used to move data into/from registers/memory or to invoke
a system call, and push ( ∼ 22 % frequency), which is used to push a value onto the

Table 1   Examples of multi-line
snippets

English intent Multi-line snippets

jump short to the decode label if the con-
tents of the al register is not equal to
the contents of the cl register else jump
to the shellcode label

cmp al, cl \n jne
short decode \n
jmp shellcode

jump to the label recv_http_request if
the contents of the eax register is not
zero else subtract he value 0x6 from the
contents of the ecx register

test eax, eax \n
jnz recv_http_
request \n sub
ecx, 0x6

Table 2   Shellcode_IA32 statistics

Language Unique
statements

Unique tokens Avg. tokens per
statement

Min tokens per
statement

Max tokens
per state-
ment

Natural Language 3184 1639 9.15 1 46
Assembly Language 2248 1401 4.17 2 30

1 3

Automated Software Engineering (2022) 29:30	 Page 15 of 34  30

stack. The next most frequent instructions are the cmp ( ∼ 7% frequency), xor and
jmp instructions ( ∼ 4% frequency). The low-frequency words (i.e., the words that
appear only once or twice in the dataset) contribute to the 3.6% and 7.3% of the
natural language and the assembly language, respectively. Figure 3 shows the dis-
tribution of the number of tokens across the intents and snippets in the dataset. We
publicly shared our entire Shellcode_IA32 dataset on a GitHub repository.3

6 � Experimental analysis

This section presents an extensive evaluation of our approach to generating shell-
codes from natural language descriptions. We conducted the experimental analysis
to target the following experimental objectives.

⊳ Feasibility in applying NMT for shellcode generation.
We first perform an initial assessment on the feasibility of using NMT for shell-

code generation with reasonably good accuracy, by applying techniques commonly
used for code generation (e.g., generating Python code from natural language). We
evaluate a broad set of state-of-the-art models for code generation, in combination
with different techniques for data processing. In this initial stage, we adopt auto-
matic evaluation metrics.

⊳ Accuracy of NMT at generating assembly code snippets.
In this experimental objective, we deepen the analysis of the accuracy of NMT

models. This is a cumbersome task since automatic metrics do not catch the deeper
linguistic features of generated code, such as its semantic correctness (Han et al.
2021). Therefore, it is also advisable for NMT studies to perform an evaluation
through manual analysis, by using additional metrics in order to have a more pre-
cise and complete evaluation. The second experimental objective still focuses on the
analysis of individual intents and their corresponding translations into code snippets.

⊳ Accuracy of the NMT at generating whole shellcodes.

Fig. 3   Histogram of the Shellcode_IA32 dataset showcasing the distribution of token counts across
intents and snippets

3  The dataset can be found here: https://​github.​com/​desse​rtlab/​Shell​code_​IA32.

https://github.com/dessertlab/Shellcode_IA32

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 16 of 34

We investigate if it is possible to apply NMT to generate full shellcodes, i.e.,
entire assembly programs from a set of intents. Ideally, the generated code is entirely
or mostly correct, in order to reduce the human effort towards developing assembly
programs. Therefore, in this experimental objective, we evaluate how many entire
shellcodes are correctly generated by NMT (unlike the previous experimental objec-
tive, where we analyze individual code snippets regardless of which program they
belong to).

⊳ Types of errors incurred by NMT in the generation of shellcodes.
In this experimental objective, we are concerned with diagnosing the error pre-

dictions in the code generation task. We qualitatively analyze a representative sam-
ple of the most frequent mistakes, including both syntactic and semantic ones, to
get more insight into the severity of the errors, and to understand potential areas of
improvement for future work.

6.1 � Model implementation

We implement the Seq2Seq model using xnmt (Neubig et al. 2018). We use an
Adam optimizer (Kingma et al. 2015) with �1 = 0.9 and �2 = 0.999 , while the learn-
ing rate � is set to 0.001. We set all the remaining hyper-parameters in a basic con-
figuration: layer dimension = 512, layers = 1, epochs (with early stopping enforced)
= 200, beam size = 5.

Our CodeBERT implementation uses an encoder-decoder framework where the
encoder is initialized to the pre-trained CodeBERT weights, and the decoder is a
transformer decoder. The decoder is composed of 6 stacked layers. The encoder fol-
lows the RoBERTa architecture (Liu et al. 2019), with 12 attention heads, hidden
layer dimension of 768, 12 encoder layers, 514 for the size of position embeddings.
We use the Adam optimizer (Kingma et al. 2015). The total number of parameters
is 125M. The max length of the input is 256 and the max length of inference is 128.
The learning rate � = 0.00005 , batch size = 32, beam size = 10, and train_steps =
2800.

We performed our experiments on a Linux machine. Seq2seq utilized 8 CPU
cores and 8 GB RAM. CodeBERT utilized 8 CPU cores, 16 GB RAM, and 2
GTX1080Ti GPUs. The computational time needed to generate the output depends
on the settings of the hyper-parameters and the size of the dataset. On average, the
training time for the Seq2Seq model was ∼ 60 minutes, while CodeBERT required
for the training on average ∼ 220 minutes. Once the models are trained, the time
to translate intent into a code snippet is below 1 second and can be considered
negligible.

6.2 � Test set

To perform the experimental evaluation, we split our entire dataset into train/dev/
test sets by using an 80/10/10 ratio. To divide the data between training, dev, and
test set, we did not individually sample intent-snippet pairs from the dataset, but we
took groups of intent-snippet pairs that belonged to the same shellcode, in order to

1 3

Automated Software Engineering (2022) 29:30	 Page 17 of 34  30

be able to evaluate generate shellcodes in their entirety (see § 6.5). The test set con-
tains 30 complete shellcodes (e.g. the entire Listing 1).

We selected the 30 shellcodes of the test set in order to maximize the heterogene-
ity among the programs and mitigate bias. We anticipated that these biases could
affect the evaluation: the type of attack (as they may entail different instructions
and constructs); the authors of the shellcode (as it may also affect the programming
style); and the complexity of the shellcode (as more complex shellcodes may also be
more difficult to describe and to translate). We divided the shellcodes according to
the type of the attack (shell spawning, break chroot, fork bomb, etc.), and sampled
the shellcodes uniformly across these classes. When sampling within each class, we
double-checked that no programmer was over-represented. We used the shellcode
length as a proxy for complexity, and we increased the sample size until the dis-
tribution of the shellcode length was comparable to the distribution of the whole
population (min=12, max=61, mean=26.9, median=24.5). The histograms in Fig. 4
summarize the statistic of the programs in the test set in terms of lines of code.
Additional information on the test set is presented in the Appendix 1.

6.3 � Feasibility in applying NMT for shellcode generation

We first analyze the feasibility of Seq2Seq with attention mechanism and Code-
BERT for the generation of shellcodes and investigate the impact of the data pro-
cessing described in Sect. 4. In this stage, we use automatic evaluation metrics.
Automatic metrics are commonly used in the field of machine translation. They are
reproducible, easy to be tuned, and time-saving. The BiLingual Evaluation Under-
study (BLEU) Papineni et al. (2002) score is one of the most popular automatic met-
ric (Oda et al. 2015; Ling et al. 2016; Gemmell et al. 2020; Tran et al. 2019). This
metric is based on the concept of n-gram, i.e., the adjacent sequence of n items (e.g.,
syllables, letters, words, etc.) from a given example of text or speech. In particu-
lar, this metric measures the degree of n-gram overlapping between the strings of
words produced by the model and the human translation references at the corpus
level. BLEU measures translation quality by the accuracy of translating n-grams to

Fig. 4   Histograms visualizing the statistics of the 30 shellcodes in the test set

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 18 of 34

n-grams, for n-gram of size 1 to 4 (Han 2016). The Exact match accuracy (ACC) is
another automatic metric often used for evaluating neural machine translation (Ling
et al. 2016; Yin and Neubig 2017, 2018, 2019). It measures the fraction of the exact
match between the output predicted by the model and the reference.

