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Abstract
Terrain traversability estimation is a fundamental task for supporting robot navigation on uneven surfaces. Recent learning-
based approaches for predicting traversability fromRGB images have shown promising results, but require manual annotation
of a large number of images for training. To address this limitation, we present a method for traversability estimation
on unlabeled videos that combines dataset synthesis, self-supervision and unsupervised domain adaptation. We pose the
traversability estimation as a vector regression task over vertical bands of the observed frame. Themodel is pre-trained through
self-supervision to reduce the distribution shift between synthetic and real data and encourage shared feature learning. Then,
supervised training on synthetic videos is carried out, while employing an unsupervised domain adaptation loss to improve
its generalization capabilities on real scenes. Experimental results show that our approach is on par with standard supervised
training, and effectively supports robot navigation without the need of manual annotations. Training code and synthetic dataset
will be publicly released at: https://github.com/perceivelab/traversability-synth.

Keywords Terrain traversability · Unmanned ground vehicle · Self-supervised learning · Domain adaptation · Synthetic data ·
Sim-to-real

1 Introduction

Identifying traversable paths and, accordingly, taking proper
control actions is a fundamental requirement for a mobile
robot to safely and autonomously navigate in non-urban
environments. This capability is needed in several robotic
applications where autonomous vehicle navigation plays a
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crucial role, such as search and rescue (Delmerico et al.
2019), precision farming (Yandun Narváez et al. 2018) and
planetary exploration (Hewitt et al. 2017). Several methods
have been proposed for autonomous navigation of ground
vehicles in unstructured environments. Among them, terrain
traversability analysis is a widely adopted approach, which
has recently gained momentum thanks to the development
of learning-based methods (Guastella and Muscato 2021;
Borges et al. 2022).

Some works address terrain traversability analysis as a
traversal cost regression problem, using inverse reinforce-
ment learning (Pflueger et al. 2019; Zhu et al. 2019 to
derive a map of costs for a subsequent path planning phase.
Other approaches identify the terrain type (Rothrock et al.
2016; Gonzalez and Iagnemma 2018) or pose the prob-
lem as a binary classification task (i.e. “traversable” or
“non-traversable”) (Chavez-Garcia et al. 2018; Holder and
Breckon 2018) or as a per-region regression task (Palazzo et
al. 2020).

One of the main limitations of existing learning-based
approaches tackling traversability estimation is the need for
annotated training data. Regardless of the specific formula-
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tion of traversability, it is necessary to collect a large set of
images, generally requiring a robot to be operated on the tar-
get environment (or a similar one). Then, a human operator
needs to analyze each individual frame and mark traversable
areas. A second limitation of existing approaches is the lack
of strategies to use traversability predictions for navigation.
Although existing methods show promising results in terms
of prediction accuracy, it is not obvious how to use their out-
puts to drive a ground vehicle.

In this work, we propose a method to tackle both limita-
tions, by (1) training a model on a combination of annotated
synthetic data, used for supervised training, and unannotated
real data, used for unsuperviseddomain adaptation; (2) devel-
oping a simple, yet effective navigation strategy using the
estimated traversability.

In particular, a synthetic dataset is first generated using
the MIDGARD (Vecchio et al. 2022) simulation envi-
ronment. Training is then carried out by combining self-
supervision (Caron et al. 2020) anddomain adaptation (Ganin
and Lempitsky 2015) techniques to ensure that the model,
trained in a supervised way on synthetic images and annota-
tions, behaves correctly when processing real-world data.

Furthermore, we propose a navigation algorithm that
employs the egocentric outcome of the traversability pre-
diction by defining a control law to directly steer the vehicle
towards the safest area.On-field and simulated tests show that
the proposed approach is capable of autonomously exploring
unknown environments, while avoiding obstacles and harsh
terrains.

To summarize, the contributions of our paper are the fol-
lowing:

• Wecreate a photorealistic synthetic dataset for traversabil-
ity estimation innon-urban environments,with computer-
generated annotations for supervised training of learning-
based models.

• We propose a deep learning method for traversabil-
ity estimation from RGB images, employing supervised
training on synthetic data, self-supervised pre-training of
the traversability predictor, and unsupervised adaptation
on real data, thus relieving the user from the burden of
manual annotation. Performance analysis shows that the
proposed model outperforms existing approaches when
real annotations are used.

• We perform both simulated and on-field validation of the
proposed method and define an autonomous navigation
approach based on the traversability outcome.

2 Related work

2.1 Terrain traversability analysis

Traversability anticipation has been proposed as a long-
range prediction problem based on visual data since early
works (Howard et al. 2006; Hadsell et al. 2008), as an alter-
native to the limited perception range of LIDARs or stereo
cameras. More recent deep-learning models perform image
segmentation for terrain classification, either as a binary
(i.e., traversable or not) Holder and Breckon 2018 or as
a multi-class classification problem (Rothrock et al. 2016;
Valada et al. 2016; Maturana et al. 2018). However, the liter-
ature does not offer an established approach for translating
the traversability outcome into driving commands for the
vehicle. The most common solution is to project scene clas-
sification output from the image plane to a polar top-view
map of the vehicle’s surroundings (Howard et al. 2006; Had-
sell et al. 2008; Maturana et al. 2018), thus falling back into
a path planning problem. Other works leveraging inverse
reinforcement learning aim at directly inferring traversability
costmaps and planning trajectories from the demonstrations
by an expert and the environment point cloud (Zhang et al.
2018; Zhu et al. 2020), but rely heavily on 3D LIDARs rather
than passive RGB cameras.

Besides terrain traversability analysis, end-to-end meth-
ods have recently been proposed for off-road navigation,
where a direct mapping from exteroceptive data (typically a
combination of geometric and visual data) and driving com-
mands is performed (Pan et al. 2020; Nguyen et al. 2020).
Successful examples have also been reported on the naviga-
tion of multi-rotors for outdoor unstructured environments,
such as forests (Smolyanskiy et al. 2017; Giusti et al. 2016).
However, end-to-end methods tend to make it more difficult
to grasp the relationship between the perceived environment
and the chosen driving action, due to the lack of interpretable
intermediate representations.

Inspired by Palazzo et al. (2020), our approach pro-
vides an immediate interpretation of a scene, without the
need to construct a top-view costmap, that can be directly
used to drive the vehicle towards traversable regions within
the camera field of view. The proposed approach mainly
differs from Palazzo et al. (2020) in the usage of computer-
generated annotations on a synthetic dataset, bridging the
gap between synthetic and real images by means of a self-
supervision approach (specifically adapted to the problem
at hand; see Sect. 3.5) and unsupervised domain adaptation
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(Sect. 3.7). Additionally, we improve the model architecture
by pre-training and freezing the feature extraction backbone
network, significantly speeding up training, while increas-
ing the complexity of the traversability estimation network
to compensate for the extraction of more generic backbone
features (Sect. 3.4). Finally, we replace the “greedy” naviga-
tion algorithm in Palazzo et al. (2020) with a more robust
approach (Sect. 4), and provide an extensive analysis of
the performance of our approach in a real-world scenario
(Sect. 6).

