
Autonomous Robots (2024) 48:2
https://doi.org/10.1007/s10514-023-10155-z

Collocation methods for second and higher order systems

Siro Moreno-Martín1 · Lluís Ros1 · Enric Celaya1

Received: 15 February 2023 / Accepted: 17 December 2023 / Published online: 28 January 2024
© The Author(s) 2024

Abstract
It is often unnoticed that the predominant way to use collocation methods is fundamentally flawed when applied to optimal
control in robotics. Such methods assume that the system dynamics is given by a first order ODE, whereas robots are
often governed by a second or higher order ODE involving configuration variables and their time derivatives. To apply a
collocation method, therefore, the usual practice is to resort to the well known procedure of casting an Mth order ODE
into M first order ones. This manipulation, which in the continuous domain is perfectly valid, leads to inconsistencies when
the problem is discretized. Since the configuration variables and their time derivatives are approximated with polynomials
of the same degree, their differential dependencies cannot be fulfilled, and the actual dynamics is not satisfied, not even at
the collocation points. This paper draws attention to this problem, and develops improved versions of the trapezoidal and
Hermite–Simpson collocation methods that do not present these inconsistencies. In many cases, the new methods reduce the
dynamics transcription error in one order of magnitude, or even more, without noticeably increasing the cost of computing
the solutions.

Keywords Collocation methods · Trajectory optimization · Optimal control · Second and higher order systems

1 Introduction

Direct collocation methods have proven to be powerful tools
for solving optimal control problems in robotics (Posa et
al., 2016; Pardo et al., 2016; Kelly, 2017; Hereid et al.,
2018; Tedrake, 2023). Initially developed for aeronautics
and astrodynamics applications (Hargraves and Paris, 1987;
Conway and Paris, 2010), these methods have become very
popular and of widespread use in the context of trajectory
optimization and model predictive control, thanks to a few
key advantages over indirect approaches based on the Pon-
tryagin conditions of optimality: in general, they are easier
to implement and show larger regions of convergence, and
do not require estimations of the costate variables, which
may be difficult to obtain accurately. Helpful tutorials and
monographs like Kelly (2017) or Betts (2010), as well as

B Siro Moreno-Martín
smorenom@iri.upc.edu

Lluís Ros
ros@iri.upc.edu

Enric Celaya
enric.celaya@gmail.com

1 Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Llorens Artigas 4-6, 08028 Barcelona, Catalonia, Spain

open-source packages for nonlinear optimization (Wächter
and Biegler, 2006), numerical optimal control (Kelly, 2017;
Becerra, 2010; Andersson et al., 2019), or model-based
design and verification (The Drake Team, 2023), are also
contributing to their rapid dissemination among the commu-
nity.

Direct collocation methods involve the transcription of
the continuous-time optimal control problem into a finite-
dimensional nonlinear programming (NLP) problem (Kelly,
2017). The transcription is based on partitioning the time
history of the control and state variables into a number of
intervals delimited by knot points. The system dynamics is
then discretized in each interval by imposing the differential
constraints at a set of collocation points, whichmay coincide,
or not, with the chosen knot points. The cost function is also
approximated using the values taken by the variables at such
points, and the NLP problem is formulated using them. Once
this problem is solved, a continuous solution is built using
interpolatingpolynomials that satisfy the dynamics equations
at the collocation points.

The general formulation of most collocation methods
assumes that the system dynamics is governed by a first order
ODE of the form

ẋ(t) = f (x(t), u(t), t), (1)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10155-z&domain=pdf

2 Page 2 of 20 Autonomous Robots (2024) 48 :2

where x(t) and u(t) are the state trajectory and the control
function, respectively (Tedrake, 2023). In robotics, however,
as in mechanics in general, the evolution of the system is
often determined by a second order ODE of the form

q̈(t) = g
(
q(t), q̇(t), u(t), t

)
, (2)

where q(t) is the configuration trajectory and q̇(t) is its time
derivative. To apply a general collocation method, therefore,
the usual procedure is to define v(t) = q̇(t) and write (2) as