To assess the influence of our tailoring to NMT for the assembly language (e.g.,
the intent parser), we compare three “variants” of NMT by varying the steps of the
data processing pipeline (see § 4):

•	 w/o data processing: the model performs the translation task without applying
any step of the data processing pipeline.

•	 w/o intent parser: in this case, the model is trained on processed data, but with-
out adopting the intent parser.

•	 with intent parser: the data processing pipeline also includes the intent parser.

Table 3 shows the results of this analysis. The table shows that the data processing
aids the Seq2Seq model also without the use of the intent parser, while CodeBERT
does not take benefit from the basic data processing steps. The performance of both
models significantly increases when the data processing is used in combination with
the intent parser. Indeed, the full data processing pipeline improves all the metrics
by ∼ 31 % on average for Seq2Seq and by ∼ 19 % on average for CodeBERT when
the results of the models are compared without using the data processing process.
The table also highlights that CodeBERT outperforms the Seq2Seq model across
all metrics. We conducted a paired t-test and found that the differences between the
results obtained by CodeBERT with the intent parser and all the other model con-
figurations are statistically significant for all metrics (at p < 0.05).

To estimate the actual goodness of the results, we compared the best performance
achieved on the Shellcode_IA32 dataset with the state-of-the-art best performances
on the Django dataset (Oda et al. 2015), a corpus widely used for code generation
tasks (Ling et al. 2016; Yin and Neubig 2017, 2018, 2019; Hayati et al. 2018; Dong
and Lapata 2018; Gemmell et al. 2020; Xu et al. 2020) and consisting of 18, 805

Table 3   Automated evaluation of the translation task

Bolded values are the best performance
IP: Intent Parser. ( ∗= p<0.05)

Automated Seq2Seq CodeBERT

Metrics (%) w/o data pro-
cessing

w/o IP with IP w/o data pro-
cessing

w/o IP with IP

BLEU-1 69.99 74.57 93.46 78.42 80.11 94.95*
BLEU-2 64.18 69.82 91.98 75.11 75.89 93.61*
BLEU-3 60.09 66.35 90.87 72.75 73.15 92.68*
BLEU-4 56.43 62.97 90.03 70.54 70.11 91.70*
ACC​ 39.44 51.55 82.92 69.57 67.39 89.75*

1 3

Automated Software Engineering (2022) 29:30	 Page 19 of 34  30

pairs of Python statements for the Django Web application framework alongside the
corresponding English pseudo-code. The state-of-the-art best performances on this
dataset provide BLEU-4 score and accuracy equal to 84.70 Hayati et al. (2018) and
80.20 Yin and Neubig (2019), respectively, and are therefore lower than the best
results in Table 3. We attribute these differences to the nature of the assembly lan-
guage, which is a low-level language. Indeed, even if this work targets the IA-32
processor, which is a CISC architecture, the instruction set of the assembly language
is still limited if compared to high-level languages, such as Python, which include
a wide number of libraries and functions and, therefore, are more complex to auto-
matically generate.

We also investigate the performance of the code generation task on single-line
snippets vs. multi-line snippets by performing a fine-grained evaluation. Table 4
shows the performance of CodeBERT (with data processing) for single vs. multi-
line snippets. Unsurprisingly, we find that accuracy is negatively affected by the
length of snippets, while BLEU scores are higher for multi-line snippets. This is
because multi-line snippets are longer, there is more opportunity for BLEU scores
to be higher (there can be more n-grams that are matched in longer snippets), in
contrast to single line snippets. And likewise, since the accuracy metric is an exact
match on the entire snippet, performance on multi-line snippets is lower than for
single line snippets.

This first analysis allows us to conclude that the state-of-the-art NMT models can
be applied for the generation of code used to exploit the software, and provide high
performance when used in combination with data processing.

6.4 � Accuracy of NMT at generating assembly code snippets

In § 6.3, we used the code written by the programmers (i.e., the authors of the shell-
codes) as ground truth for the evaluation. Therefore, when the model predicts the
assembly code snippets starting from their natural language description, the pre-
dicted output is compared to code composing the original shellcode attacks. How-
ever, since the same English intent can be translated into different but equivalent
assembly snippets, automated metrics (such as BLEU scores) are not perfect in that
they do not credit semantically correct code that fails to match the reference. For
example, the snippets jz label and je label are semantically identical, even

Table 4   Automatic evaluation of
the translation task comparing
single-line and multi-line
snippets from the test set

Bolded values are the best performance

Automated metrics (%) Single-line snippets Multi-
line
snippets

BLEU-1 93.64 98.14
BLEU-2 92.24 96.86
BLEU-3 91.29 95.84
BLEU-4 90.21 94.91
ACC​ 90.51 85.42

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 20 of 34

if they use different instructions (jz vs. je). Furthermore, these metrics do not indi-
cate whether the generated code would compile or not. Accordingly, we define two
new metrics: a generated output snippet (single or multi-line) is considered syntac-
tically correct if it is correctly structured in assembly language and compiles cor-
rectly. The output is considered semantically correct if the snippet is an appropriate
translation in assembly language given the intent description. Consider the intent
transfer the contents of the ebx register into the eax register. If the approach gen-
erates the snippet mov ebx, eax, then the snippet is considered syntactically cor-
rect (it would compile), but not semantically correct because the order of the oper-
ands is inverted. These two metrics allow us to assess the deeper linguistic features
of the code (Han et al. 2021). The semantic correctness implies syntax correctness,
while a snippet can be syntactically correct but semantically incorrect. When a snip-
pet is syntactically incorrect it is also semantically incorrect. The evaluation of the
semantic equivalence between the output predicted by the models and the code writ-
ten by the authors of the shellcodes provides the best insights into the quality of
the output since it allows us to assess the correctness of the predicted code even if
its syntax differs from the ground truth. This is the reason why we did not limit the
analysis to automatic metrics, and manually evaluated the semantic meaning of gen-
erated code.

To evaluate the syntactic correctness of the outputs, we used the NASM compiler
in order to check whether the code is compilable, while we evaluated the semantic
correctness by checking if the code generated by the models is a correct translation
of the English intent. We performed this analysis manually, by checking every single
line of generated code. This analysis could not be performed automatically, since an
English intent can be translated into several forms that are different, but semantically
equivalent. For the same reason, manual (‘human’) evaluation is a common practice
in NMT studies. The manual evaluation also gives better insights into the quality
of machine translation and allows us to analyze errors in the output. To reduce the
possibility of errors in manual analysis, multiple authors performed this evaluation
independently, obtaining a consensus for the semantic correctness of the output pre-
dicted by the models.

Table 5 shows the percentage of syntactically and semantically correct snippets
across all the examples of the test set. We evaluated the performance of Seq2Seq
and CodeBERT, both using data processing. Both syntactic and semantic evalua-
tions were performed by compiling the generated snippets under the NASM com-
piler. Table 5 shows that both approaches are able to generate > 95% of syntactically
correct snippets. Paired t-tests indicated that the differences between the models are

Table 5   Code correctness
evaluation of the translation task
given the whole test set

Bolded values are the best performance ( ∗= p<0.01)

Code correctness metrics (%) Seq2Seq with
data processing

CodeBERT
with data pro-
cessing

Syntactically correct 96.58 97.20
Semantically correct 85.40 93.16*

1 3

Automated Software Engineering (2022) 29:30	 Page 21 of 34  30

not statistically significant for the syntactic correctness, but they are statistically sig-
nificant for semantic correctness (at p < 0.01).

Again, we further investigated the results provided by CodeBERT, by evaluat-
ing the performance of the model on single vs. multi-line snippets. Table 6 high-
lights that the multi-line snippets affect model performance on syntactic correctness,
although we find no statistically significant difference in model performance on the
semantic correctness metric.

