
Vol.:(0123456789)

Automated Software Engineering (2022) 29:3
https://doi.org/10.1007/s10515-021-00292-z

1 3

Synchronous development in open‑source projects:
A higher‑level perspective

Thomas Bock1 · Claus Hunsen2 · Mitchell Joblin3 · Sven Apel1

Received: 9 January 2020 / Accepted: 14 July 2021 / Published online: 13 October 2021
© The Author(s) 2021

Abstract
Mailing lists are a major communication channel for supporting developer coordina-
tion in open-source software projects. In a recent study, researchers explored tempo-
ral relationships (e.g., synchronization) between developer activities on source code
and on the mailing list, relying on simple heuristics of developer collaboration (e.g.,
co-editing files) and developer communication (e.g., sending e-mails to the mailing
list). We propose two methods for studying synchronization between collaboration
and communication activities from a higher-level perspective, which captures the
complex activities and views of developers more precisely than the rather technical
perspective of previous work. On the one hand, we explore developer collaboration
at the level of features (not files), which are higher-level concepts of the domain and
not mere technical artifacts. On the other hand, we lift the view of developer com-
munication from a message-based model, which treats each e-mail individually, to
a conversation-based model, which is semantically richer due to grouping e-mails
that represent conceptually related discussions. By means of an empirical study, we
investigate whether the different abstraction levels affect the observed relationship
between commit activity and e-mail communication using state-of-the-art time-
series analysis. For this purpose, we analyze a combined history of 40 years of data
for three highly active and widely deployed open-source projects: QEMU, BUsyBox,
and opEnssL. Overall, we found evidence that a higher-level view on the coordina-
tion of developers leads to identifying a stronger statistical dependence between the
technical activities of developers than a less abstract and rather technical view.

Keywords Open-source software projects · Developer coordination · Synchronous
development

 * Thomas Bock
 bockthom@cs.uni-saarland.de

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6906-3489
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-021-00292-z&domain=pdf

 Automated Software Engineering (2022) 29:3

1 3

3 Page 2 of 53

1 Introduction

The success of large software projects relies on the extent to which developers
coordinate their efforts. This is especially true for large-scale open-source soft-
ware (OSS) projects, to which often numerous globally distributed and independ-
ent developers contribute (Herbsleb 2007). When multiple developers contribute to
interrelated source-code fragments, changes that lack coordination often introduce
unintentional side effects. Developers must coordinate their interdependent activities
to prevent conflicting changes, to avoid bugs, or to keep the code simple and main-
tainable (Cataldo et al. 2008, 2009; Bird 2011; Kwan et al. 2011). In large-scale pro-
jects, developer coordination is absolutely crucial to ensuring high-quality software
and to supporting high developer productivity (Cataldo and Herbsleb 2013).

Since software developers in OSS projects are often globally distributed, they
mostly communicate via the Internet to discuss software issues or enhancements or
to review code changes (Wu et al. 2003). Mailing lists, issue trackers, and instant
messengers are the most commonly used communication channels for coordina-
tion of developers in OSS projects (Storey et al. 2017). We dedicate attention to
analyzing developer communication on mailing lists because they are historically
rich and well-established sources of data for discussions regarding software archi-
tecture and reviewing of code changes (Rigby et al. 2008; Ramsauer et al. 2019).
In a recent study on 37 OSS projects, Mannan et al. 2020) have shown that about
89% of such discussions take place on the project’s mailing list. Mailing lists are
a greater source of longitudinal data than more recently introduced social-coding
platforms (e.g., GitHUB), because their usage dates back more than 10 years (see
Table 2). Mailing lists are also used to discuss the outcomes of developer confer-
ences and similar events where complex issues and long-term plans for feature
development are discussed. Even developers in OSS projects who work for cor-
porations may use mailing-list discussions to communicate their intentions to oth-
ers as public communication is one of the basic concepts in OSS projects (Riehle
2015).

To obtain deeper insights into the fundamentals of developer coordination and the
role communication plays in OSS projects, we investigate the relationship between
co-editing activities on source-code artifacts and communication activities on the
developer mailing list. For this purpose, we replicate and extend an empirical study
of Xuan and Filkov 2014) on synchronous development in OSS projects, which we
will refer to as the original study. The authors of the original study identified pairs
of developers co-editing files to explore the relationship between developer produc-
tivity and communication activities. Their major finding was that time intervals rich
in co-editing activities are correlated with time intervals rich in e-mail activities
and, more importantly, that during these synchronized periods developer productiv-
ity was higher.

The original study already provided interesting and useful insights on developer
collaboration and developer communication. Nonetheless, they relied on a rather
technical, low-level view. Regarding developer collaboration, they limited their per-
spective to co-edits of individual files. There is reason to believe, though, that this

1 3

Automated Software Engineering (2022) 29:3 Page 3 of 53 3

perspective only covers technical edits to files which are likely to be a noisy indica-
tion of the content-wise relationship between the edits. Developers co-editing a file
may not change any interrelated source code because a file can contain lots of inde-
pendent functionality. Conversely, highly interrelated source code that is scattered
across multiple files will also not be captured by a file-level abstraction. To raise the
abstraction level, we analyze co-edits on related source code in terms of features. A
feature is a characteristic, user-visible behavior or configuration option of a software
product (Czarnecki and Eisenecker 2000; Apel et al. 2013). The information a fea-
ture usually conveys is richer and more closely mirrors a developer’s mental model
of the software than files. For that reason and also due to the fact that the concept
of features is apparently used by developers (Berger et al. 2015; Queiroz et al. 2017;
Hunsen et al. 2016, 2020), our overarching research question is whether there is a
difference in developers’ collaboration and coordination on features and files. Tech-
nically, the code belonging to a feature may be scattered across several files and
several features may be tangled within a file (Apel et al. 2013), which needs to
be taken into account when developers coordinate.

Compared to the original study, we also take a more nuanced view on commu-
nication activity by grouping individual e-mails together according to the thread of
communication they belong to. In the original study, all e-mails sent to the mail-
ing list are considered equally likely to be related to each other. We extend the
original study by lifting this message-based view of developer communication to
a conversation-based view, which incorporates the context of e-mails by grouping
e-mails according to threads. Since e-mails belonging to the same thread address
a relatively narrow topic space, the likelihood of these e-mails being content-wise
related is higher (Bird et al. 2008). A heuristic solely based on temporally close-
by e-mails sent to the mailing list likely misses meaningful communicative asso-
ciations between developers. Hence, we investigate the question of whether there
is a difference in the dependence of social and technical activities using a message-
based or a conversation-based view of the complex processes involved in developer
coordination.

By means of an empirical study, we investigate whether the different abstraction
levels (file-based vs. feature-based and message-based vs. conversation-based) affect
the relationship between commit activity and e-mail communication observed in the
original study using state-of-the-art time-series analysis. More specifically, to learn
whether developers engineer their mutual contributions on features, we investigate
whether synchronous development occurs more frequently or with a higher degree
of synchronicity on features than on files. Knowing about differences between
abstraction levels could be exploited for improving developer coordination (e.g., to
predict on which parts of the source code a developer is likely to work on next). Fur-
thermore, we investigate whether synchronous development is temporally aligned
with coordination on the mailing list. To find out whether developers working on the
same file or same feature contemporaneously also communicate, that is, to measure
synchronization, we use dynamic time warping (Rabiner and Juang 1993), a state-
of-the-art time-series analysis technique.

 Automated Software Engineering (2022) 29:3

1 3

3 Page 4 of 53

It is important to note that, when we investigate whether co-editing activity is
accompanied by communication on the mailing list, we cannot be sure that the mail-
ing-list communication is related to the co-editing activity. However, it is a difficult
task to find out which e-mails are related to the co-editing activity and which not, as
e-mails sent by a developer shortly before or after a commit could also cover com-
pletely unrelated topics (especially if there are many commits and e-mails within
a short period of time); when relating only e-mails whose subject is related to the
commit we may omit related e-mails that have a different subject. For that reason,
we propose two different approaches, which we call the lower-bound approach and
the upper-bound approach: Whereas the upper-bound approach considers all e-mails
sent to the mailing list to identify time intervals rich in e-mail activities (as in the
original study), the lower-bound approach considers only e-mails whose subject is
topically related to the co-editing activity following a very strict matching proce-
dure. We call them upper-bound and lower-bound because the former considers all
messages without restrictions, ending up in the maximum amount of considering
communication activity, and the latter considers only messages related to co-editing
activity, which is a very small subset of the total set of e-mails. Hence, the actual
amount of the communication that is content-wise related to the co-editing activity
lies in-between these bounds. For the upper-bound approach, we additionally per-
form manual checks to explore to which extent the content of e-mail communication
is related to temporally close-by collaboration on the source code.

For the purpose of the study, we analyze a combined history of 40 years of data
for three highly active and widely deployed open-source projects: QEMU, BUsyBox,
and opEnssL. We investigate synchronous collaboration on source code and coordi-
nation on mailing lists using different abstraction levels. Overall, we found evidence
that a more abstract and higher-level view describes developer collaboration and
coordination more accurately than a less abstract and more technical view. That is,
developers collaborate more frequently and more synchronously on features than on
files. For some of our approaches and projects, a conversation-based representation
of developer coordination reveals a stronger statistical relation to co-editing source-
code artifacts than a message-based representation.

In summary, we make the following contributions:

• We replicate the original study on a different data set: three highly active and
widely deployed open-source projects. Regarding the existence of synchronous
development, we are able to confirm the results of the original study. However,
we cannot confirm the results of the original study regarding code growth and
implementation effort in synchronous development nor the relationship between
the number of synchronous collaboration activities and the number of synchro-
nous communication activities.

• We propose two methods for raising the abstraction level of exploring synchroni-
zation between developers’ collaboration and communication activities:

• Instead of viewing files as the primary artifacts on which developers are
expected to coordinate, we lift the abstraction level to the higher-level per-
spective of features (which often crosscut the underlying file decomposition).

1 3

Automated Software Engineering (2022) 29:3 Page 5 of 53 3

• We lift the view of developer communication from a message-based model,
which treats each e-mail individually, to a conversation-based model, which
is semantically richer due to grouping e-mails that represent conceptually
related discussions.

• We introduce the continuous variable synchronicity degree to quantify the sig-
nificance of co-editing artifacts. (Previously only binary variables were used.)

• We propose an upper bound and a lower bound for determining whether e-mail
communication is related to co-editing activity, as relating e-mail communica-
tion to co-editing activity is not trivial.

• We manually investigate whether e-mail communication is content-wise related
to temporally close-by collaboration activities. Our results indicate that only
between 29% and 47% (depending on the subject project) of temporally aligned
collaboration and communication activities are content-wise related.

• We use a novel technique based on dynamic time warping to measure synchroni-
zation of activities across source code and mailing lists to adequately take care of
the dynamic nature of socio-technical congruence.

• We report on an extensive empirical study of three highly active and widely
deployed OSS projects. We found that feature-based collaboration captures
developer collaboration more accurately than file-based collaboration. In general,
our results indicate that a more abstract and higher-level view leads to a stronger
statistical dependence between developers’ pairwise technical activities than a
less abstract, technical view.

A full replication package is available on a supplementary Web site.1

2 Background

Xuan and Filkov (2014) define synchronous development as the situation where two
developers contribute to the same source-code file within a short period of time.
In the original study, they consider two different kinds of synchronous activities:
co-commit bursts and e-mail bursts. To explore the temporal relationship between
co-commit bursts and e-mail bursts, they construct continuous curves by smooth-
ing time series of bursts. In the end, they calculated the correlation of these curves
to measure the synchronization of collaboration activities and communication
activities.

In this section, we introduce the algorithms and concepts of co-commit bursts
and e-mail bursts as well as the continuous curves in detail, as used by the authors of
the original study.

1 https:// se- sic. github. io/ paper- coord inati on- bursts/
 Data and scripts are also available at https:// zenodo. org/ record/ 51312 82.

https://se-sic.github.io/paper-coordination-bursts/
https://zenodo.org/record/5131282

 Automated Software Engineering (2022) 29:3

1 3

3 Page 6 of 53

2.1 Co‑commit bursts

Version-control systems (VCS), such as Git, are frequently used to manage the code-
base of software projects. In a VCS, developers can access the source code from a
main repository, modify parts of the code, and submit their patches, for example,
to the mailing list (Sommerville 2010; Ramsauer et al. 2019; Draheim and Pekacki
2003). Code changes can implement bug fixes, refactorings, or further enhancement
of the software. Developers often discuss and review code changes on the project’s
developer mailing list (Mannan et al. 2020) and then someone else may merge the
discussed changes into the main repository (Storey et al. 2017). The VCS stores all
code changes in the form of commits together with meta-data such as author infor-
mation and modification timestamps.

When two developers commit to the same source-code artifact (i.e., file) within
a short period of time, Xuan and Filkov 2014) call this a co-commit burst (short,
C-burst). For two commits to be included in a burst, the time difference between the
commits must not exceed a specified time window, denoted by � . The time window
resembles the fact that developers may have different preferences of how quickly
and often they contribute code. Note that looking at only pairs of developers is not
a limitation, as groups of more than two collaborating developers end up in separate
C-bursts for each pair of developers that are part of such a group. Hence, group-wise
collaboration can be considered as the composition of the collaborations of indi-
vidual developer pairs.

Algorithm 1 Identification of C-bursts
Input: list of commits c (annotated with timestamps and developer names)
1: bursts ← ∅
2: for each pair of developers {A,B} do
3: burstsAB ← ∅
4: for each commit cA ∈ c authored by developer A do
5: burst ← {cA}
6: for each commit cB ∈ c authored by developer B do
7: if |time(cA) − time(cB)| ≤ ξ

and artifacts(cA) ∩ artifacts(cB) �= ∅ then
8: burst ← burst ∪ {cB}
9: end if
10: end for
11: if burst �= {cA} then
12: for each burst b in burstsAB do
13: if overlap(burst , b) then
14: burst ← merge(burst , b)
15: burstsAB ← burstsAB \ {b}
16: end if
17: end for
18: burstsAB ← burstsAB ∪ burst
19: end if
20: end for
21: bursts ← bursts ∪ {burstsAB}
22: end for
Output: bursts containing lists of C-bursts for all developer pairs

1 3

Automated Software Engineering (2022) 29:3 Page 7 of 53 3

As we describe in Algorithm 1 (adapted from Xuan and Filkov 2014, for each
pair of developers (Lines 2–22), it is checked whether the two developers are authors
of mutual commits to the same source-code artifact that have a time2 distance of, at
most, � , and whether these commits have been made to, at least, one common arti-
fact (Line 7). If so, these commits form a C-burst (Lines 4–10), where each burst
is represented by a start time and an end time. Finally, overlapping bursts of the
same developer pair are merged (Lines 11–19). This algorithm has a complexity of
O(|D|2 ⋅ |cmax|2) , with |D| being the number of developers and |cmax| being the maxi-
mum number of commits of a single developer in the project.

In Fig. 1, we show an example of four commits made by one pair of developers,
D1 and D2. In the commits c1 and c2 , both D1 and D2 change artifact A3. Using a
time window � = 5 days, c1 and c2 were created within the time window and form a
burst. Analogously, c2 and c3 form a C-burst due to the change of artifact A5. Since
both bursts overlap at c2 , they are merged into one burst in the end. c4 also changes
the same artifact as c3 , but these commits have a larger distance than the time win-
dow. Hence, c3 and c4 do not form a C-burst.

In addition to identifying C-bursts, the original study analyzed how C-bursts
are related to code growth �L and implementation effort �W , defined as fol-
lows: Let LAdd denote the number of added lines of code (LOC) per commit and
LDelete the number of deleted LOC per commit. Then, �L = LAdd − LDelete and
�W = LAdd + LDelete (Xuan and Filkov 2014).