{
q̇(t) = v(t), (3a)

v̇(t) = g(q(t), v(t), u(t), t). (3b)

which, if we define x(t) = (q(t), v(t)), corresponds for-
mally to (1). Yet, this raises a consistency issue. Since the
collocation method locally approximates q(t) and v(t) by
polynomials of the same degree, imposing

v(t) = q̇(t) (4)

only at the collocation points does not grant the satisfaction
of (4) over the continuous time domain. Even more striking,
perhaps, is the fact that, as we demonstrate in this paper,
imposing (3) at the collocation points does not imply the
satisfaction of (2), not even at these points, which contributes
to increase the dynamic transcription error along the obtained
trajectories. This hinders the possibility to reach a correct
solution since, even if u(t) produces the expected trajectory
for v(t), its integration will rarely coincide with the function
obtained for q(t). In other words, the state trajectory x(t)
will be inconsistent in general. Note also that, while second
order ODEs could be discretized using Nyström methods
(Hairer et al., 1993), the main advantage of these methods
arises when the right-hand side of (2) does not depend on q̇,
which seldom occurs in robotics.

In this paper we present modified versions of the trape-
zoidal and Hermite–Simpson collocation methods specifi-
cally addressed to guarantee that the collocation polynomials
fulfill (4), while satisfying (2) at the collocation points,
thereby increasing the accuracy of the obtained solutions.
The paper is an extended version of an earlier work we pre-
sented in RSS’2022 (Moreno-Martín et al., 2022). In this
new version, the original methods for second order ODEs
are further generalized to deal with ODEs of arbitrary order
M

q(M)(t) = g(q(t), q̇(t), . . . , q(M−1)(t), u(t), t), (5)

which are less common but may arise in flexible, elastic,
or soft robots for example (De Luca and Book, 2016; Della
Santina, 2020), orwhen increased smoothness is sought in the
computed solutions (Sect. 7.4). In addition, we also study the

theoretical accuracy of allmethods and offer amore thorough
comparison between them.

By means of illustrative benchmark problems, the paper
demonstrates that the new methods reduce substantially the
dynamics error (in one order of magnitude or even more
depending on the number of knot points) without notice-
ably increasing the computational time needed to solve the
transcribed NLP problems. As a result, the state and control
trajectories x(t) and u(t) will be mutually more consistent,
which facilitates their tracking with a feedback controller.

The rest of the paper is structured as follows. Section2
formulates the optimal control problem to be solved and
delimits the specific transcription problem that we face in this
paper. To prepare the ground for later developments, Sect. 3
reviews the conventional trapezoidal and Hermite–Simpson
methods and pinpoints their limitations on transcribing 2nd
order ODEs. Improved versions of these methods are then
developed in Sect. 4 for 2nd order systems, and forM th order
ones in Sect. 5. The methods are summarized and compared
in Sect. 6, where tools to assess their accuracy are also pro-
vided. The performance of all methods is analyzed in Sect. 7
with the help of examples, and the paper conclusions are
finally given in Sect. 8.

2 Problem formulation

The optimal control problem that concerns us in this paper
consists of finding state and action trajectories x(t) and u(t),
and a final time t f , that

minimize

K (x f , t f) +
∫ t f

0
L(x(t), u(t)) dt (6a)

subject to

ẋ(t) = f (x(t), u(t), t), t ∈ [0, t f] (6b)

p(x(t), u(t)) ≤ 0, t ∈ [0, t f] (6c)

b(x0, x f , t f) = 0, (6d)

t f ≥ 0, (6e)

where x0 = x(0), and x f = x(t f), the terms K (x f , t f)
and L(x(t), u(t)) are terminal and running cost functions,
respectively, (6b) is an ODE modeling the system dynamics,
and (6c) and (6d) encompass the path and boundary con-
straints.

123

Autonomous Robots (2024) 48 :2 Page 3 of 20 2

We note that, while Eq. (6b) has the appearance of a first
order ODE, in robotics it often takes the form

ẋ1 = x2
ẋ2 = x3

...