Table 7 show illustrative examples of code snippets that the model can success-
fully translate (i.e., the snippets generated by the approach are syntactically and
semantically correct). Rows 3, 6, and 8 are examples of correct snippets that are
penalized by automated metrics, even if they do not exactly match the ground truth.
Despite some slight differences with the ground truth, the generated code is seman-
tically correct, due to the ambiguity of the assembly language. Thus, these differ-
ences are still considered correct by our manual analysis. We note correctly gener-
ated examples of multi-line snippets in rows 2, 3, 4, and 6. Also, we observe in row
3, the ability to generate multi-line snippets from a relatively abstract intent.

We conclude that both Seq2Seq and CodeBERT provide syntactically and seman-
tically correct code snippets with high accuracy. Moreover, CodeBERT provides the
best performance in the task of generating shellcodes from natural language intents.
Due to these findings, we consider CodeBERT (with data processing) as our refer-
ence NMT model for the following experimental objectives.

6.5 � Accuracy of the NMT at generating whole shellcodes

The ultimate goal of developers is to craft entire shellcodes. The previous evaluation
showed that NMT can generate individual code snippets that are likely the correct
ones. Thus, NMT can be queried by developers to translate specific parts of a pro-
gram. Here, we raise the bar for the evaluation, by analyzing to which extent NMT
can generate an entire shellcode. To this purpose, we consider groups of intents
from the same exploit and compare the resulting code snippets with the original
shellcode. We use two new metrics to evaluate the ability of the approach to gener-
ate semantically and syntactically correct code for entire shellcodes.

Let ni
t
 be the the number of total lines of the i-th program in the test set

( i ∈ [1, 30] ). Let also consider ni
syn

 as the number of automatically-generated
snippets for the i-th program that are syntactically correct, and ni

sem
 as the num-

ber of automatically-generated snippets that are semantically correct. For every

Table 6   Code correctness
evaluation of the translation
task comparing single-line and
multi-line snippets from the
test set

Bolded values are the best performance

Code correctness metrics (%) Single-line snip-
pets

Multi-
line
snippets

Syntactically correct 97.81 93.75
Semantically correct 93.06 93.75

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 22 of 34

Ta
bl

e 
7  

Il
lu

str
at

iv
e

ex
am

pl
es

 o
f s

uc
ce

ss
fu

lly
 g

en
er

at
ed

 sn
ip

pe
ts

 u
si

ng
 o

ur
 a

pp
ro

ac
h

 D
iff

er
en

ce
s b

et
w

ee
n

th
e

ou
tp

ut
 a

nd
 g

ro
un

d
tru

th
 a

re
 b

ol
de

d.
 S

uc
h

di
ffe

re
nc

es
 a

re
 p

en
al

iz
ed

 b
y

au
to

m
at

ic
 m

et
ric

s e
ve

n
th

ou
gh

 th
ey

 a
re

 c
or

re
ct

Ro
w

N
at

ur
al

 la
ng

ua
ge

 in
te

nt
G

ro
un

d
tru

th
M

od
el

 o
ut

pu
t

1
M

ov
e

th
e

by
te

 a
t t

he
 a

dd
re

ss
 [e

di
] i

nt
o

bl
m
o
v

b
l
,

b
y
t
e

[
e
d
i
]

m
o
v

b
l
,

b
y
t
e

[
e
d
i
]

2
Ju

m
p

to
 th

e
_s

ta
rt

 la
be

l i
f t

he
 v

al
ue

 in
 th

e
ea

x
re

gi
ste

r i
s n

ot
 e

qu
al

 to
 th

e
do

ub
le

wo
rd

ad

dr
es

se
d

by
 e

di
s
c
a
s
d

\
n

j
n
z

_
s
t
a
r
t

s
c
a
s
d

\
n

j
n
z

_
s
t
a
r
t

3
Pu

t /
bi

n/
sh

 in
to

 e
bx

p
u
s
h

0
x
6
8
7
3
2
f
2
f

\
n

p
u
s
h

0
x
6
e
6
9
6
2
2
f

\
n

m
o
v

e
b
x
,

e
s
p

p
u
s
h

 l
o
n
g

 0
x
6
8
7
3
2
f
2
f

\
n

p
u
s
h

 l
o
n
g

 0
x
6
e
6
9
6
2
2
f

\
n

m
o
v

e
b
x
,

e
s
p

4
Pu

sh
 th

e
va

lu
e

0x
61

70
2f

2f
 a

nd
 th

e
va

lu
e

0x
63

74
65

2f
 o

nt
o

th
e

st
ac

k
an

d
po

in
t t

he
 e

bx

re
gi

ste
r t

o
th

e
st

ac
k

re
gi

ste
r

p
u
s
h

0
x
6
1
7
0
2
f
2
f

\
n

p
u
s
h

0
x
6
3
7
4
6
5
2
f

\
n

m
o
v

e
b
x
,

e
s
p

p
u
s
h

0
x
6
1
7
0
2
f
2
f

\
n

p
u
s
h

0
x
6
3
7
4
6
5
2
f

\
n

m
o
v

e
b
x
,

e
s
p

5
Pe

rf
or

m
 a

 lo
gi

ca
l x

or
 b

et
we

en
 th

e
ad

dr
es

s s
pe

ci
fie

d
by

 [e
cx

 +
 1

16
] a

nd
 th

e
dh

 re
gi

ste
r

an
d

sa
ve

 th
e

re
su

lt
in

 [e
cx

 +
 1

16
]

x
o
r

[
e
c
x

+

1
1
6
]
,

d
h

x
o
r

[
e
c
x

+

1
1
6
]
,

d
h

6
If

th
e

co
nt

en
ts

 o
f t

he
 a

l r
eg

is
te

r i
s e

qu
al

 to
 th

e
va

lu
e

0x
f2

 th
en

 ju
m

p
to

 th
e

_s
ta

rt
 la

be
l

c
m
p

a
l
,

0
x
f
2

\
n

j
z

_
s
t
a
r
t

c
m
p

a
l
,

0
x
f
2

\
n

 j
e

 _
s
t
a
r
t

7
M

ov
e

es
i i

nt
o

th
e

do
ub

le
wo

rd
 st

ar
tin

g
at

 th
e

ad
dr

es
s e

sp
-4

m
o
v

d
w
o
r
d

[
e
s
p
-
4
]
,

e
s
i

m
o
v

d
w
o
r
d

[
e
s
p
-
4
]
,

e
s
i

8
C

al
l k

er
ne

l
i
n
t

0
x
8
0

i
n
t

0
x
8
0

 h

1 3

Automated Software Engineering (2022) 29:30	 Page 23 of 34  30

program of the test set, we define the syntactic correctness of the program i
as the ratio ni

syn
∕ni

t
 , and the semantic correctness of the program as the ratio

ni
sem

∕ni
t
 . To perform a conservative evaluation on multi-line snippets, even if

only one line of code of the generated snippets is syntactically (semantically)
incorrect, we consider all the lines belonging to the multi-line block as syntacti-
cally (semantically) incorrect. Both metrics range between 0 and 1.

For each i ∈ [1, 30] , we computed the values ni
syn

 and ni
sem

 for the assembly
programs in the test set. We found that the average syntactic correctness over all
the programs of the test set is ∼ 98% (standard deviation is ∼ 4% ). Similarly, we
estimated the average semantic correctness, which is equal to ∼ 96% (standard
deviation is ∼ 6% ). Out of 30 programs, we found that 21 are compilable with
NASM and executable on the target system.