D1 D1D2 D2

commit c1 commit c2 commit c3 commit c4

A1

A2

A3

A3

A4

A5

A5 A5

day 4 day 8 day 11 day 17

C-burst

< 5 days < 5 days > 5 days

Fig. 1 An example containing four commits made by one pair of developers, D1 and D2. Commits c
1
,

c
2
 , and c

3
 form a C-burst: In c

1
 and c

2
 , both developers change one artifact synchronously within the

time window � of 5 days; commits c
2
 and c

3
 also form a burst for the same reason. Since these two bursts

overlap at c
2
 , they are combined to one burst. c

3
 and c

4
 do not form a C-burst as their temporal distance is

larger than the time window

2 All timestamps are transferred to the Coordinated Universal Time (UTC) first.

 Automated Software Engineering (2022) 29:3

1 3

3 Page 8 of 53

2.2 E‑mail bursts

Xuan and Filkov (2014) use a message-based model to identify e-mail bursts. An
e-mail burst (short, E-burst) arises if two persons each send an e-mail to the mailing
list within a defined time window � . For determining E-bursts, Xuan and Filkov use
almost the same approach as for identifying C-bursts: For each pair of developers,
they iterate over all the e-mails sent by one developer and search for all e-mails of
the other developer whose creation dates have an absolute time difference of less
than or equal � to the e-mail of the first developer. As opposed to the C-burst iden-
tification, there are no further conditions to be checked. Hence, all detected e-mails
of two different developers within the time window � form an E-burst, where each
burst is represented by a start time and an end time. Similar to C-bursts, overlapping
E-bursts of the same developer pair are merged.

2.3 C‑curves and E‑curves

To check whether two developers coordinate their collaboration, that is, to check
whether C-bursts and E-bursts of a developer pair are synchronized, Xuan and
Filkov (2014) introduced the notions of C-curves and E-curves. They compute a
C-curve (or E-curve) for each developer pair denoting the number of commits (or
e-mails) that are part of a burst aggregated for each day of the time series, as we
illustrate in Fig. 2. By comparing the C-curve and the E-curve of a developer pair,
they investigate whether synchronous development and communication activities
of the developer pair are temporally related. Since coding collaboration and e-mail
communication do not take place at exactly the same time, it is not useful to directly
compute the overlap of the resulting curves. Therefore, they applied Gaussian
smoothing on each of the curves to also be able to align slightly off-set C-bursts and
E-bursts. To compare the smoothed curves, they used the Pearson correlation coef-
ficient to check whether C-curve and E-curve of a developer pair are dependent or
independent from each other.

Fig. 2 Example for the C-curve and E-curve of a pair of developers. The horizontal axis represents
the time dimension (days), the vertical axis the intensity of the bursts (number of commits and e-mails
respectively within the burst)

1 3

Automated Software Engineering (2022) 29:3 Page 9 of 53 3

3 Research approach

In our study, we extend the original study by lifting the abstraction level in two
ways and by changing the methodology of comparing C-curves and E-curves. On
source code, we consider synchronous development based on files and features.
Additionally, we introduce a metric to quantify the synchronicity of C-bursts. On
mailing lists, we differentiate between message-based communication (consider-
ing all synchronously sent e-mails from two developers) and conversation-based
communication (considering only e-mails belonging to the same thread). When
identifying E-bursts, we use two different approaches to determine a lower-bound
and an upper-bound for identifiable coordination. Finally, we use a sophisticated
time-series analysis technique to check whether C-bursts and E-bursts of a pair of
developers are synchronized.

3.1 Research questions

Before we state our research questions, let us reiterate the precise meaning of the
terms collaboration, communication, and coordination:

Collaboration means that two developers work together by contributing to
common source-code artifacts.

Communication means that two developers talk to one another on the mailing list
(i.e., exchanging e-mails).

Coordination means developers are collaborating and communicating in (con-
tent-wise related) temporally aligned manners.

To obtain deeper insights into the fundamentals of developer coordination in
OSS projects, we investigate the relationship between co-editing activities on
source-code artifacts and communication activities on the mailing list. The idea
is that developers rely on the characteristic information conveyed by features and
conversation threads for building a mental model of the software and the pro-
cesses around it, which in turn drives the communication and coordination with
other developers (Espinosa et al. 2001; Scozzi et al. 2008; Cannon-Bowers et al.
1993). So, the overarching question is whether there is a difference in the statisti-
cal dependence of social and technical activities between a semantic, high-level
view and a rather technical, low-level view of the complex processes involved
in developer coordination. That is, we investigate whether developers collaborate
more frequently and more synchronously on features than on files and whether a
conversation-based representation of developer coordination reveals a statistically
stronger relation to co-editing source-code artifacts than a sole message-based
representation. Specifically, we will address the following two research questions
regarding each abstraction level of collaboration (files and features) and coordina-
tion (message-based communication and conversation-based communication):

 Automated Software Engineering (2022) 29:3

1 3

3 Page 10 of 53

RQ1: Which abstraction level of the source code captures the collaboration of
developers best: files or features? That is, which of the two abstraction lev-
els of the source code leads to identifying a stronger statistical dependence
between technical activities of developer pairs?

RQ2: Which abstraction level of the mailing list captures the coordination of
developers best: message-based communication or conversation-based
communication? That is, which of the two abstraction levels of the mailing
list leads to identifying a stronger statistical dependence between technical
activities and social activities on the mailing list?

3.2 Files and features

We perform the extraction of C-bursts, as defined in Sect. 2, in two separate analy-
ses for files and features. In the file-based analysis, the commits from two develop-
ers within a certain time window form a C-burst if the commits change the same
file. One could also think of considering a C-burst if the commits just change a file
in the same folder, as files in the same folder may be semantically related to each
other. However, projects differ in how they organize files into folders. Folders may
be deeply nested, having files at different nesting levels. High-level folders may be
too coarse-grained (co-editing code in the same folder may be not related at all),
whereas low-level folders may be too fine-grained (missing the relations between
files at different levels of nested folders). As it is not obvious and mostly project-
dependent which nesting level of folders would be appropriate for C-burst identifi-
cation, we stick to a file-based analysis, which has been established in the original
study.

In the feature-based analysis, the commits from two developers within a certain
time window form a C-burst if the commits change the same feature. A feature is
a characteristic, user-visible behavior or configuration option of a software prod-
uct (Czarnecki and Eisenecker 2000). There are different ways of implementing

Fig. 3 Example for feature code using preprocessor directives (#ifdefs), taken from the source code of
QEMU (file util/qemu-timer-common.c (https:// github. com/ qemu/ qemu/ blob/ master/ util/ qemu-
timer- common.c (accessed: 2019-02-12)). Source code belonging to feature CLOCK_MONOTONIC
is surrounded by an #ifdef directive (Lines 6–13). Hence, Lines 7–12 belong to this feature whereas
Lines 1–5 and Line 14 do not belong to this feature

https://github.com/qemu/qemu/blob/master/util/qemu-timer-common.c
https://github.com/qemu/qemu/blob/master/util/qemu-timer-common.c

1 3

Automated Software Engineering (2022) 29:3 Page 11 of 53 3

features in source code, one common way is the use of preprocessor directives (Apel
et al. 2013; Ernst et al. 2002). For feature extraction from the source code, we rely
on C preprocessor directives (#ifdef, #endif, etc.) (Kernighan and Ritchie 1988).
In Fig. 3, we demonstrate a short example: All the code which is in-between #ifdef
and #endif belongs to the feature stated in the same line as the #ifdef directive (in
the example, the feature is called CLOCK_MONOTONIC. Note that one line of
code can belong to multiple features, for example if nested #ifdef directives are used
or more than one feature is stated at the beginning of #ifdef. All code changes that
affect one of the lines between #ifdef and #endif account for the change of the cor-
responding feature(s). Note that features may be scattered across multiple files, pos-
sibly tangled with other features (Apel et al. 2013). All the changes surrounded by
#ifdef directives together with the same feature name belong to the same feature,
even if they are part of different files. When analyzing co-edits to features, in our
study, code changes which do not belong to a feature (i.e., not surrounded by #ifdef
directives) are ignored. We introduce the tools we use to extract feature information
in Sect. 4.2.

3.3 Synchronicity degree

The method to identify synchronous development described in Sect. 2 is limited
because it does not quantify the magnitude of the overlap among the commits of a
C-burst. Essentially, the variable denoting synchronous development is binary. To
gain precision, we model the overlap of synchronously changed artifacts within a
burst using a continuous variable. This is beneficial because synchronous commits
from two developers can contain changes to one common artifact while most of the
other changes are to artifacts that are touched by only one of the developers (Bird
et al. 2011). For this reason, we introduce the synchronicity degree, a metric captur-
ing the overlap based on the number of lines of code (LOC) each of the two develop-
ers adds to the artifacts changed in a C-burst. We calculate the synchronicity degree
individually for each C-burst. Formally, we define the synchronicity degree degsync
for a C-burst c of the developers A and B as follows:

where add(A, x) denotes the number of code lines added by developer A to the list
of code artifacts x in C-burst c, syncArt(c) denotes the list of synchronously changed
artifacts in C-burst c (i.e., the set of all artifacts changed by both A and B in their
respective commits), while art(c) is the set of all artifacts changed in C-burst c.
In other words, to determine the synchronicity degree, we calculate the geometric
mean of the code changes made by the two developers involved in a C-burst. Spe-
cifically, the metric incorporates the size of changes to synchronously changed arti-
facts of each developer, normalized by the changes to all artifacts in the C-burst.
To let the synchronicity degree assign high values only to C-bursts that have a high
portion of synchronously changed artifacts, and to down-weight C-bursts that have

(1)degsync(c) =

√
add(A, syncArt(c))

add(A, art(c))
⋅

add(B, syncArt(c))

add(B, art(c))
,

 Automated Software Engineering (2022) 29:3

1 3

3 Page 12 of 53

a highly imbalanced number of changes to non-synchronously changed artifacts, we
use the geometric mean, this way reducing the weight of higher values compared to
the arithmetic mean (as we also show in the following examples).

In Table 1, we provide examples how the synchronicity degree treats the size of
mutual contributions in a C-burst: If both developers change all artifacts touched
in the commits of a C-burst synchronously, degsync = 1 . When both developers
change synchronous artifacts and individually changed artifacts of the C-burst in a
balanced way, degsync = 0.5 . Finally, if the proportion of synchronously added lines
over all added lines is highly imbalanced, the synchronicity degree is very low (e.g.,
degsync = 0.06).3

3.4 E‑mails and e‑mail threads

We analyze the mailing list of the selected software projects by identifying message-
based E-bursts, as described in Sect. 2. For identifying conversation-based E-bursts,
we introduce the additional constraint that only e-mails belonging to a common thread
can appear in an E-burst. The rationale is, if two e-mails belong to the same e-mail
thread, then this is a more reliable indicator of coordination due to the topical scope in
e-mail threads. We identify e-mail threads by cross-referencing e-mail headers. That
is, we consider the <In-Reply-To> and <References> tags in e-mail headers
to group e-mails belonging to the same thread. We used the threading algorithm of the
R package tM-pLUGin-MaiL4, which basically implements the standard RFC 5256.

For example, consider the situation illustrated in Fig. 4: Developers D1, D2,
and D3 each write an e-mail to the mailing list on the same day. Without consider-
ing thread information, each pair of e-mails forms a message-based E-burst of the
corresponding developer pair, as all three e-mails were sent on the same day. How-
ever, e-mail e2 may address a completely different topic than e1 and e3 , e2 may not be
related to e1 and e3 at all. When considering thread information, we see that e1 and e3

Table 1 Examples of the synchronicity degree degsync for different numbers of added LOC by developers
A and B in C-burst c

add(A, syncArt(c)) add(B, syncArt(c)) add(A, art(c)) add(B, art(c)) degsync

10 10 10 10 1.00
10 10 20 20 0.50
10 10 15 2010 0.06

3 In this example, only about 0.5% of developer B’s changed lines are made to a synchronously changed
artifact, meaning that there is almost no synchronicity. If we would use the arithmetic mean instead of
the geometric mean for the calculation of the synchronicity degree, we would get a value of 0.34 instead
of 0.06, as the imbalance of the non-synchronously changed lines would not be respected. As a conse-
quence, we use the geometric mean, since a value of 0.06 better describes that there is almost no syn-
chronicity.
4 https://r- forge.r- proje ct. org/ proje cts/ tm- plugin- mail/ (accessed: 2019-02-12).

https://r-forge.r-project.org/projects/tm-plugin-mail/

1 3

Automated Software Engineering (2022) 29:3 Page 13 of 53 3

belong to the same thread since e3 is sent in reply to e1 . Therefore, these e-mails can
be considered as content-wise related (as defined by the thread). As a consequence,
we consider e1 and e3 as a conversation-based E-burst, which is a more robust indica-
tor of coordination between developers D1 and D3 due to the conceptual relation of
their e-mails. In this example, there is no conversation-based E-burst including e2.

3.5 Upper‑bound and lower‑bound approach for determining coordination

To search for coordination between two developers, we check whether C-bursts and
E-bursts of a developer pair are temporally aligned. However, we cannot be cer-
tain whether temporally aligned C-bursts and E-bursts are related to each other or
whether they are completely unrelated and just are temporally aligned by coinci-
dence. We elaborate on this later in detail and manually check in Sect. 6 for a small
sample of our data whether and for which percentage of the E-bursts such relation-
ships exist. As it is prohibitively time-consuming to manually decide for each pair of
temporally aligned C-bursts and E-bursts whether they are related, we here use two
automatic approaches, which we illustrate in Fig. 5:

There is an upper bound for coordination, that is, we assume that all the tem-
porally aligned C-bursts and E-bursts are content-wise related and therefore repre-
sent coordination (see Algorithm 2 for the trivial e-mail filtering in the upper-bound
approach).

Alternatively, in many OSS projects, there is information on the relation
between e-mails and commits. For example, if code changes (which form a com-
mit) have to be submitted to the mailing list in form of a patch (like in QEMU),
the e-mail subject is often automatically generated out of the heading of the com-
mit message. This way, we can learn that contents of e-mail threads whose sub-
ject is also the beginning of a commit message are related to the respective com-
mit. Therefore, temporally aligned C-bursts and E-bursts for which one e-mail

e1 e2 e3

D1 D2 D3

8 am 9 am 10 am

conversation-based E-burst

< 1 day

In-Reply-To

Fig. 4 An example containing three e-mails to the mailing list sent by three different developers D1, D2,
and D3. All three e-mails were sent on the same day, therefore, each pair of e-mails forms a message-
based E-burst of the involved developer pair. Incorporating thread information, we see that e

1
 and e

3

belong to the same thread since e
3
 is sent in reply to e1. Therefore, e

1
 and e

3
 form a conversation-based

E-burst

 Automated Software Engineering (2022) 29:3

1 3

3 Page 14 of 53

of the E-burst has a subject which belongs to a commit message of the tempo-
rally aligned C-burst are content-wise related and, hence, indicate coordination.
Nevertheless, this might not be the only kind of coordination as e-mails that do
not follow this convention could also contain content-wise related information.
This is why we call the approach lower-bound approach (see Algorithm 3 for the
e-mail filtering based on commit messages in the lower-bound approach). E-mail
filtering in the lower-bound approach has a complexity of O(|D|2 ⋅ |cmax| ⋅ |emax|) ,
with |D| being the number of developers, |cmax| being the maximum number of
commits of a single developer, and |emax| being the maximum number of e-mails
of a single developer in the project.

commits

C-burst identification

C-bursts

commit messages

extract commit messages

filter critereon

e-mails

filter e-mails

filtered e-mails

E-burst identification

E-bursts

temporal alignment

results

Fig. 5 Workflow for one pair of developers using the upper-bound approach (black, solid only) and
the lower-bound approach (red, dashed, and black, solid, together). Commit data are used to identify
C-bursts. For the upper-bound approach, all e-mail data are used to identify E-bursts. For the lower-
bound approach, the e-mails are first filtered based on the commit messages, which are extracted from
the identified C-bursts of the developer pair. Only those e-mails whose subjects match one of those
extracted commit messages are kept. Then, the E-bursts are extracted from the filtered e-mails. In the
end, independent of the approach, C-bursts and E-bursts of a developer pair are temporally aligned
(Color figure online)

1 3

Automated Software Engineering (2022) 29:3 Page 15 of 53 3

Algorithm 2 E-mail filtering in the upper-bound approach
Input: list of e-mails of a developer pair {A,B} e{A,B}
1: � no filtering needs to be performed
2: e{A,B},filtered ← e{A,B}
Output: list of e-mails of a developer pair {A,B} e{A,B},filtered

Algorithm 3 E-mail filtering in the lower-bound approach
Input: list of e-mails of a developer pair {A,B} e{A,B},

list of C-bursts of the developer pair {A,B} cb{A,B}
1: e{A,B},filtered ← ∅
2: for each C-burst cb ∈ cb{A,B} do
3: mcb ← extract commit messages from all commits belonging to cb
4: for each e-mail e ∈ e{A,B} do
5: se ← extract subject from e-mail e
6: se ← remove auto-generated prefixes like ’Re:’ or ’Fwd:’ or ’[PATCH]’ from se
7: for each commit message m ∈ mcb do
8: if m starts with se then
9: e{A,B},filtered ← e{A,B},filtered ∪ e
10: break
11: end if
12: end for
13: end for
14: end for
Output: filtered list of e-mails of a developer pair {A,B} e{A,B},filtered

Both the upper-bound and the lower-bound approach will not represent the actual
amount of coordination, but by using an upper-bound and a lower bound we are able
to narrow down the problem and know that the truth must be somewhere in-between
these bounds.