2.2 Synthetic data collection in simulated
environments

Training on synthetic data has proven to be a suitable alterna-
tive to training on real-world data for autonomous navigation.
Recent work has focused on the creation of large-scale, high-
resolution synthetic datasets (Haltakov et al. 2013; Richter
et al. 2016; Gaidon et al. 2016; Richter et al. 2017; Müller et
al. 2021), as well as the development of embodied simulators
for training (Vecchio et al. 2022; Skinner et al. 2016; Kolve
et al. 2017; Dosovitskiy et al. 2017; Shah et al. 2018; Xia
et al. 2018; Savva et al. 2019; Song et al. 2020; Kadian et
al. 2020). Several of these simulation platforms have been
used to support dataset generation for navigation tasks, both
in structured (Dosovitskiy et al. 2017; Savva et al. 2019) and
unstructured (Shah et al. 2018; Song et al. 2020) environ-
ments:

• AirSim (Shah et al. 2018) is an open source simula-
tor which supports software- and hardware-in-the-loop
simulation, providing both an interactive mode for live
agents’ training and a data collection mode.

• OAISYS (Müller et al. 2021) is a photorealistic terrain
simulation pipeline for unstructured outdoor environ-
ments, built on top of Blender.1 It is designed for the
collection of synthetic datasets and is capable of generat-
ing large varieties of sceneswith automatic annotations in
terms of instance segmentation, semantic segmentation,
and depth.

• MIDGARD (Vecchio et al. 2022) features an interac-
tive mode as well as a data collection mode for creating
automatically-annotated datasets. It provides awide vari-
ety of sensors including depth, semantic and instance
segmentation, and a traversability-annotator tool.

In this work, we use MIDGARD to automatically collect
the synthetic training dataset, as described in Sect. 5.2.

1 https://www.blender.org

2.3 Domain adaptation

It is recognized that the availability of annotated data is often
limited by the required efforts for their collection. Moreover,
the performance of deep learning models typically degrades
when applied to a data distribution that does not match the
training one (either real or synthetic), which represents a fur-
ther difficulty in the usage of pre-trained models on a custom
task. Several transfer learning and domain adaptationmeth-
ods have therefore been proposed in the literature (Wang and
Deng 2018), which aim at dealing with the distribution shift
between different data domains. In this work, we focus on
unsupervised domain adaptation: we assume that we have an
annotated source dataset, on which a model can be trained
supervisedly, and an unannotated target dataset, onwhichwe
intend to ultimately employ the trained model. A straightfor-
ward approach to unsupervised domain adaptation treats it
as a classification task on the target domain, using pseudo-
labels estimated for target samples by a model trained on the
source domain (Yan et al. 2017; Saito et al. 2017; Zhang et
al. 2015; Long et al. 2016). The success of these approaches
usually depends on the similarity between the source and
target distributions, and thus on how accurate pseudo-labels
are. Other approaches aim, instead, at minimizing the dif-
ference between feature statistics on the two domains: many
of these methods are based on introducing a maximum mean
discrepancy loss term to the training objective (Borgwardt et
al. 2006; Ghifary et al. 2014; Long et al. 2015; Zellinger et
al. 2017). A similar objective can be pursued by leveraging
generative adversarial networks (GANs) (Goodfellow et al.
2014; Liu and Tuzel 2016; Yoo et al. 2016; Shrivastava et
al. 2017; Bousmalis et al. 2017). Inspired by the adversar-
ial competition of GANs, the gradient reversal layer (GRL)
method (Ganin and Lempitsky 2015) learns an intermediate
representation that is designed to maximize domain classifi-
cation error, so that similar features are extracted from the
two domains. In this work, we opt for this approach due to its
simplicity and its recent success in complex domain adapta-
tion scenarios (Palazzo et al. 2020; Bellitto et al. 2020).

2.4 Self-supervised learning

Model self-supervision aims at learning features from unan-
notated data, in the attempt to alleviate the need for human-
crafted ground truth and reduce the performance gap with
supervised networks pre-training (Chen et al. 2020; He et al.
2020; Misra and Maaten 2020. Some approaches formulate
self-supervision as an instance discrimination task (Doso-
vitskiy et al. 2015), where each image in the dataset is
considered as a single class. Other methods pose the prob-
lem by defining a contrastive loss (Hadsell et al. 2006) that
attempts to extract similar features from an image and its
transformations, while pushing away features from differ-
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Fig. 1 The proposed framework. Real and synthetic images are fed
to a pre-trained feature extractor. Visual embeddings are then fed to
a traversability estimation module. The traversability estimator is first
pre-trained through self-supervision on both real and synthetic images,
and then trained in a supervised way using only annotations for the
synthetic data. Features from both domains are fed to a domain classifi-

cation layer, trained to distinguish between real and synthetic features:
gradients estimated through backpropagation are altered by a gradient
reversal layer (GRL) (Ganin and Lempitsky 2015) to maximize classi-
fication loss and match feature distributions between real and synthetic
images

ent images. This removes the notion of instance classes
by directly comparing image features, enforcing invari-
ance across features of corresponding transformations. Since
comparing all possible image pairs in a large dataset is com-
putationally challenging, many works approximate the loss
by reducing the number of comparisons to random subsets
of images during training (Chen et al. 2020; He et al. 2020;
Wu et al. 2018). Among these, a recent approach Caron et al.
(2020) proposes to learn features by “swapping assignments
between multiple views” (SwAV) of the same image. In this
work, we adapt SwAV tomake it suitable to our traversability
task, in order to initialize the model with features that apply
to both real and synthetic data.

3 Traversability prediction

3.1 Overview

An overview of the proposed architecture for traversability
prediction is shown inFig. 1.A feature extraction backbone is
used to compute compact representations of the input images.
Visual features are then processed by two model branches:
one estimating the traversability, initially pre-trained with
self-supervision on both real and synthetic images, and then
fine-tuned in a supervised way on synthetic images only;
the other is, instead, trained to distinguish between real
and synthetic images, thus supporting unsupervised domain
adaptation to unannotated real images.