Since even one incorrect line of code suffices to thwart the effectiveness of a
shellcode, we analyzed how many shellcodes could be generated with no errors.
We consider a shellcode as fully correct if all the assembly instructions compos-
ing the shellcode are individually semantically correct (i.e., ni

sem
∕ni

t
= 1 ). This

evaluation metric is a demanding one. Even if one single line of the shellcode is
not semantically correct, then the whole program is considered as not correctly
generated. Despite this conservative evaluation, our approach is able to correctly
generate 16 out of 30 whole shellcodes. Figure 5 shows the summary statistics
with a density and a box plot, differentiating the fully correct shellcodes from
the incorrect ones. As expected, the complexity of the shellcode - in terms of
lines of assembly code - impacts the ability of the approach to correctly gener-
ate the whole program. However, the average (and the median) length of the
shellcodes incorrectly generated by the model is affected by the three assembly
programs of lengths 55, 59, and 61. If we consider these shellcodes as outliers,
then the group of fully correct shellcodes and the group of the incorrectly gener-
ated shellcodes are very similar in terms of size. We interpret these results as a

Fig. 5   Plots visualizing the statistics, in terms of lines of assembly code, of the 30 shellcodes in the test
set. The labels Fully Correct and Incorrect refer to the shellcodes that are generated by the approach as
fully correct ( n

sem
∕n

t
= 1 ) and incorrect ( n

sem
∕n

t
< 1 ), respectively

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 24 of 34

promising indication towards our ultimate goal of generating entire shellcode
programs automatically from short natural language intents.

6.6 � Types of errors incurred by NMT in the generation of shellcodes

In the last experiment objective, we performed a manual inspection of the model’s
mispredictions. We noticed that the failure outputs fall down in the following three
failure types;

•	 Failure Type A: translation failure in generating the correct label, instruction,
operand(s), or delimiter(s).

•	 Failure Type B: translation failure in identifying the correct order and/or the
addressing mode of operands.

•	 Failure Type C: intent parser’s failure in identifying one or more of the explicitly
stated identifiers.

The failure types A and B are due to the lack of ability of the model to perform the
correct translation of the English intent in the assembly code. The failure type C,
instead, is attributed to the intent parser failure. Indeed, even if the performance of
the translation task benefits from the work of the intent parser (see § 6.3), it is not
perfect and can lead to a failure prediction by wrongly identifying the variable or
register names, labels, etc.

Moreover, the error predictions can be further classified as syntactically incorrect
and semantically incorrect. We remark that the syntactic incorrectness implies the
semantic one. To better illustrate the problem, we present in Table 8 a qualitative
evaluation using cherry- and lemon-picked examples of failure prediction from our
test set.

The first row showcases an example of failing to model because of implicit
knowledge. The intent does not mention the indirect addressing mode (specified by
the bracket [] in NASM syntax). In the second row, we note that the model failed to
generate the newline token properly to separate the snippets with lines. This causes
a syntax issue, and since it does not compile we count it as syntactically incorrect.
The third row shows an example in which a byte string is declared without defin-
ing the label, while the fourth row illustrates the model’s failure to predict the right
instruction (the definition of the function decoder instead of the execution of the
function). Both outputs do not raise an exception when compiled, therefore they are
syntactically but not semantically correct. In the fifth row, we note that the intent
parser correctly identifies main_push in the standardization process, but fails to
recognize the cl register and misidentifies ecx instead. We also note that the model
predicted a mov operation between two registers (register, esp) rather than
a register and a value. The predicted register does not exist in the intent hence, the
output is a var3. The sixth row shows an example with incorrect instruction and
inverse operands order. The remaining examples include the intent parser failing
to identify explicitly stated identifiers or letters in values sometimes in long intents
such as in the case of the bh register (row 7) and occasionally in simple contexts

1 3

Automated Software Engineering (2022) 29:30	 Page 25 of 34  30

such as in the case of read (row 10). The last row is considered also syntactically
incorrect since it is not possible to declare a label with the section assembly
directive. This goes to show when there is a mistake in the standardization step, the
translation may fail to work around it even if the intent seems simple.

The failure outputs also provide indications on what it can be done to increase
the performance of the code generation task. Most of the errors can be easily iden-
tified by the programmers: incorrect addressing modes (first row), wrong newline
character (second row), missing labels (e.g., encodedshellcode in row number
3), wrong instructions (row 4, 6), undefined variables (e.g., var3 in row 5), wrong
operand orders (row number 6), etc. The syntactically incorrect predictions, i.e., the
predictions that do not follow the syntax, can be identified with a compiler and can

Table 8   Illustrative examples of incorrect outputs. The prediction errors are . text
refers to omitted predictions. Syn indicates a syntactically and semantically incorrect snippet, while Sem
indicates a semantically incorrectness output

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 26 of 34

be fixed through an “intelligent” post-processing phase, which should be trained to
identify and fix the failure outputs. This is part of the future work.

6.7 � Discussion and lessons learned

The experimental analysis pointed out that NMT models can efficiently generate
assembly code for real shellcodes, starting from their natural description. When
used in combination with data processing, the accuracy of the code generation task
is high enough to support developers in developing software exploits. Even if the
size and the complexity of an English intent increase, the performance of the trans-
lation task is not negatively affected. CodeBERT achieves the best performance and
further justifies its wide usage to address software engineering tasks. The model is
able to generate whole software exploits with syntactic and semantic correctness
greater than 95% . It is also able to generate programs that are fully correct, i.e., com-
pilable and executable on the target system. However, the complexity of the soft-
ware attacks (in terms of lines of code) reduces the accuracy of generating entire
programs. The analysis also pointed out that the most common error predictions are
easily identifiable and can be fixed during the post-processing process.

7 � Ethical considerations

Recognizing that attackers use exploit code as a weapon, it is important to specify
that the goal of the proof-of-concept (POC) exploits is not to cause harm but to sur-
face security weaknesses within the software. Identifying such security issues allows
companies to patch vulnerabilities and protect themselves against attacks.

Offensive security is a sub-field of security research that tests security measures
from an adversary or competitor’s perspective. It can employ ethical hackers to
probe a system for vulnerabilities (Hackerone 2021; Mike 2021). Automatic exploit
generation (AEG), an offensive security technique, is a developing area of research
that aims to automate the exploit generation process and to explore and test criti-
cal vulnerabilities before they are discovered by attackers Avgerinos et al. (2014).
Indeed, work such as ours, which studies exploits on compromised systems can pro-
vide valuable information about the technical skills, degree of experience, and intent
of the attackers. By using this information, it is possible to implement measures to
detect and prevent attacks (Arce 2004).

8 � Threats to validity

NMT models Before the era of NMT, Statistical Machine Translation (SMT) Costa-
Jussá and Farrús (2014) was the most popular technique for software engineering
(SE) problems, it still outperforms NMT in some SE problems (Phan and Janne-
sari 2020). However, since we are interested in the specific problem of code genera-
tion, we focus on NMT that has shown superior performance on public benchmarks

1 3

Automated Software Engineering (2022) 29:30	 Page 27 of 34  30

(Bojar et al. 2016), and that it is widely recognized as the premier method for the
translation of different languages (Wu et al. 2016). Our choice of the NMT models
has been influenced by their popularity and the availability of mature open-source
implementations. We acknowledge that using only two state-of-the-art models can
be a limitation of this work. Nevertheless, we believe that these two models are valid
representatives of the NMT research area, and can provide us with a realistic evalu-
ation of NMT for code generation. Seq2Seq has been for several years the most used
model for code generation tasks, and it is still widely employed in NMT studies as a
baseline model. CodeBERT has pushed the boundaries in natural language process-
ing and represents the state-of-the-art for generating code documentation given snip-
pets, as well as retrieving code snippets given a natural language search query across
six different programming languages (Husain et al. 2019). Moreover, it has also
been applied in software engineering to perform different tasks (Pan et al. 2021).

