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Abstract
Writing software exploits is an important practice for offensive security analysts to 
investigate and prevent attacks. In particular, shellcodes are especially time-con-
suming and a technical challenge, as they are written in assembly language. In this 
work, we address the task of automatically generating shellcodes, starting purely 
from descriptions in natural language, by proposing an approach based on Neural 
Machine Translation (NMT). We then present an empirical study using a novel data-
set (Shellcode_IA32), which consists of 3200 assembly code snippets of real Linux/
x86 shellcodes from public databases, annotated using natural language. Moreover, 
we propose novel metrics to evaluate the accuracy of NMT at generating shellcodes. 
The empirical analysis shows that NMT can generate assembly code snippets from 
the natural language with high accuracy and that in many cases can generate entire 
shellcodes with no errors.
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1  Introduction

Nowadays, software security plays a crucial role in our society. Software vendors 
and users are in an arms race against cybercriminals, investing significant efforts 
towards identifying vulnerabilities and patching them, sometimes releasing updates 
mere hours after a release. The exploitation of software vulnerabilities is today a 
common offensive security practice for security analysts, to understand how attack-
ers take advantage of vulnerabilities, and to motivate vendors and users to patch 
them (Arce 2004; McGraw 2004; Hackerone 2021). For example, in June 2021, 
GitHub updated its policy on malware and exploit research by allowing and even 
encouraging users to post proof-of-concept (PoC) exploits or vulnerabilities on the 
platform (Mike 2021).

Among software exploits, code-injection attacks are considered the most dan-
gerous ones, since they have the worst consequences on the victim organizations 
(Mason et al. 2009). Moreover, code-injection attacks have been drastically increas-
ing with the growth of applications exposed to the Internet (Ray and Ligatti 2012), 
as shown by statistics from the Common Vulnerabilities and Exposures (CVE) data-
base (CVE 2021). These attacks deliver and run malicious code (payload) on the 
victims’ machine, in order to give attackers control of the target system. Since the 
payload is typically designed to launch a command shell, the hacking community 
generically refers to the payload portion of a code-injection attack as a shellcode. 
Other objectives of shellcodes include killing or restarting other processes, caus-
ing a denial-of-service (e.g., a fork bomb), leaking secret data, etc. Listing 1 shows 
an example of shellcode1 in assembly for Linux OS running on the 32-bit Intel 
Architecture).

The development of software exploits is a technically difficult activity. Shellcodes 
are typically written in assembly language, in order to gain full control on the layout 
of code and data in stack and heap memory, to make the shellcode more compact, 
to obfuscate the code, and to perform low-level operations on data representation 
(Deckard 2005; Foster 2005; Anley et al. 2007; Megahed 2018). However, program-
ming in assembly is time-consuming and has low productivity compared to high-
level languages (Dandamudi 2005; Jamwal 2014; Pyeatt 2016).

In order to make assembly programming easier and more efficient, we inves-
tigate the use of Neural Machine Translation (NMT) for the generation of shell-
codes. In general, NMT translates between different languages (including natu-
ral and programming languages), using Natural Language Processing (NLP) and 
Deep Learning (DL) techniques (Goodfellow et  al. 2016; Bahdanau et  al. 2015; 
Wu et al. 2016; Bojar et al. 2016), in order to learn the typical idioms of a target 
programming language from datasets of annotated programs. NMT is an emerg-
ing approach for code generation (Yin et  al. 2017; Ling et  al. 2016) and other 
programming tasks, such as code completion (Drosos et al. 2020; Shi et al. 2020), 
the generation of UNIX commands (Lin et al. 2017a, 2018) or commit messages 

1  Shellcode collected from https://​www.​explo​it-​db.​com/​shell​codes/​48703.

https://www.exploit-db.com/shellcodes/48703
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(Jiang et  al. 2017; Liu et  al. 2018; Jung 2021), etc. However, NMT techniques 
have not heretofore been applied in the field of software security to generate soft-
ware exploits. In our case, developers would translate a description (intent) of a 
piece of code in English, into the corresponding code snippet in assembly lan-
guage. For example, developers can use NMT to generate code snippets that they 
could not recall, or that are not yet confident to write themselves, similarly to que-
rying a search engine, with the additional benefit of tailoring the code according 
to th tailoring the code according to their query. 

In this paper, we introduce a novel approach for generating shellcodes in assem-
bly language, from their description in natural language. Differing from previous 
research, which adopts static and/or dynamic program analysis (e.g., fuzzing, pro-
gram synthesis, etc.), we adopt a novel statistical, data-driven approach. Specifically, 

Listing 1   Assembly code used to generate a shellcode on Linux OS running on 32bit Intel Architecture. 
Lines 5–6, 11–12, 15–16, 19–20, 21–22–23, 24–25, 27–28–29 aremulti-line snippets generated by seven 
different intents
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our approach leverages state-of-the-art NMT techniques. Since NMT has never been 
applied to low-level languages such as assembly, our approach extends NMT by 
introducing an Intent Parser specialized for the assembly language and adopts trans-
fer learning to bootstrap an NMT model from a training set of shellcodes. Then, the 
paper presents an extensive evaluation of the NMT approach. As there is no unique 
metric able to comprehensively represent the quality of translations, we introduce 
new metrics for this purpose. Indeed, the generated assembly code can have high 
accuracy compared to the ground truth, yet it may not be a working shellcode. Or, 
the generated program can be compilable and executable, but it may not implement 
the intended shellcode. Or again, the generated program does not exactly match the 
ground truth, but it can still be a correct shellcode (e.g., by using alternate valid 
labels or addressing modes), and so on. Therefore, we evaluate NMT from several 
points of view.

In summary, this work provides the following key contributions:

•	 We propose a novel approach for translating natural language into shellcode in 
assembly language, based on NMT. The approach improves the state-of-the-art 
by using a novel, specialized Intent Parser and transfer learning. To the best of 
our knowledge, this is the first effort towards applying NMT to automatically 
generate code for security purposes;

•	 We release a curated, substantive corpus of real shellcodes from public data-
bases, in order to support the training and evaluation of NMT systems for shell-
code generation;

•	 We propose novel metrics to evaluate the performance of NMT systems for 
shellcode generation. Different from the metrics commonly used in other code 
generation tasks, the metrics proposed in this work go beyond evaluating perfor-
mance on single-line snippets of code and also encompass the ability to generate 
entire, compilable shellcodes. Moreover, we look at the semantic correctness of 
the generated shellcode;

•	 We present an extensive empirical analysis of NMT techniques at generating 
shellcodes, supported by the proposed metrics and dataset.

In the following, Sect. 2 discusses related work; Sect. 3 introduces background con-
cepts; Sect. 4 presents the proposed approach; Sect. 5 describes the dataset; Sects. 6 
experimentally evaluates the approach; Sect. 7 describes the ethical considerations; 
Sect. 8 discusses the threats to validity of the work; Sect. 9 concludes the paper.

2 � Related work

Our work is situated at the intersection of machine translation and code/exploit gen-
eration, by applying NLP techniques to software security. Accordingly, we review 
related work in these areas.

Neural Machine Translation for Code Generation There are several recent works 
that focus on generating code from natural language (Yin and Neubig 2019; Dong 
and Lapata 2018; Rabinovich et al. 2017). Ling et al. (2016) and Yin et al. (2017) 
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proposed a novel neural architecture for code generation, while Xu et  al. (2020) 
incorporated pre-training and fine-tuning of a model to generate Python snippets 
from natural language using the CoNaLa dataset (Yin et  al. 2018). Furthermore, 
Gemmell et  al. (2020) used a transformer architecture with relevance feedback 
for code generation, and reported improvements over state-of-the-art on several 
datasets.

There also exist approaches that perform the reverse task, i.e., generating natu-
ral language from code. Oda et al. (2015) pioneered the task of translating python 
code to pseudo-code while others proposed an n-gram language model to generate 
comments from source code (Movshovitz-Attias and Cohen 2013). Iyer et al. (2016) 
proposed an attention model that summarizes code. Code2Seq (Alon et  al. 2018) 
embeds abstract syntax tree paths to encode context and was used for code docu-
mentation generation (generating natural language from code) and code summari-
zation. A notable example of applying code documentation generation in software 
engineering is generating git commit messages from git-tracked codebase changes 
(Jiang et al. 2017).

NMT has been widely adopted also for different programming tasks. For exam-
ple, Lin et al. (2018) presented new data and semantic parsing methods to address 
the problem of mapping English sentences to bash commands, and Zhong et  al. 
(2017) generated SQL queries from natural language. Tufano et  al. (2019) inves-
tigated the ability of the NMT to learn how to automatically apply code changes 
implemented by developers during pull requests. The authors trained the model on 
a dataset containing pairs of code components before and after the implementation 
of the changes provided in the pull requests and showed that the NMT can accu-
rately replicate the changes implemented by developers. Hata et al. (2018) presented 
Ratchet, an NMT-based technique that generates a fixed code for a given bug-prone 
code query. The technique uses a Seq2Seq model trained on pre-correction and post-
correction code in past fixes. To prove the feasibility of the approach, the authors 
performed an empirical study on five open source projects, showing that Ratchet can 
generate syntactically valid statements with high accuracy.