3.2 Problem formulation

Following the definition in Palazzo et al. (2020), we pose
the traversability estimation as a vector regression problem,
where each component of the target vector indicates the
traversability score of a corresponding region in the input
image. More in detail, we divide the input RGB images into
a set of vertical bands and regress an array of traversability
scores related to the traversable horizon within each band.
Although this formulation may seem to oversimplify the
traversability estimation problem, it properly drives the vehi-
cle to avoid potentially dangerous terrain areas, since there
is no need to know any further information on the environ-
ment beyond the traversable horizon within each band. The
navigation capabilities of the robotic platform are implicitly
taken into account during the annotation process (e.g., the
maximum traversable surface steepness). Automatic annota-
tion for synthetic data is described in Sect. 5.2.

We tackle the problem as an unsupervised domain adapta-
tion task, wherewe enforce themodel, trained in a supervised
way on a source synthetic dataset, to generalize to an unan-
notated target dataset of real images.

More formally, given a tensor I ∈ I of size C × H × W
representing an RGB image, this is divided into a set of k
vertical bands: {I1, I2, . . . , Ik}, with:

Ii = I[
0:C−1,0:H−1, iWk : (i+1)W

k −1
], (1)

where I[·] denotes subtensor indexing and the : operator
selects a rangeof coordinates along the correspondingdimen-
sion. Each resulting portion has size C × H × W

k : if W is
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Fig. 2 Example of image division with k = 9 vertical bands; for each
band, a traversability score indicates the position (in terms of image
height) of the closest non-traversable elements within the band. Image
from Palazzo et al. (2020)

not divisible by k, the width of each vertical area is suit-
ably rounded. The number of vertical bands k is chosen to
be an odd number, as the band position within the image
frame determines a potential direction to drive the vehicle
(see Sect. 6). Indeed, when k is odd, the presence of a central
band avoids an undesired oscillatory behavior during navi-
gation when the platform is supposed to go straight. Figure 2
shows an example of the resulting division for a given input
image. Traversability scores for each region are encoded by
a vector t ∈ R

k for each of the image subregions, ranging
from 0 (not traversable) to 1 (fully traversable).

Given an input image, our objective is to estimate a set
of traversability scores t̃ that approximate target values t, by
means of a deep model implementing a function f : I →
[0, 1]k . Given an input image I, f is trained to estimate t̃ =
f (I) that is as close as possible to the actual t.
Unlike the approach introduced in Palazzo et al. (2020),

we do not aim to learn f in a supervised way on a real
dataset, i.e., by training the model with the correct manually-
annotated traversability scores. Instead, we assume that data
used for training our model can be split into a source domain
Ds and a target domain Dt . The source domain Ds includes
pairs (I, t) of synthetic images with computer-generated
traversability scores. The target domainDt , instead, includes
real images for which no manual annotations are available
during training.

3.3 Feature extraction backbone

A DeepLabV2 Chen et al. (2016) backbone, based on
ResNet-101 He et al. (2016) and pre-trained on COCO Stuff
10kCaesar et al. (2016), is employed to extract visual features
from an input RGB image. During training, we freeze (i.e.,
do not fine-tune) the parameters of the backbone. This choice
aims at reducing overfitting on relatively small datasets, due
to the complexity of the backbone. As an additional ben-
efit, pre-computing image features speeds up the training
process. Our experiments (Sect. 5) show that freezing the
feature extraction backbone indeed improves performance
compared to fine-tuning the entire architecture.

Table 1 Architectural details of the traversability estimation network
in the proposed model

Layer Input size Kernel size Output size

DeepLabV2 3 × 128 × 227 – 2048 × 17 × 29

Conv. 2D 2048 × 17 × 29 1 × 1 256 × 17 × 29

Adapt. pool 256 × 17 × 29 – 256 × 64 × 64

ResLayer 256 × 64 × 64 3 × 3 256 × 64 × 64

Max pool 256 × 64 × 64 2 × 2 256 × 32 × 32

ResLayer 256 × 32 × 32 3 × 3 512 × 32 × 32

Max pool 512 × 32 × 32 2 × 2 256 × 16 × 16

ResLayer 512 × 16 × 16 3 × 3 1024 × 16 × 16

Max pool 1024 × 16 × 16 2 × 2 1024 × 8 × 8

ResLayer 1024 × 8 × 8 3 × 3 1024 × 8 × 8

Max pool 1024 × 8 × 8 2 × 2 1024 × 4 × 4

Conv. 2D 1024 × 4 × 4 1 × 1 128 × 4 × 4

Fully-conn 2048 – 9

3.4 Traversability estimation

The architecture of our traversability estimation network
is designed to process the features extracted from the
DeepLabV2 backbone and regress a traversability score for
each image portion. In detail, it receives input features from
the DeepLabV2 backbone and processes them through a cas-
cade of convolutional layers, aimed at gradually increasing
the number of features while reducing spatial dimensions;
a final fully-connected layer with k-dimensional output pre-
dicts traversability scores. Architectural details of the layers
in the traversability estimation network are presented in
Table 1. Each convolutional layer is followed by batch nor-
malization and ReLU activation.

3.5 Self-supervised initialization

Inspired by Palazzo et al. (2020), we employ domain adap-
tation (described in the next section) to simultaneously train
our model to perform traversability prediction on synthetic
images and to adapt itself to perform the same task on
real images: the objective is to encourage the model to
learn features that work equally well on both the synthetic
source domain and the real-world target domain. How-
ever, unlike (Palazzo et al. 2020), we do not fine-tune the
DeepLabV2 backbone during training; hence, the represen-
tation it extracts does not adapt to the specific characteristics
of the target domain. Tomitigate this issue,we perform a self-
supervised initialization step, where we pre-train our model
on both real and synthetic datasets, without using traversabil-
ity annotations, in order to learn features applicable to both
domains before the supervised training phase.
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The self-supervision approach we employ in this work
is SwAV (Caron et al. 2020). SwAV is a clustering-based
method with the objective of learning a representation of
input data such that it is possible to predict the cluster assign-
ment of one view of an image from the representation of
another view, thus enforcing consistency between features
extracted from variants of the same image.

Formally, given two image representations zs and zt , com-
puted from different views of the same image, a model is
trained to compute their “codes” (i.e., cluster assignments)
qs and qt by matching them to a set of learnable cluster pro-
totypes {c1, ..., cK }.

The self-supervision objective is a “swapped” cluster
assignment prediction, where the model is trained to predict
qs from zt and qt from zs , by minimizing the cross-entropy
between the target code and the probability distribution
obtained by projecting features on the set of prototype vec-
tors:

L (zt , zs) = −
∑
k

q(k)
s logp(k)

t −
∑
k

q(k)
t logp(k)

s , (2)

where p(k)
t (and, similarly, p(k)

s ) is computed as:

p(k)
t = exp 1

τ
z�
t ck∑

k′ exp 1
τ
z�
t ck′

, (3)

with τ being a temperature parameter to “flatten” the softmax
distribution. Intuitively, p(k)

t estimates the probability that
feature zt is associated to cluster k: the objective of training
is to ensure that such a probability is maximal for the cluster
corresponding to the code of the other view of the image, qs .
As a result, the model learns to project both views to similar
representations, hence learning to extract reusable features
that take into account visual context and semantics.