Size of our dataset Our dataset contains 3, 200 instances, which may seem rela-
tively small compared to training data available for other NLP tasks. The data about
shellcodes is much more difficult to obtain than other data for NMT. For example,
before starting the collection of the dataset, we developed a script to collect assem-
bly code for IA-32 from all of the repositories on GitHub (by far the source most
used by empirical software engineering studies). We found that the amount of avail-
able data is very limited. The data is further restricted by the fact that we are spe-
cifically interested in security-oriented assembly codes (i.e., shellcodes). Therefore,
we decided to collect all the shellcodes for Linux/IA-32 from exploit-db and shell-
storm, the two public databases for shellcodes most popular among the security
professionals, to achieve representativeness. We collected shellcodes written over
a large period (from 2000 to 2020) from a variety of authors, in order to achieve
diversity. To the best of our knowledge, the resulting dataset is the largest collec-
tion of shellcodes in assembly available to date. Despite the previous considerations,
we note that our dataset is comparable in size to the popular CoNaLa dataset Yin
and Neubig (2017) (2, 379 training and 500 test samples in the annotated version
of the dataset), which is the basis for state-of-the-art studies in NMT for Python
code generation (Yin et al. 2018; Yin and Neubig 2019; Gemmell et al. 2020). Fur-
ther, Shellcode_IA32 contains a higher percentage of multi-line snippets ( ∼ 16% vs.
∼ 4% ). We also note here that existing code generation datasets do contain a larger,
potentially noisy, subset of training examples (ranging in several thousand) obtained
by mining the web. For example, the CoNaLa mined (as opposed to the CoNaLa
annotated) dataset contains 598, 237 training examples mined directly from StackO-
verflow (Yin et al. 2018). We designed the proposed approach to leverage existing
pre-trained models to compensate for the need for big data, by training the model
using our assembly dataset.

Code description To build the dataset, we described in the English language
the shellcodes collected from publicly available exploit databases. Therefore, the
description of the assembly code derives from our considerations and knowledge.
However, the building process of the Shellcode_IA32 dataset is not different from
other corpus built from scratch. For example, Oda et al. (2015) hired an engineer
to create pseudo-code for the Django Web application framework and obtain the
corpus. We avoided a single centralized version of the code description to take

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 28 of 34

into account the variability of descriptions in natural language. Indeed, multiple
authors described independently different samples of the dataset in the English
language, and, where available, we kept untouched the comments written by
developers of the collected programs to describe the assembly code snippets. To
understand how different programmers and experts describe the assembly code
for IA-32 and how to deal with the ambiguity of natural language in this specific
context, we took inspiration from popular tutorials and books (Duntemann 2021;
Kusswurm 2014; tutorialspoint 2020).

Translation task As assembly code is a low-level language, it often takes a
long sequence of instructions to complete an atomic function. Therefore, some
translations presented in the dataset are too “literal” and cumbersome. For exam-
ple, instead of writing “Define the _start label”, a user might just as well write
“_start:”, similarly, the intent “Push the contents of eax onto the stack” takes
longer than writing the assembly instruction “push eax”. However, this is a
common situation in any translation task from English to programming language.
For example, the Django dataset contains numerous Python code snippets that are
relatively short (e.g., “chunk_buffer = BytesIO(chunk)”) described with
with English statements that are definitely longer than the snippets (“evaluate
the function BytesIO with argument chunk, substitute it for chunk_buffer.”). Simi-
larly, in the CoNaLa dataset we can find shortcode snippets (e.g., “GRAVITY =
9.8”) described with longer English intents (“assign float 9.8 to variable GRAV-
ITY”). Nevertheless, we – and other datasets– still include such verbose intents to
provide richer learning of NMT models. Moreover, we mitigated this problem by
adding multi-line snippets, i.e., single intents described in natural language that
generate more lines of assembly codes, that are closer to the intent that develop-
ers may want to use during development.

Scope of the approach A shellcode is a piece of assembly code written specifi-
cally for exploitation purposes. From this perspective, all shellcodes are security-
related programs and, therefore, the proposed approach is tailored for generat-
ing software exploits. It is an interesting question whether the proposed approach
has applications beyond security. The approach is focused on assembly programs,
which is the most used language for shellcodes. Thus, the processing pipeline
has been designed to handle relevant elements of the assembly language, such
as keywords and register names. This approach significantly contributes to gen-
erating more accurate code compared to generic NMT techniques but narrows
the scope to assembly code. As future work, we are exploring the use of NMT
for other programming languages, such as Python. In principle, a programmer
can use the method to generate assembly code unrelated to security applications.
However, the method might be less accurate in this case, since our solution is
trained with a dataset of mostly security-related assembly code snippets. To be
used outside security applications, the programmer would need to adopt a train-
ing dataset with more non-security assembly code (e.g., assembly code for device
drivers or microcontrollers). Moreover, it may be necessary to tweak the process-
ing pipeline to support special keywords that are not adopted for shellcodes (e.g.,
linking directives for embedded software). We opted to leave such extensions out

1 3

Automated Software Engineering (2022) 29:30	 Page 29 of 34  30

of the scope of our work, as security applications are the ones that have by far the
highest demand for increasing the productivity of assembly programming.

9 � Conclusion and future work

We addressed the problem of automated exploit generation using natural language
processing techniques. We use Neural Machine Translation to translate natural lan-
guage intents into shellcode. We built and released the first dataset of shellcodes,
Shellcode_IA32, containing 3, 200 pairs of code snippets and intents. The dataset
also contains 510 intents that generate multiple snippets. These assembly language
snippets can be combined to generate shellcodes for the Intel 32-bit Architecture.
Our empirical analysis demonstrated the feasibility of using NMT for this task,
using both automated and manual metrics. We also propose the use of novel metrics
for the task of code generation, that we anticipate would be useful to the community.

Our work enables further studies in the area, to make NMT more and more effec-
tive. We are currently working on a new engine for the post-processing phase, in
order to identify and fix the assembly lines wrongly generated by the NMT model
and to further improve accuracy. We are also analyzing the impact of “noisy inputs”
or “perturbation” in the natural language, since human developers may provide inac-
curate or incomplete descriptions of the shellcode to be generated. For example,
perturbations can be introduced by replacing words with “unseen” synonyms, or by
removing redundant information. In this direction, we are investigating a solution
to make NMT more robust and usable, by helping the model to derive the miss-
ing information (i.e., information not explicitly stated in the English intent) from
the context of the programs. Finally, as part of future research, we aim to evaluate
our approach with actual humans instructing with comments, so that the evaluation
could take into account how the humans perceive the actual usefulness of develop-
ing a shellcode that achieves the desired result.

Beyond our current work on extending the proposed approach, we expect that this
work can support more researchers in the field. Indeed, in the era where deep learn-
ing is evolving at a quick pace and succeeding in more and more tasks with surpris-
ing accuracy, we expect in the near future the development of new deep learning
architectures, which could potentially bring benefits for the automatic generation of
exploits. In this light, the proposed approach and dataset represent valid means to
pave the way for a new generation of offensive security methods. This work repre-
sents a first step towards the ambitious goal of automatically generating shellcodes
from natural language, provides originally-collected data, enables replication, and
describes successes and challenges through rigorous evaluation.