3.6 Time‑series analysis of C‑curves and E‑curves

To check whether C-bursts and E-bursts of a developer pair are synchronized, we
need to measure the similarity between both sequences of bursts. For this purpose,
we construct C-curves and E-curves for each developer pair. The curves denote the
number of commits and e-mails that are contained in a burst aggregated for each day
of the time series. That is, we build a histogram of the numbers of these commits
and e-mails per day and derive a curve from that, as depicted in Fig. 2.

Since commit activities and e-mail activities rarely occur at the same instant of time,
the comparison of C-curves and E-curves needs to be error-tolerant such that we are
able to tolerate slight temporal shifts between C-bursts and E-bursts. For example,
as developers need some time to create a commit and also some time passes until an
e-mail is written, we aggregate the number of commits or e-mails belonging to a burst
on a daily basis so that we can perceive bursts of developer activity more clearly. To
incorporate also latent times of activity (such as time for implementation, testing, or

 Automated Software Engineering (2022) 29:3

1 3

3 Page 16 of 53

planning) into this line of thought, we use rectangular smoothing, which achieves two
objectives: (1) We reduce noise in the curves and alleviate the intensity of a burst at
a specific day (as the aggregation on a daily basis is sensitive to the distribution of
the commits or e-mails among several days), and (2) we slightly broaden bursts in the
curve to cover that developers may prepare or deal with source-code changes or com-
munication activity longer than the actual work on commits and e-mails lasts, to be
robust to a shift of several days between C-bursts and E-bursts. We use a smoothing
parameter of 2� (with � being the time-window parameter used for burst identifica-
tion). That is, we also take � days before and after a burst into account to check whether
C-bursts and E-bursts are synchronized. (We also tried other smoothing parameters,
which led to similar results, though. For more information, please refer to the supple-
mentary Web site.)

To compare C-curves and E-curves, we use dynamic time warping (DTW) (Rabi-
ner and Juang 1993), effectively calculating their distances. The DTW algorithm trans-
forms one time series (the query) into the other (the reference) and measures the trans-
formation costs. The higher the resulting transformation costs, the greater the distance
between the compared time series. In addition, we use a Sakoe–Chiba band (Sakoe and
Chiba 1978) to constrain the maximum allowed time deviation between two matched
data points. The Sakoe–Chiba band prohibits global deformations to match the time
series restricting the optimization algorithm to only local transformation operations.
With that, we have a global constraint that allows only close-by bursts of the two time
series to get matched. Consequently, when using a band-window size of 2� , we restrict
C-bursts and E-bursts to get matched when their data points have a maximal distance
of 2� days. We provide further information regarding DTW and the Sakoe–Chiba band
in Appendix 1.

The outcome of the DTW calculation is a distance value describing how differ-
ent the C-burst time series and the regarding E-burst time series are under the defined
transformation restrictions. So, using the DTW, we can measure the temporal correla-
tion between C-bursts and E-bursts of a developer pair.

4 Study design

In our empirical study, we consider coordination in synchronous development for dif-
ferent abstraction levels: file-based and feature-based collaboration as well as message-
based and conversation-based communication on the mailing list. For this purpose, we
analyze the OSS projects QEMU, BUsyBox, and opEnssL. In this section, we provide
information on our subject projects, describe our data-extraction procedure, give a
description of the experiment variables, and formulate our hypotheses.

4.1 Subject projects

We analyze three different OSS projects: QEMU, BUsyBox, and opEnssL. As these
projects differ in size, commit policies, and application domain, they already pro-
vide enough insights. Although, due to high computation time and high memory

1 3

Automated Software Engineering (2022) 29:3 Page 17 of 53 3

consumption when identifying bursts, we cannot analyze more projects with rea-
sonable effort. All projects are developed in the programming language C, using C
preprocessor directives to annotate feature-specific code (Liebig et al. 2010; Hunsen
et al. 2016). Moreover, all projects used a mailing list as well-established and—in
the time range we analyze—persistent contribution system to discuss patches and
share developer knowledge. For all projects, we analyze all commits and e-mails
(sent by developers which also contributed to the source code) from 2002 until 2016.
This sums up to about 54,000 commits and 409,000 e-mails across all projects. We
provide more details for each project in Table 2.

QEMU is an open-source virtual-machine emulator. The QEMU project has a
policy5 that forces developers to send patches to the mailing list first. Within the
analyzed time range of more than 13 years, 951 developers of QEMU created 35,608
commits that changed 3165 different files and 1739 different features. The develop-
ers, who contributed to the source code, sent 374,815 e-mails in 52,170 different
e-mail threads to the mailing list.

BUsyBox is a UNIX command-line tool suite, having 230 developers. They cre-
ated 10,087 commits in the analyzed time range and changed 1362 different files
and 2498 different features. The developers of BUsyBox sent 23,527 e-mails in 7320
e-mail threads to the mailing list.

opEnssL is an open-source encryption library to secure connections on the Inter-
net, having 168 developers and 7887 commits. The developers changed 1378 differ-
ent files and 1107 different features. On the corresponding mailing list, the develop-
ers sent 10,228 mails in 6280 e-mail threads.

Table 2 Analyzed time range and size (in terms of numbers of developers, commits, LOC, files, features,
e-mails, and e-mail threads) of the subject projects

QEMU BUsyBox opEnssL

Analyzed time
range

start: 2003-02-18 2003-01-14 2002-02-18

end: 2016-07-27 2016-02-19 2016-02-19
developers 951 230 168
developer pairs 451,725 26,335 14,028
average # developers active per year 151 34 26
commits 35,608 10,087 7887
average # commits per year 3484 831 791
LOC (at the latest analyzed commit) 1,106,794 229,087 334,149
files 3165 1362 1378
features 1739 2498 1107
e-mails (messages) 374,815 23,527 10,228
e-mail threads (conversations) 52,170 7320 6280

5 https:// wiki. qemu. org/ Contr ibute/ Submi tAPat ch/ (accessed: 2019-02-12).

https://wiki.qemu.org/Contribute/SubmitAPatch/

 Automated Software Engineering (2022) 29:3

1 3

3 Page 18 of 53

In Fig. 6, we show the distribution of the sizes of files and features (in terms of
LOC) of our three subject projects (for the latest analyzed commit). In general, the
size of a feature is smaller than the size of a file. On the one hand, this is because
features cover mostly small related units, whereas files may contain code of several
features. On the other hand, files also contain some base code, which not necessarily
belongs to any feature (e.g., defining constants, copyright headers, glue code).

4.2 Data extraction

For our study, we gathered commit and e-mail data for each of the subject projects.
To obtain commit data, we cloned the publicly available Git repositories hosted on
GitHUB. For the extraction of the commit data, we use the framework CodEfaCE6,
which analyzes social and technical aspects of development in software projects
based on the Git version history. Internally, CodEfaCE uses the tool Cppstats (Liebig
et al. 2010) for determining which code belongs to which feature, based on preproc-
essor directives. That is, Cppstats identifies code blocks which are surrounded by
preprocessor directives belonging to the feature which is named in the surrounding
preprocessor directives. Cppstats is regularly used for locating features (Hunsen et al.
2016, 2020; Berger and Guo 2013; Feigenspan et al. 2013) and has been extended in
various ways (Fenske et al. 2005; Schulze and Fenske 2018; Medeiros et al. 2015).
Using CodEfaCE, we are able to extract meta-data of all commits of a software pro-
ject, as has been demonstrated in prior studies (Joblin et al. 2015, 2017a, b). The
commit meta-data contain information on the author of a commit, the date at which
the author had finished the commit, the number of added and deleted lines, as well

fe
at
ur
es

fil
es

0 250 500 750 1000 1250

QEMU

OpenSSL

BusyBox

QEMU

OpenSSL

BusyBox

artifact size (in LOC per file or per feature)

boxplots comparing the sizes of files and features (outliers omitted)

Fig. 6 Box plots of the sizes of files and features in terms of LOC; outliers are omitted. These plots refer
to the latest analyzed commit for each of the three subject projects. We do not provide these sizes for the
complete project history, as these sizes vary after each single commit but the whole distribution only dif-
fers slightly

6 https:// sieme ns. github. io/ codef ace/ (accessed: 2019-02-12).

https://siemens.github.io/codeface/

1 3

Automated Software Engineering (2022) 29:3 Page 19 of 53 3

as the changed artifacts (files or features), together with the number of added lines
per artifact. We limit the extraction of commit data to files that are implementation-
related, so header files, documentation files, and build files are not considered in our
study (see Sect. 8).

Beside commit data, we have collected e-mail data from each subject project. We
downloaded the e-mails from the publicly available mailing-list archive GManE7. For
each of our subject projects, we only downloaded the e-mails of the corresponding
developer mailing list (not user mailing lists), as we focus on investigating the coor-
dination of source-code changes of developers. We used again CodEfaCE to extract
information from e-mail headers: the date on which an e-mail was created, the
author of the e-mail, and the thread ID of the e-mail (e-mails belonging to the same
thread have the same thread ID). In our study, we only include e-mails of developers
who also appear in commits, because we want to investigate the relation between
C-bursts and corresponding E-bursts.

Authors can use different names and several e-mail addresses, which makes it
challenging to map e-mails and commits onto real persons. CodEfaCE first attempts
to assign e-mails to a certain author by matching the author’s names. If names of
authors do not match, CodEfaCE proceeds with matching e-mail addresses. To put it
simply, authors of e-mails which use the same name or the same e-mail address are
mapped to one real person. Regarding name and e-mail disambiguation, CodEfaCE
implements the heuristics of Oliva et al. (2012)), which provides good results com-
pared to other heuristics as it has a median recall of approximately 0.5 and a median
precision of about 0.9 (Wiese et al. 2016).

4.3 Variables

In Table 3, we provide an overview of the independent and dependent variables of
our study.

Table 3 Independent and dependent variables of our empirical study

Independent variables Dependent variables

- Abstraction of co-editing (files, features) - Number of C-bursts
- Abstraction of communication (message-

based, conversation-based)
- Synchronicity

 degree degsync
- Filtering of the e-mails: (none (upper-bound),

by C-bursts’ commit messages (lower-bound))
- Classification of commits (synchronous and non-

synchronous)
- Time window � (1 day, 5 days, 10 days,

15 days)
- Code growth �L
- Code effort �W
- Number of E-bursts
- DTW distances describing the temporal correlation

between C-curves and E-curves

7 https:// gmane. org/ (accessed: 2019-02-12).

https://gmane.org/

 Automated Software Engineering (2022) 29:3

1 3

3 Page 20 of 53

As independent variables, we vary the considered artifact types (files and fea-
tures) for identifying the C-bursts. For identifying E-bursts, we distinguish between
message-based E-bursts and conversation-based E-bursts. On top of that, we also
vary the e-mail filtering: Whereas we use all e-mails and perform no filtering for
our upper-bound approach, we filter the e-mails by commit messages of the C-bursts
before identifying E-bursts for the lower-bound approach. In addition, we vary the
time window for burst identification: We consider time windows � of 1 day, 5 days,
10 days, and 15 days, based on a response-time analysis: In Fig. 7, we show the
response times for subsequent e-mails and subsequent commits to a common artifact

QEMU

OpenSSL

BusyBox

QEMU

OpenSSL

BusyBox

QEMU

OpenSSL

BusyBox

QEMU

OpenSSL

BusyBox

fe
at
ur
es

fil
es

co
nv

er
sa

tio
ns

m
es

sa
ge

s

0 5 10 15 20 25 30 35 40 45 50 55
response time in days

boxplots comparing the response times (outliers omitted)

Fig. 7 Box plots of the response times for each pair of developers; outliers are omitted. File-based and
feature-based response times represent the time distances between subsequent commits to a common file
or feature of a developer pair. Message-based response times represent the time distances between sub-
sequent e-mails of a developer pair, conversation-based response times only represent the time distances
between subsequent e-mails of a developer pair within the same thread. The red vertical lines represent
the time windows (Color figure online)� chosen for our study

1 3

Automated Software Engineering (2022) 29:3 Page 21 of 53 3

for each pair of developers, for each level of abstraction and subject project con-
sidered in our study. Depending on project and abstraction level, at least, 70% of
the different response times are shorter than 15 days. When omitting outliers, all
response times on features are shorter than 15 days. Especially on mailing lists, at
least, 70% of the response times are even shorter than 1 day. Hence, our chosen time
windows � are reasonable time distances that synchronous development can deliber-
ately last, because developers mostly reply to e-mails or commits within a few days.

The results of our study depend on the variations of the above described inde-
pendent variables (cf. Table 3). In particular, the number of bursts, the synchronic-
ity degree of C-bursts, and the temporal correlation between C-bursts and E-bursts
depend on the independent variables. Also the differentiation of commits into syn-
chronous and non-synchronous as well as code growth and code effort depend on
the independent variables. Notice that we consider a commit to be synchronous if, at
least, one of its changed artifacts is mutually changed within a C-burst.

4.4 Null model

To determine whether the bursts and their synchronicity degrees are just artifacts
of a purely random process (and thus uninteresting for us as we expect that col-
laboration and communication are dependent and correlated processes), we use a
simulation technique based on synthetic data sets drawn from a null model. The null
models, which represent random time series, allow us to test whether empirically
observed bursts are significantly different from purely random bursts (i.e., whether
they convey information). That is, by using a null model, we check whether our
results are dependent on our variables or arise randomly. Specifically, we use the
null models of the original study, as we explain next (Xuan et al. 2012).

For commit data, we generate synthetic data based on a null model by purely
randomizing the time intervals between two successive commits for each developer.
The randomization operation is performed by randomly permuting the time intervals
between all commits of the considered developer (see Algorithm 4 in Appendix 2).
This way, for each developer, the distribution of the time intervals, the order of the
commits, and the artifacts changed by this developer are preserved. C-bursts gener-
ated from the purely randomized time series are referred to as simulated C-bursts.

For e-mail data, we use a similar approach. The only difference is that we do not
randomize the time intervals between the e-mails of each developer, but the time
intervals between successive e-mails of each pair of developers to preserve the order
of e-mails sent by two different developers. So, each pair of developers has their
own simulated e-mail time series (see Algorithm 5 in Appendix 2). E-bursts of the
purely randomized time series are referred to as simulated E-bursts.

Generating a simulated commit time series (without burst detection) has a com-
plexity of O(|D| ⋅ |cmax|) , generating a simulated e-mail time series has a complex-
ity of O(|D|2 ⋅ |emax|2) , with |D| being the number of developers, |cmax| being the
maximum number of commits of a single developer, and |emax| being the maximum
number of e-mails of a single developer in the project.

 Automated Software Engineering (2022) 29:3

1 3

3 Page 22 of 53

For both commit and e-mail time series, we generate 100 simulated time series
each, except for one subject project. For QEMU, we only generate 2 simulations of
the e-mail time series due to computational limitations.8 See Sect. 8 for a discussion
of threats to validity.

4.5 Hypotheses

Next, we introduce our hypotheses. Each hypothesis is evaluated by varying time
window (1 day, 5 days, 10 days, 15 days) and abstraction levels.