In thiswork,we introduce a variant of SwAV,which differs
from the original formulation in two main aspects.

First, SwAV is specifically designed for image classifica-
tion, and it is based on the assumption that all patches within
an image share the same cluster assignment, since they all
refer to a single depicted object. In our case, this hypoth-
esis is counter-productive, as different patches within the
same image may exhibit significantly different traversability
properties. For this reason, we propose a revised consistency
assumption, shifting from the original “same image, same
cluster” hypothesis to an assumption that places emphasis on
local feature similarity rather than global image homogene-
ity,motivated by the observation that horizontally contiguous
patches are likely to exhibit similar visual characteristics
(see Fig. 2). By focusing on local continuity, our approach
encourages the extraction of features that are coherent within
smaller spatial regions, thus enhancing the network’s sen-
sitivity to subtle variations in terrain. It is important to

clarify that our assumption regarding horizontally contigu-
ous patches is not absolute. While we posit that neighboring
patches often share similar traversability properties, there
will be instances where this local similarity does not hold;
however, by leveraging this assumption as a general rule
rather than a strict law, our method effectively encourages
the learning of discriminative features. In practice, this prin-
ciple serves as a heuristic guide for the network to learn
meaningful representations that are beneficial for distin-
guishing traversability in complex outdoor environments,
without being overly constrained by the occasional excep-
tions to the rule.

As a second difference from the original formulation, we
apply SwAV’s clustering-based procedure to backbone fea-
tures rather than image patches. This is motivated by the
observation that the pre-trained DeepLabV2 is already able
to correctly classify pixels from both real and synthetic input
images (see Fig. 3), thanks to the photorealism of our syn-
thetic data. This finding also supports our decision of freezing
the DeeplabV2 feature extractor. However, a visualization of
DeeplabV2 features with t-SNE (Maaten 2014), in Fig. 4,
shows that features extracted from synthetic and real features
are markedly clustered in different regions of the projected
space, emphasizing a distribution shift between the two sets
of data: this may cause issues to the traversability estimation
model, which is trained from scratch and might overfit the
training distribution, negatively affecting its generalization
to the other.

Given these premises, we apply SwAV using features
extracted by the backbone as input and enforcing local sim-
ilarity between features computed by the last convolutional
layer of the traversability estimation model.

Formally, given a F × H × W feature map, where F
denotes the number of features and H and W the spatial
dimensions, at each iteration of self-supervised training we
extract a small P×Q region,where P < Q tomake the shape
of the region approximately horizontal. Then, we sample two
randomly-sized patches within that region, and apply the
SwAV cluster-assignment procedure to features from each
patch.

3.6 Supervised training on source domain

The traversability estimation branch of themodel is trained in
a supervised way on synthetic data. Since we formulated our
estimation problem as a regression task, we optimize model
parameters by minimizing the mean square error (MSE) loss
between the estimated traversability vector t̃ and the correct
t for a given image:

L =
∑
(I,t)

k∑
j=1

(
t j − t̃ j

)2
, (4)
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Fig. 3 Distributions of DeeplabV2 features on real and synthetic
images, projected through t-SNE. The significant distribution shifts jus-
tifies the employment of a self-supervision approach on the features
themselves, rather than on input images

where (I, t) pair consists of an input image and the corre-
sponding target traversability values, and t̃ = f (I).

We additionally extend the objective function by includ-
ing the safety-preserving loss term introduced in Palazzo et
al. (2020). Given ti and t̃i to be, respectively, the ground-
truth traversability value for a certain image subregion and
the value predicted by the model, it has been observed that
the sign of

(
ti − t̃i

)
is significant from a safety perspective:

if ti < t̃i , the model has estimated a certain path to be more
traversable than it actually is, which is something that we
want to discourage. Indeed, it is preferable to sacrifice accu-
racy and providemore conservative predictions, thanmaking
overly optimistic decisions that may lead to collisions or
overturnings.

The total loss, including L2 regularization, thus becomes:

Ls =
∑
(I,t)

k∑
j=1

[(
t̃ j − t j

)2 + αmax
(
0, t̃ j − t j

)2] + ρ ‖θ‖22
(5)

where α weighs the importance between prediction accuracy
and conservativeness, while ρ controls the strength of regu-
larization on model parameters θ .

3.7 Unsupervised domain adaptation

Self-supervision on synthetic and real data helps to learn
initial features for both annotated and unannotated data; how-
ever, this does not guarantee that feature activations for inputs
from the two domains correspond. Hence, a model trained
on synthetic images may not generalize on real images due
to the persisting distribution shift.

For this reason, it is necessary to push the feature distri-
butions together, so that the model behaves in a similar way

regardless of the domain of the input images. As in Palazzo et
al. (2020), we employ gradient reversal layers (GRL) (Ganin
and Lempitsky 2015) to accomplish this.

Thus, alongside the traversability estimation branch,
trained in a supervised way on the synthetic source domain,
we introduce a separate domain classification branch. As
shown in Fig. 1, this classifier receives intermediate fea-
tures computed from both the source (synthetic) and target
(real) domains and aims at discriminating whether an input
image comes from one or the other. The key idea of the
approach consists in pushing the model to learn intermediate
features that prevent the domain classification branch from
succeeding at its task. Intuitively, if the source and target
feature distributions cannot be distinguished, the traversabil-
ity estimation branch should work equally well on either
domain. This mechanism is implemented by introducing a
gradient reversal layer which changes the signs of gradients
(appropriately scaled by a λ hyperparameter) of the domain
classification loss. As a result, during training the domain
classifier attempts to correctly distinguish the two domains,
while features extracted before the GRL are driven to make
such classification fail, thus becoming domain-agnostic.

More formally, we can define the training set for the
domain classifier as:

Dd = {(I, ls)}(I,t)∈Ds
∪ {(I, lt )}I∈Dt

, (6)

where ls and lt are employed as domain labels— in practice,
they are assigned the values 0 and 1.