Our empirical analysis investigates these recent advances in NMT in the context 
of the open problem of generating shellcodes in assembly language, from natural 
language intents.

Automated Exploit Generation The task of exploit generation via automatic tech-
niques has been addressed in several ways. ShellSwap (Bao et  al. 2017) is a sys-
tem that generates new exploits based on existing ones, by modifying the original 
shellcode with arbitrary replacement shellcode. Hu et al. (2015) developed a novel 
approach to construct data-oriented exploits through data flow stitching, by com-
posing the benign data flows in an application via a memory error. They built a 
prototype attack generation tool that operates directly on Windows and Linux x86 
binaries. Avgerinos et  al. (2011) developed an end-to-end system for automatic 
exploit generation (AEG) on real programs by exploring execution paths. Given the 
potentially buggy program in source form, their proposal automatically looks for 
bugs, determines whether the bug is exploitable, and produces a working control-
flow hijack exploit string. SemFuzz (You et al. 2017) extracts necessary information 
from non-code text related to a vulnerability, using natural language processing and 
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a semantics-based fuzzing process, in order to discover and trigger deep bugs. Chen 
et  al. (2011) presented techniques to find out the gadgets, i.e., the basic building 
block in Jump Oriented Programming (JOP), and showed these gadgets are Turing 
complete. They implemented an automatic tool able to generate JOP shellcodes. 
Ding et al. (2014) proposed a reverse derivation of a transformation method driven 
by state machines indicating the status of data flows, in order to transform the origi-
nal shellcode into printable Return Oriented Programming (ROP) payload. Chain-
saw (Alhuzali et al. 2016) is a tool for analyzing web applications and generating 
injection exploits. The tool performs static analysis and defines a model of the appli-
cation behavior to generate injection exploits, by leveraging application workflow 
structures and database schemes. Brumley et  al. (2008) proposed an approach for 
Automatic Patch-based Exploit Generation (APEG). Starting from a program and 
its patched version, the approach identifies the security checks added by the patch 
and automatically generates inputs to fail the checks. Huang et  al. (2014) intro-
duced a method to automatically generate exploits based on software crash analysis. 
This method analyzes software crashes using a symbolic failure model, to generate 
exploits from crash inputs and existing exploits for several types of applications. Xu 
et al. (2018) developed a tool to find buffer overflow vulnerabilities in binary pro-
grams and automatically generate exploits using a constraint solver. Vulnerability 
detection is achieved through symbolic execution and the exploit generated by this 
tool can bypass different types of protection.

Similar to our previous work (Liguori et  al. 2021b), our approach uses natural 
language statements to generate exploits and adopts neither a static nor dynamic 
program analysis approach (e.g., fuzzing, program synthesis, etc.), but a statistical, 
data-driven approach.

3 � Background

This section introduces background concepts on neural machine translation (NMT). 
We follow the notation defined by Eisenstein (2018).

Machine translation refers to the translation of a language into another by the 
means of a computerized system (Dorr et  al. 1999). It is defined as an optimiza-
tion problem, which maximizes the conditional probability that a sentence �(t) in the 
target language is the likely translation of a sentence �(s) in the source language, by 
using a scoring function �:

The resolution of the problem requires a decoding algorithm for computing 𝜔̂(t) , and 
a learning algorithm for estimating the parameters of the scoring function �.

Neural network models for machine translation are based on the encoder-decoder 
architecture Cho et  al. (2014). The encoder network converts the source language 
sentence into a context vector or matrix representation z of fixed length. The decoder 
network then converts the encoding into a sentence in the target language by defin-
ing the conditional probability p(�(t)|�(s)).

(1)𝜔̂(t) = argmax
𝜔(t)

𝜓(𝜔(s),𝜔(t))
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The decoder is typically a recurrent neural network, which generates the target 
language sentence one word at a time, while recurrently updating a hidden state. The 
encoder and decoder networks are trained end-to-end from parallel sentences. If the 
output layer of the decoder is a logistic function, then the entire architecture can be 
trained to maximize the conditional log-likelihood:

where the hidden state h(t)
m−1

 is a recurrent function of the previously generated text 
�
(t)

1∶m−1
 and the encoding z, while � ∈ R(V (t)×K ) is the matrix of output word vectors for 

the V (t) words in the target language vocabulary, and K is the dimension of the hid-
den state.

Seq2Seq The simplest encoder-decoder architecture is the sequence-to-sequence 
model Sutskever et al. (2014). In this model, the encoder is set to the final hidden 
state of a long short-term memory (LSTM) Hochreiter and Schmidhuber (1997) on 
the source sentence:

where x(s)
m

 is the embedding2 of the target language word �(s)
m

 . The encoding then 
provides the initial hidden state for the decoder LSTM:

where x(t)
m

 is the embedding of the target language word �(t)
m

 . Sequence-to-Sequence 
translation is nothing more than wiring together two LSTMs: one to read the source, 
and another to generate the target.

Attention Mechanism The weakness of using a fixed-length context vector is the 
difficulty to remember long sentences. Indeed, in the traditional Seq2Seq model, 
the intermediate states of the encoder are discarded, and only the final states (vec-
tor) are used to initialize the decoder. To overcome this limitation, Bahdanau et al. 
(2015) proposed the attention mechanism, i.e., a solution that uses a context vector 
to align the source sentence and target sentence. The context vector holds the infor-
mation from all hidden states from the encoder and aligns them with the current 

(2)log p(�(t)|�(s)) =

M(t)∑

m=1

p(�(t)
m
|�(t)

1∶m−1
, z)

(3)p(�(t)
m
|�(t)

1∶m−1
,�(s)) ∝ exp(�

�
(t)
m
⋅ h

(t)

m−1
)

(4)h(s)
m

= LSTM(x(s)
m
, h

(s)

m−1
)

(5)z ≜ h
(s)

M(s)

(6)h
(t)

0
=z

(7)h(t)
m

=LSTM(x(t)
m
, h

(t)

m−1
)

2  The name is due to the fact that each word is embedded in a continuous vector space.



	 Automated Software Engineering (2022) 29:30

1 3

30  Page 8 of 34

target output. By using this mechanism, the model is able to look at a specific part 
of the source sentence and better understand the relationship between the source and 
target.

An attention function can be described as mapping a query and a set of key-value 
pairs to an output, where the query, keys, values, and output are all vectors. The 
key-value-query concepts come from retrieval systems. For example, when a user 
types a query to search for a resource (value) on a contents-sharing platform, the 
search engine maps the query against a set of keys associated with the resources in 
the database of the platform and will show to the user the best-matched resource. 
Formally speaking, for each key n, the attention mechanism assigns a score 
�a(m, n) with respect to the query m, based on how much they match. In Bahdan-
au’s paper, the score is parametrized by a feed-forward network with a single hid-
den layer. The output of this activation function is a vector of non-negative numbers 
[�m→1, �m→2,… , �m→N]

T , with length N equal to the size of the memory (i.e., the 
space of all the generated words). Each value in the memory vn is multiplied by 
the attention �m→n ; the sum of these scaled values is the output. At each step m in 
decoding, the attentional state is computed by executing a query, which is equal to 
the state of the decoder, h(t)

m
 . The resulting compatibility scores are:

Transformer In the encoder-decoder model, the keys and values used in the attention 
mechanism are the hidden state representations in the encoder network z, and the 
queries are state representations in the decoder network h(t) . Vaswani et al. (2017) 
proposed a new model architecture, the Transformer, that does not rely on the recur-
rent neural networks by applying self-attentionLin et  al. 2017b; Kim et  al. 2017) 
within the encoder and decoder. For level i, the basic equations of the encoder side 
of the transformer are:

For each token m at level i, we compute self-attention over the entire source sen-
tence. The keys, values, and queries are all projections of the vector h(i−1) . The 
attention scores �(i)

m→n are computed using a scaled form of softmax attention. This 
encourages the attention to be more evenly dispersed across the input. Self-attention 
is applied across multiple ‘heads’, each using different projections of h(i−1) to form 
the keys, values, and queries. The output of the self-attentional layer is the represen-
tation z(i)

m
 , which is then passed through a two-layer feed-forward network, yielding 

the input to the next layer h(i).
The Transformer architecture first refines the input embedding of each token, by 

combining it with a positional encoding vector. The architecture has a different posi-
tional encoding vector for each position of the sentence, in order to enrich the input 
embedding with positional information. Then, the transformed input embeddings 

(8)��(m, n) = v� ⋅ tanh(Θ�|h(t)m ;h(s)
n
)

(9)z(i)
m
=

M(s)∑

n=1

�(i)
m→n

(Θvh
(i−1)
n

)

(10)h(i)
m
=Θ2ReLU(Θ1z

(i)
m
+ b1) + b2
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sequentially go through the stacked encoder layers, which all apply a self-attention 
process. The self-attention further refines an input embedding, by combining it with 
the other input embeddings for the sentence in a weighted way, in order to account 
for correlations among the words (e.g., to get information for a pronoun from the 
noun it refers to, the input embedding of the noun is given a large weight).