ẋM−1 = xM

ẋM = g(x, u, t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where

x = (x1, . . . , xM) = (q, q̇, . . . , q(M−1)), (8)

so in such cases it actually encodes an M th order ODE like
(5), or (2) if M = 2.

Solving Problem (6) via collocation involves partitioning
the time history of the control and state variables into N inter-
vals delimited by N + 1 knot points tk , k = 0, . . . , N , then
transcribing Eqs. (6a)–(6c) into appropriate discretizations
expressed in terms of the values xk = x(tk) and uk = u(tk),
and finally solving the constrained optimization problem that
results.

The transcriptions of (6a) and (6c) are relatively straight-
forward and less relevant in the context of this paper. They can
be done, for example, by approximating the integral in (6a)
using some quadrature rule, and enforcing (6c) for all knot
points tk . The transcription of (6b), in contrast, is substan-
tially more involved, and will be the main subject of the rest
of this paper. In particular, we seek to construct appropriate
polynomial approximations of the solutions x(t) of (6b) for
each interval [tk, tk+1]. These approximationswill be defined
as solutions of systems of equations which, when considered
together for all intervals, will form a proper transcription of
(6b) over the whole time domain [0, t f].

In what follows, for each interval [tk, tk+1] we shall use
the shifted time variable τ = t − tk , and the interval width
h = tk+1 − tk .

3 Methods for first order systems

Two of the most widely used transcriptions of (6b) are those
of the trapezoidal and Hermite–Simpson methods, which
assume no particular form for (6b). To see where these tran-
scriptions incur in dynamical error, and ease the development
of the newmethods, we briefly explain how they approximate
(6b) and obtain their approximation polynomials for the state.
Our results match those by Betts (2010) and Kelly (2017),
but we follow a derivation process that is closer to Hargraves
and Paris (1987), which facilitates the transition to our new
methods in Sects. 4 and 5.

3.1 Trapezoidal collocation

In trapezoidal collocation, the state trajectories are approxi-
mated by quadratic polynomials. For t ∈ [tk, tk+1], we can
write the polynomial approximation for a component x of
the state, and its temporal derivative, as

x(t) = a + bτ + cτ 2, (9a)

ẋ(t) = b + 2cτ, (9b)

where a, b, and c are real coefficients. To facilitate the appli-
cation of collocation constraints, however, we will rewrite
x(t) using the three parameters

xk = x(tk), (10)

ẋk = ẋ(tk), (11)

ẋk+1 = ẋ(tk+1). (12)

Evaluating the right-hand sides of (10)–(12) using (9) we
obtain

⎡

⎣
xk
ẋk
ẋk+1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 1 2h

⎤

⎦

⎡

⎣
a
b
c

⎤

⎦ , (13)

so solving for a, b, c and substituting the resulting expres-
sions in (9a), we have

x(t) = xk + ẋkτ + τ 2

2h
(ẋk+1 − ẋk). (14)

Equation (14) is known as the interpolation polynomial, as it
allows us to estimate the intermediate states for t ∈ [tk, tk+1],
once the NLP problem has been solved.

Now, following Hairer et al. (2002, p. 30), we determine
the three parameters of (14) by enforcing the initial value
constraint x(tk) = xk and two collocation constraints of the
form

ẋ(t) = f (x(t), u(t), t)

for two different time instants t ∈ [tk, tk+1]. From (14) we
see that x(tk) = xk by construction. As for the collocation
constraints, the trapezoidal method imposes them at the knot
points tk and tk+1, so it must be

ẋk = fk, (15)

ẋk+1 = fk+1, (16)

where fk is a shorthand for f (xk, uk, tk). The value xk+1,
then, is obtained by evaluating (14) for τ = h. This results

123

2 Page 4 of 20 Autonomous Robots (2024) 48 :2

in the constraint

xk+1 = xk + h

2
(ẋk+1 + ẋk), (17)

which ensures the continuity of the trajectory across intervals
k and k + 1.