Let h(I) be the intermediate features extracted for input
image I, and g(h(I)) the output of the domain classifier,
which can be interpreted as the likelihood of the input belong-
ing to one of the twodomains. The domain classifier is trained
with standard binary cross-entropy loss:

Ld = −
∑

(I,l)∈Dd

[
l log(g(h(I)))+ (1− l) log(1− g(h(I)))

]
,

(7)

with l ∈ {0, 1} being the domain label associated to input I.
In our model, intermediate features are extracted at the

output of the last residual layer (see Table 1) and are spa-
tially reduced from 1024 × 8 × 8 to 1024 × 2 × 2 through
adaptive max pooling. GRL is inserted at this point, and is
followed by the domain classifier, i.e., a multi-layer percep-
tron with ReLU activations and hidden layers of sizes 1024
and 256. The output of the domain classifier is a scalar value,
constrained between 0 and 1 by a sigmoid activation.
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Fig. 4 Segmentation outputs of the employed DeepLabV2 backbone on synthetic and real image samples, demonstrating the high realism of
synthetic images and the accuracy of the segmentation model

4 Navigation control

In order to properly assess the effectiveness of the proposed
traversability prediction approach in a navigation setting,
we hereby propose a strategy to translate the predicted
traversability into control commands to the vehicle.

Intuitively, the most straightforward way to identify vehi-
cle direction is to select the band with the highest predicted
traversability score. However, if the selected band is next to
low-score ones, the vehicle may bump into a close obsta-
cle or move in between two poorly traversable areas. To
address this limitation, we design a simple, yet effective,
selection strategy, reported in Algorithm 1: given the vector
t̃ = {t1, . . . , tk} of predicted traversability scores, the vehi-
cle is directed towards band iopt such that tiopt is the highest
score which satisfies the following boolean expression:

tiopt − tiopt−1 > δ ∧ tiopt − tiopt+1 > δ, (8)

where δ is a configurable parameter. This rule ensures that
the chosen direction is traversable not only in the selected
band, but also in the adjacent ones (up to a difference by δ),
thus leaving room for trajectory adjustments. In our exper-
iments, setting δ = 0.2 provided a fair trade-off between a
too optimistic and a too conservative band selection.

Inspired by Loquercio et al. (2018), the band position
iopt within the image frame provides the direction of the
vehicle, whereas the traversability score topt modulates the
linear forward velocity: the lower the traversability score,
the slower the vehicle has to move, and vice versa. Note that

Algorithm 1: Band selection algorithm

Input: t̃ = {t1, . . . , tk}, predicted traversability
Output: topt , score of the selected band

iopt , index of the selected band

ĩ = {i1, . . . , ik} ← indices of scores in t̃ sorted in descending
order
for j = 1 : k do

if i j == 1 or i j == k then
continue

end
if ti j − ti j+1 < δ ∧ ti j − ti j−1 < δ then

iopt ← i j
topt ← t j

end
end

the boundary bands (i.e., the leftmost and the rightmost ones)
are purposefully excluded in the band selection as theywould
lead to an inherently unsafe choice, since we lack traversabil-
ity estimates outside of the camera field of view.

If it is not possible to select a proper bandor if the identified
traversability score topt is lower than a critical score tcri t =
0.15, we enable a recovery mode: the vehicle starts to slowly
rotate in place at 0.1 rad/s in order to find alternative viable
paths.

According to the above design principles, the linear veloc-
ity v and the angular velocity ω of the vehicle are computed
through Eqs. 9 and 10.

v = α(topt − tcri t ) (9)
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ω = β(
k/2� − iopt ) (10)

The linear velocity is proportional to the difference
between the critical score and the chosen band score. The
α coefficient is set according to the maximum velocity of the
robot. The angular velocity is, instead, proportional to the
position of the band with respect to the middle band. The
β term is set according to the maximum angular velocity
of the platform. In our tests we set α and β, respectively,
to 0.6 and 0.1, thus obtaining v ∈ [0, 0.51] m/s and ω ∈
{±0.3,±0.2,±0.1, 0} rad/s (since k = 9 in our case).

5 Traversability results

In this section, we first introduce the datasets employed in
our work: the simulated environment in which traversability
annotations are automatically generated, and the real dataset
introduced in Palazzo et al. (2020) that we employ for unsu-
pervised domain adaptation.

Then, we evaluate the accuracy of our traversability pre-
diction approach on two different training setups. We first
assess model performance with standard supervised training
on annotated real images. This analysis allows us to estab-
lish an upper bound on the expected accuracy of the proposed
approach. Then, we evaluate the quality of traversability pre-
dictions when training our model in a supervised way on
synthetic images and unsupervisedly on real images. A thor-
ough experimental protocol is followed to evaluate the impact
of each component of the proposed architecture.

5.1 Real dataset acquisition

We hereby introduce the acquisition protocol of the real
dataset employed in our experiments. Details can be found
in Palazzo et al. (2020).

Video sequences are recordedby teleoperating anunmanned
rubber-tracked ground robot employed for navigation in
rough outdoor environments. The robot is equipped with
a ZED stereo camera by Stereolabs acquiring 1280 × 720
RGB images of the terrain in front of the vehicle at 15 fps.
Only images from the right stream of the stereo system
are employed. The original data acquisition provides video
sequences for on-road and off-road (terrain) scenarios. In
this work, we focus on the off-road scenario, containing
419 selected images, since our simulated environment tar-
gets non-urban scenes.

Data annotation on this dataset was performed by a human
operator. However, the approach presented in this paper does
not employ manual annotations for training: we only use
them to carry out performance analysis and to run supervised
experiments on real images.

Fig. 5 Left: An overview of the map used to collect the synthetic
dataset. The map features a grass-covered meadow, some rocky areas
and some denser forest regions. It also includes a small lake and river.
Right: Some sample assets used to populate the synthetic scene. The top
three rows contain medium to large assets used as obstacles, while the
last row contains ground assets (grass and leaves) and a terrain texture
sample

5.2 Synthetic data acquisition

The synthetic dataset is generated using the MIDGARD
simulator (Vecchio et al. 2022), which produces photore-
alistic images and provides the tools for automatic data
annotation. The dataset was collected in a custom version
of MIDGARD’s native meadow scene, consisting of a large
map (3, 600 m2) replicating the features of the real-world
dataset. The synthetic dataset was collected in several hand-
guided navigation sessions: in each session we introduced
some variability in terrain deformation and vegetation distri-
bution. An overview of the entire map and sample elements
(obstacles and terrain types) included in the scene are pro-
vided in Fig. 5.

We acquire a total of 2271 RGB frames, each with
engine-generated traversability annotation, by simulating
rays propagated from the robot and detecting collisions to
objects in the scene, as exemplified in Figs. 6 and 7.

In detail, the annotation process is carried out in three
stages:

1. A set of non-traversable object types is defined (e.g.,
rocks, trees, branches) and automatically marked with a
NonTraversable flag, which can be imagined as an invis-
ible overlay over the selected scene elements.

2. A set of rays is projected from the robot perspective: if a
ray impacts an object/surface marked as NonTraversable,
the corresponding portion of the camera view is annotated
accordingly.

3. If a ray impacts a ground patch with an average slope
angle greater than a threshold it is also annotated as non-
traversable, regardless of the NonTraversable flag. The
threshold is based on the robot’s climbing capabilities: in
our experiments, we set it to 25°.