For more detailed information on NMT models, we refer the reader to the work of 
Eisenstein (2018).

4 � Approach

We leverage neural machine translation (NMT) to automatically generate shellcodes 
starting from their natural language description. Following prior work (e.g., Luong 
et  al. 2015), we build a neural network that directly models the conditional prob-
ability of translating an intent, in natural language into a code snippet in assembly 
language.

The main challenge towards the goal of automatically generating shellcodes 
is represented by the programming language, i.e., the assembly. This language is 
significantly different from other languages addressed so far by research on NMT, 
which focused so far on mainstream imperative languages such as Python and Java. 
Assembly is a low-level programming language with many syntactical differences 
from these languages. For example, assembly does not provide the concept of vari-
able, which is instead replaced by registers, memory addresses, addressing modes, 
and labels. Moreover, some programming constructs in assembly require multiple 
statements, which instead could be expressed with only one statement of other pro-
gramming languages. To address this new language for NMT, we opted to base our 
solution on existing deep neural network architectures: Seq2Seq with Attention, and 
CodeBERT.

We refrained from proposing a new architecture, for several reasons: (i) using an 
existing, well-tested architecture can be used with more confidence in a comparative 
setting in which numerical issues (such as, the vanishing gradient) can be prevented; 
(ii) existing architectures were shown to perform well when translating from English 
descriptions, which is also the case of our problem; (iii) using an existing archi-
tecture enables us to reuse pre-trained models, which are costly to pre-train from 
scratch in terms of data size, computational time, and resources.

Furthermore, assembly is a low-resource programming language and its code-
bases are scarce data compared to mainstream program languages and, therefore, 
it would be a challenge to pre-train a model from scratch on assembly-based shell-
code bases. Since NMT for assembly code-based shellcodes is not investigated in 
prior works, there are limited resources for processing assembly codebases such as 
abstract syntax trees (AST), which are abundant for other programming languages 
and provide domain knowledge for some existing code generation architectures. 
Due to these reasons, we hence wanted to thoroughly investigate the strengths and 
weaknesses of current architectures. In the following, we briefly describe these 
architectures.
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Seq2Seq is a common model used in a variety of neural machine translation tasks. 
Similar to the encoder-decoder architecture with Bahdanau’s attention mechanism 
Bahdanau et  al. (2015), we use a bi-directional LSTM as the encoder, to trans-
form an embedded intent sequence into a vector of hidden states with equal length. 
Within the bidirectional LSTM encoder, each hidden state corresponds to an embed-
ded token. The encoder LSTM is bidirectional, which means it reads the source 
sequence ordered from left to right and from right to left. To combine both direc-
tions, each hidden state for the bidirectional LSTM encoder is computed by concat-
enating the forward and backward hidden states in the encoder.

CodeBERT Feng et  al. (2020) is a large multi-layer bidirectional Transformer 
architecture Vaswani et  al. (2017). Like Seq2Seq, the Transformer architecture 
is made up of encoders and decoders. CodeBERT has 12 stacked encoders and 6 
stacked decoders. Compared to Seq2Seq, the Transformer architecture introduces 
mechanisms to address key issues in machine translation: (i) the translation of a 
word depends on its position within the sentence; (ii) in the target language, the 
order of the words (e.g., adjectives before a noun) can be different from the order 
of words in the source language (e.g., adjectives after a noun); (iii) several words in 
the same sentence can be correlated (e.g., pronouns). These problems are especially 
important when dealing with long sentences. Different from Seq2Seq, CodeBERT 
also comes with a pre-trained neural network model, learned from large amounts of 
code snippets and their descriptions in the English language, and covering six differ-
ent programming languages, including Python, Java, Javascript, Go, PHP, and Ruby. 
The goal of pre-training is to bootstrap the training process, by establishing an initial 
version of the neural network, to be further trained for the specific task of inter-
est (Peters et al. 2018; Liu et al. 2019; Devlin et al. 2019; Brown et al. 2020). This 
approach is called transfer learning. In our case, we train the CodeBERT model to 
translate English intents to assembly code snippets using our dataset (see Sect. 5).

To better support such existing models at performing a new translation task, 
we extended the process with data processing. Data processing is an essential step 
to support the NMT models in the automatic code generation and refers to all the 
operations performed on the data used to train, validate and test the models. These 
operations strongly depend on the specific source and target languages to translate 
(in our case, English and assembly language). We process data through a pipeline 
of steps, which we tailored for the task of generating assembly code snippets. The 
data processing steps are performed both before translation (pre-processing), to train 
the NMT model and prepare the input data, and after translation (post-processing), 
to improve the quality and the readability of the code in output. Figure 1 shows the 
architecture of our approach, along with an example of inputs and outputs at each 
step, further discussed in the following.

4.1 � Pre‑processing

The pre-processing starts with the stopwords filtering, i.e., by removing a set of cus-
tom compiled words (e.g., the, each, onto), in order to include only relevant data 
for machine translation. This phase also includes the identification of tokens, i.e., 
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basic units which need not be decomposed in subsequent processing. Therefore, the 
input sequences of natural language tokens and assembly code are split in a process 
called tokenization. The tokenizer converts the input strings into their byte represen-
tations, and learns to break down a word into subword tokens (e.g., lower becomes 
[low,er]. We tokenize intents using the nltk word tokenizer Loper and Bird 
(2002) and snippets using the Python tokenize package Python (2020).

One task for code generation systems is to prevent non-English tokens (e.g., 
_start) from getting transformed during the learning process. This process is 
known as object standardization. Abstracting important words for the assembly 
language can make it easier for the model to reuse existing structures learned from 
other imperative languages, such as moving data and changing the control flow. To 
perform the standardization, we adopt an intent parser, which takes in input a natural 
language intents and provides as output a dictionary of standardizable tokens (i.e., it 
identifies the correct names for the standardization process), such as the names of 
the registers, the actions (e.g., /bin/sh), the hexadecimal values, etc. We imple-
ment the intent parser using spaCy, an open-source, industrial-strength Natural Lan-
guage Processing library written in Python and Cython. We also use custom rules 
defined with regular expressions to identify hexadecimal values (e.g., 0xbb), strings 
that fall between quotation marks, squared brackets, variable name notations (e.g., 
variableName, variable_name), function and register names, mathematical 
expressions, and byte arrays (e.g., \xe3 \xa1). Hence, this component is tailored 
for the task of generating shellcodes in assembly language starting from their natural 
language description.

All tokens selected by the parser are therefore passed to the Standardizer. The 
standardization process simply replaces the selected token in both the intent and 
snippet with var#, with # denoting a number from 0 to |l|, and |l| is the number 
of tokens to standardize. In Fig. 1, the intent parser identifies 0xf2, and _start 

Fig. 1   Diagram showing the steps of the approach: (1) Pre-Processing of intent-code samples in both 
training and validation sets, (2) translation of unseen intent samples from the validation-set, and lastly, 
(3) Post-Processing applied to generated samples
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as standardizable tokens and standardizes them to var0, and var1 respectively 
(based on order of appearance in the intent). To improve the process, we prevent the 
standardization of unimportant tokens, by compiling a dictionary of 45 assembly 
keywords (e.g., register, address, byte, etc.) as non-standardizable tokens. 
After the standardization process, both the original token and its standardized coun-
terpart (var#) are stored in a dictionary (named Slotmap) to be used during post-
processing to restore the original words.

Lastly, we create word embeddings, i.e., we map each token (in both the intent 
and code snippet sequences) into a numerical id representation in order to capture 
their semantic and syntactic information, where the semantic information correlates 
with the meaning of the tokens, while the syntactic one refers to their structural roles 
Li and Yang (2018).

4.2 � Post‑processing

Post-processing is an automatic post-editing process, applied during decoding in the 
translation process (i.e., after the generation of the code snippet). This phase include 
a Destandardizer, which uses the slot map dictionary generated by the parser to 
replace all keys in the standardized intent (i.e., var0 and var1) with the corre-
sponding memorized values (i.e., 0xf2, and _start).

The generated snippets are then further post-processed using regular expres-
sions. This operation includes the removal of (any) extra-spaces in the output (e.g., 
between operations and operands), and the removal of (any) extra-backslashes in 
escaped characters (e.g., \\n). Also, during the post-processing, newline characters 
\n are replaced with new lines to generate multi-line snippets. As a final step, snip-
pet tokens are joined to form a complete code snippet.