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 30 of 34

Appendix

Test set

Table 9 presents detailed information on the 30 shellcodes composing the test set. In
particular, the table shows the URL where the shellcode is collected, the number of

Table 9   The 30 shellcodes composing the test set

We consider a shellcode executed correctly if all the generated snippets composing the program are
semantically correct. nt : number of total assembly lines of the program. Multi-line: number of multi-lines
snippets in the program. nsyn : number of syntactically correct lines generated by the approach. nsem : num-
ber of semantically correct lines generated by the approach

id URL nt (Multi-line) nsyn nsem

1 www.​explo​it-​db.​com/​shell​codes/​13452 17 (4) 15 12
2 www.​explo​it-​db.​com/​shell​codes/​48703 33 (16) 31 29
3 www.​explo​it-​db.​com/​shell​codes/​47877 40 (0) 40 40
4 www.​explo​it-​db.​com/​shell​codes/​13716 59 (0) 58 52
5 www.​explo​it-​db.​com/​shell​codes/​47513 14 (0) 14 14
6 www.​explo​it-​db.​com/​shell​codes/​47511 24 (0) 24 24
7 www.​explo​it-​db.​com/​shell​codes/​47481 41 (2) 40 38
8 www.​explo​it-​db.​com/​shell​codes/​47396 61 (15) 61 60
9 www.​explo​it-​db.​com/​shell​codes/​47200 29 (2) 29 28
10 www.​explo​it-​db.​com/​shell​codes/​47202 29 (4) 29 29
11 www.​explo​it-​db.​com/​shell​codes/​47108 26 (9) 26 26
12 www.​explo​it-​db.​com/​shell​codes/​47068 12 (0) 12 12
13 www.​explo​it-​db.​com/​shell​codes/​46994 28 (4) 27 26
14 www.​explo​it-​db.​com/​shell​codes/​46829 20 (6) 20 20
15 www.​explo​it-​db.​com/​shell​codes/​46801 34 (9) 34 34
16 www.​explo​it-​db.​com/​shell​codes/​46791 27 (8) 27 26
17 www.​explo​it-​db.​com/​shell​codes/​46704 29 (6) 29 29
18 www.​explo​it-​db.​com/​shell​codes/​46704 55 (4) 55 54
19 www.​explo​it-​db.​com/​shell​codes/​45669 20 (6) 20 20
20 www.​explo​it-​db.​com/​shell​codes/​45940 25 (4) 25 25
21 www.​explo​it-​db.​com/​shell​codes/​45529 14 (7) 14 14
22 www.​explo​it-​db.​com/​shell​codes/​45441 20 (9) 17 17
23 www.​explo​it-​db.​com/​shell​codes/​44963 17 (6) 17 17
24 www.​explo​it-​db.​com/​shell​codes/​44609 32 (0) 31 30
25 www.​explo​it-​db.​com/​shell​codes/​44509 16 (2) 16 16
26 www.​explo​it-​db.​com/​shell​codes/​44594 15 (2) 15 15
27 www.​explo​it-​db.​com/​shell​codes/​44510 23 (3) 23 21
28 www.​explo​it-​db.​com/​shell​codes/​43476 15 (6) 15 15
29 www.​explo​it-​db.​com/​shell​codes/​43489 18 (2) 17 17
30 www.​explo​it-​db.​com/​shell​codes/​43463 15 (3) 15 14

http://www.exploit-db.com/shellcodes/13452
http://www.exploit-db.com/shellcodes/48703
http://www.exploit-db.com/shellcodes/47877
http://www.exploit-db.com/shellcodes/13716
http://www.exploit-db.com/shellcodes/47513
http://www.exploit-db.com/shellcodes/47511
http://www.exploit-db.com/shellcodes/47481
http://www.exploit-db.com/shellcodes/47396
http://www.exploit-db.com/shellcodes/47200
http://www.exploit-db.com/shellcodes/47202
http://www.exploit-db.com/shellcodes/47108
http://www.exploit-db.com/shellcodes/47068
http://www.exploit-db.com/shellcodes/46994
http://www.exploit-db.com/shellcodes/46829
http://www.exploit-db.com/shellcodes/46801
http://www.exploit-db.com/shellcodes/46791
http://www.exploit-db.com/shellcodes/46704
http://www.exploit-db.com/shellcodes/46704
http://www.exploit-db.com/shellcodes/45669
http://www.exploit-db.com/shellcodes/45940
http://www.exploit-db.com/shellcodes/45529
http://www.exploit-db.com/shellcodes/45441
http://www.exploit-db.com/shellcodes/44963
http://www.exploit-db.com/shellcodes/44609
http://www.exploit-db.com/shellcodes/44509
http://www.exploit-db.com/shellcodes/44594
http://www.exploit-db.com/shellcodes/44510
http://www.exploit-db.com/shellcodes/43476
http://www.exploit-db.com/shellcodes/43489
http://www.exploit-db.com/shellcodes/43463

1 3

Automated Software Engineering (2022) 29:30	 Page 31 of 34  30

assembly lines of the program, the number of multi-line snippets, and the number of
snippets generated incorrectly from our approach. We consider the whole shellcode
generated correctly only if the approach produces 0 incorrect snippets. Our approach
generated correctly 16 out of 30 whole shellcodes.

Acknowledgements  This work has been partially supported by the University of Naples Federico II in
the frame of the Programme F.R.A., project id OSTAGE.

Funding  Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Alhuzali, A., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: Chainsaw: Chained automated workflow-
based exploit generation. In: ACM Conf. on Computer and Communications Security, pp. 641–652
(2016)

Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: Generating sequences from structured representations
of code. In: Intl. Conf. on Learning Representations (2018)

Anley, C., Heasman, J., Lindner, F., Richarte, G.: The Shellcoder’s Handbook: Discovering and Exploit-
ing Security Holes. Wiley (2007). https://​books.​google.​it/​books?​id=​8PLYw​AEACA​AJ

Arce, I.: The shellcode generation. IEEE Security & Privacy 2(5), 72–76 (2004)
Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: Aeg: Automatic exploit generation. In: NDSS (2011)
Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Automatic exploit genera-

tion. Commun. ACM 57(2), 74–84 (2014). https://​doi.​org/​10.​1145/​25602​17.​25602​19
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate.

arXiv:​1409.​0473 (2015)
Bao, T., Wang, R., Shoshitaishvili, Y., Brumley, D.: Your exploit is mine: Automatic shellcode transplant

for remote exploits. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 824–839. IEEE
(2017)

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Yepes, A.J., Koehn, P.,
Logacheva, V., Monz, C., et al.: Findings of the 2016 conference on machine translation. In: Conf.
on Machine Translation, pp. 131–198 (2016)

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., et al.: Language models are few-shot learners. arXiv:​2005.​14165 (2020)

Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit generation is possible:
Techniques and implications. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp.
143–157 (2008). https://​doi.​org/​10.​1109/​SP.​2008.​17

Bugcrowd: It takes a crowd to defeat a crowd. https://​www.​bugcr​owd.​com/​produ​cts/​how-​it-​works/.
Accessed: 2021-06-10

Chen, P., Xing, X., Mao, B., Xie, L., Shen, X., Yin, X.: Automatic construction of jump-oriented pro-
gramming shellcode (on the x86). In: ACM Symp. on Information, Computer and Communications
Security, pp. 20–29 (2011)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://books.google.it/books?id=8PLYwAEACAAJ
https://doi.org/10.1145/2560217.2560219
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2005.14165
https://doi.org/10.1109/SP.2008.17
https://www.bugcrowd.com/products/how-it-works/

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 32 of 34

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder–decoder for statistical machine translation. In:
Conf. on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

Costa-Jussá, M.R., Farrús, M.: Statistical machine translation enhancements through linguistic levels: A
survey. ACM Comput. Surv. (CSUR) 46(3), 1–28 (2014)

CVE: CVE Details. https://​www.​cvede​tails.​com/​vulne​rabil​ities-​by-​types.​php. Accessed: 2021-06-09
Dandamudi, S.: Guide to Assembly Language Programming in Linux. ITPro collection. Springer US

(2005). https://​books.​google.​it/​books?​id=​HeorH​2cE7W​kC
Deckard, J.: Buffer Overflow Attacks: Detect, Exploit, Prevent. Elsevier Science (2005). https://​books.​

google.​it/​books?​id=​NYyKh​OqOCF​8C
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for

language understanding. In: NAACL-HLT (2019)
Ding, W., Xing, X., Chen, P., Xin, Z., Mao, B.: Automatic construction of printable return-oriented pro-

gramming payload. In: Intl. Conf. on Malicious and Unwanted Software: The Americas (MAL-
WARE), pp. 18–25 (2014). https://​doi.​org/​10.​1109/​MALWA​RE.​2014.​69994​08