Before introducing our hypotheses, let us explain our numbering scheme for
hypotheses: Our main hypotheses (i.e., H1, H2, and H3) are related to the compari-
son of the different abstraction levels. However, before comparing abstraction levels,
we first check for each of them whether the underlying hypotheses of the original
study hold. We introduce the underlying hypotheses of the original study as sub-
hypotheses of our main hypotheses (i.e., H1.1, H1.2, H1.3, H1.4, H2.1, and H3.1).
To answer our main hypotheses (i.e., to compare the different abstraction levels),
we compare the outcomes of the corresponding sub-hypotheses on the different
abstraction levels. So, for comparing abstraction levels, we lift the particular sub-
hypotheses and define composed hypotheses (i.e., H1+H1.1, H1+H1.2, H1+H1.3,
H1+H1.4, H2+H2.1, and H3+H3.1).

4.5.1 Hypotheses related to C‑bursts

First, we define hypotheses regarding the collaboration of developers. Since features
are higher-level units and are a common concept in software engineering, we formu-
late the following hypothesis:

H1 Feature-based collaboration captures developer collaboration more accurately
than file-based collaboration.

Specifically, due to the nature of features and the extensive use of features by the
developers, we hypothesize that feature-based C-bursts appear more often and with
higher synchronicity degree than file-based C-bursts. Moreover, for the same reason,
we hypothesize that synchronous commits result in higher code growth and lower
implementation effort, since synchronously working on features is more productive
and less laborious. In particular, we define the following four sub-hypotheses, which
we check for file-based and feature-based C-bursts separately:

H1.1 The number of empirical C-bursts is higher than the number of simulated
C-bursts.

8 To identify E-bursts in 100 simulations of QEMU for four different time windows and two abstraction
levels, we would need about 22 months using 40 nodes, having a 2.2 GHz processor, with 20 cores each
in parallel and 128 GB RAM per node.

1 3

Automated Software Engineering (2022) 29:3 Page 23 of 53 3

H1.2 The synchronicity degree of empirical C-bursts is higher than the one of
simulated C-bursts.

H1.3 The code growth �L is higher in synchronous commits than in non-synchro-
nous commits.

H1.4 The implementation effort �W is lower in synchronous commits than in non-
synchronous commits.

We check these sub-hypotheses to examine that developer collaboration is not a
purely random process and has an effect on the number of C-bursts and the con-
sidered characteristics. After checking the four sub-hypotheses for file-based and
feature-based C-bursts separately, we use the results of all four sub-hypotheses and
compare the outcomes for the different abstraction levels to answer H1 conclusively.
In particular, H1 comprises the following hypotheses:

(H1+H1.1) The number of empirical feature-based C-bursts is higher than the
number of empirical file-based C-bursts.

(H1+H1.2) The synchronicity degree of empirical feature-based C-bursts is higher
than the synchronicity degree of empirical file-based C-bursts.

(H1+H1.3) The code growth �L in synchronous commits is higher on features
than on files.

(H1+H1.4) The implementation effort �W in synchronous commits is lower on
features than on files.

If one of the four sub-hypotheses H1.1, H1.2, H1.3, or H1.4 does not hold, we
neglect the corresponding part of H1 since the corresponding characteristic appears
purely random.

4.5.2 Hypotheses related to E‑bursts

Second, as developers converse via mailing lists, we formulate hypotheses regard-
ing which abstraction level of mailing-list communication captures coordination of
developers best. That is, we expect that conversations capture the coordination activ-
ity among developers more accurately than considering individual messages only, as
e-mail conversations represent the conceptual relationship between e-mails.

H2 Conversation-based communication captures developer coordination more
accurately than message-based communication.

In particular, we check the following sub-hypothesis for both conversation-based and
message-based communication, as a high amount of collaboration activity should be
aligned with a high amount of coordination:

H2.1 The relation between the number of C-bursts and the number of E-bursts is
described by a linear relationship.

 Automated Software Engineering (2022) 29:3

1 3

3 Page 24 of 53

For this hypothesis, we consider only developer pairs that have, at least, one
C-burst and, at least, one E-burst, since we aim at analyzing developer pairs that
contribute to the source code and communicate on the mailing list. Here, we use
both our upper-bound and our lower-bound approach and evaluate the hypothesis
separately for both approaches. After checking this sub-hypothesis for all abstrac-
tion levels separately, we compare the strengths of the linear relationships of mes-
sage-based and conversation-based coordination to answer H2 conclusively:

(H2+H2.1) The linear relation between the number of C-bursts and the number of
E-bursts has a higher goodness of fit for conversation-based E-bursts
than for message-based E-bursts.

Also, here, we evaluate the hypothesis separately for the upper-bound and the
lower-bound approach.

4.5.3 Hypotheses related to C‑bursts and E‑bursts

Finally, we investigate the temporal relationship between C-bursts and E-bursts of
developer pairs with the following hypothesis:

H3 The temporal correlation between C-bursts and E-bursts is higher for feature-
based C-bursts than for file-based C-bursts and higher for conversation-based
E-bursts than for message-based E-bursts.

If a C-burst and an E-burst of the same developer pair are temporally related,
this is an indicator of a relationship between these bursts. That is, an E-burst that
appears right before or after a C-burst may address the discussion of the code
changes applied in the C-burst. To answer H3, we check the following sub-
hypothesis for each of the abstraction levels of source code and mailing list to
examine that the empirical DTW distances are not purely random and empirical
C-bursts and E-bursts are dependent processes:

H3.1 C-bursts and E-bursts are temporally correlated, that is, the DTW dis-
tances between empirical C-curves and empirical E-curves are smaller than
between simulated curves.

That is, we expect related C-bursts and E-bursts to appear temporally close to
each other, resulting in smaller DTW distances than for simulated bursts. Again,
we analyze the temporal correlation only of developer pairs which have, at least,
one C-burst and, at least, one E-burst.

After checking the sub-hypothesis, we compare the empirical DTW distances
of the different abstraction levels with each other to answer H3 conclusively:

1 3

Automated Software Engineering (2022) 29:3 Page 25 of 53 3

(H3+H3.1) The DTW distances between C-curves and E-curves are smaller for
feature-based C-bursts than for file-based C-bursts and also smaller for
conversation-based E-bursts than for message-based E-bursts.

We use the E-bursts of our two different approaches separately and evaluate our
hypothesis for both the upper-bound and the lower-bound approach.

4.5.4 Statistical tests

To test the hypotheses, we use a suite of statistical methods. All the above stated
hypotheses are alternative hypotheses.

For H1.1, we use a one-tailed, paired Wilcoxon signed-rank test to compare the
numbers of empirical and simulated C-bursts for each pair of developers. Therefore,
for each of the developer pairs, we compute the median of the numbers of C-bursts
of the 100 simulations and compare this median with the empirical number of
C-bursts of the developer pair. (We use an aggregated measure of the 100 simula-
tions to be able to use a paired test for comparing the real and empirical numbers of
C-bursts per developer pair. To be robust to outliers, we use the median.) Here, we
consider also developer pairs that have no C-burst at all, since the number of devel-
oper pairs having no burst can be different and, therefore, can affect the comparison.
Together with the Wilcoxon signed-rank test, we compute the corresponding effect
size r.9

For H1.2, H1.3, and H1.4, we use a one-tailed, unpaired Mann-Whitney U test:
We compare the whole population of the synchronicity degrees of all empirical
bursts with the whole population of the synchronicity degrees of all 100 simulations
together. We also compute Cliff’s Delta, which quantifies the effect size that corre-
sponds to the Mann-Whitney U test.

For H2 and H2.1, we fit a linear regression model and compare the fitted models
by comparing their adjusted R-square values and p-values.

For H3.1, we use a one-tailed, unpaired Mann-Whitney U test to compare the
empirical DTW distances of all considered developer pairs with the simulated
DTW distances of all simulations together. Note that we use a Mann-Whitney U
test because the number of available data points can be rather small (especially
when using the lower-bound approach, we have only few developer pairs that have,
at least, one C-burst and, at least, one E-burst in some cases), and the data are not
necessarily normally distributed, which we measured using the Shapiro-Wilk test.
Corresponding to the Mann-Whitney U test, we again use Cliff’s Delta to quantify
the effect size.

Finally, for the comparison of the different abstraction levels using a Mann-Whit-
ney U test in the hypotheses H1 and H3, we use False Discovery Rate (FDR) correc-
tion to account for multiple testing.

9 https:// www. rdocu menta tion. org/ packa ges/ rcomp anion/ versi ons/2. 3.7/ topics/ wilco xonPa iredR
(accessed: 2019-02-12).

https://www.rdocumentation.org/packages/rcompanion/versions/2.3.7/topics/wilcoxonPairedR

 Automated Software Engineering (2022) 29:3

1 3

3 Page 26 of 53

5 Results

Next, we present our results.10 To generate the results (including simulations), we
used the following hardware in parallel over several weeks: 40 computation nodes
having a 2.2 GHz processor, with 20 cores each and 128 GB RAM per node. In the
tables and plots that follow, we concentrate on the results for our largest and, there-
fore, most representative subject project QEMU, which also exemplifies the results
of the other projects. For all data and plots, we refer the reader to the supplementary
Web site11.

5.1 C‑bursts

In H1, we state that feature-based collaboration captures developer collaboration
more accurately than file-based collaboration. Before investigating this hypothesis,
we check our four corresponding sub-hypotheses separately for both abstraction
levels.

As we show in Table 9 in the appendix, we found for QEMU that the C-bursts
per developer pair based on files or features occur significantly more frequently than
purely by chance (p < 0.05), independent of the time window � . However, the cor-
responding effect size is very low. The reason for the low effect size is that most
of the developer pairs have no C-burst at all. For example, in QEMU, only ∼ 1% of
the developer pairs have, at least, a C-burst, due to the combinatorial explosion of
developer pairs. Nevertheless, when we restrict our analysis to developer pairs that
have, at least, one C-burst, then we still get significant results (empirical C-bursts
occur more frequently than purely by chance), but we get higher effect sizes (abso-
lute values between 0.59 and 0.90, see also the corresponding tables on our supple-
mentary Web site). Regardless of that, also the overall number of empirical C-bursts
(file-based or feature-based) is higher than the overall number of simulated C-bursts
(using the median of the 100 simulations to get one number per developer pair). For
example, in the file-based analysis with � = 5 , there are 5185 empirical C-bursts,
but only 3122 simulated ones. There are similar results for BUsyBox and opEnssL.
Therefore, we accept H1.1 .

Also, the synchronicity degrees of the empirical C-bursts are significantly higher
than the synchronicity degrees of the simulated C-bursts (see Table 10 in the appen-
dix; p < 0.05) for all abstraction levels and time windows. This holds for each sub-
ject project; for BUsyBox and opEnssL the corresponding effect sizes are even
higher than for QEMU. Hence, we accept H1.2 .

Regarding the code growth of synchronous and non-synchronous commits,
we observe in Table 11 in the appendix that code growth (�L) is, according to
the Mann-Whitney U test (p < 0.05), only in the file-based analysis with � = 1
or � = 5 higher in synchronous commits than in non-synchronous commits of

10 When we state that we accept a certain hypothesis (all our hypotheses are alternative hypotheses, as
stated above), we actually mean that we reject the corresponding null hypothesis.
11 https:// se- sic. github. io/ paper- coord inati on- bursts/

https://se-sic.github.io/paper-coordination-bursts/

1 3

Automated Software Engineering (2022) 29:3 Page 27 of 53 3

QEMU. For other time windows and for the feature-based analysis of QEMU,
this does not hold. In BUsyBox, code growth in synchronous commits is higher
than the code growth in non-synchronous commits only in the feature-based anal-
ysis with � = 10 or � = 15 . In opEnssL, code growth in synchronous commits
is not higher than in non-synchronous commits for both file-based and feature-
based analyses for all chosen time windows � . As we can observe a higher code
growth in synchronous commits than in non-synchronous commits only in some
rare cases, but not in general, we reject H1.3 .

When we look at code effort (Table 12 in the appendix), we find that �W is
not significantly lower in synchronous commits than in non-synchronous com-
mits, in all cases except for the feature-based analysis of QEMU. For BUsyBox
and opEnssL, �W is not lower in synchronous commits than in non-synchronous
commits for all feature-based and all file-based analyses. Hence, as there is no
statistically significant difference, we reject H1.4 .

Finally, to test H1, we compare the outcomes of H1.1 to H1.4 for file-based
and feature-based C-bursts. For H1+H1.1, we see that the number of C-bursts per
developer pair is higher for feature-based C-bursts than for file-based C-bursts. The
Mann-Whitney U tests with FDR correction in Table 13 (left) in the appendix also

QEMU

time window ξ (days)

sy
nc

hr
on

ic
ity

 d
eg

re
e

1 5 10 15

0
0.

2
0.

4
0.

6
0.

8
1

file−based analysis
feature−based analysis

OpenSSL

time window ξ (days)
sy

nc
hr

on
ic

ity
 d

eg
re

e

1 5 10 15

0
0.

2
0.

4
0.

6
0.

8
1

file−based analysis
feature−based analysis

Fig. 8 Box plots of the synchronicity degrees of file-based and feature-based C-bursts at different time
windows for QEMU (left) and opEnssL (right). Outliers are omitted

Table 4 Overview of the results regarding H1 and its sub-hypotheses. ✓ denotes that we accept a (sub-)
hypothesis, ✗ the denotes that we reject a (sub-)hypothesis

H1.1 H1.2 H1.3 H1.4

Files ✓ ✓ ✗ ✗
Features ✓ ✓ ✗ ✗

H1+H1.1 H1+H1.2 H1+H1.3 H1+H1.4 H1

Files vs. features ✓ ✓ ✗ ✗ ✓

 Automated Software Engineering (2022) 29:3

1 3

3 Page 28 of 53

indicate that the number of C-bursts per developer pair is significantly higher for
feature-based C-bursts than for file-based C-bursts (p < 0.05). This holds for all
projects, except for BUsyBox with � = 1 . The low effect sizes arise from the huge
number of developer pairs that have no C-burst at all (due to combinatorial explo-
sion), as stated above. Comparing the results of H1+H1.2, as we show in Fig. 8, the
synchronicity degrees of feature-based C-bursts are always higher than of file-based
C-bursts, for all projects. From the corresponding Mann-Whitney U tests with FDR
correction in Table 13 (right) in the appendix we can see that this is also a signifi-
cant result (p < 0.05), having medium to large effect sizes. As we have already seen
that H1.3 and H1.4 do not hold, we do not need to compare the respective data for
H1. (For the sake of completeness, Table 14 in the appendix contains the results of
the corresponding Mann-Whitney U tests with FDR correction.)

So, overall, we reject H1 (see Table 4), as it holds for the comparison of files
and features of H1+H1.1 in all projects (except for the comparably small pro-
ject BUsyBox with � = 1), and also for the comparison of files and features of
H1+H1.2 in all projects. As H1.3 and H1.4 both do not hold, neither for features,
nor for files, we do not need to take these sub-hypotheses into account for check-
ing our main hypothesis H1. So, based on H1+H1.1 and H1+H1.2, we conclude
that feature-based collaboration captures collaboration statistically more accu-
rately than file-based collaboration in terms of a higher number of bursts and a
higher synchronicity degree.

5.2 E‑bursts

For the comparison of message-based and conversation-based E-bursts, we first test for
H2.1 whether the number of C-bursts and the number of E-bursts for a developer pair
(having, at least, one burst each) are linearly dependent. We do this separately for the
E-bursts extracted with our lower-bound approach and with our upper-bound approach
respectively. Using the upper-bound approach, fitting a linear model on the message-
based E-bursts results in a very small adjusted R-square value of 0.03 (see left plot in
Fig. 9), that is, only 3% of the variance is described by the linear model. Only a high
adjusted R-square value would indicate that the model describes the data points well.

In contrast, still using the upper-bound approach, the linear model of conversa-
tion-based E-bursts and C-bursts fits significantly better, as the adjusted R-square
value of 0.32 in Fig. 9 (right) illustrates. That is, 32% of the variance is described by
the linear model, and hence there is a stronger linear relationship between the num-
ber of C-bursts and the number of E-bursts for conversation-based E-bursts than for
message-based E-bursts.