5 � Dataset

We curated and released a dataset for, Shellcode_IA32Liguori et al. (2021a), spe-
cific to shellcode generation. This dataset consists of 3200 examples of instructions 
in assembly language for IA-32 (the 32-bit version of the x86 Intel Architecture) col-
lected from publicly available security exploits. The x86 is a complex instruction set 
computer (CISC), in which single instructions can perform several low-level opera-
tions (such as a load from memory, an arithmetic operation, and a memory store) or 
are capable of multi-step operations or addressing modes within single instructions. 
The dataset is comparable in size to the popular CoNaLa dataset Yin and Neubig 
(2017) (2379 training and 500 test samples in the annotated version of the dataset), 
which is the basis for state-of-the-art studies in NMT for Python code generation 
(Yin et al. 2018; Yin and Neubig 2019; Gemmell et al. 2020).

We collected assembly programs used to generate shellcode from shell-storm 
Shellstorm (2021) and from Exploit Database Exploitdb (2021), in the period 
between August 2000 and July 2020. We focus on shellcode for Linux, the most 
common OS for security-critical network services. Accordingly, we gathered 
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assembly instructions written for the Netwide Assembler (NASM) for Linux Dunte-
mann (2000). NASM is a line-based assembler. Figure 2 shows a simple example 
of a NASM source line. Every source line contains a combination of four fields: an 
optional label, to symbolically represent the address of an opcode or data location 
defined by the line; a mnemonic or instruction, which identifies the purpose of the 
statement and is optionally followed by operands specifying the data to be manipu-
lated; an optional comment, i.e., free text ignored by the compiler. A mnemonic is 
not required if a line contains only a label or a comment.

The assembly programs collected in the dataset implement a varied set of shell-
code attacks. One of the most common and basic shellcodes is the execution of a 
system shell (e.g., the /bin/sh command). This shellcode is often used in com-
bination with more sophisticated attacks. The main categories include: exfiltrating 
password, e.g., from /etc/passwd (a plain text-based database that contains 
information for all user accounts on the system); breaking a chroot jail (an addi-
tional layer of security to run untrusted programs, which can be evaded by invok-
ing vulnerable system calls with malicious inputs); running executables with the file 
system permissions of the executable’s owner; flushing firewall rules (e.g., IPtables). 
Another form of shellcodes is the egg hunter, i.e., a piece of code that when exe-
cuted looks for other pieces of code (usually bigger) called the egg and passes the 
execution to the egg. This technique is usually used when the space of executing 
shellcode is limited (the available space is less than the egg size) and it is possible 
to inject the egg into another memory location. Shellcodes are also used to perform 
denial-of-service (DoS) attacks, such as for the fork-bomb attack, in which a process 
continually replicates itself to deplete system resources, slowing down or crashing 
the system due to resource exhaustion. Among the most complex shellcodes, we 
find the bind shell attacks. These attacks, which can easily reach hundreds of bytes, 
are used to open up a port on the victim system and connect to it from the remote 
attacking box. The complexity further increases when an attack redirects all inputs 
and outputs to a socket (reverse shell) in order to evade firewalls.

Each sample of the Shellcode_IA32 dataset represents a snippet  -  intent pair. 
The snippet is a line or a combination of multiple lines of assembly code, follow-
ing the NASM syntax. The intent is a comment in the English language (c.f. List-
ing  1). To take into account the variability of descriptions in natural language, 
multiple authors described independently different samples of the dataset in the 
English language. Where available, we used as natural language descriptions the 
comments written by developers of the collected programs. Moreover, in the pre-
liminary phase of the dataset collection, we enriched the dataset with lines of 
assembly code and their relative English comments extracted from popular tuto-
rials and books (Duntemann 2021; Kusswurm 2014; tutorialspoint 2020). This 

Fig. 2   Layout of a NASM source line
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helped us to learn the typical style for describing assembly code and to mitigate 
bias in our descriptions in English of assembly code. Once we reached confidence 
about the description style (i.e., the description style was recurring when adding 
more samples), we focused our efforts on real shellcodes, by writing ourselves 
the descriptions where no comment or documentation about the code snippet was 
available. Our dataset consists of 10% of instructions collected from books and 
guidelines, while the rest are from real shellcodes. However, there is no qualita-
tive difference between both sets.

Multi-line Snippets Since assembly is a low-level language, it is often necessary 
to use multiple instructions to perform a given task. Thus, we go beyond one-to-one 
mappings between a line of code and its comment/intent. For example, a common 
operation in shellcodes is to save the ASCII string “/bin/sh” into a register. This 
operation requires three distinct assembly instructions: push the hexadecimal values 
of the words “/bin” and “//sh” onto the stack register before moving the contents of 
the stack register into the destination register (lines 27-28-29 in Listing 1). It would 
be meaningless to consider these three instructions as separate. To address such situ-
ations, we include 510 lines ( ∼ 16% of the dataset) of intents that generate multiple 
lines of shellcodes (separated by the newline character \n). Table 1 shows two fur-
ther examples of multi-line snippets with their natural language intent.

Statistics Table  2 presents descriptive statistics of the Shellcode_IA32 data-
set. The dataset contains 52 distinct assembly mnemonics, excluding declarations 
of functions, sections, and labels. The two most frequent assembly instructions are 
mov ( ∼ 30 % frequency), used to move data into/from registers/memory or to invoke 
a system call, and push ( ∼ 22 % frequency), which is used to push a value onto the 

Table 1   Examples of multi-line 
snippets

English intent Multi-line snippets

jump short to the decode label if the con-
tents of the al register is not equal to 
the contents of the cl register else jump 
to the shellcode label

cmp al, cl \n jne 
short decode \n 
jmp shellcode

jump to the label recv_http_request if 
the contents of the eax register is not 
zero else subtract he value 0x6 from the 
contents of the ecx register

test eax, eax \n 
jnz recv_http_
request \n sub 
ecx, 0x6

Table 2   Shellcode_IA32 statistics

Language Unique 
statements

Unique tokens Avg. tokens per 
statement

Min tokens per 
statement

Max tokens 
per state-
ment

Natural Language 3184 1639 9.15 1 46
Assembly Language 2248 1401 4.17 2 30
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stack. The next most frequent instructions are the cmp ( ∼ 7% frequency), xor and 
jmp instructions ( ∼ 4% frequency). The low-frequency words (i.e., the words that 
appear only once or twice in the dataset) contribute to the 3.6% and 7.3% of the 
natural language and the assembly language, respectively. Figure 3 shows the dis-
tribution of the number of tokens across the intents and snippets in the dataset. We 
publicly shared our entire Shellcode_IA32 dataset on a GitHub repository.3

6 � Experimental analysis

This section presents an extensive evaluation of our approach to generating shell-
codes from natural language descriptions. We conducted the experimental analysis 
to target the following experimental objectives.

⊳ Feasibility in applying NMT for shellcode generation.
We first perform an initial assessment on the feasibility of using NMT for shell-

code generation with reasonably good accuracy, by applying techniques commonly 
used for code generation (e.g., generating Python code from natural language). We 
evaluate a broad set of state-of-the-art models for code generation, in combination 
with different techniques for data processing. In this initial stage, we adopt auto-
matic evaluation metrics.

⊳ Accuracy of NMT at generating assembly code snippets.
In this experimental objective, we deepen the analysis of the accuracy of NMT 

models. This is a cumbersome task since automatic metrics do not catch the deeper 
linguistic features of generated code, such as its semantic correctness (Han et  al. 
2021). Therefore, it is also advisable for NMT studies to perform an evaluation 
through manual analysis, by using additional metrics in order to have a more pre-
cise and complete evaluation. The second experimental objective still focuses on the 
analysis of individual intents and their corresponding translations into code snippets.

⊳ Accuracy of the NMT at generating whole shellcodes.

Fig. 3   Histogram of the Shellcode_IA32 dataset showcasing the distribution of token counts across 
intents and snippets

3  The dataset can be found here: https://​github.​com/​desse​rtlab/​Shell​code_​IA32.

https://github.com/dessertlab/Shellcode_IA32
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We investigate if it is possible to apply NMT to generate full shellcodes, i.e., 
entire assembly programs from a set of intents. Ideally, the generated code is entirely 
or mostly correct, in order to reduce the human effort towards developing assembly 
programs. Therefore, in this experimental objective, we evaluate how many entire 
shellcodes are correctly generated by NMT (unlike the previous experimental objec-
tive, where we analyze individual code snippets regardless of which program they 
belong to).

⊳ Types of errors incurred by NMT in the generation of shellcodes.
In this experimental objective, we are concerned with diagnosing the error pre-

dictions in the code generation task. We qualitatively analyze a representative sam-
ple of the most frequent mistakes, including both syntactic and semantic ones, to 
get more insight into the severity of the errors, and to understand potential areas of 
improvement for future work.