To simplify the acquisition and annotation process, we
render 512× 512 frames with a camera field of view of 90◦,
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Fig. 6 A simplified aerial-view graphics of the line tracing to detect
non-traversable regions in the simulated frame

Fig. 7 Visualization of trace-rays cast from the robot perspective for
automatic annotation of synthetic images: aerial view of the robot agent
(left) and robot camera perspective (right)

then both the frames and the annotations are cropped to 16:9
aspect ratio. To cover the entire 90◦ × 90◦ field of view of
the captured frames, we split the view into 9 sectors, each
covering a range of 10◦, both horizontally and vertically, and
cast 3 trace-lines for each sector, resulting in an approxima-
tion gap between traces of 3.33◦, for a total of 729 traces. A
sector is considered traversable if all the traces in that sector
intersect a traversable surface; otherwise, that sector is con-
sidered non-traversable. The 27 vertical traces cast for each
horizontal sector are used to detect the maximum traversable
horizon height (Fig. 8).

In order to prevent the presence of near-duplicate frames,
we ensured that any two consecutive frames in the dataset
exhibited a minimum linear or angular displacement, fol-
lowing the same criteria as in Palazzo et al. (2020). Overall,
it took about 1.5h of hand-guided navigation in the simulator
to collect the synthetic dataset of 2271 computer-annotated
frames.

5.3 Model training and evaluation procedure

Input images are pre-processed by resizing the shortest side
to 128 pixels (keeping aspect ratio) and standardizing each
color channel. After feature extraction by the DeepLabV2
backbone, the resulting feature maps have the shortest spa-
tial dimension of size 17: input images from the real dataset
produce feature maps of size 17 × 29, while feature maps
from synthetic images are 17 × 17. When performing self-
supervision, we modify SwAV to predict the same cluster
assignments to feature patches of spatial size between 2 × 2

Fig. 8 Examples of the automatic annotation process on the synthetic
dataset

and 4 × 4 (with random aspect ratio) extracted from a 4 × 6
area.

The training procedure for self-supervision employs a
mini-batchSGDoptimizer (batch size: 16),with cosine learn-
ing rate annealing from0.6 to 0.0006, for 400 training epochs.

As for traversability estimation, we train our model with
the Adam optimizer for 5000 epochs, using a linear learning
rate schedule from 10−4 to 10−8. Following Palazzo et al.
(2020), we set theα hyperparameter for the safety-preserving
loss term to 1.5. Weight decay factor ρ is 5 · 10−4, and the
λ hyperparameter that scales gradient reversal for domain
adaptation is set to 0.1. This training setting is applied to
both real and synthetic datasets.

Since the real dataset consists of a sequential stream of
frames captured while operating the robot, we define the
training and test splits by using the first 80% of the sequence
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for training and the rest for test, thus minimizing the risk of
near-duplicates in the two sets. For consistency, we also split
the synthetic dataset in the same way.

The model accuracy is computed on the real-dataset test
set, in terms of mean absolute error (MAE), estimated by
averaging the absolute errors of traversability scores pre-
dicted in each image, and then averaging the results over
all test images. In order to account for random model initial-
ization and to better assess differences in performance, we
report the mean and standard deviation of MAE over 10 runs
of the training and evaluation protocol.

Our model is implemented using the PyTorch library. We
use an NVIDIA Titan X (Pascal) GPU for training, and an
on-board NVIDIA Jetson TX1 (Maxwell) GPU for inference
on the robot, which is able to process 15 frames per second.

5.4 Performance analysis in the supervised setting

We hereby present the results achieved by our model (and
variants thereof) when it is trained in a supervised way
on real images. This setup represents an ideal case, with
manual annotations available on dataset created from real
acquisitions. In the next section, we will show how our pro-
posed approach, with unsupervised domain adaptation on
real images, compares to these results.

Table 2 shows the average MAE for several supervised
training configurations of our approach, namely, when syn-
thetic data are used alongside the real ones (Synth.) and when
self-supervised initialization, as described in Sect. 3.5, is
performed (Self-sup.). As a reference for comparison, we
report the results from the traversability estimation model
in Palazzo et al. (2020). For a thorough comparison, since
in Palazzo et al. (2020) the feature extraction backbone is also
fine-tuned during training, we first carry out a similar exper-
iment by disabling parameter freezing. It is worth to note
that, when not freezing the backbone, our approach obtains
comparable results with Palazzo et al. (2020); a slight differ-
ence in accuracy is due to architectural changes and random
model initialization.

The results obtained when introducing the proposed train-
ing enhancements show that our model is able to outperform
the baseline by a statistically significantmargin. In this setup,
with the availability of real-image ground-truth annotations
during training, the impact of employing synthetic images
and of performing self-supervision is limited. This can be
expected, since the error signal provided by real images
is probably the most important factor that drives learning.
We can also notice that backbone freezing has a positive
impact on results, reducing model complexity and leading
our approach to better generalize on test data. Therefore, we
enable backbone freezing in all the following experiments
on unsupervised domain adaptation.

Table 2 Performance evaluation, in terms of average MAE on the
traversability scores, in the supervised setup with manual annotations
on real images

Model Freez Synth Self-sup MAE (×10−3)

Palazzo et al. (2020) – – – 112 ± 8 ∗∗

Proposed model – – – 114 ± 6 ∗∗

✓ – – 95 ± 7 ∗∗

✓ ✓ – 98 ± 6 ∗

✓ – ✓ 96 ± 5 ∗

✓ ✓ ✓ 89 ± 7

The ∗ and ∗∗ symbols indicate statistical significance of t-test with p-
value less than 0.05 and 0.01, respectively

Table 3 Performance evaluation, in terms of average MAE on the
traversability scores, in the domain adaptation setup, where no man-
ual annotations on real images are available

Model Self-sup Adapt MAE (×10−3)

Palazzo et al. (2020) – – 170 ± 10 ∗∗

Proposed model – – 164 ± 11 ∗∗

✓ – 131 ± 6 ∗∗

– ✓ 124 ± 8 ∗∗

✓ ✓ 104 ± 8

The ∗∗ symbol indicates statistical significance of t-test with p-value
less 0.01

5.5 Performance analysis in the unsupervised
domain-adaptation setting

In this setting, we evaluate the accuracy of our model when
no annotations on the real dataset are available. Table 3 shows
the average MAE when the model is supervisedly trained on
synthetic images only and demonstrates how performance
varies when we gradually integrate self-supervision (“Self-
sup.”) and unsupervised domain adaptation (“Adapt.”). Note
that when no self-supervision or domain adaptation is
employed (as in the case of Palazzo et al. (2020), which we
include in the comparison as a baseline), the model is simply
trained on synthetic images and tested on real images.