Switching to the lower-bound approach, we get significant linear models for both
message-based and conversation-based E-bursts, as the adjusted R-square values
of 0.74 (message-based) and 0.35 (conversation-based) indicate (see Fig. 10). This
result holds only for QEMU, though. In BUsyBox and opEnssL, there are too few data
points to fit a significant linear model. Instead of fitting a linear model, we also tried
to compute Spearman’s rank correlation, which also led to similar, non-significant

1 3

Automated Software Engineering (2022) 29:3 Page 29 of 53 3

0 100 200 300 400 500 600 700

0
10

20
30

40
QEMU (message−based, feature−based, ξ=5)

NE

N
C

Goodness of fit:
 p−value: < 2e−16 (t=7.33)
 Adj. R−square: 0.03
 RMSE: 1.44

0 100 200 300 400 500 600 700

0
10

20
30

40

QEMU (conversation−based, feature−based, ξ=5)

NE

N
C

Goodness of fit:
 p−value: < 2e−16 (t=21.01)
 Adj. R−square: 0.32
 RMSE: 1.51

Fig. 9 Upper-bound approach: Linear model fitting for the relationship between the number of C-bursts
(N

C
) and the number of message-based E-bursts (N

E
) (left) and conversation-based E-bursts (right).

Every data point represents one developer pair. Model fitting was applied only to developer pairs having,
at least, one C-burst and, at least, one E-burst (data points above and right respectively of the red hori-
zontal and vertical lines respectively) (Color figure online)

0 100 200 300 400 500 600 700

0
10

20
30

40

QEMU (message−based, feature−based, ξ=5)

NE

N
C

Goodness of fit:
 p−value: < 2e−16 (t=52.17)
 Adj. R−square: 0.74
 RMSE: 0.91

0 100 200 300 400 500 600 700

0
10

20
30

40

QEMU (conversation−based, feature−based, ξ=5)

NE

N
C

Goodness of fit:
 p−value: < 2e−16 (t=11.14)
 Adj. R−square: 0.35
 RMSE: 2.45

Fig. 10 Lower-bound approach: Linear model fitting for the relationship between the number of C-bursts
(N

C
) and the number of message-based E-bursts (N

E
) (left) and conversation-based E-bursts (right).

Every data point represents one developer pair. Model fitting was applied only to developer pairs having,
at least, one C-burst and, at least, one E-burst (data points above and right respectively of the red hori-
zontal and vertical lines respectively) (Color figure online)

Table 5 Overview of the results regarding H2 and its sub-hypothesis. ✓ denotes that we accept a (sub-)
hypothesis, ✗ the denotes that we reject a (sub-)hypothesis

H2.1 (lower bound) H2.1 (upper bound)

Messages ✓ ✗
Conversations ✓ ✓

H2+H2.1 (lower bound) H2+H2.1 (upper bound)

Messages vs. conversations ✗ ✓

 Automated Software Engineering (2022) 29:3

1 3

3 Page 30 of 53

results for these subject projects. Therefore, we accept H2.1 for conversation-
based E-bursts , as it holds for both the upper-bound and the lower-bound approach

of QEMU. However, we reject H2.1 for message-based E-bursts , as we get a sig-
nificant linear model only for the lower-bound approach.

Table 6 Overview of the results regarding H3 and its sub-hypothesis. ✓ denotes that we accept a (sub-)
hypothesis, ✗ the denotes that we reject a (sub-)hypothesis

H3.1 (lower-bound) H3.1 (upper-bound)

✓ (see Table 16, appendix) ✓ (see Table 15, appendix)

H3+H3.1 (lower-bound) H3+H3.1 (upper-bound)

Files vs. features inconclusive inconclusive
Messages versus conversations ✗ inconclusive

Eventually, comparing the results for message-based and conversation-based
E-bursts shows that conversation-based E-bursts have a better linear relation-
ship to the number of C-bursts than message-based E-bursts for most of the
cases when we use the upper-bound approach (see adjusted R-square values in
Fig. 9). Nevertheless, when we use the lower-bound approach, it is the other way
round (see adjusted R-square values in Fig. 10). So, overall, we are inconclusive
regarding H2 (see Table 5).

5.3 C‑bursts and E‑bursts

Finally, we search for temporal correlation between C-bursts and E-bursts by com-
puting the DTW distances of the C-curves and E-curves of each developer pair.

First of all, we investigate whether the temporal correlation of the empirical
C-bursts and E-bursts is different from the correlation in the null model. In Table 15
in the appendix, we state the results of using the upper-bound approach. For QEMU,
message-based E-bursts have significantly smaller DTW distances to C-bursts for all
abstraction levels (files, features) and time windows than in the null model. For con-
versation-based E-bursts, we also obtain significantly smaller DTW distances to the
C-bursts than in the null model. Similar results hold for BUsyBox: Here, we have sig-
nificantly smaller DTW distances for the empirical bursts than for the null model for
all abstraction levels, except for message-based E-bursts and feature-based C-bursts
with � = 5 , � = 10 , or � = 15 . Also for opEnssL we obtain similar findings: There are
significantly smaller DTW distances for the empirical bursts than for the null model
for all abstraction levels, except for feature-based C-bursts and conversation-based
E-bursts with � = 1 or � = 5 and file-based C-bursts and conversation-based E-bursts
with � = 1 . When we use the lower-bound approach instead, the empirical DTW dis-
tances are smaller than the simulated ones in all cases of QEMU and BUsyBox (see
Table 16 in the appendix). For opEnssL, this holds only for message-based C-bursts

1 3

Automated Software Engineering (2022) 29:3 Page 31 of 53 3

and file-based E-bursts with � = 15 . The reason for that is that there are too few data
points: When using the lower-bound approach, we often have zero E-bursts per devel-
oper pair, resulting in empty DTW curves. Hence, for opEnssL, we cannot state any
results regarding H3. When we neglect the cases where we have insufficient data, the
empirical DTW distances are (with few exceptions) shorter for empirical bursts than
for the null model, for both the upper-bound and the lower-bound approach. There-
fore, we accept H3.1 for all abstraction levels .

After comparing the empirical DTW distances with our null models, we now com-
pare the outcomes of the different abstraction levels of the empirical data with each
other. We provide a general overview of the corresponding results for the comparison
of files and features in Table 17 in the appendix and the corresponding results for the
comparison of messages and conversations in Table 18 in the appendix.

When we compare feature-based C-bursts and file-based C-bursts, we can see
that using feature-based C-bursts leads to significantly lower DTW distances than
using file-based C-bursts only if we analyze QEMU with message-based E-mails
(see Table 17 in the appendix). For all the other cases and subject projects, this is
not the case. Note that these results are almost identical for the upper-bound and the
lower-bound approach.

For the comparison of message-based E-bursts and conversation-based E-bursts
we obtain a complex picture (see Table 18 in the appendix). When analyzing QEMU
with the upper-bound approach, using conversation-based E-bursts leads to signifi-
cantly lower DTW distances than using message-based E-bursts, independent from �
and independent from whether using file-based of feature-based C-bursts. However,
when using the lower-bound approach, this does not hold at all. Also for BUsyBox,
no matter which approach and which kind of C-bursts are used, this does not hold
(except for the file-based C-bursts with � = 5 in the upper-bound approach). As we
have seen for H3.1, there are too few data points to state valid results for opEnssL.

Since feature-based C-bursts have only in some cases significantly lower
DTW distances with the E-bursts than file-based ones, and conversation-based
E-bursts do not have significantly lower DTW distances with the C-bursts
than message-based ones (except for QEMU with the upper-bound approach),
we have inconclusive results regarding H3 (see Table 6).

6 What is discussed within E‑bursts?

In Sect. 5, we presented the results of our quantitative analysis of the relation of
C-bursts and E-bursts. The weakness of our quantitative analysis is that it does not
capture whether there is actual coordination of source-code changes in temporally
close-by discussions on the developer mailing list. To alleviate this threat to validity,
we conducted a qualitative analysis to investigate whether our notion of coordination
is reliable. We performed this qualitative analysis only for E-bursts identified via our
upper-bound approach, but not for E-bursts identified via our lower-bound approach.
The reason is that, in the lower-bound approach, for each developer pair, we filter the

 Automated Software Engineering (2022) 29:3

1 3

3 Page 32 of 53

e-mails already by comparing the commit messages of temporally close-by C-bursts
with the e-mail subjects. Hence, in the lower-bound approach, we only get E-bursts
which are content-wise related to the C-bursts of the developer pair. As we cannot
assume anything regarding the relation of C-bursts and E-bursts for the upper-bound
approach, we perform this qualitative analysis to find out to which extent temporally
close-by C-bursts and E-bursts are indeed content-wise related.

In a first step, we manually checked for all developer pairs with, at least, five C-bursts
and five E-bursts whether the content of e-mails of an E-burst is related to the commits
of the temporally close-by C-bursts. As this is a very time-consuming manual task, we
only performed this for conversation-based E-bursts and only for � = 15 . So, we manu-
ally looked at 56 E-bursts of BUsyBox, 49 E-bursts of opEnssL, and 766 E-bursts of
QEMU. In BUsyBox, 29% of these E-bursts are content-wise related to a C-burst of
the same developer pair; in opEnssL we found that 41% of the E-bursts are related to
a C-burst, and in QEMU this holds even for 47%. Throughout our manual analysis, we
identified different kinds of how C-bursts and E-bursts are related: In most cases, the
e-mail subject is related to the commit message or the e-mail content even contains
parts of the commit message or the patch itself. Also, certain key words are often used
in commit messages or code patches that are also used in the content or subject of an
e-mail. In addition to that, we also were able to match C-bursts and E-bursts by inspect-
ing the file names of the changed files and searching for them in the e-mail subject or
content. However, in cases where we decided that all the e-mails of an E-burst are not
related to C-bursts of the same developer pair, we had a closer a look at the content of
these E-bursts to find out what these conversations are about. It turned out that these
conversations are mostly about future plans of the software project or organizational
matters (e.g., coding conventions, contribution guides, workflows, or future releases).
However, there are also lots of discussions regarding bugs or problems identified by
users (even though we analyzed only developer mailing lists). This is also supported
by the results of previous research: Guzzi et al. (2013)) analyzed the communication
in mailing lists of OSS projects and found that only about 35% of the discussions are

Table 7 The results of our qualitative analysis using our mention rate, that is, the percentage of C-bursts
whose artifacts (file names and feature names respectively) are mentioned in a temporally close-by
E-burst of the same developer pair

� QEMU BUsyBox opEnssL

Messages
(%)

Convers.
(%)

Messages
(%)

Convers.
(%)

Messages
(%)

Convers.
(%)

Files 1 34 9 10 5 1 0
5 50 13 15 8 4 1
10 55 15 19 10 6 1
15 59 17 24 12 9 2

Features 1 41 8 14 12 0 0
5 62 12 24 15 2 0
10 69 14 30 21 4 0
15 72 16 33 24 6 1

1 3

Automated Software Engineering (2022) 29:3 Page 33 of 53 3

related to actual source-code changes. Nevertheless, in our study, up to one half of all
the E-bursts are directly related to co-edits, which justifies our assumption that the
developer mailing lists are used to coordinate source-code changes.

In a second step, we used an automatic approach to determine whether C-bursts
and E-bursts are content-wise related. We calculated a mention rate for file names
and feature names in E-bursts. That is, we determine the percentage of C-bursts
whose artifacts (at least, one) are mentioned in temporally close-by E-bursts. In
Table 7 we present the results of this analysis. As we can clearly see, the results dif-
fer between subject projects and abstraction levels. The mention rates are higher for
message-based E-bursts than for conversation-based E-bursts. This is not surpris-
ing as the message-based E-bursts contain also single e-mails that are not related to
other e-mails and, therefore, the chance for a file or feature of a C-burst to be men-
tioned is higher than for conversation-based ones, due to the potentially higher num-
ber of e-mails that are contained in E-bursts. Mention rates for file-based C-bursts
are higher than for feature-based C-bursts as file names are used more often due
to technical reasons (source code is organized in files). Overall, we can see that
the mention rate ranges from 0 to 72%, which indicates that temporally close-by
C-bursts and E-bursts are related in many cases. However, the exact file names or
exact feature names need not be mentioned when coordinating software changes.
Sometimes, developers may paraphrase which feature or file they are talking about
without directly stating the name of the file or feature. Hence, our mention rate only
covers a (possible small) part of the actual relation of C-bursts and E-bursts.

In a third step, we evaluated whether the e-mail filtering of our lower-bound
approach is reasonable. So, we automatically checked for each commit of a C-burst
whether there is, at least, one e-mail in the E-bursts of the same developer pair
whose subject is equal to the beginning of the commit message. (Notice that we
removed auto-generated prefixes of the e-mail subjects that match standard patterns
like Re: or Fwd: or [PATCH] and alike before performing this analysis). We present
the results of this check in Table 8: For QEMU, almost all commits of a C-burst are

Table 8 The results of determining the percentage of commits of C-bursts whose commit messages map
with the subject of, at least, one e-mail of an E-burst of the same developer pair

� QEMU BUsyBox opEnssL

Messages
(%)

Convers.
(%)

Messages
(%)

Convers.
(%)

Messages
(%)

Convers.
(%)

Files 1 86 31 0 0 0 0
5 97 43 2 2 0 0
10 98 44 28 23 2 0
15 98 45 24 21 5 0

Features 1 84 21 0 0 0 0
5 95 32 0 0 0 0
10 97 36 6 3 2 0
15 98 41 8 4 4 0

 Automated Software Engineering (2022) 29:3

1 3

3 Page 34 of 53

related to, at least, one e-mail of an E-burst of the same developer pair, using mes-
sage-based e-mails. When only investigating e-mails belonging to the same thread,
as in conversation-based E-bursts, the percentage of commits of C-bursts whose
commit messages match the subject of, at least, one e-mail of an E-burst is much
lower. This might be the case because we neglect single e-mails not belonging to
a thread: Some of the automatically generated e-mails, whose subjects match com-
mit messages, just contain the patch, whereas the discussion of this patch can take
place in an e-mail thread different from the patch. So, the corresponding thread for
the discussion of the patch can have a slightly different subject, which cannot be
matched in this analysis. For BUsyBox and opEnssL it is only rarely the case that
commit messages and e-mail subjects can be mapped to each other, as those do not
have such a strict commit policy to send patches to the mailing list as QEMU. As a
consequence, our lower-bound approach (in which we also map commit messages
with e-mail subjects) seems to be a reasonable filtering of the e-mails before E-burst
identification, at least, for the subject project QEMU.

7 Discussion

7.1 C‑bursts (H1)

Our study confirms that, for all abstraction levels and time windows, synchronous
development is not a purely random process where developers’ activities are statisti-
cally independent. Knowing that our operationalization of synchronous development
does not occur purely by chance, we analyze the synchronicity degree of the identi-
fied C-bursts, which is also higher than for randomly generated C-bursts. Altogether,
our results show that considering the concept of synchronous development in OSS
projects is well-founded. This is in line with the original study.

Code growth in synchronous development is, in most cases, lower than in non-
synchronous development. This is contrary to the outcomes of the original study.
The reason for this is that, in synchronous development, not only the number of
added lines is higher, but also the number of deleted lines. H1.3 ignores that high
coding activity in synchronous development does not necessarily incur high code
growth. This also affects code effort, which is, in most cases, higher in synchro-
nous commits than in non-synchronous commits. This is in contrast to H1.4 and,
therefore, also in contrast to the results of the original study. As code additions and
deletions are both higher in synchronous commits, we conclude that, in synchronous
development, more lines are changed than in non-synchronous development. Hence,
due to higher coding activity in terms of LOC, analyzing synchronous development
is useful for understanding developer collaboration.

Finally, there are differences between abstraction levels. First, the number of
feature-based C-bursts per developer pair is significantly higher than the number of
file-based C-bursts per developer pair, which supports our reasoning that collabora-
tion on features is more common than on files. Feature-based collaboration is not
only more common, but also has higher synchronicity degrees. These results suggest

1 3

Automated Software Engineering (2022) 29:3 Page 35 of 53 3

that developer collaboration rather takes place at the level of features, which seem
to represent the developers’ mental model of the software system more appropri-
ately. Consequently, further studies on the collaboration of developers should pursue
a more higher-level view.