6.1 � Model implementation

We implement the Seq2Seq model using xnmt (Neubig et  al. 2018). We use an 
Adam optimizer (Kingma et al. 2015) with �1 = 0.9 and �2 = 0.999 , while the learn-
ing rate � is set to 0.001. We set all the remaining hyper-parameters in a basic con-
figuration: layer dimension = 512, layers = 1, epochs (with early stopping enforced) 
= 200, beam size = 5.

Our CodeBERT implementation uses an encoder-decoder framework where the 
encoder is initialized to the pre-trained CodeBERT weights, and the decoder is a 
transformer decoder. The decoder is composed of 6 stacked layers. The encoder fol-
lows the RoBERTa architecture (Liu et  al. 2019), with 12 attention heads, hidden 
layer dimension of 768, 12 encoder layers, 514 for the size of position embeddings. 
We use the Adam optimizer (Kingma et al. 2015). The total number of parameters 
is 125M. The max length of the input is 256 and the max length of inference is 128. 
The learning rate � = 0.00005 , batch size = 32, beam size = 10, and train_steps = 
2800.

We performed our experiments on a Linux machine. Seq2seq utilized 8 CPU 
cores and 8 GB RAM. CodeBERT utilized 8 CPU cores, 16 GB RAM, and 2 
GTX1080Ti GPUs. The computational time needed to generate the output depends 
on the settings of the hyper-parameters and the size of the dataset. On average, the 
training time for the Seq2Seq model was ∼ 60 minutes, while CodeBERT required 
for the training on average ∼ 220 minutes. Once the models are trained, the time 
to translate intent into a code snippet is below 1 second and can be considered 
negligible.

6.2 � Test set

To perform the experimental evaluation, we split our entire dataset into train/dev/
test sets by using an 80/10/10 ratio. To divide the data between training, dev, and 
test set, we did not individually sample intent-snippet pairs from the dataset, but we 
took groups of intent-snippet pairs that belonged to the same shellcode, in order to 



1 3

Automated Software Engineering (2022) 29:30	 Page 17 of 34  30

be able to evaluate generate shellcodes in their entirety (see § 6.5). The test set con-
tains 30 complete shellcodes (e.g. the entire Listing 1).

We selected the 30 shellcodes of the test set in order to maximize the heterogene-
ity among the programs and mitigate bias. We anticipated that these biases could 
affect the evaluation: the type of attack (as they may entail different instructions 
and constructs); the authors of the shellcode (as it may also affect the programming 
style); and the complexity of the shellcode (as more complex shellcodes may also be 
more difficult to describe and to translate). We divided the shellcodes according to 
the type of the attack (shell spawning, break chroot, fork bomb, etc.), and sampled 
the shellcodes uniformly across these classes. When sampling within each class, we 
double-checked that no programmer was over-represented. We used the shellcode 
length as a proxy for complexity, and we increased the sample size until the dis-
tribution of the shellcode length was comparable to the distribution of the whole 
population (min=12, max=61, mean=26.9, median=24.5). The histograms in Fig. 4 
summarize the statistic of the programs in the test set in terms of lines of code. 
Additional information on the test set is presented in the Appendix 1.

6.3 � Feasibility in applying NMT for shellcode generation

We first analyze the feasibility of Seq2Seq with attention mechanism and Code-
BERT for the generation of shellcodes and investigate the impact of the data pro-
cessing described in Sect.  4. In this stage, we use automatic evaluation metrics. 
Automatic metrics are commonly used in the field of machine translation. They are 
reproducible, easy to be tuned, and time-saving. The BiLingual Evaluation Under-
study (BLEU) Papineni et al. (2002) score is one of the most popular automatic met-
ric (Oda et al. 2015; Ling et al. 2016; Gemmell et al. 2020; Tran et al. 2019). This 
metric is based on the concept of n-gram, i.e., the adjacent sequence of n items (e.g., 
syllables, letters, words, etc.) from a given example of text or speech. In particu-
lar, this metric measures the degree of n-gram overlapping between the strings of 
words produced by the model and the human translation references at the corpus 
level. BLEU measures translation quality by the accuracy of translating n-grams to 

Fig. 4   Histograms visualizing the statistics of the 30 shellcodes in the test set
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n-grams, for n-gram of size 1 to 4 (Han 2016). The Exact match accuracy (ACC) is 
another automatic metric often used for evaluating neural machine translation (Ling 
et al. 2016; Yin and Neubig 2017, 2018, 2019). It measures the fraction of the exact 
match between the output predicted by the model and the reference.

To assess the influence of our tailoring to NMT for the assembly language (e.g., 
the intent parser), we compare three “variants” of NMT by varying the steps of the 
data processing pipeline (see § 4):

•	 w/o data processing: the model performs the translation task without applying 
any step of the data processing pipeline.

•	 w/o intent parser: in this case, the model is trained on processed data, but with-
out adopting the intent parser.

•	 with intent parser: the data processing pipeline also includes the intent parser.

Table 3 shows the results of this analysis. The table shows that the data processing 
aids the Seq2Seq model also without the use of the intent parser, while CodeBERT 
does not take benefit from the basic data processing steps. The performance of both 
models significantly increases when the data processing is used in combination with 
the intent parser. Indeed, the full data processing pipeline improves all the metrics 
by ∼ 31 % on average for Seq2Seq and by ∼ 19 % on average for CodeBERT when 
the results of the models are compared without using the data processing process. 
The table also highlights that CodeBERT outperforms the Seq2Seq model across 
all metrics. We conducted a paired t-test and found that the differences between the 
results obtained by CodeBERT with the intent parser and all the other model con-
figurations are statistically significant for all metrics (at p < 0.05).

To estimate the actual goodness of the results, we compared the best performance 
achieved on the Shellcode_IA32 dataset with the state-of-the-art best performances 
on the Django dataset (Oda et al. 2015), a corpus widely used for code generation 
tasks (Ling et al. 2016; Yin and Neubig 2017, 2018, 2019; Hayati et al. 2018; Dong 
and Lapata 2018; Gemmell et al. 2020; Xu et al. 2020) and consisting of 18, 805 

Table 3   Automated evaluation of the translation task

Bolded values are the best performance
IP: Intent Parser. ( ∗= p<0.05)

Automated Seq2Seq CodeBERT

Metrics (%) w/o data pro-
cessing

w/o IP with IP w/o data pro-
cessing

w/o IP with IP

BLEU-1 69.99 74.57 93.46 78.42 80.11 94.95*
BLEU-2 64.18 69.82 91.98 75.11 75.89 93.61*
BLEU-3 60.09 66.35 90.87 72.75 73.15 92.68*
BLEU-4 56.43 62.97 90.03 70.54 70.11 91.70*
ACC​ 39.44 51.55 82.92 69.57 67.39 89.75*
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pairs of Python statements for the Django Web application framework alongside the 
corresponding English pseudo-code. The state-of-the-art best performances on this 
dataset provide BLEU-4 score and accuracy equal to 84.70 Hayati et al. (2018) and 
80.20 Yin and Neubig (2019), respectively, and are therefore lower than the best 
results in Table 3. We attribute these differences to the nature of the assembly lan-
guage, which is a low-level language. Indeed, even if this work targets the IA-32 
processor, which is a CISC architecture, the instruction set of the assembly language 
is still limited if compared to high-level languages, such as Python, which include 
a wide number of libraries and functions and, therefore, are more complex to auto-
matically generate.

We also investigate the performance of the code generation task on single-line 
snippets vs. multi-line snippets by performing a fine-grained evaluation. Table  4 
shows the performance of CodeBERT (with data processing) for single vs. multi-
line snippets. Unsurprisingly, we find that accuracy is negatively affected by the 
length of snippets, while BLEU scores are higher for multi-line snippets. This is 
because multi-line snippets are longer, there is more opportunity for BLEU scores 
to be higher (there can be more n-grams that are matched in longer snippets), in 
contrast to single line snippets. And likewise, since the accuracy metric is an exact 
match on the entire snippet, performance on multi-line snippets is lower than for 
single line snippets.

This first analysis allows us to conclude that the state-of-the-art NMT models can 
be applied for the generation of code used to exploit the software, and provide high 
performance when used in combination with data processing.