Note that Eqs. (15)–(17) already form a transcription of
our ODE in the interval [tk, tk+1] since, if xk , uk , and uk+1

were known, these equations would suffice to determine the
three unknowns ẋk , ẋk+1, and xk+1. However, we can also
substitute (15) and (16) into (17) to obtain the more compact
expression

xk+1 = xk + h

2
(fk+1 + fk), (18)

which we recognize as the common transcription rule in
trapezoidal collocation (Kelly, 2017; Betts, 2010). Observe
that the continuity between the polynomials of intervals k
and k + 1 is granted for the first derivative as, by construc-
tion, they both satisfy ẋk+1 = fk+1. However, second and
higher order continuity is not preserved in general.

3.2 Hermite–Simpson collocation

InHermite–Simpson collocation, the state trajectories in each
interval are approximated by cubic polynomials:

x(t) = a + bτ + cτ 2 + dτ 3, (19a)

ẋ(t) = b + 2cτ + 3dτ 2. (19b)

By analogy with the trapezoidal method, we first express the
polynomial coefficients in terms of the parameters

xk = x(tk),

ẋk = ẋ(tk),

ẋc = ẋ(tc),

ẋk+1 = ẋ(tk+1),

where tc = tk + h/2, and the extra parameter ẋc is added
because four parameters are needed to determine a third
degree polynomial. Evaluating these identities using (19),
solving for a, . . . , d, and substituting the expressions in
(19a), we obtain the interpolation polynomial

x(t) = xk + ẋkτ − τ 2

2h
(3ẋk − 4ẋc + ẋk+1)

+ τ 3

3h2
(2ẋk − 4ẋc + 2ẋk+1).

(20)

In order to determine the four parameters of (20), four
conditions have to be imposed, and the Hermite–Simpson

method makes this by fixing x(tk) = xk (which holds by
construction) and imposing the dynamics at the twobounding
knot points and the midpoint between them:

ẋk = fk, (21)

ẋk+1 = fk+1, (22)

ẋc = fc. (23)

In the latter equation, fc = f (xc, uc, tc), where xc = x(tc),
and uc = u(tc). Moreover, the values xc that are needed in
fc can be expressed in terms of the above four parameters by
evaluating (20) for τ = h/2, which yields

xc = xk + h

24
(5ẋk + 8ẋc − ẋk+1). (24)

Finally, the continuity constraint between intervals k and k+1
is obtained by evaluating (20) for τ = h:

xk+1 = xk + h

6
(ẋk + 4ẋc + ẋk+1). (25)

Equations (21)–(25) already form a transcription of our
ODE in [tk, tk+1], but a transcription involving less variables
can be obtained by substituting (21)–(23) in (25) and (24),
which gives

xk+1 = xk + h

6
(fk + 4 fc + fk+1), (26a)

xc = xk + h

24
(5 fk + 8 fc − fk+1). (26b)

If preferred, we can also remove the dependence on fc
in (26b). This is achieved by isolating fc from (26a) and
substituting the result in (26b), which yields the alternative
transcription

xk+1 = xk + h

6
(fk + 4 fc + fk+1), (27a)

xc = 1

2
(xk + xk+1) + h

8
(fk − fk+1). (27b)

Both transcriptions in (26) and (27) are called separated
forms of Hermite–Simpson collocation, in the sense they
both keep xc as a decision variable of the problem. They are
equivalent, but the one in (27) allows us to eliminate xc by
substituting (27b) in (27a), which results in a single equation
that is known as the compressed form of Hermite–Simpson
collocation (Kelly, 2017; Betts, 2010). While the use of a
separated form tends to be better when working with a small
number of intervals, the compressed form is preferable when
such a number is large (Kelly, 2017).

Note that, despite the polynomial approximation for each
interval between consecutive knot points is of third degree,

123

Autonomous Robots (2024) 48 :2 Page 5 of 20 2

continuity through knot points is only granted for the state
trajectory and its first derivative.