Dong, L., Lapata, M.: Coarse-to-fine decoding for neural semantic parsing. In: ACL (2018)
Dorr, B.J., Jordan, P.W., Benoit, J.W.: A survey of current paradigms in machine translation. Adv. Com-

put. 49, 1–68 (1999)
Drosos, I., Barik, T., Guo, P.J., DeLine, R., Gulwani, S.: Wrex: A unified programming-by-example inter-

action for synthesizing readable code for data scientists. In: Proceedings of the 2020 CHI conference
on human factors in computing systems, pp. 1–12 (2020)

Duntemann, J.: Assembly Language Step-by-Step: Programming with DOS and Linux. Wiley, NY (2000)
Duntemann, J.: Assembly Language Step-by-Step: Programming with Linux. Wiley, NY (2011)
Eisenstein, J.: Natural Language Processing (2018)
Exploitdb: Exploit Database Shellcodes. https://​www.​explo​it-​db.​com/​shell​codes?​platf​orm=​linux_​x86/.

Accessed: 2021-04-16
Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., Zhou,

M.: Codebert: A pre-trained model for programming and natural languages. In: EMNLP (2020)
Foster, J.: Sockets, Shellcode, Porting, and Coding: Reverse Engineering Exploits and Tool Coding for

Security Professionals. Elsevier Science (2005). https://​books.​google.​it/​books?​id=​ZNI5d​vBSfZ​oC
Gemmell, C., Rossetto, F., Dalton, J.: Relevance transformer: Generating concise code snippets with rel-

evance feedback. In: Intl. ACM Conf. on Research and Development in Information Retrieval, pp.
2005–2008 (2020)

Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press, Cambridge (2016)
Hackerone: Hackerone Bounty. https://​www.​hacke​rone.​com/​produ​ct/​bug-​bounty-​progr​am. Accessed:

2021-06-10
Han, L.: Machine translation evaluation resources and methods: A survey. arXiv:​1605.​04515 (2016)
Han, L., Jones, G.J.F., Smeaton, A.F.: Translation quality assessment: A brief survey on manual and auto-

matic methods. arXiv:​2105.​03311 (2021)
Han, L., Smeaton, A., Jones, G.: Translation quality assessment: A brief survey on manual and automatic

methods. In: Proceedings for the First Workshop on Modelling Translation: Translatology in the
Digital Age, pp. 15–33. Association for Computational Linguistics, online (2021). https://​aclan​tholo​
gy.​org/​2021.​motra-1.3

Hata, H., Shihab, E., Neubig, G.: Learning to generate corrective patches using neural machine transla-
tion. arXiv preprint arXiv:​1812.​07170 (2018)

Hayati, S.A., Olivier, R., Avvaru, P., Yin, P., Tomasic, A., Neubig, G.: Retrieval-based neural code gen-
eration. arXiv preprint arXiv:​1808.​10025 (2018)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of data-oriented exploits. In:

USENIX Security Symposium, pp. 177–192 (2015)
Huang, S.K., Huang, M.H., Huang, P.Y., Lu, H.L., Lai, C.W.: Software crash analysis for automatic

exploit generation on binary programs. IEEE Trans. Reliab. 63(1), 270–289 (2014). https://​doi.​org/​
10.​1109/​TR.​2014.​22991​98

Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: CodeSearchNet Challenge: Evaluat-
ing the State of Semantic Code Search. arXiv:​1909.​09436 [cs, stat] (2019)

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention
model. In: Annual Meeting of the Association for Computational Linguistics, pp. 2073–2083 (2016)

Jamwal, S.: C Programming. Pearson India (2014). https://​books.​google.​it/​books?​id=​pZWKB​AAAQB​AJ

https://www.cvedetails.com/vulnerabilities-by-types.php
https://books.google.it/books?id=HeorH2cE7WkC
https://books.google.it/books?id=NYyKhOqOCF8C
https://books.google.it/books?id=NYyKhOqOCF8C
https://doi.org/10.1109/MALWARE.2014.6999408
https://www.exploit-db.com/shellcodes?platform=linux_x86/
https://books.google.it/books?id=ZNI5dvBSfZoC
https://www.hackerone.com/product/bug-bounty-program
http://arxiv.org/abs/1605.04515
http://arxiv.org/abs/2105.03311
https://aclanthology.org/2021.motra-1.3
https://aclanthology.org/2021.motra-1.3
http://arxiv.org/abs/1812.07170
http://arxiv.org/abs/1808.10025
https://doi.org/10.1109/TR.2014.2299198
https://doi.org/10.1109/TR.2014.2299198
http://arxiv.org/abs/1909.09436
https://books.google.it/books?id=pZWKBAAAQBAJ

1 3

Automated Software Engineering (2022) 29:30	 Page 33 of 34  30

Jiang, S., Armaly, A., McMillan, C.: Automatically generating commit messages from diffs using neu-
ral machine translation. In: IEEE/ACM Intl. Conf. on Automated Software Engineering (ASE), pp.
135–146. IEEE (2017)

Jung, T.H.: Commitbert: Commit message generation using pre-trained programming language model.
arXiv preprint arXiv:​2105.​14242 (2021)

Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. arXiv preprint arXiv:​1702.​
00887 (2017)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:​1412.​6980 (2015)
Kusswurm, D.: Modern X86 Assembly Language Programming. Springer, Berlin (2014)
Li, Y., Yang, T.: Word embedding for understanding natural language: a survey. In: Guide to big data

applications, pp. 83–104. Springer (2018)
Liguori, P., Al-Hossami, E., Cotroneo, D., Natella, R., Cukic, B., Shaikh, S.: Shellcode_IA32: A dataset for

automatic shellcode generation. In: Proceedings of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), pp. 58–64. Association for Computational Linguistics, Online
(2021). https://​doi.​org/​10.​18653/​v1/​2021.​nlp4p​rog-1.7. https://​aclan​tholo​gy.​org/​2021.​nlp4p​rog-1.7

Liguori, P., Al-Hossami, E., Orbinato, V., Natella, R., Shaikh, S., Cotroneo, D., Cukic, B.: EVIL: exploit-
ing software via natural language. CoRR arXiv:​2109.​00279 (2021)

Lin, X.V., Wang, C., Pang, D., Vu, K., Ernst, M.D.: Program synthesis from natural language using recur-
rent neural networks. University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep. UW-CSE-17-03-01 (2017)

Lin, X.V., Wang, C., Zettlemoyer, L., Ernst, M.D.: Nl2bash: A corpus and semantic parser for natural
language interface to the linux operating system. In: Intl. Conf. on Language Resources and Evalu-
ation (LREC) (2018)

Lin, Z., Feng, M., Santos, C.N.d., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A structured self-attentive
sentence embedding. arXiv preprint arXiv:​1703.​03130 (2017)

Ling, W., Grefenstette, E., Hermann, K.M., Kočiskỳ, T., Senior, A., Wang, F., Blunsom, P.: Latent predic-
tor networks for code generation. arXiv preprint arXiv:​1603.​06744 (2016)

Ling, W., Grefenstette, E., Hermann, K.M., Kociský, T., Senior, A.W., Wang, F., Blunsom, P.: Latent pre-
dictor networks for code generation. arXiv:​1603.​06744 (2016)

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov,
V.: RoBERTa: A robustly optimized BERT pretraining approach. arXiv:​1907.​11692 (2019)

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X.: Neural-machine-translation-based commit
message generation: how far are we? In: ACM/IEEE Intl. Conf. on Automated Software Engineer-
ing (ASE), pp. 373–384 (2018)