6.4 � Accuracy of NMT at generating assembly code snippets

In § 6.3, we used the code written by the programmers (i.e., the authors of the shell-
codes) as ground truth for the evaluation. Therefore, when the model predicts the 
assembly code snippets starting from their natural language description, the pre-
dicted output is compared to code composing the original shellcode attacks. How-
ever, since the same English intent can be translated into different but equivalent 
assembly snippets, automated metrics (such as BLEU scores) are not perfect in that 
they do not credit semantically correct code that fails to match the reference. For 
example, the snippets jz label and je label are semantically identical, even 

Table 4   Automatic evaluation of 
the translation task comparing 
single-line and multi-line 
snippets from the test set

Bolded values are the best performance

Automated metrics (%) Single-line snippets Multi-
line 
snippets

BLEU-1 93.64 98.14
BLEU-2 92.24 96.86
BLEU-3 91.29 95.84
BLEU-4 90.21 94.91
ACC​ 90.51 85.42
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if they use different instructions (jz vs. je). Furthermore, these metrics do not indi-
cate whether the generated code would compile or not. Accordingly, we define two 
new metrics: a generated output snippet (single or multi-line) is considered syntac-
tically correct if it is correctly structured in assembly language and compiles cor-
rectly. The output is considered semantically correct if the snippet is an appropriate 
translation in assembly language given the intent description. Consider the intent 
transfer the contents of the ebx register into the eax register. If the approach gen-
erates the snippet mov ebx, eax, then the snippet is considered syntactically cor-
rect (it would compile), but not semantically correct because the order of the oper-
ands is inverted. These two metrics allow us to assess the deeper linguistic features 
of the code (Han et al. 2021). The semantic correctness implies syntax correctness, 
while a snippet can be syntactically correct but semantically incorrect. When a snip-
pet is syntactically incorrect it is also semantically incorrect. The evaluation of the 
semantic equivalence between the output predicted by the models and the code writ-
ten by the authors of the shellcodes provides the best insights into the quality of 
the output since it allows us to assess the correctness of the predicted code even if 
its syntax differs from the ground truth. This is the reason why we did not limit the 
analysis to automatic metrics, and manually evaluated the semantic meaning of gen-
erated code.

To evaluate the syntactic correctness of the outputs, we used the NASM compiler 
in order to check whether the code is compilable, while we evaluated the semantic 
correctness by checking if the code generated by the models is a correct translation 
of the English intent. We performed this analysis manually, by checking every single 
line of generated code. This analysis could not be performed automatically, since an 
English intent can be translated into several forms that are different, but semantically 
equivalent. For the same reason, manual (‘human’) evaluation is a common practice 
in NMT studies. The manual evaluation also gives better insights into the quality 
of machine translation and allows us to analyze errors in the output. To reduce the 
possibility of errors in manual analysis, multiple authors performed this evaluation 
independently, obtaining a consensus for the semantic correctness of the output pre-
dicted by the models.

Table 5 shows the percentage of syntactically and semantically correct snippets 
across all the examples of the test set. We evaluated the performance of Seq2Seq 
and CodeBERT, both using data processing. Both syntactic and semantic evalua-
tions were performed by compiling the generated snippets under the NASM com-
piler. Table 5 shows that both approaches are able to generate > 95% of syntactically 
correct snippets. Paired t-tests indicated that the differences between the models are 

Table 5   Code correctness 
evaluation of the translation task 
given the whole test set

Bolded values are the best performance ( ∗= p<0.01)

Code correctness metrics (%) Seq2Seq with 
data processing

CodeBERT 
with data pro-
cessing

Syntactically correct 96.58 97.20
Semantically correct 85.40 93.16*



1 3

Automated Software Engineering (2022) 29:30	 Page 21 of 34  30

not statistically significant for the syntactic correctness, but they are statistically sig-
nificant for semantic correctness (at p < 0.01).

Again, we further investigated the results provided by CodeBERT, by evaluat-
ing the performance of the model on single vs. multi-line snippets. Table 6 high-
lights that the multi-line snippets affect model performance on syntactic correctness, 
although we find no statistically significant difference in model performance on the 
semantic correctness metric.

Table 7 show illustrative examples of code snippets that the model can success-
fully translate (i.e., the snippets generated by the approach are syntactically and 
semantically correct). Rows 3, 6, and 8 are examples of correct snippets that are 
penalized by automated metrics, even if they do not exactly match the ground truth. 
Despite some slight differences with the ground truth, the generated code is seman-
tically correct, due to the ambiguity of the assembly language. Thus, these differ-
ences are still considered correct by our manual analysis. We note correctly gener-
ated examples of multi-line snippets in rows 2, 3, 4, and 6. Also, we observe in row 
3, the ability to generate multi-line snippets from a relatively abstract intent.

We conclude that both Seq2Seq and CodeBERT provide syntactically and seman-
tically correct code snippets with high accuracy. Moreover, CodeBERT provides the 
best performance in the task of generating shellcodes from natural language intents. 
Due to these findings, we consider CodeBERT (with data processing) as our refer-
ence NMT model for the following experimental objectives.

6.5 � Accuracy of the NMT at generating whole shellcodes

The ultimate goal of developers is to craft entire shellcodes. The previous evaluation 
showed that NMT can generate individual code snippets that are likely the correct 
ones. Thus, NMT can be queried by developers to translate specific parts of a pro-
gram. Here, we raise the bar for the evaluation, by analyzing to which extent NMT 
can generate an entire shellcode. To this purpose, we consider groups of intents 
from the same exploit and compare the resulting code snippets with the original 
shellcode. We use two new metrics to evaluate the ability of the approach to gener-
ate semantically and syntactically correct code for entire shellcodes.

Let ni
t
 be the the number of total lines of the i-th program in the test set 

( i ∈ [1, 30] ). Let also consider ni
syn

 as the number of automatically-generated 
snippets for the i-th program that are syntactically correct, and ni

sem
 as the num-

ber of automatically-generated snippets that are semantically correct. For every 

Table 6   Code correctness 
evaluation of the translation 
task comparing single-line and 
multi-line snippets from the 
test set

Bolded values are the best performance

Code correctness metrics (%) Single-line snip-
pets

Multi-
line 
snippets

Syntactically correct 97.81 93.75
Semantically correct 93.06 93.75
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program of the test set, we define the syntactic correctness of the program i 
as the ratio ni

syn
∕ni

t
 , and the semantic correctness of the program as the ratio 

ni
sem

∕ni
t
 . To perform a conservative evaluation on multi-line snippets, even if 

only one line of code of the generated snippets is syntactically (semantically) 
incorrect, we consider all the lines belonging to the multi-line block as syntacti-
cally (semantically) incorrect. Both metrics range between 0 and 1.

For each i ∈ [1, 30] , we computed the values ni
syn

 and ni
sem

 for the assembly 
programs in the test set. We found that the average syntactic correctness over all 
the programs of the test set is ∼ 98% (standard deviation is ∼ 4% ). Similarly, we 
estimated the average semantic correctness, which is equal to ∼ 96% (standard 
deviation is ∼ 6% ). Out of 30 programs, we found that 21 are compilable with 
NASM and executable on the target system.

Since even one incorrect line of code suffices to thwart the effectiveness of a 
shellcode, we analyzed how many shellcodes could be generated with no errors. 
We consider a shellcode as fully correct if all the assembly instructions compos-
ing the shellcode are individually semantically correct (i.e., ni

sem
∕ni

t
= 1 ). This 

evaluation metric is a demanding one. Even if one single line of the shellcode is 
not semantically correct, then the whole program is considered as not correctly 
generated. Despite this conservative evaluation, our approach is able to correctly 
generate 16 out of 30 whole shellcodes. Figure 5 shows the summary statistics 
with a density and a box plot, differentiating the fully correct shellcodes from 
the incorrect ones. As expected, the complexity of the shellcode - in terms of 
lines of assembly code - impacts the ability of the approach to correctly gener-
ate the whole program. However, the average (and the median) length of the 
shellcodes incorrectly generated by the model is affected by the three assembly 
programs of lengths 55, 59, and 61. If we consider these shellcodes as outliers, 
then the group of fully correct shellcodes and the group of the incorrectly gener-
ated shellcodes are very similar in terms of size. We interpret these results as a 

Fig. 5   Plots visualizing the statistics, in terms of lines of assembly code, of the 30 shellcodes in the test 
set. The labels Fully Correct and Incorrect refer to the shellcodes that are generated by the approach as 
fully correct ( n

sem
∕n

t
= 1 ) and incorrect ( n

sem
∕n

t
< 1 ), respectively
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promising indication towards our ultimate goal of generating entire shellcode 
programs automatically from short natural language intents.

6.6 � Types of errors incurred by NMT in the generation of shellcodes

In the last experiment objective, we performed a manual inspection of the model’s 
mispredictions. We noticed that the failure outputs fall down in the following three 
failure types;

•	 Failure Type A: translation failure in generating the correct label, instruction, 
operand(s), or delimiter(s).

•	 Failure Type B: translation failure in identifying the correct order and/or the 
addressing mode of operands.

•	 Failure Type C: intent parser’s failure in identifying one or more of the explicitly 
stated identifiers.

The failure types A and B are due to the lack of ability of the model to perform the 
correct translation of the English intent in the assembly code. The failure type C, 
instead, is attributed to the intent parser failure. Indeed, even if the performance of 
the translation task benefits from the work of the intent parser (see § 6.3), it is not 
perfect and can lead to a failure prediction by wrongly identifying the variable or 
register names, labels, etc.

Moreover, the error predictions can be further classified as syntactically incorrect 
and semantically incorrect. We remark that the syntactic incorrectness implies the 
semantic one. To better illustrate the problem, we present in Table 8 a qualitative 
evaluation using cherry- and lemon-picked examples of failure prediction from our 
test set.