3.3 Trajectory interpolation

After solving theNLPproblem, values of the state and control
variables at all collocation points are available. A contin-
uous approximation to the optimal trajectory for the state
is then obtained by substituting (15)–(16), or (21)–(23), in
the corresponding interpolating polynomials (14) and (20),
for the trapezoidal and Hermite–Simpson methods, respec-
tively. The approximation of the control trajectory within
each interval is obtained, in the trapezoidal case, by linear
interpolation of the control values. In the Hermite–Simpson
case, different options are possible. Some authors handle
the midpoint control as an independent variable and use a
quadratic interpolation of the three control values available
in each interval (Kelly, 2017), while others prefer a linear
interpolation and enforce the midpoint value to be the mean
of the two bounding values (Topputo and Zhang, 2014). In
this paper we follow the former option.

3.4 Downsides of themethods

In a first order dynamical system, imposing (15)–(16) or
(21)–(23) grants that the system dynamics is effectively sat-
isfied at the collocation points. The same is not true when
a second order system is cast into a first order one via (3).
To see why, note that the constraint q̇(t) = v(t) is only
imposed at the collocation points, but not in between them,
so that, even if the curves q̇(t) and v(t) coincide at such
points, their derivatives may be different in them (Fig. 1).
Therefore, q̈(t) �= v̇(t) in general and, in particular, also at
the collocation points. As a consequence, even if q̇k = vk and
v̇k = g(qk, vk, uk, tk), this does not imply that the expected
relation q̈k = g(qk, q̇k, uk, tk) is satisfied, what means that,
with a transcription based on (3), the system dynamics in
(2) is not granted, not even at the collocation points. This
problem is solved in the second order collocation methods
introduced in the next section.

A related problem of first order methods is that, when the
trajectories are approximated with their interpolation poly-
nomials q(t) and v(t), the difference v(t) − q̇(t) �= 0 makes
the state trajectory inconsistent, so that, if we try to follow
it with a controller, since the configuration and velocity tra-
jectories are incompatible, both cannot be followed at the
same time. An attempt to solve this may consist in ignoring
the configuration trajectory and replacing it by the integral
of the velocity, but the resulting configuration trajectory may
violate the problem constraints, e.g., the final configuration
may be different from the expected one. Alternatively, one
can try to replace the velocity trajectory by the derivative of
q(t), but in this case, since the dynamic constraint satisfied

Fig. 1 Inconsistencies that arise when a collocation method for first
order systems is applied to a second order ODE q̈ = g(q, q̇, u, t). The
figure illustrates the case of the trapezoidal method, whose quadratic
approximations q(t) and v(t) are depicted in blue. The red and green
curves correspond to first and second derivatives of these trajectories,
respectively

at collocation point k is v̇k = g(qk, vk, uk, tk), and vk = q̇k
but v̇k �= q̈k , the dynamic constraint q̈k = g(qk, q̇k, uk, tk)
will not be satisfied with the computed uk .

4 Methods for second order systems

To solve the inconsistency problems just explained, we
propose alternative formulations for the trapezoidal and
Hermite–Simpson collocationmethods inwhich the dynamic
constraints are directly imposed on the second derivative of
the configuration variables, instead of on the first derivative
of the state variables. By doing so, the velocity variables are
not treated as independent from the configuration ones, but
explicitly defined as v(t) ≡ q̇(t). In this way, the discrepancy
between q(t) and v(t) is fully removed, and the second order
dynamics is satisfied at each collocation point.

4.1 Trapezoidal method for second order systems

The essential feature characterizing trapezoidal collocation
is that the dynamics is imposed just at the knot points or, oth-
erwise said, that each interval bound is a collocation point.
When the dynamics is governed by the second order ODE

123

2 Page 6 of 20 Autonomous Robots (2024) 48 :2

in (2), using the same strategy as the trapezoidal method
consists in imposing (2) at each interval bound. This means
that, for each interval, two constraints have to be imposed
on the second derivative of the polynomial approximating
each component q of the configuration. But, since the sec-
ond derivative of a quadratic polynomial is constant, only one
constraint could be imposed on it. This implies that the inter-
polating polynomial q(t)must be of degree three at least. So,
we will have, for a given interval [tk, tk+1],

q(t) = a + bτ + cτ 2 + dτ 3, (28a)

q̇(t) = b + 2cτ + 3dτ 2, (28b)

q̈(t) = 2c + 6dτ. (28c)