7.2 E‑bursts (H2)

According to our results, the number of C-bursts and the number of E-bursts per
developer pair correlate only weakly. We use the goodness of the linear fit to assess
whether message-based or conversation-based E-bursts lead to identifying a stronger
statistical dependence between the amount of collaboration and the amount of com-
munication. Contrary to the original study (which only considered message-based
E-bursts of the upper-bound approach), the goodness of the linear fit is lower in our
analysis, but when we use conversation-based E-bursts, we get a similar linear fit as
the original study reported for message-based E-bursts. The difference between our
message-based results and the message-based results of the original study may be
due to different sizes of the projects in terms of developers and in terms of e-mails,
as our largest subject projects has 951 developers and 374,815 e-mails, whereas the
largest subject project of the original study had 72 developers and 11,865 e-mails.
As there is huge difference in the size of the projects, there may be also differences
in the organizational structure of the projects, resulting in different numbers of
E-bursts. In the following, we compare message-based and conversation-based com-
munication. We discuss our outcomes regarding H2 here only based on the results
of QEMU, as we cannot draw reliable conclusions from BUsyBox and opEnssL. See
Sect. 8 for the discussion of the corresponding threats to validity.

When we look at message-based E-bursts arising from the upper-bound approach,
where we keep all e-mails for E-burst identification, we see that the number of resulting
E-bursts is too high, as the goodness of fit of the linear model is rather weak. Keep-
ing the upper-bound approach but identifying E-bursts only among e-mails which are
content-wise related (conversation-based), we get a lower number of E-bursts, resulting
in a better goodness of fit with the number of C-bursts than for message-based E-bursts.

When using the lower-bound approach, we recognize the opposite behavior:
Conversation-based E-bursts lead to a lower goodness of fit than message-based
E-bursts. An explanation might be that, in the lower-bound approach, we filter the
e-mails before E-burst identification by checking whether their subject is part of the
beginning of a commit message of a C-burst of the same developer pair. Due to this
filtering, we already narrowed down the number of E-bursts to keep only those for
which we are sure that they are related to a C-burst. When we then construct con-
versation-based E-bursts, the number of E-bursts is narrowed down again as e-mails
need to belong to the same thread to form an E-burst. Hence, the number of E-bursts
may be too small in the end.

As a lesson learned, only focusing on conversations of e-mails, of which we can
be sure that they are related to C-bursts, is a too severe restriction of the view of
coordination. The actual truth with respect to the identification of E-bursts is some-
where in-between our lower-bound and upper-bound approach.

 Automated Software Engineering (2022) 29:3

1 3

3 Page 36 of 53

When looking at the goodness of fit in general, the linear model fitted on con-
versation-based E-bursts in the upper-bound approach describes only less than
40% of the variance, the linear model fitted on the message-based E-bursts in the
lower-bound approach describes around 75%. Such low percentages are not unex-
pected since developers may often send e-mails to the mailing list without contribut-
ing to the source code at temporally close time. For instance, they can comment on
other issues or discuss topics independent from the source code (Guzzi et al. 2013).
Furthermore, multiple C-bursts may be discussed in one E-burst, whereas several
E-bursts can address one single C-burst. That is, the number of C-bursts does not
necessarily need to correlate with the number of E-bursts, as bursts can last differ-
ently long and discussions on inter-related topics among co-edits are possible. For
the lower-bound approach, in particular, we can draw two subsequent conclusions
from that: (1) Coordination of co-edits may not always happen within the same
e-mail thread, as using thread information leads to a lower correlation with the num-
ber of C-bursts, and (2) coordination may not only take place via e-mails that are
related to specific commits indicated by the e-mail subject and the commit message,
as considering only commit-related e-mails is a strong restriction, which drastically
reduces the number of E-bursts compared to the upper-bound approach.

7.3 C‑bursts and E‑bursts (H3)

Even though we found that features are a suitable abstraction (H1) and that a more
nuanced view on e-mail communication (a message-based view for the lower-bound
approach and a conversation-based view for the upper-bound approach) is valuable
(H2), we often cannot find significant differences between the DTW distances on
different abstraction levels (although the empirical DTW distances are significantly
smaller than for the corresponding null models, which is in line with the results of
the original study, where the authors used correlation coefficients instead of DTW
distances).

When we compare file-based coordination with feature-based coordination, we
can see that there is mostly no significant difference. When using message-based
E-bursts in QEMU, feature-based C-bursts have smaller DTW distances to the
E-bursts than file-based ones. This shows us that message-based communication in
QEMU is more related to coordinating feature-based collaboration than to coordi-
nating file-based collaboration. As this does not hold for conversation-based com-
munication and also not for other projects, we cannot generally assume that feature-
based coordination reveals a stronger statistical dependence between developers’
pairwise technical activities and their social activities than file-based coordination.

Also the comparison of message-based and conversation-based abstraction does
not show significant differences, at least, when using our lower-bound approach.
That is, in this case, a lot more C-bursts than E-bursts occur per developer pair, so
the number of matched C-bursts and E-bursts is comparably small. Even if there
are more message-based E-bursts than conversation-based ones, in the end, the dif-
ferentiation here does not matter, since, in both cases, many C-bursts do not have a

1 3

Automated Software Engineering (2022) 29:3 Page 37 of 53 3

corresponding E-burst. For the upper-bound approach, in most cases, conversation-
based E-bursts lead to identifying a stronger statistical dependence between collabo-
ration and communication than message-based E-bursts. Thus, if there are enough
communication data, a more nuanced view on the communication of developers
describes coordination among developers more precisely than simply looking at sin-
gle messages.

Nevertheless, the correlation between C-bursts and E-bursts is for both the upper-
bound and the lower-bound approach higher than in the null model. This demon-
strates a significant statistical dependence between collaboration and communica-
tion, which implies that developer coordination is actually taking place, but depends
on many variables.

7.4 Research questions (RQ1 and RQ2) and perspectives

In RQ1, we asked for the abstraction level of source code which captures collabora-
tion of developers best in terms of a stronger statistical dependence between tech-
nical activities of developers. As discussed in Sect. 7.1, collaboration takes place
mostly and most synchronously at the level of features. This is intelligible given the
characteristic, user-visible dimension of features. So, a higher-level view on devel-
oper collaboration should be pursued in further work.

In RQ2, we looked for the best abstraction level of developer coordination in
terms of a stronger statistical dependence between the technical activities and the
social activities on the mailing list. Our results suggest that lifting the study of devel-
oper coordination to a conversation-based model is worthwhile and sometimes even
required. However, for temporal alignment of coding and communication, many dif-
ferent aspects matter, which shall be explored in further studies.

To summarize, the correlation of collaboration and communication activities of
developers depends on many variables. We did not observe any universal devel-
oper behavior when comparing the coordination using feature-based and file-based
C-bursts, nor when comparing the coordination using message-based and conversa-
tion-based E-bursts. We noticed that, to some extent, the relationship between col-
laboration and communication is project dependent, which needs to be taken into
account to refine the general measurement method toward a specific setting.

As the null model essentially captures the case in which developers’ technical
activities and social activities are performed independently at random and, since
we see a departure from the null model in our empirical data, there is a stochas-
tic dependence between developers’ technical activities and their social activities.
This is in line with the outcomes of the original study and indicates some extent of
alignment in terms of time and structure between the technical realm and the social
realm, which is sometimes referred to as socio-technical congruence. Our approach
relies on a more dynamic interpretation of socio-technical congruence than in most
previous work: We use dynamic time warping to identify the alignment of technical
and social activities, whereas previous work adequately ignored the dynamic nature
of the phenomenon and searched for an alignment within static time windows, as,

 Automated Software Engineering (2022) 29:3

1 3

3 Page 38 of 53

for instance, in the work of Joblin et al. (2017b)) (see Sect. 9 for more details on
that).

The stochastic dependence between collaboration and coordination that we have
identified has practical value because it helps to reduce the uncertainty when mak-
ing predictions. For example, if we know that a pair of developers was involved in a
huge number of C-bursts and we know that C-bursts and E-bursts are dependent, we
may build a model that predicts for their joint technical activity the need for coor-
dinating their work. In addition, we could think about exploiting the relationship
between two developers represented by a C-burst to predict which files or features
a developer is likely to work on next by considering past C-bursts. We could also
search for missing dependences between collaboration and coordination and inves-
tigate how the quality of the development process and the developed artifacts are
affected. For instance, one could check whether there are more bugs and other issues
on a specific artifact if there is no E-burst related to a C-burst on the considered arti-
fact, to get an even more detailed view on how software development is influenced
by coordinating activities. Finally, as we have identified stronger statistical depend-
ences when using higher-level views on the abstraction levels of collaboration (i.e.,
features) and coordination (i.e., a more content-related view), it is more feasible to
execute the described ideas using these abstraction levels.

8 Threats to validity

8.1 Internal validity

The results of our study rely on the performance and correctness of CodEfaCE as we
extract all the commit and e-mail data using this tool. For the extraction of feature
code, CodEfaCE relies in turn on Cppstats, which has already been used to extract
feature code in other empirical studies (Liebig et al. 2010; Hunsen et al. 2016, 2020;
Berger and Guo 2013; Fenske et al. 2005; Schulze and Fenske 2018; Feigenspan
et al. 2013; Medeiros et al. 2015). Even if preprocessor annotations are not used
the same way in different projects, preprocessor annotations are a well-established
means to denote feature-specific code.

In our study, we do not consider changes to header files, documentation files, and
build files. This affects our results only barely, though, as the number of changes
of build files or documentation files is comparably low. In addition, in non-imple-
mentation files, mostly, there is no variability implemented. Thus, considering non-
implementation files would cause an imbalance among the abstraction levels.

As the studied projects predate the existence of the version-control system Git,
the commits in the Git history at the beginning of the analyzed time range of all
three subject projects had originally been imported from the previously used ver-
sion-control system sVn, which had a slightly different operationalization of com-
mits. However, to the best of our knowledge, this does not threaten our notion of
C-bursts, as the import of sVn commits into Git did preserve authoring timestamp,
author, and code changes.

1 3

Automated Software Engineering (2022) 29:3 Page 39 of 53 3

The validity of our results could potentially be threatened by the occurrence of
bots that automatically send e-mails to the mailing list (e.g., when a commit is added
to the VCS). This could lead to identifying E-bursts between bots and developers,
which could be mitigated by detecting and filtering bots’ e-mails (e.g., based on spe-
cific e-mail patterns used by the respective bot). However, this is not relevant in our
study as the subject projects we analyzed, to the best of our knowledge, do not use
such bots, which we have checked on a sample basis using the information from both
the projects’ Web sites and e-mail headers of the e-mails sent to the mailing lists.

For both commit and e-mail time series, we generated 100 simulated time series
each per project. Due to the sheer size and complexity (that is, generating an indi-
vidual simulation of the e-mail time series separately for each developer pair), we
were not able to achieve this for the e-mail time series of QEMU (which has 451,725
developer pairs). While this threatens the validity of the results of H3.1, all other
results confirm that the involved processes are significantly different from the null
model and thus not purely random.

We introduce synchronicity degree and DTW distances describing the tempo-
ral correlation between C-curves and E-curves. For the synchronicity degree, we
designed a metric that reasonably considers the size of commits. For the DTW dis-
tances, we rely on the fact that the technique of DTW is well-established and can
be properly restricted regarding the distance measurement (i.e., the Sakoe–Chiba
band (Sakoe and Chiba 1978)).

The sparseness of the data threatens the validity of our study: The number of
developer pairs having, at least, one C-burst and, at least, one E-burst is low
(∼ 0.2%), although, this is expected since not all developers actually collaborate.
This is also the reason why we also consider developer pairs that have no bursts in
our C-burst-related analysis.

BUsyBox and opEnssL have only few developer pairs involved in, at least, one
C-burst and one E-burst. So, we cannot draw reliable conclusions from these pro-
jects regarding the relationship between the number of C-bursts and the number of
E-bursts. Nonetheless, as the number of E-bursts is narrowed down to zero with the
lower-bound approach in some cases of opEnssL, we should take a closer look at
the different code-contribution practices of the different projects: Whereas there is a
policy in QEMU12 to send patches to the mailing list and discuss them there, other
projects, such as opEnssL, do not have such a strict code-contribution policy. As
a consequence, on the QEMU mailing list, there are lots of e-mails that contain a
patch and therefore, automatically, contain the title of the corresponding commit
message in their e-mail subjects, whereas in other projects like opEnssL this is not
the case that often. Hence, our lower-bound approach is limited to the strictness of
the patch-contribution policy of the respective subject project.

We rely on mailing lists as the only communication channel, although develop-
ers may happen to use further channels (e.g., personal e-mails or verbal communi-
cation) (Storey et al. 2017). We mitigate this threat by selecting only projects that

12 https:// wiki. qemu. org/ Contr ibute/ Submi tAPat ch/ (accessed: 2019-02-12).

https://wiki.qemu.org/Contribute/SubmitAPatch/

 Automated Software Engineering (2022) 29:3

1 3

3 Page 40 of 53

have a historically rich and well-established mailing list for discussing software
architecture and reviewing code changes and also subject projects which have man-
dates regarding patch submission to the mailing list prior to being accepted (Rigby
et al. 2008; Sommerville 2010; Ramsauer et al. 2019; Draheim and Pekacki 2003).
In addition, more recently introduced social-coding platforms (e.g., GitHUB) are
too young for history analysis, whereas the mailing lists of our subject projects date
back more than 10 years (see Table 2).

Finally, we did not perform a linguistic analysis of the e-mail data. Hence, the
communication on the mailing list may partly concern other issues than coordinat-
ing source-code changes. We alleviate this by considering only e-mails of develop-
ers who also contributed to the source code of the corresponding project. Moreover,
we performed a qualitative analysis to check whether there is a content-wise correla-
tion between temporally close-by C-bursts and E-bursts (see Sect. 6).

8.2 External validity

We have analyzed three different OSS projects, which differ in size, commit poli-
cies, and application domain. Due to the high computation time and huge memory
consumption of our approach, we cannot analyze more than these three subject pro-
jects within a reasonable amount of time and memory. While one cannot generalize
our findings arbitrarily—as always in such a study—we have substantial data for
three large, highly active, and widely deployed OSS projects, which gives us rele-
vant insights into the behavior of collaboration and coordination at different abstrac-
tions levels.

The restriction to preprocessor annotations as means for locating feature-specific
code may threaten external validity, as they are mostly specific to C. Preprocessor
annotations are well-established in OSS to implement features (e.g., Ernst et al.
2002; Liebig et al. 2010; Apel et al. 2013; Hunsen et al. 2016, 2020), but the find-
ings may vary in detail for other feature implementation techniques, though not the
big picture.

9 Related work

Beside the study of Xuan and Filkov (2014), which we reproduce and extend, there
has been various research on the relationship between development and communica-
tion between developers. Herbsleb and Grinter (1999) conducted a study on coor-
dination in geographically distributed software projects. They found that ad-hoc
communication between developers is one of the most important parts of today’s
well-working software development. Related studies (Cataldo and Herbsleb 2013;
Herbsleb and Mockus 2003; Mockus et al. 2002; Crowston and Howison 2005;
de Souza et al. 2005) showed that coordination in software projects affects software
quality and that considering social aspects, such as communication of developers,
is essential for understanding OSS projects. We extend on these by considering the

1 3

Automated Software Engineering (2022) 29:3 Page 41 of 53 3

temporal and content-wise dependency between communication and technical activ-
ities from a higher-level perspective.

The authors of the original study enhanced their work by identifying patterns on
the time series of working activity in terms of source-code commits and communi-
cation activity in terms of replying to e-mails on the mailing list for developer pairs,
which indicate that collaboration on source-code artifacts and coordinating events
on the mailing list are temporally related (Xuan et al. 2016).

Gharehyazie and Filkov (2017) extended the original study by not investigat-
ing pairs of developers but groups of developers working on the same source-code
artifacts temporally close-by. In their work, they analyzed whether the size of such
groups is purely random and how often developers work in groups rather than work-
ing alone. Contrary to our work, they chose an even more coarse-grained level of
abstraction and analyzed source-code changes on package level. Similarly to our
qualitative analysis, they manually checked for coordination of a developer group
by searching for file names of temporally close-by edited files within e-mails of the
developer group, resulting in finding actual coordination on the mailing list. In addi-
tion, they performed developer surveys which confirmed their results, which is also in
line with the hypotheses of our study. They also analyzed if the code growth is higher
and the corresponding effort is lower for developers working in groups than solely. In
line with our results, they only identified rare projects where this hypothesis holds.