The first row showcases an example of failing to model because of implicit 
knowledge. The intent does not mention the indirect addressing mode (specified by 
the bracket [] in NASM syntax). In the second row, we note that the model failed to 
generate the newline token properly to separate the snippets with lines. This causes 
a syntax issue, and since it does not compile we count it as syntactically incorrect. 
The third row shows an example in which a byte string is declared without defin-
ing the label, while the fourth row illustrates the model’s failure to predict the right 
instruction (the definition of the function decoder instead of the execution of the 
function). Both outputs do not raise an exception when compiled, therefore they are 
syntactically but not semantically correct. In the fifth row, we note that the intent 
parser correctly identifies main_push in the standardization process, but fails to 
recognize the cl register and misidentifies ecx instead. We also note that the model 
predicted a mov operation between two registers (register, esp) rather than 
a register and a value. The predicted register does not exist in the intent hence, the 
output is a var3. The sixth row shows an example with incorrect instruction and 
inverse operands order. The remaining examples include the intent parser failing 
to identify explicitly stated identifiers or letters in values sometimes in long intents 
such as in the case of the bh register (row 7) and occasionally in simple contexts 
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such as in the case of read (row 10). The last row is considered also syntactically 
incorrect since it is not possible to declare a label with the section assembly 
directive. This goes to show when there is a mistake in the standardization step, the 
translation may fail to work around it even if the intent seems simple.

The failure outputs also provide indications on what it can be done to increase 
the performance of the code generation task. Most of the errors can be easily iden-
tified by the programmers: incorrect addressing modes (first row), wrong newline 
character (second row), missing labels (e.g., encodedshellcode in row number 
3), wrong instructions (row 4, 6), undefined variables (e.g., var3 in row 5), wrong 
operand orders (row number 6), etc. The syntactically incorrect predictions, i.e., the 
predictions that do not follow the syntax, can be identified with a compiler and can 

Table 8   Illustrative examples of incorrect outputs. The prediction errors are .  text 
refers to omitted predictions. Syn indicates a syntactically and semantically incorrect snippet, while Sem 
indicates a semantically incorrectness output
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be fixed through an “intelligent” post-processing phase, which should be trained to 
identify and fix the failure outputs. This is part of the future work.

6.7 � Discussion and lessons learned

The experimental analysis pointed out that NMT models can efficiently generate 
assembly code for real shellcodes, starting from their natural description. When 
used in combination with data processing, the accuracy of the code generation task 
is high enough to support developers in developing software exploits. Even if the 
size and the complexity of an English intent increase, the performance of the trans-
lation task is not negatively affected. CodeBERT achieves the best performance and 
further justifies its wide usage to address software engineering tasks. The model is 
able to generate whole software exploits with syntactic and semantic correctness 
greater than 95% . It is also able to generate programs that are fully correct, i.e., com-
pilable and executable on the target system. However, the complexity of the soft-
ware attacks (in terms of lines of code) reduces the accuracy of generating entire 
programs. The analysis also pointed out that the most common error predictions are 
easily identifiable and can be fixed during the post-processing process.

7 � Ethical considerations

Recognizing that attackers use exploit code as a weapon, it is important to specify 
that the goal of the proof-of-concept (POC) exploits is not to cause harm but to sur-
face security weaknesses within the software. Identifying such security issues allows 
companies to patch vulnerabilities and protect themselves against attacks.

Offensive security is a sub-field of security research that tests security measures 
from an adversary or competitor’s perspective. It can employ ethical hackers to 
probe a system for vulnerabilities (Hackerone 2021; Mike 2021). Automatic exploit 
generation (AEG), an offensive security technique, is a developing area of research 
that aims to automate the exploit generation process and to explore and test criti-
cal vulnerabilities before they are discovered by attackers Avgerinos et al. (2014). 
Indeed, work such as ours, which studies exploits on compromised systems can pro-
vide valuable information about the technical skills, degree of experience, and intent 
of the attackers. By using this information, it is possible to implement measures to 
detect and prevent attacks (Arce 2004).

8 � Threats to validity

NMT models Before the era of NMT, Statistical Machine Translation (SMT) Costa-
Jussá and Farrús (2014) was the most popular technique for software engineering 
(SE) problems, it still outperforms NMT in some SE problems (Phan and Janne-
sari 2020). However, since we are interested in the specific problem of code genera-
tion, we focus on NMT that has shown superior performance on public benchmarks 
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(Bojar et al. 2016), and that it is widely recognized as the premier method for the 
translation of different languages (Wu et al. 2016). Our choice of the NMT models 
has been influenced by their popularity and the availability of mature open-source 
implementations. We acknowledge that using only two state-of-the-art models can 
be a limitation of this work. Nevertheless, we believe that these two models are valid 
representatives of the NMT research area, and can provide us with a realistic evalu-
ation of NMT for code generation. Seq2Seq has been for several years the most used 
model for code generation tasks, and it is still widely employed in NMT studies as a 
baseline model. CodeBERT has pushed the boundaries in natural language process-
ing and represents the state-of-the-art for generating code documentation given snip-
pets, as well as retrieving code snippets given a natural language search query across 
six different programming languages (Husain et  al. 2019). Moreover, it has also 
been applied in software engineering to perform different tasks (Pan et al. 2021).

Size of our dataset Our dataset contains 3, 200 instances, which may seem rela-
tively small compared to training data available for other NLP tasks. The data about 
shellcodes is much more difficult to obtain than other data for NMT. For example, 
before starting the collection of the dataset, we developed a script to collect assem-
bly code for IA-32 from all of the repositories on GitHub (by far the source most 
used by empirical software engineering studies). We found that the amount of avail-
able data is very limited. The data is further restricted by the fact that we are spe-
cifically interested in security-oriented assembly codes (i.e., shellcodes). Therefore, 
we decided to collect all the shellcodes for Linux/IA-32 from exploit-db and shell-
storm, the two public databases for shellcodes most popular among the security 
professionals, to achieve representativeness. We collected shellcodes written over 
a large period (from 2000 to 2020) from a variety of authors, in order to achieve 
diversity. To the best of our knowledge, the resulting dataset is the largest collec-
tion of shellcodes in assembly available to date. Despite the previous considerations, 
we note that our dataset is comparable in size to the popular CoNaLa dataset Yin 
and Neubig (2017) (2, 379 training and 500 test samples in the annotated version 
of the dataset), which is the basis for state-of-the-art studies in NMT for Python 
code generation (Yin et al. 2018; Yin and Neubig 2019; Gemmell et al. 2020). Fur-
ther, Shellcode_IA32 contains a higher percentage of multi-line snippets ( ∼ 16% vs. 
∼ 4% ). We also note here that existing code generation datasets do contain a larger, 
potentially noisy, subset of training examples (ranging in several thousand) obtained 
by mining the web. For example, the CoNaLa mined (as opposed to the CoNaLa 
annotated) dataset contains 598, 237 training examples mined directly from StackO-
verflow (Yin et al. 2018). We designed the proposed approach to leverage existing 
pre-trained models to compensate for the need for big data, by training the model 
using our assembly dataset.

Code description To build the dataset, we described in the English language 
the shellcodes collected from publicly available exploit databases. Therefore, the 
description of the assembly code derives from our considerations and knowledge. 
However, the building process of the Shellcode_IA32 dataset is not different from 
other corpus built from scratch. For example, Oda et al. (2015) hired an engineer 
to create pseudo-code for the Django Web application framework and obtain the 
corpus. We avoided a single centralized version of the code description to take 
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into account the variability of descriptions in natural language. Indeed, multiple 
authors described independently different samples of the dataset in the English 
language, and, where available, we kept untouched the comments written by 
developers of the collected programs to describe the assembly code snippets. To 
understand how different programmers and experts describe the assembly code 
for IA-32 and how to deal with the ambiguity of natural language in this specific 
context, we took inspiration from popular tutorials and books (Duntemann 2021; 
Kusswurm 2014; tutorialspoint 2020).

Translation task As assembly code is a low-level language, it often takes a 
long sequence of instructions to complete an atomic function. Therefore, some 
translations presented in the dataset are too “literal” and cumbersome. For exam-
ple, instead of writing “Define the _start label”, a user might just as well write 
“_start:”, similarly, the intent “Push the contents of eax onto the stack” takes 
longer than writing the assembly instruction “push eax”. However, this is a 
common situation in any translation task from English to programming language. 
For example, the Django dataset contains numerous Python code snippets that are 
relatively short (e.g., “chunk_buffer = BytesIO(chunk)”) described with 
with English statements that are definitely longer than the snippets (“evaluate 
the function BytesIO with argument chunk, substitute it for chunk_buffer.”). Simi-
larly, in the CoNaLa dataset we can find shortcode snippets (e.g., “GRAVITY = 
9.8”) described with longer English intents (“assign float 9.8 to variable GRAV-
ITY”). Nevertheless, we – and other datasets– still include such verbose intents to 
provide richer learning of NMT models. Moreover, we mitigated this problem by 
adding multi-line snippets, i.e., single intents described in natural language that 
generate more lines of assembly codes, that are closer to the intent that develop-
ers may want to use during development.