Loper, E., Bird, S.: Nltk: the natural language toolkit. arXiv:​cs/​02050​28 (2002)
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine transla-

tion. arXiv:​1508.​04025 (2015)
Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: ACM Conf. on Computer and

Communications Security, pp. 524–533 (2009)
McGraw, G.: Software security. IEEE Secur. Privacy 2(2), 80–83 (2004)
Megahed, H.: Penetration Testing with Shellcode: Detect, exploit, and secure network-level and operating

system vulnerabilities. Packt Publishing (2018)
Mike Hanley: Updates to our policies regarding exploits, malware, and vulnerability research. https://​

github.​blog/​2021-​06-​04-​updat​es-​to-​our-​polic​ies-​regar​ding-​explo​its-​malwa​re-​and-​vulne​rabil​ity-​
resea​rch/. Accessed: 2021-06-10

Movshovitz-Attias, D., Cohen, W.: Natural language models for predicting programming comments. In:
Annual Meeting of the Association for Computational Linguistics, pp. 35–40 (2013)

Neubig, G., Sperber, M., Wang, X., Felix, M., Matthews, A., Padmanabhan, S., Qi, Y., Sachan, D.S.,
Arthur, P., Godard, P., et al.: Xnmt: The extensible neural machine translation toolkit. arXiv:​1803.​
00188 (2018)

Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., Nakamura, S.: Learning to generate
pseudo-code from source code using statistical machine translation (t). In: IEEE/ACM Intl. Conf. on
Automated Software Engineering (ASE), pp. 574–584. IEEE (2015)

Pan, C., Lu, M., Xu, B.: An empirical study on software defect prediction using codebert model. Appl.
Sci. 11(11), 4793 (2021)

Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine trans-
lation. In: Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)

http://arxiv.org/abs/2105.14242
http://arxiv.org/abs/1702.00887
http://arxiv.org/abs/1702.00887
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.nlp4prog-1.7
https://aclanthology.org/2021.nlp4prog-1.7
http://arxiv.org/abs/2109.00279
http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1603.06744
http://arxiv.org/abs/1603.06744
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/cs/0205028
http://arxiv.org/abs/1508.04025
https://github.blog/2021-06-04-updates-to-our-policies-regarding-exploits-malware-and-vulnerability-research/
https://github.blog/2021-06-04-updates-to-our-policies-regarding-exploits-malware-and-vulnerability-research/
https://github.blog/2021-06-04-updates-to-our-policies-regarding-exploits-malware-and-vulnerability-research/
http://arxiv.org/abs/1803.00188
http://arxiv.org/abs/1803.00188

	 Automated Software Engineering (2022) 29:30

1 3

30  Page 34 of 34

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep contextual-
ized word representations. arXiv:​1802.​05365 (2018)

Phan, H., Jannesari, A.: Statistical machine translation outperforms neural machine translation in soft-
ware engineering: why and how. In: Proceedings of the 1st ACM SIGSOFT International Workshop
on Representation Learning for Software Engineering and Program Languages, pp. 3–12 (2020)

Pyeatt, L.: Modern Assembly Language Programming with the ARM Processor. Elsevier Science (2016).
https://​books.​google.​it/​books?​id=​gks1C​gAAQB​AJ

Python: tokenize (Accessed: 2020-05-20). https://​docs.​python.​org/3/​libra​ry/​token​ize.​html
Rabinovich, M., Stern, M., Klein, D.: Abstract syntax networks for code generation and semantic parsing.

arXiv:​1704.​07535 (2017)
Ray, D., Ligatti, J.: Defining code-injection attacks. Acm Sigplan Notices 47(1), 179–190 (2012)
Shellstorm: Shellcodes database for study cases. http://​shell-​storm.​org/​shell​code/. Accessed: 2021-04-16
Shi, K., Bieber, D., Singh, R.: TF-Coder: Program Synthesis for Tensor Manipulations. arXiv:​2003.​

09040 (2020)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in

Neural Information Processing Systems, pp. 3104–3112 (2014)
Tran, N., Tran, H., Nguyen, S., Nguyen, H., Nguyen, T.: Does BLEU score work for code migration? In:

IEEE/ACM Intl. Conf. on Program Comprehension (ICPC), pp. 165–176 (2019)
Tufano, M., Pantiuchina, J., Watson, C., Bavota, G., Poshyvanyk, D.: On learning meaningful code

changes via neural machine translation. In: 2019 IEEE/ACM 41st Intl. Conf. on Software Engineer-
ing (ICSE), pp. 25–36. IEEE (2019)

Tutorialspoint: Assembly Programming Tutorial (Accessed: 2020-05-20). https://​www.​tutor​ialsp​oint.​
com/​assem​bly_​progr​amming/​index.​htm

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.:
Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008
(2017)

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al.: Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv:​1609.​08144 (2016)

Xu, F.F., Jiang, Z., Yin, P., Vasilescu, B., Neubig, G.: Incorporating external knowledge through pre-
training for natural language to code generation. ArXiv arXiv:​2004.​09015 (2020)

Xu, F.F., Jiang, Z., Yin, P., Vasilescu, B., Neubig, G.: Incorporating external knowledge through pre-
training for natural language to code generation. arXiv preprint arXiv:​2004.​09015 (2020)

Xu, L., Jia, W., Dong, W., Li, Y.: Automatic exploit generation for buffer overflow vulnerabilities. In:
IEEE Intl. Conf. on Software Quality, Reliability and Security, pp. 463–468 (2018)

Yin, P., Deng, B., Chen, E., Vasilescu, B., Neubig, G.: Learning to mine aligned code and natural lan-
guage pairs from stack overflow. In: Intl. Conf. on Mining Software Repositories, MSR, pp. 476–
486. ACM (2018). https://​doi.​org/​10.​1145/​31963​98.​31964​08

Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation. CoRR arXiv:​1704.​
01696 (2017)

Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation. arXiv:​1704.​01696
(2017)

Yin, P., Neubig, G.: Tranx: A transition-based neural abstract syntax parser for semantic parsing and code
generation. arXiv:​1810.​02720 (2018)

Yin, P., Neubig, G.: Reranking for neural semantic parsing. In: Annual Meeting of the Association for
Computational Linguistics, pp. 4553–4559 (2019)

You, W., Zong, P., Chen, K., Wang, X., Liao, X., Bian, P., Liang, B.: Semfuzz: Semantics-based auto-
matic generation of proof-of-concept exploits. In: ACM Conference on Computer and Communica-
tions Security, pp. 2139–2154 (2017)

Zhong, V., Xiong, C., Socher, R.: Seq2sql: Generating structured queries from natural language using
reinforcement learning. ArXiv arXiv:​1709.​00103 (2017)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1802.05365
https://books.google.it/books?id=gks1CgAAQBAJ
https://docs.python.org/3/library/tokenize.html
http://arxiv.org/abs/1704.07535
http://shell-storm.org/shellcode/
http://arxiv.org/abs/2003.09040
http://arxiv.org/abs/2003.09040
https://www.tutorialspoint.com/assembly_programming/index.htm
https://www.tutorialspoint.com/assembly_programming/index.htm
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2004.09015
http://arxiv.org/abs/2004.09015
https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1810.02720
http://arxiv.org/abs/1709.00103

	Can we generate shellcodes via natural language? An empirical study
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Approach
	4.1 Pre-processing
	4.2 Post-processing

	5 Dataset
	6 Experimental analysis
	6.1 Model implementation
	6.2 Test set
	6.3 Feasibility in applying NMT for shellcode generation
	6.4 Accuracy of NMT at generating assembly code snippets
	6.5 Accuracy of the NMT at generating whole shellcodes
	6.6 Types of errors incurred by NMT in the generation of shellcodes
	6.7 Discussion and lessons learned

	7 Ethical considerations
	8 Threats to validity
	9 Conclusion and future work
	Acknowledgements
	References