In previous work, researchers used network approaches to describe the collabora-
tion and coordination of developers: López-Fernández et al. (2006) constructed net-
works representing mutual contributions of developers to the same software module,
that is, to files contained in the same directory. Jermakovics et al. (2011) built net-
works based on co-editing files, and Toral et al. (2010) analyzed social communi-
ties on e-mail networks that arose from software development. Joblin et al. (2015)
constructed developer networks based on co-commits on source-code artifacts, espe-
cially at the more fine-grained level of functions, and used network analysis tech-
niques to gain more information on collaboration. In contrast to our work, none of
these analyzed features, and they also neglected temporal aspects.

Joblin et al. (2017b) analyzed structural and evolutionary trends of developer
coordination using an evolutionary network approach, though synchronicity between
collaboration at the code level and communication via e-mail was not in their focus,
nor the characteristic, user-visible level of features.

Bacchelli et al. (2010) analyzed the e-mail communication of OSS projects,
determined the much discussed source-code artifacts, and investigated the defect-
proneness of those artifacts. Bird et al. (2006, 2008) investigated whether coding
activities on files are related to communication on the mailing list by focusing on
collaboration within sub-communities and analyzing e-mail social networks. In our
study, we measure the synchronicity of co-edits and directly compare synchronous
development on files or features to e-mail communication using state-of-the-art
time-series analysis.

Jiang et al. (2014) linked commits to certain e-mails on the mailing list by com-
paring commits to previously submitted patches on the mailing list. Also, Ramsauer
et al. (2019) use a similar approach. Compared to our study, they explicitly trace back

 Automated Software Engineering (2022) 29:3

1 3

3 Page 42 of 53

commits (that is, changed source-code lines) to e-mails that contain these changed
source-code lines as part of a patch, whereas we are interested in all kinds of e-mails
that are in some way related to certain code changes, not necessarily containing patches
changing exactly the lines which are changed in a commit. Coordination of certain
changes may cover more discussions and high-level design decisions than just submit-
ting or discussing patches. Ali et al. (2013) mined software repositories to build trace-
ability links between source code and textual requirements documents using advanced
information-retrieval techniques. As we look for relationships between code changes
and communication among developers, we also link textual documents (sets of e-mails)
to source-code changes, but as we are more interested in the coordination activities than
the concrete content, we do not use advanced information-retrieval techniques.

10 Conclusion

The success of software projects, in particular, large-scale, globally distributed
projects, relies essentially on the coordination of co-edits to the source code, as
previous work has shown (Crowston and Howison 2005; Cataldo and Herbsleb
2013; Kwan et al. 2011). Co-editing source code is a common way of perform-
ing bug fixes, refactorings, enhancements, and adding new features concur-
rently (Singh 2010). We investigated the relationship between co-editing activ-
ities and communication on the mailing list for three highly active and widely
deployed OSS projects using different abstraction levels.

In a nutshell, we demonstrated that a more abstract, higher-level view on source
code (features) captures the notion of developer collaboration and synchronicity
of co-edits more precisely than a less abstract, technical view (files). Furthermore,
we found that a more nuanced view of communication substantially increases the
correlation between co-editing and coordinating e-mail activities compared to a
simple message-based view, which is reasonable since coordination of developers
comprises collections of conceptually related e-mails. We did not observe a general
picture regarding the temporal correlation between co-editing code and e-mail com-
munication, though, which depends to a good extent on the project setting at hand.

Overall, we found evidence that a more abstract and higher-level perspective
captures the developers’ collaboration and coordination activities more accurately
than a sole technical perspective. This is not unexpected because developers typi-
cally think in terms of features and topics when building mental models of soft-
ware rather than in terms of technical artifacts or individual text messages. Fur-
ther studies in this area should take this perspective into account.

1 3

Automated Software Engineering (2022) 29:3 Page 43 of 53 3

Appendix

Dynamic time warping and Sakoe–Chiba band

Dynamic Time Warping (DTW) tries to align two time series of equal length with each
other by traversing a matrix D beginning in D(0, 0) and ending in D(n, n), where 0 and
n are the earliest and latest time of the two time series. Using dynamic programming and
calculating cumulative sums of distances on the path, DTW explores the whole matrix
space to find the path of the shortest distance (Rabiner and Juang 1993; Berndt and Clif-
ford 1994; Keogh and Pazzani 2001). The Sakoe–Chiba band only allows exploring cells
in the matrix at which the absolute distance of the compared data is less than or equal to
the chosen band-window size. So, only data points of the two time series get matched that
have an absolute distance less than or equal to the chosen band-window size (Sakoe and
Chiba 1978). In our study, this prohibits that a C-burst and an E-burst that occur tempo-
rally extremely distant to each other get matched by the DTW algorithm. (How we use
DTW is described in Sect. 3.6.)

 Automated Software Engineering (2022) 29:3

1 3

3 Page 44 of 53

Algorithms

Algorithm 4 Generation of simulated C-bursts
Input: list of commits c (annotated with timestamps and developer names)
1: � generate simulated commit time-series
2: csim ← ∅
3: for each developer D do
4: cD ← commits in c authored by D
5: t(D) ← sorted list of timestamps of cD
6:
7: � create an ordered list intervals to store the lengths
8: � of intervals between two subsequent commits of D
9: for i in 2 : length(t(D)) do
10: interval ← t(D)i − t(D)i−1
11: intervalsi ← interval
12: end for
13:
14: � randomize the order of the intervals, but keep the same distribution
15: randomizedIntervals ← shuffle the elements in intervals
16:
17: � generate simulated list of timestamps s(D)
18: s(D)1 ← t(D)1
19: for i in 2 : length(t(D)) do
20: s(D)i ← s(D)i−1 + randomizedIntervalsi−1
21: end for
22: cD,sim ← update the timestamps in the list of commits cD according to s(D)
23: csim ← csim ∪ cD,sim

24: end for
25:
26: � extract simulated C-bursts
27: apply Algorithm 1 to the simulated commit list csim
Output: simulated C-bursts for each pair of developers

1 3

Automated Software Engineering (2022) 29:3 Page 45 of 53 3

Algorithm 5 Generation of simulated E-bursts
Input: list of e-mails e (annotated with timestamps and developer names)
1: � generate a simulated e-mail time-series for each pair of developers
2: for each pair of developers {A,B} do
3: e{A,B} ← e-mails in e sent by A or B
4: t(A,B) ← sorted list of timestamps of e{A,B}
5:
6: � create an ordered list intervals to store the lengths
7: � of intervals between two subsequent e-mails sent by A or B
8: for i in 2 : length(t(A,B)) do
9: interval ← t(A,B)i − t(A,B)i−1
10: intervalsi ← interval
11: end for
12:
13: � randomize the order of the intervals, but keep the same distribution
14: randomizedIntervals ← shuffle the elements in intervals
15:
16: � generate simulated list of timestamps s(A,B)
17: s(A,B)1 ← t(A,B)1
18: for i in 2 : length(t(A,B)) do
19: s(A,B)i ← s(A,B)i−1 + randomizedIntervalsi−1
20: end for
21: e{A,B},sim ← update the timestamps in the list of e-mails e{A,B} using s(A,B)
22:
23: � extract simulated E-bursts
24: apply E-burst extraction to pair {A,B} using e{A,B},sim, as described in Section 2.2
25: end for
Output: simulated E-bursts for each pair of developers

Result tables

Here, we only present some selected result tables for our largest subject project
QEMU (Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18). For all data and results,
we refer the reader to our supplementary Web site: https:// se- sic. github. io/ paper-
coord inati on- bursts/.

https://se-sic.github.io/paper-coordination-bursts/
https://se-sic.github.io/paper-coordination-bursts/

 Automated Software Engineering (2022) 29:3

1 3

3 Page 46 of 53

Table 9 Paired, one-tailed Wilcoxon signed-rank test for comparing empirical simulated numbers of
C-bursts per developer pair (H1.1). (We use the median of all simulations to get one value per developer
here.)

s denotes the standard deviation. V represents the V-statistic of the Wilcoxon signed-rank test, the cor-
responding p-value indicates whether the alternative hypothesis H1.1 is accepted (p < 0.05) or not.
r denotes the effect size corresponding to the paired Wilcoxon signed-rank test

bursts (mean ± s)

QEMU � Empirical Simulated V p-value r

Files 1 0.005 ± 0.117 0.002 ± 0.079 706,200 < 0.05 − 0.041
5 0.011 ± 0.235 0.007 ± 0.213 2,948,700 < 0.05 − 0.045
10 0.017 ± 0.305 0.012 ± 0.280 5,925,700 < 0.05 − 0.047
15 0.022 ± 0.340 0.015 ± 0.310 8,491,000 < 0.05 − 0.048

Features 1 0.008 ± 0.163 0.004 ± 0.136 257,870 < 0.05 − 0.040
5 0.023 ± 0.296 0.016 ± 0.302 1,908,400 < 0.05 − 0.038
10 0.036 ± 0.343 0.026 ± 0.352 4,973,200 < 0.05 − 0.036
15 0.044 ± 0.373 0.035 ± 0.377 8,208,900 < 0.05 − 0.032

Table 10 One-tailed Mann-Whitney U test for comparing synchronicity degrees (H1.2)

s denotes the standard deviation. U represents the U-statistic of the Mann-Whitney U test, the corre-
sponding p-value indicates whether the alternative hypothesis H1.2 is accepted (p < 0.05) or not. Cliff’s
Delta denotes the corresponding effect size

degsync (mean ± s)

QEMU � Empirical Simulated U p-value Cliff’s
Delta

Files 1 0.466 ± 0.352 0.340 ± 0.306 169,020,000 < 0.05 0.207
5 0.369 ± 0.325 0.296 ± 0.284 1,403,200,000 < 0.05 0.123
10 0.332 ± 0.308 0.270 ± 0.269 3,296,700,000 <0.05 0.110
15 0.307 ± 0.297 0.254 ± 0.260 5,078,600,000 < 0.05 0.097

Features 1 0.642 ± 0.307 0.601 ± 0.311 47,697,000 < 0.05 0.076
5 0.609 ± 0.310 0.584 ± 0.309 418,200,000 < 0.05 0.048
10 0.603 ± 0.307 0.575 ± 0.307 981,100,000 < 0.05 0.054
15 0.590 ± 0.308 0.565 ± 0.307 1,509,200,000 < 0.05 0.047

1 3

Automated Software Engineering (2022) 29:3 Page 47 of 53 3

Table 11 One-tailed Mann-Whitney U test for comparing code growth �L of synchronous and non-syn-
chronous commits (H1.3)

s denotes the standard deviation. U represents the U-statistic of the Mann-Whitney U test, the corre-
sponding p-value indicates whether the alternative hypothesis H1.3 is accepted (p < 0.05) or not. Cliff’s
Delta denotes the corresponding effect size

�L (mean ± s)

QEMU � Synchronous Non-synchronous U p-value Cliff’s
Delta

Files 1 42.647 ± 732.059 39.235 ± 263.358 96,963,000 < 0.05 0.059
5 34.986 ± 515.489 42.769 ± 285.679 152,310,000 < 0.05 0.023
10 34.232 ± 448.141 46.100 ± 308.759 158,750,000 0.22 0.005
15 32.979 ± 415.286 51.160 ± 339.906 147,620,000 0.91 − 0.009

Features 1 53.356 ± 310.371 78.065 ± 366.911 6,548,900 1.00 − 0.062
5 47.646 ± 269.631 96.741 ± 422.171 7,994,600 1.00 − 0.104
10 48.250 ± 262.206 108.914 ± 460.593 7,356,300 1.00 − 0.129
15 50.724 ± 267.304 111.965 ± 474.954 6,895,300 1.00 − 0.139

Table 12 One-tailed Mann-Whitney U test for comparing code effort �W of synchronous and non-syn-
chronous commits(H1.4)

s denotes the standard deviation. U represents the U-statistic of the Mann-Whitney U test, the corre-
sponding p-value indicates whether the alternative hypothesis H1.4 is accepted (p < 0.05) or not. Cliff’s
Delta denotes the corresponding effect size

�W (mean ± s)

QEMU � Synchronous Non-synchronous U p-value Cliff’s
Delta

Files 1 87.903 ± 764.969 74.342 ± 318.517 99,455,000 1.00 0.086
5 78.643 ± 563.798 75.551 ± 326.277 158,850,000 1.00 0.067
10 72.276 ± 493.614 78.330 ± 349.167 166,410,000 1.00 0.053
15 72.550 ± 460.570 83.605 ± 378.551 155,570,000 1.00 0.045

Features 1 118.545 ± 500.311 130.350 ± 438.243 6,727,800 < 0.05 − 0.036
5 109.036 ± 423.502 146.456 ± 486.597 8,453,900 < 0.05 − 0.053
10 107.703 ± 401.941 158.623 ± 529.273 7,941,400 < 0.05 − 0.059
15 109.363 ± 400.097 161.995 ± 546.241 7,518,300 < 0.05 − 0.061

 Automated Software Engineering (2022) 29:3

1 3

3 Page 48 of 53

Table 13 One-tailed Mann-Whitney U tests with FDR correction for comparing file-based and feature-
based C-bursts (H1)

The tests on the left (H1+H1.1) test whether the number of C-bursts per developer pair is higher in the
feature-based analysis than in the file-based analysis. The tests on the right (H1+H1.2) test whether the
synchronicity degree is higher in the feature-based analysis than in the file-based analysis. U represents
the U-statistic of the Mann-Whitney U test, the corresponding p-value indicates whether the correspond-
ing alternative hypothesis is accepted (p < 0.05) or not. Cliff’s Delta denotes the corresponding effect
size

H1+H1.1 H1+H1.2

(# C-bursts per developer pair) (Synchronicity degree)

QEMU � U p-value Cliff’s Delta U p-value Cliff’s
Delta

1 25,891,734,214 < 0.05 0.003 681,840 < 0.05 0.298
Features 5 25,746,439,556 < 0.05 0.008 3,949,898 < 0.05 0.426
vs. files 10 25,612,361,104 < 0.05 0.014 8,290,824 < 0.05 0.486

15 25,515,286,716 < 0.05 0.017 12,049,580 < 0.05 0.514

Table 14 One-tailed Mann-Whitney U tests with FDR correction for comparing file-based and feature-
based C-bursts (H1)

The tests on the left (H1+H1.3) test whether the code growth �L in synchronous commits is higher in the
feature-based analysis than in the file-based analysis. The tests on the right (H1+H1.4) test whether code
effort �W in synchronous commits is lower in the feature-based analysis than in the file-based analysis.
U represents the U-statistic of the Mann-Whitney U test, the corresponding p-value indicates whether the
alternative hypothesis is accepted (p < 0.05) or not. Cliff’s Delta denotes the corresponding effect size

H1+H1.3 H1+H1.4

(Code growth in sync. dev.) (Code effort in sync. dev.)

QEMU � U p-value Cliff’s Delta U p-value Cliff’s
Delta

1 7,273,482 1.00 − 0.037 7,013,639 1.00 0.000
Features 5 29,462,292 1.00 − 0.009 28,321,505 1.00 0.030
vs. files 10 48,855,197 1.00 0.004 46,651,924 < 0.05 0.049

15 61,288,970 0.30 0.011 58,353,021 1.00 0.058

1 3

Automated Software Engineering (2022) 29:3 Page 49 of 53 3

Table 15 The results of testing H3.1 for different abstraction levels using the upper-bound approach

✓ denotes that the empirical DTW distances are smaller than the corresponding simulated ones, ✗ the
opposite

� QEMU BUsyBox opEnssL

Messages Convers. Messages Convers. Messages Convers.