Scope of the approach A shellcode is a piece of assembly code written specifi-
cally for exploitation purposes. From this perspective, all shellcodes are security-
related programs and, therefore, the proposed approach is tailored for generat-
ing software exploits. It is an interesting question whether the proposed approach 
has applications beyond security. The approach is focused on assembly programs, 
which is the most used language for shellcodes. Thus, the processing pipeline 
has been designed to handle relevant elements of the assembly language, such 
as keywords and register names. This approach significantly contributes to gen-
erating more accurate code compared to generic NMT techniques but narrows 
the scope to assembly code. As future work, we are exploring the use of NMT 
for other programming languages, such as Python. In principle, a programmer 
can use the method to generate assembly code unrelated to security applications. 
However, the method might be less accurate in this case, since our solution is 
trained with a dataset of mostly security-related assembly code snippets. To be 
used outside security applications, the programmer would need to adopt a train-
ing dataset with more non-security assembly code (e.g., assembly code for device 
drivers or microcontrollers). Moreover, it may be necessary to tweak the process-
ing pipeline to support special keywords that are not adopted for shellcodes (e.g., 
linking directives for embedded software). We opted to leave such extensions out 
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of the scope of our work, as security applications are the ones that have by far the 
highest demand for increasing the productivity of assembly programming.

9 � Conclusion and future work

We addressed the problem of automated exploit generation using natural language 
processing techniques. We use Neural Machine Translation to translate natural lan-
guage intents into shellcode. We built and released the first dataset of shellcodes, 
Shellcode_IA32, containing 3, 200 pairs of code snippets and intents. The dataset 
also contains 510 intents that generate multiple snippets. These assembly language 
snippets can be combined to generate shellcodes for the Intel 32-bit Architecture. 
Our empirical analysis demonstrated the feasibility of using NMT for this task, 
using both automated and manual metrics. We also propose the use of novel metrics 
for the task of code generation, that we anticipate would be useful to the community.

Our work enables further studies in the area, to make NMT more and more effec-
tive. We are currently working on a new engine for the post-processing phase, in 
order to identify and fix the assembly lines wrongly generated by the NMT model 
and to further improve accuracy. We are also analyzing the impact of “noisy inputs” 
or “perturbation” in the natural language, since human developers may provide inac-
curate or incomplete descriptions of the shellcode to be generated. For example, 
perturbations can be introduced by replacing words with “unseen” synonyms, or by 
removing redundant information. In this direction, we are investigating a solution 
to make NMT more robust and usable, by helping the model to derive the miss-
ing information (i.e., information not explicitly stated in the English intent) from 
the context of the programs. Finally, as part of future research, we aim to evaluate 
our approach with actual humans instructing with comments, so that the evaluation 
could take into account how the humans perceive the actual usefulness of develop-
ing a shellcode that achieves the desired result.

Beyond our current work on extending the proposed approach, we expect that this 
work can support more researchers in the field. Indeed, in the era where deep learn-
ing is evolving at a quick pace and succeeding in more and more tasks with surpris-
ing accuracy, we expect in the near future the development of new deep learning 
architectures, which could potentially bring benefits for the automatic generation of 
exploits. In this light, the proposed approach and dataset represent valid means to 
pave the way for a new generation of offensive security methods. This work repre-
sents a first step towards the ambitious goal of automatically generating shellcodes 
from natural language, provides originally-collected data, enables replication, and 
describes successes and challenges through rigorous evaluation.
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Appendix

Test set

Table 9 presents detailed information on the 30 shellcodes composing the test set. In 
particular, the table shows the URL where the shellcode is collected, the number of 

Table 9   The 30 shellcodes composing the test set

We consider a shellcode executed correctly if all the generated snippets composing the program are 
semantically correct. nt : number of total assembly lines of the program. Multi-line: number of multi-lines 
snippets in the program. nsyn : number of syntactically correct lines generated by the approach. nsem : num-
ber of semantically correct lines generated by the approach

id URL nt (Multi-line) nsyn nsem

1 www.​explo​it-​db.​com/​shell​codes/​13452 17 (4) 15 12
2 www.​explo​it-​db.​com/​shell​codes/​48703 33 (16) 31 29
3 www.​explo​it-​db.​com/​shell​codes/​47877 40 (0) 40 40
4 www.​explo​it-​db.​com/​shell​codes/​13716 59 (0) 58 52
5 www.​explo​it-​db.​com/​shell​codes/​47513 14 (0) 14 14
6 www.​explo​it-​db.​com/​shell​codes/​47511 24 (0) 24 24
7 www.​explo​it-​db.​com/​shell​codes/​47481 41 (2) 40 38
8 www.​explo​it-​db.​com/​shell​codes/​47396 61 (15) 61 60
9 www.​explo​it-​db.​com/​shell​codes/​47200 29 (2) 29 28
10 www.​explo​it-​db.​com/​shell​codes/​47202 29 (4) 29 29
11 www.​explo​it-​db.​com/​shell​codes/​47108 26 (9) 26 26
12 www.​explo​it-​db.​com/​shell​codes/​47068 12 (0) 12 12
13 www.​explo​it-​db.​com/​shell​codes/​46994 28 (4) 27 26
14 www.​explo​it-​db.​com/​shell​codes/​46829 20 (6) 20 20
15 www.​explo​it-​db.​com/​shell​codes/​46801 34 (9) 34 34
16 www.​explo​it-​db.​com/​shell​codes/​46791 27 (8) 27 26
17 www.​explo​it-​db.​com/​shell​codes/​46704 29 (6) 29 29
18 www.​explo​it-​db.​com/​shell​codes/​46704 55 (4) 55 54
19 www.​explo​it-​db.​com/​shell​codes/​45669 20 (6) 20 20
20 www.​explo​it-​db.​com/​shell​codes/​45940 25 (4) 25 25
21 www.​explo​it-​db.​com/​shell​codes/​45529 14 (7) 14 14
22 www.​explo​it-​db.​com/​shell​codes/​45441 20 (9) 17 17
23 www.​explo​it-​db.​com/​shell​codes/​44963 17 (6) 17 17
24 www.​explo​it-​db.​com/​shell​codes/​44609 32 (0) 31 30
25 www.​explo​it-​db.​com/​shell​codes/​44509 16 (2) 16 16
26 www.​explo​it-​db.​com/​shell​codes/​44594 15 (2) 15 15
27 www.​explo​it-​db.​com/​shell​codes/​44510 23 (3) 23 21
28 www.​explo​it-​db.​com/​shell​codes/​43476 15 (6) 15 15
29 www.​explo​it-​db.​com/​shell​codes/​43489 18 (2) 17 17
30 www.​explo​it-​db.​com/​shell​codes/​43463 15 (3) 15 14

http://www.exploit-db.com/shellcodes/13452
http://www.exploit-db.com/shellcodes/48703
http://www.exploit-db.com/shellcodes/47877
http://www.exploit-db.com/shellcodes/13716
http://www.exploit-db.com/shellcodes/47513
http://www.exploit-db.com/shellcodes/47511
http://www.exploit-db.com/shellcodes/47481
http://www.exploit-db.com/shellcodes/47396
http://www.exploit-db.com/shellcodes/47200
http://www.exploit-db.com/shellcodes/47202
http://www.exploit-db.com/shellcodes/47108
http://www.exploit-db.com/shellcodes/47068
http://www.exploit-db.com/shellcodes/46994
http://www.exploit-db.com/shellcodes/46829
http://www.exploit-db.com/shellcodes/46801
http://www.exploit-db.com/shellcodes/46791
http://www.exploit-db.com/shellcodes/46704
http://www.exploit-db.com/shellcodes/46704
http://www.exploit-db.com/shellcodes/45669
http://www.exploit-db.com/shellcodes/45940
http://www.exploit-db.com/shellcodes/45529
http://www.exploit-db.com/shellcodes/45441
http://www.exploit-db.com/shellcodes/44963
http://www.exploit-db.com/shellcodes/44609
http://www.exploit-db.com/shellcodes/44509
http://www.exploit-db.com/shellcodes/44594
http://www.exploit-db.com/shellcodes/44510
http://www.exploit-db.com/shellcodes/43476
http://www.exploit-db.com/shellcodes/43489
http://www.exploit-db.com/shellcodes/43463
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assembly lines of the program, the number of multi-line snippets, and the number of 
snippets generated incorrectly from our approach. We consider the whole shellcode 
generated correctly only if the approach produces 0 incorrect snippets. Our approach 
generated correctly 16 out of 30 whole shellcodes.
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