Results show that themodel successfully learns traversabil-
ity features from synthetic images and, unsupervisedly, from
real images. It is interesting to note that results without any
formof adaptation (i.e., when only synthetic images are used)
are already relatively accurate, demonstrating the realism of
the proposed simulation framework. Then, the integration of
self-supervision and unsupervised domain adaptation inde-
pendently improve the accuracy of themodel. The full variant
of our approach further reduces the traversability estimation
error, achieving an average MAE of 0.104, which is very
close to the value of 0.089 obtained when real images are
supervisedly used at training time.
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Fig. 9 A comparison between the output of the methods in Table 3 and the ground-truth for real images. From left to right we have: (1) input, (2)
ground truth, (3) base (training on synthetic only), (4) domain adaptation on unlabeled real data, (5) self-supervised pre-training, (6) self-supervision
+ domain adaptation

The outputs of different setups of our model applied to
three sample images are compared in Fig. 9, qualitatively
showing the improved traversability prediction of our final
model. When training on synthetic data and directly test-
ing on real data (“Base” column), model predictions exhibit
large estimation errors; the integration of domain adaptation
alone does improve results on simple terrain (e.g., second
row). Self-supervision has a visibly positive impact on the
results, though it appears to cause overly optimistic pre-
dictions in some regions. Integrating self-supervision and
domain adaptation further improves predictions, keeping
them close to ground-truth annotations but making them
more conservative and safe.

6 Navigation results

In this section we evaluate the performance of the pro-
posed traversability-driven navigation method in both on-
simulation and on-field settings.

6.1 On-simulation navigation results

Simulated experiments are designed to evaluate the
traversability-driven navigation approach in several chal-
lenging scenarios and to compare it to the state of the art.
The experiments are carried out in the MIDGARD simula-
tion environment for a total control over scene features and
geometry.

We first evaluate qualitatively our navigation approach
under three challenging scenarios where traversability esti-
mation may lead to erroneous navigation outcomes:

• Steep slope occluding horizon.Asteep upslope or downs-
lope may limit the estimated traversability value due to
the sky covering a large part of the view, causing the

agent to stop. Figure 10 presents an extreme example
where the horizon is fully occluded. We report the pre-
dicted traversabilitymaps in three keypoints: (1) upslope,
before reaching the top of the hill; (2) at the top of the
hill; (3) downslope, while going down the hill. In all of
these cases, the estimated traversability never falls below
the critical threshold of tcri t = 0.15, at which the control
algorithm stops the agent. Note that this behavior also
depends on the camera setup, which in our experiments
is tilted downward with an angle of 5◦, replicating the
setup of the real-world robot.

• Mid-air obstacles, such as horizontal branches in front
of the vehicle camera, may limit visibility and, conse-
quently, the traversability estimation. The example in
Fig. 11 shows how the proposed approach suitably low-
ers the traversability scores as the agent gets closer to the
overheadbranchup to a pointwhere they reach the critical
threshold and the vehicle stops. Suitable camera posi-
tioning, at the front top of the robot, is necessary to have
occlusions appearing in the middle/lower portion of the
frame, in order to be suitably marked as non-traversable.

• Narrow path. Narrow paths represent another critical
navigation scenario, where small mistakes may cause
serious damage to the robot. To validate our navigation
algorithm in such a setting, we crafted a scene consist-
ing of a small traversable path between two rocky walls,
as shown in Fig. 12. In this test, as exemplified in the
sequence of frames captured from the virtual camera, the
robot is able to effectively travel the path,without exhibit-
ing any oscillatory behavior that might divert it from the
optimal course.

We then perform a quantitative assessment of navigation
performance, in terms of average traveled distance and time,
and compare it to the state of the art. More specifically,
we compare our approach with an end-to-end reinforcement
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Fig. 10 Traversability prediction in steep slope setting. The top image
shows a side-view of the hill with the acquisition locations marked,
shown below in order with the corresponding traversability predictions.
In all frames, the traversability range is always above the tcri t = 0.15
threshold

Fig. 11 Examples of traversability estimated when facing a horizontal
obstacle in mid-air. Each row of images shows a side view of the scene,
the agent’s camera view and predicted traversability

Fig. 12 Top: aerial view of the scene in our narrow path navigation
experiment. Bottom: two frames, with corresponding traversability pre-
diction, at two different points of the path

learning navigation method (Xie et al. 2017), which employs
a D3QN agent to perform obstacle avoidance from RGB and
depth inputs. For a fair comparison to our method (that relies
only on RGB), we leave out intermediate depth estimation
from Xie et al. (2017) and work on RGB only. The reward
function used to train the agent is the same as described inXie
et al. (2017). At each step, the agent receives a reward com-
puted as r = vT cosω, where v andω are the local linear and
angular velocity, and T is the time between each step. Addi-
tionally, the agent receives a negative reward of -10 when a
collision is detected.

In addition, we also test two variants of our navigation
approach. Our first variant is designed to investigate the pos-
sible presence of a correlation bias between distance and
position of elements in the 2D image, which might tend to
mark areas in the bottom part of the camera as traversable,
possibly erroneously. To assess the impact of this bias, we
apply a depth-based post-prediction criterion over the maxi-
mum estimated traversability: points in the scene which are
further than a certain depth threshold are marked as non-
traversable, regardless of the predicted traversability score
(we refer to this variant to as depth-constrained). Under this
constraint, overconfident predictions about far elements in
the scene are prevented. In our experiments, we set the depth
threshold to 15ms, which is within the range supported by
the real ZED camera.

123



    4 Page 14 of 19 Autonomous Robots             (2024) 48:4 

Our second variant is designed to assess the effect of the
proposed navigation approach, compared to a simpler alter-
native which applies a manually-set convolutional kernel to
identify the ideal band. In detail, each traversability score si
is updated as si ← si −abs(c), where c is obtained by apply-
ing a [−0.5, 1,−0.5] convolutional kernel at vector location
i . Intuitively, the effect of this operation is to prefer locations
that a) have a large traversability score to start with, and
b) have similar scores in the neighbor bands. The band with
the largest updated score is then selected as the direction
towards which the robot should move. Linear and angular
velocities are set as per Eq. 9 (with tcri t = 0) and Eq. 10.

Results, in terms of average traveled distance and naviga-
tion time before a collision over 200 navigation episodes, are
given in Table 4: our method significantly outperforms the
end-to-end learning approach inXie et al. (2017) in bothmet-
rics. Interestingly, including the maximum depth constraint2

seems to yield worse performance: this may be due to the
reduced traversable horizon forced by the distance threshold,
which limits navigation options. As for our experiment with
the “naïve” navigation rule, results show that this approach,
as can be expected, yields low navigation performance. From
a manual inspection of the robot’s behavior in this setting,
choosing the target direction “greedily” often leads the robot
to either be surrounded by non-traversable regions or oscil-
late between nearby bands, due to the lack of a criterion for
ensuring consistency of traversability scores across nearby
bands. It is interesting to note that, quantitatively, this causes
the robot to navigate for shorter distances before incurring
into obstacles, while counter-intuitively increasing the dura-
tion of the simulation, since frequently switching directions
leads to spending more time performing in-place rotations
than linear displacements.