Files 1 ✓ ✓ ✓ ✓ ✓ ✗
5 ✓ ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓ ✓ ✓

Features 1 ✓ ✓ ✓ ✓ ✓ ✗
5 ✓ ✓ ✗ ✓ ✓ ✗
10 ✓ ✓ ✗ ✓ ✓ ✓
15 ✓ ✓ ✗ ✓ ✓ ✓

Table 16 The results of testing H3.1 for different abstraction levels using the lower-bound approach

✓ denotes that the empirical DTW distances are smaller than the corresponding simulated ones, ✗ the
opposite. ? denotes that there are insufficient data (no E-bursts at all)

� QEMU BUsyBox opEnssL

Messages Convers. Messages Convers. Messages Convers.

Files 1 ✓ ✓ ✓ ✓ ✗ ?

5 ✓ ✓ ✓ ✓ ✗ ✗
10 ✓ ✓ ✓ ✓ ✗ ✗
15 ✓ ✓ ✓ ✓ ✓ ✗

Features 1 ✓ ✓ ✓ ✓ ? ?

5 ✓ ✓ ✓ ✓ ✗ ?

10 ✓ ✓ ✓ ✓ ✗ ?

15 ✓ ✓ ✓ ✓ ✗ ?

Table 17 The results of testing H3+H3.1 for comparing file and feature level using lower-bound or
upper-bound approach respectively

✓ denotes that the DTW distances using feature-based C-bursts are smaller then the DTW distances
using file-based C-bursts, ✗ the opposite. ? denotes that there are insufficient data (no E-bursts at all)

Files vs. � QEMU BUsyBox opEnssL

Features Messages Convers. Messages Convers. Messages Convers.

Upper-bound 1 ✗ ✗ ✗ ✗ ✗ ✗
Approach 5 ✓ ✗ ✗ ✗ ✗ ✗

10 ✓ ✗ ✗ ✗ ✗ ✗
15 ✓ ✗ ✗ ✗ ✗ ✗

Lower-bound 1 ✓ ✗ ✗ ✗ ? ?
Approach 5 ✓ ✗ ✗ ✗ ✗ ?

10 ✓ ✗ ✗ ✗ ✗ ?

15 ✓ ✗ ✗ ✗ ✗ ?

 Automated Software Engineering (2022) 29:3

1 3

3 Page 50 of 53

Acknowledgements This work has been supported by the German Research Foundation (AP 206/5-1&2,
AP 206/6-1&2, AP 206/11-1, and AP 206/14-1).

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Ali, N., Guéhéneuc, Y., Antoniol, G.: Trustrace: mining software repositories to improve the accuracy
of requirement traceability links. IEEE Trans. Softw. Eng. (TSE) 39(5), 725–741 (2013)

Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer, Berlin (2013)

Bacchelli. A., D’Ambros, M., Lanza, M.: Are Popular classes more defect prone? In: Proceedings
of the International Conference on Fundamental Approaches to Software Engineering (FASE),
Springer, pp 59–73 (2010)

Berger, T., Guo, J.: Towards system analysis with variability model metrics. In: Proceedings of the
International Workshop on Variability Modeling of Software-Intensive Systems (VaMoS), ACM,
pp 23:1–23:8 (2013)

Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik, M., Czarnecki,
K.: What is a feature?: A qualitative study of features in industrial software product lines. In:
Proceedings of the International Software Product Line Conference (SPLC), ACM, pp. 16–25
(2015)

Table 18 The results of testing H3+H3.1 for comparing message and conversation level using lower-
bound or upper-bound approach respectively

✓ denotes that the DTW distances using conversation-based E-bursts are smaller then the DTW dis-
tances using message-based E-bursts, ✗ the opposite. ? denotes that there are insufficient data (no
E-bursts at all)

Messages vs. � QEMU BUsyBox opEnssL

Conversations Files Features Files Features Files Features

Upper-bound 1 ✓ ✓ ✗ ✗ ✓ ✗
Approach 5 ✓ ✓ ✓ ✗ ✗ ✓

10 ✓ ✓ ✗ ✗ ✓ ✓
15 ✓ ✓ ✗ ✗ ✓ ✓

Lower-bound 1 ✗ ✗ ✗ ✗ ? ?

Approach 5 ✗ ✗ ✗ ✗ ✗ ?

10 ✗ ✗ ✗ ✗ ✗ ?

15 ✗ ✗ ✗ ✗ ✗ ?

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Automated Software Engineering (2022) 29:3 Page 51 of 53 3

Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Proceedings
of the International Conference on Knowledge Discovery and Data Mining (KDD), AAAI Press,
pp. 359–370 (1994)

Bird, C.: Sociotechnical coordination and collaboration in open source software. In: Proceedings of
the International Conference on Software Maintenance (ICSM), IEEE, pp. 568–573 (2011)

Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks. In: Pro-
ceedings of the International Workshop on Mining Software Repositories (MSR), ACM, pp. 137–
143 (2006)

Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open source pro-
jects. In: Proceedings of the International Symposium on Foundations of Software Engineering
(FSE), ACM, pp. 24–35 (2008)

Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code! Examining the effects
of ownership on software quality. In: Proceedings of the European Software Engineering Confer-
ence on and the International Symposium on Foundations of Software Engineering (ESEC/FSE),
ACM, pp. 4–14 (2011)

Cannon-Bowers, J.A., Salas, E., Converse, S.: Shared mental models in expert team decision making.
Individual and Group Decision Making: Current Issues, Lawrence Erlbaum Associates, chap 12,
221–246 (1993)

Cataldo, M., Herbsleb, J.D.: Coordination breakdowns and their impact on development productivity and
software failures. IEEE Trans. Softw. Eng. (TSE) 39(3), 343–360 (2013)

Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: A framework for assessing the
impact of technical and work dependencies on software development productivity. In: Proceedings
of the International Symposium on Empirical Software Engineering and Measurement (ESEM),
ACM, pp. 2–11 (2008)

Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies, work dependencies, and
their impact on failures. IEEE Trans. Softw. Eng. (TSE) 35(6), 864–878 (2009)

Crowston, K., Howison, J.: The social structure of free and open source software development. First
Monday 10(2), (2005)

Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications. ACM/
Addison-Wesley, New York (2000)

Draheim, D., Pekacki, L.: Process-centric analytical processing of version control data. In: Proceedings
of the International Workshop on Principles of Software Evolution (IWPSE). IEEE, pp. 131–136
(2003)

Ernst, M.D., Badros, G.J., Notkin, D.: An empirical analysis of C preprocessor use. IEEE Trans.
Softw. Eng. (TSE) 28(12), 1146–1170 (2002)

Espinosa, A., Kraut, R., Lerch, J., Slaughter, S., Herbsleb, J., Mockus, A.: Shared mental models
and coordination in large-scale, distributed software development. In: Proceedings of the Inter-
national Conference on Information Systems (ICIS), Association for Information Systems, pp.
513–517 (2001)

Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R., Papendieck, M., Leich,
T., Saake, G.: Do background colors improve program comprehension in the #ifdef hell? Empir.
Softw. Eng. (EMSE) 18(4), 699–745 (2013)

Fenske, W., Schulze, S., Meyer, D., Saake, G.: When code smells twice as much: Metric-based detec-
tion of variability-aware code smells. In: International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, pp. 171–180 (2015)

Gharehyazie, M., Filkov, V.: Tracing distributed collaborative development in apache software foun-
dation projects. Empir. Softw. Eng. (EMSE) 22(4), 1795–1830 (2017)

Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., van Deursen, A.: Communication in open source
software development mailing lists. In: Proceedings of the International Workshop Mining Soft-
ware Repositories (MSR). IEEE, pp. 277–286 (2013)

Herbsleb, J.D.: Global software engineering: the future of socio-technical coordination. In: Future of
Software Engineering (FOSE). IEEE, pp. 188–198 (2007)

Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s law and beyond.
IEEE Softw. 16(5), 63–70 (1999)

Herbsleb, J.D., Mockus, A.: Formulation and preliminary test of an empirical theory of coordination
in software engineering. In: Proceedings of the European Software Engineering Conference and
the International Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, pp.
138–147 (2003)

 Automated Software Engineering (2022) 29:3

1 3

3 Page 52 of 53

Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O., Becker, M., Apel, S.: Preproces-
sor-based variability in open-source and industrial software systems: an empirical study. Empir.
Softw. Eng. (EMSE) 21(2), 449–482 (2016)

Hunsen, C., Siegmund, J., Apel, S.: On the fulfillment of coordination requirements in open-source
software projects: an exploratory study. Empir. Softw. Eng. (EMSE) 25(6), 4379–4426 (2020)

Jermakovics, A., Sillitti, A., Succi, G.: Mining and visualizing developer networks from version con-
trol systems. In: Proceedings of the International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE). ACM, pp. 24–31 (2011)

Jiang, Y., Adams, B., Khomh, F., German, D.M.: Tracing back the history of commits in low-tech review-
ing environments: A case study of the Linux kernel. In: Proceedings of the Internatinal Symposium
Empirical Software Engineering and Measurement (ESEM). ACM, pp. 51:1–51:10 (2014)

Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.: From developer networks to verified commu-
nities: a fine-grained approach. In: Proceedings of the International Conference on Software Engi-
neering (ICSE). IEEE, pp. 563–573 (2015)

Joblin, M., Apel, S., Hunsen, C., Mauerer, W.: Classifying developers into core and peripheral: An empir-
ical study on count and network metrics. In: Proceedings of the International Conference on Soft-
ware Engineering (ICSE). IEEE, pp. 164–174 (2017a)

Joblin, M., Apel, S., Mauerer, W.: Evolutionary trends of developer coordination: a network approach.
Empir. Softw. Eng. (EMSE) 22(4), 2050–2094 (2017b)

Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proceedings of the International Con-
ference on Data Mining (ICDM), Society for Industrial and Applied Mathematics, pp. 1–11 (2001)

Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn. Prentice-Hall, Hoboken (1988)
Kwan, I., Schroter, A., Damian, D.: Does socio-technical congruence have an effect on software build

success? A study of coordination in a software project. IEEE Trans. Softw. Eng. (TSE) 37(3), 307–
324 (2011)

Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An analysis of the variability in forty pre-
processor-based software product lines. In: Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 105–114 (2010)

López-Fernández, L., Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: Applying social network analysis
techniques to community-driven libre software projects. Int. J. Inf. Technol. Web Eng. (IJITWE) 1,
28–50 (2006)

Mannan, U.A., Ahmed, I., Jensen, C., Sarma, A.: On the relationship between design discussions and
design quality: a case study of Apache projects. In: Proceedings of the European Software Engineer-
ing Conference and the International Symposium on Foundations of Software Engineering (ESEC/
FSE). ACM, pp. 543–555 (2020)

Medeiros, F., Kästner, C., Ribeiro, M., Nadi, S., Gheyi, R.: The love/hate relationship with the C pre-
processor: an interview study. In: Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz–Zentrum für Informatik, pp. 495–518 (2015)

Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software development:
Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. (TOSEM) 11(3), 309–346 (2002)

Oliva, G.A., Santana, F.W., de Oliveira, K.C.M., de Souza, C.R.B., Gerosa, M.A.: Characterizing key
developers: a case study with Apache Ant. In: Proceedings of the International Conference on Col-
laboration and Technology (CRIWG). Springer, pp. 97–112 (2012)

Queiroz, R., Passos, L., Valente, M.T., Hunsen, C., Apel, S., Czarnecki, K.: The shape of feature code:
an analysis of twenty C-preprocessor-based systems. Softw. Syst. Model. (SoSyM) 16(1), 77–96
(2017)

Rabiner, L.R., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Hoboken (1993)
Ramsauer, R., Lohmann, D., Mauerer, W.: The list is the process: reliable pre-integration tracking of

commits on mailing lists. In: Proceedings of the International Conference on Software Engineering
(ICSE). IEEE, pp. 807–818 (2019)

Riehle, D.: The Five Stages of Open Source Volunteering. Springer, pp 25–38 (2015)
Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review practices: a case study of the

Apache server. In: Proceedings of the International Conference on Software Engineering (ICSE).
ACM, pp. 541–550 (2008)

Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE
Trans. Acoust. Speech Signal Process. (TASS) 26(1), 43–49 (1978)

1 3

Automated Software Engineering (2022) 29:3 Page 53 of 53 3

Schulze, S., Fenske, W.: Analyzing the evolution of preprocessor-based variability: a tale of a thousand
and one scripts. In: International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, pp. 50–55 (2018)

Scozzi, B., Crowston, K., Eseryel, UY., Li, Q.: Shared mental models among open source software devel-
opers. In: Proceedings of the Hawaii International Conference on System Sciences (HICSS). IEEE,
p. 306 (2008)

Singh, P.V.: The small-world effect: the influence of macro-level properties of developer collaboration
networks on open-source project success. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(2):6:1–
6:27 (2010)

Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Boston (2010)
de Souza, C., Froehlich, J., Dourish, P.: Seeking the source: software source code as a social and techni-

cal artifact. In: Proceedings of the International Conference on Supporting Group Work (GROUP).
ACM, pp. 197–206 (2005)

Storey, M.A., Singer, L., Figueira Filho, F., Zagalsky, A., German, D.M.: How social and communication
channels shape and challenge a participatory culture in software development. IEEE Trans. Softw.
Eng. (TSE) 43(2), 185–204 (2017)

Toral, S.L., Martínez-Torres, M.R., Barrero, F.: Analysis of virtual communities supporting OSS projects
using social network analysis. Inf. Softw. Technol. (IST) 52(3), 296–303 (2010)

Wiese, I.S., Teodoro da Silva, J., Steinmacher, I., Treude, C., Gerosa, M.A.: Who is who in the mail-
ing list? Comparing six disambiguation heuristics to identify multiple addresses of a participant.
In: Proceedings of the International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 345–355 (2016)

Wu, J., Graham, T., Smith, P.W.: A study of collaboration in software design. In: Proceedings of the
International Symposium on Empirical Software Engineering (ISESE). IEEE, pp. 304–313 (2003)

Xuan, Q., Filkov, V.: Building it together: synchronous development in OSS. In: Proceedings of the Inter-
national Conference on Software Engineering (ICSE). ACM, pp. 222–233 (2014)

Xuan, Q., Gharehyazie, M., Devanbu, P.T., Filkov, V.: Measuring the effect of social communications on
individual working rhythms: a case study of open source software. In: Proceedings of the Interna-
tional Conference on Social Informatics (SocInfo). IEEE, pp. 78–85 (2012)

Xuan, Q., Devanbu, P., Filkov, V.: Converging work-talk patterns in online task-oriented communities.
PLOS ONE 11(5), 1–20 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Thomas Bock1 · Claus Hunsen2 · Mitchell Joblin3 · Sven Apel1

 Claus Hunsen
 hunsen@fim.uni-passau.de

 Mitchell Joblin
 joblin@cs.uni-saarland.de

 Sven Apel
 apel@cs.uni-saarland.de

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 University of Passau, Passau, Germany
3 Siemens AG / Saarland University, Saarland Informatics Campus, Munich / Saarbrücken,

Germany

http://orcid.org/0000-0001-6906-3489

	Synchronous development in open-source projects: A higher-level perspective
	Abstract
	1 Introduction
	2 Background
	2.1 Co-commit bursts
	2.2 E-mail bursts
	2.3 C-curves and E-curves

	3 Research approach
	3.1 Research questions
	3.2 Files and features
	3.3 Synchronicity degree
	3.4 E-mails and e-mail threads
	3.5 Upper-bound and lower-bound approach for determining coordination
	3.6 Time-series analysis of C-curves and E-curves

	4 Study design
	4.1 Subject projects
	4.2 Data extraction
	4.3 Variables
	4.4 Null model
	4.5 Hypotheses
	4.5.1 Hypotheses related to C-bursts
	4.5.2 Hypotheses related to E-bursts
	4.5.3 Hypotheses related to C-bursts and E-bursts
	4.5.4 Statistical tests

	5 Results
	5.1 C-bursts
	5.2 E-bursts
	5.3 C-bursts and E-bursts

	6 What is discussed within E-bursts?
	7 Discussion
	7.1 C-bursts (H1)
	7.2 E-bursts (H2)
	7.3 C-bursts and E-bursts (H3)
	7.4 Research questions (RQ1 and RQ2) and perspectives

	8 Threats to validity
	8.1 Internal validity
	8.2 External validity

	9 Related work
	10 Conclusion
	Acknowledgements
	References