Our findings thus suggest that assessing accurately the
height of the traversable region in 2D projected images ade-
quately supports complex navigation tasks, while beingmore
interpretable than end-to-end navigation approaches.

6.2 On-field navigation results

On-field experiments have been carried out in a previously
unseen real-world scenario to evaluate the performance of
the traversability prediction model, especially in terms of
sim-to-real transfer. The test environment features small to
large rocks, tree branches and trunks, and high vegetation,
thus being far more challenging compared to the real-world
dataset used in training. The tracked vehicle and hardware
setup introduced in 5.1 and adopted for the dataset acquisi-

2 It should be noted that, in our experiment, depth measurements were
accurately simulated; in a real application, noisy depth values might
further deteriorate performance.

Table 4 Performance evaluation of navigation methods, in terms of
average navigated distance and average navigation duration, before a
collision is detected

Method Avg. distance Avg. time

Xie et al. (2017) 43.32 m 198.51 s

Palazzo et al. (2020) 44.13 m 192.48 s

Our approach (naïve rule) 31.96 m ∗∗ 206.88 s ∗∗

Our approach (depth-constrained) 47.54 m ∗∗ 190.17 s ∗∗

Our approach 49.29 m ∗∗ 232.67 s ∗∗

The ∗∗ symbol indicates statistical significance of t-test with p-value
less 0.01

tion (Palazzo et al. 2020) are used also for running the on-field
test campaign.

The proposed approach allows the vehicle to smoothly
navigate without experiencing any oscillatory behavior in
the angular velocity, despite its discretization, thanks to the
stable outcome of the band selection algorithm over time.
More in detail, we observe that the selected band position is
stable or smoothly transitioning to adjacent bands in consec-
utive video frames during navigation. A video showing some
sessions of autonomous navigation during the on-field tests
performed in the considered environment can be found in the
supplementary material.

On-field experiments highlight themodel’s ability to prop-
erly identify traversable areas even in scenes differing from
the training dataset, thus demonstrating the generalization
capability and robustness of the model. Some examples are
reported in Fig. 13, showing convincing predictions of the
traversable horizon for the observed scenarios.

Performance decreases when dealing with very close
vegetation, resulting in occasional misclassification of non-
traversable obstacles such as rocks, thus posing a potential
risk to the vehicle. Some failure cases are reported in Fig. 14.
We argue that this behavior is caused by the limited number
of similar examples in both real and synthetic datasets: as a
consequence, obstacles occluded by vegetation can be mis-
takenly perceived as traversable. Comparing the results in
Fig. 13 to those in Fig. 14, it can be observed how the model
is still able to recognize the traversable path as long as it has
enough contextual awareness and the visual appearance of
obstacles is not overly occluded by vegetation.

We have also compared our method with the reinforce-
ment learning approach in Xie et al. (2017). While the latter
provides appreciable results, thanks to retraining performed
in simulation, it also occasionally resulted in collisions with
rocks or walls. This kind of navigation mistakes could be
ascribed to the inability of the model to deal with the change
of lighting conditions or to a potential delay in the decision
making of the agent, which results into trajectories colliding
with obstacles. A video showing some video samples of sce-
narios where (Xie et al. 2017) fails, whereas our approach
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Fig. 13 Successful traversability inference examples from the on-field
tests: real images (left), related non-traversable area prediction in blue
(right)

Fig. 14 Failure examples from the on-field tests: real images (left),
related non-traversable area prediction in blue (right)

succeeds, can be found in the supplementary material. How-
ever, it is worth recalling that it is hard to properly identify
potential sources of failures, since in Xie et al. (2017) we do
not have a predicted traversability outcome, but the naviga-
tion control action. Thus, in the provided video we show the
on-board camera view during navigation up to the moment
before the robot bumps into an obstacle.

7 Conclusions

In this paper, we introduced a novel method for traversability
prediction based on self-supervision and domain adaptation.
To enhance the capabilities of the model we created a large,
fully annotated, synthetic dataset in a simulated environment,
relieving from the burden of manually labeling a real dataset.
The proposed approach outperforms previous methods for
traversability estimation (Palazzo et al. 2020), while relaxing
the need for supervision on real data.

On-field tests, performed in an unseen outdoor and
unstructured scenario, confirm the effectiveness of the pro-
posed method to accurately estimate traversability, thus
enabling the vehicle to autonomously navigate in the target
environment.

Future developments include enhancing model results
when dealing with new unseen objects, such as occlusions
between vegetation and non-traversable obstacles in rocks.
A possible solution may include to integrate traversability
predictions with confidence scores by a segmentation model,
such as DeepLabV2, in order to detect critical regions (where
prediction confidence is expected to be low). Uncertainty
regions can be then treated as non-traversable when the pre-
diction confidence falls below a threshold.

A related research direction concerns the limitations of
the proposed approach for domain adaptation. Indeed, while
numerical experiments and on-field tests demonstrated that
our method effectively transfers knowledge from synthetic
scenarios to real (and even unseen) environments, our prelim-
inary results show that the model fails in presence of extreme
domain changes, e.g., when performing supervised training
on a synthetic “volcanic” scene and domain adaptation on a
grassy environment, with previously-unseen obstacles such
as trees).

In terms of the formulation of the training objective,
we also intend to address the lack of distinction between
traversability errors performed in the lower part of the image
(i.e., closer to the robot) than in the higher part. A possible
solution would be to weigh the training samples based on the
ground-truth traversability scores, givingmore importance to
lower ones; to this aim, we should beforehand ensure a uni-
form distribution over traversability values collected during
the hand-guided navigation sessions.

Finally, we intend to investigate sensor fusion approaches
to integrate RGB data with depth cameras and/or LIDAR
scans, to further improve the accuracy of the model in the
presence of ambiguous visual features, as well as to explore
model architectures and learning methodologies for point
cloud inputs—e.g., 3D convolutions (Huang and You 2016),
graph neural networks (Shi and Rajkumar 2020), transform-
ers (Guo et al. 2021). The proposed approach could be further
extended by integrating it with learning-based path planners,
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such as an end-to-end reinforcement learning–based naviga-
tion agent.

Supplementary information

A video showing some sessions of autonomous navigation
during the on-field tests performed in the considered envi-
ronment can be found in the supplementary material.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-024-10158-
4.
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