To determine the coefficients a, b, c, d, we need to impose
four conditions. While in the trapezoidal method three con-
ditions were used (the value xk at the initial bound and the
derivatives ẋk and ẋk+1 at the two bounds), here we will
impose, in addition to the initial value qk and the second
derivative at the interval bounds q̈k and q̈k+1, the value q̇k of
the first derivative at the initial bound. Note that, for a cubic
polynomial, nomore than two independent conditions can be
fulfilled by its second derivative, so imposing the dynamics
at the midpoint of the interval as in the Hermite–Simpson
method is not possible here. Thus we will use as parameters:

qk = q(tk)

q̇k = q̇(tk)

q̈k = q̈(tk)

q̈k+1 = q̈(tk+1).

Evaluating these identities using (28) and solving fora, b, c, d,
we can write the interpolation polynomial q(t) as:

q(t) = qk + q̇kτ + q̈k
τ 2

2
+ τ 3

6h
(q̈k+1 − q̈k). (29)

The evaluation of this polynomial and its derivative q̇(t) for
τ = h yields

qk+1 = qk + q̇kh + h2

6
(q̈k+1 + 2q̈k), (30a)

q̇k+1 = q̇k + h

2
(q̈k+1 + q̈k), (30b)

and imposing the collocation constraints

q̈k = gk, (31a)

q̈k+1 = gk+1, (31b)

where gk = g(qk, q̇k, uk, tk), we finally obtain the trape-
zoidal method for second order systems:

qk+1 = qk + q̇kh + h2

6
(gk+1 + 2gk), (32a)

q̇k+1 = q̇k + h

2
(gk+1 + gk). (32b)

Note that, in this case, the trapezoidal rule only applies for the
velocity, but not for the configuration itself, which is given
by Eq. (32a).

As opposed to the trapezoidal method for first order sys-
tems, the continuity between neighboring polynomials at the
knot points is of second order in this case, since the col-
location constraints impose the coincidence of the second
derivative of q(t). Second order continuity for the con-
figuration trajectory implies smooth velocity profiles and
continuous accelerations, which are desirable properties in
many robotics applications (Constantinescu and Croft, 2000;
Macfarlane and Croft, 2003; Berscheid and Kröger, 2021).

4.2 Hermite–Simpsonmethod for second order
systems

Our purpose now is to impose the second order dynamics on
the twobounds and themidpoint of each interval, in similarity
with the conventional Hermite–Simpson method. Clearly, if
we want to impose three conditions to the second derivative
of a polynomial q(t), such a derivative must be quadratic at
least, what implies that the polynomial must have degree four
at least. Thus, we propose to approximate the configuration
trajectory, and its derivatives, by

q(t) = a + bτ + cτ 2 + dτ 3 + eτ 4, (33)

q̇(t) = b + 2cτ + 3dτ 2 + 4eτ 3, (34)

q̈(t) = 2c + 6dτ + 12eτ 2. (35)

Since five parameters are needed to determine the five
coefficients of q(t), we will use, in addition to the three
accelerations q̈k, q̈c, q̈k+1, the values of the configuration
coordinate qk and its derivative q̇k at the initial point:

qk = q(tk)

q̇k = q̇(tk)

q̈k = q̈(tk)

q̈c = q̈(tc)

q̈k+1 = q̈(tk+1).

123

Autonomous Robots (2024) 48 :2 Page 7 of 20 2

Solving for the coefficients a, . . . , e, we obtain the following
expression for the interpolating polynomial:

q(t) = qk + q̇kτ + τ 2

2
q̈k

− τ 3

6h
(3q̈k − 4q̈c + q̈k+1)

+ τ 4

6h2
(q̈k − 2q̈c + q̈k+1).

(36)

Evaluating (36) and its derivative for the value τ = h results
in

qk+1 = qk + q̇kh + h2

6
(q̈k + 2q̈c), (37a)

q̇k+1 = q̇k + h

6
(q̈k + 4q̈c + q̈k+1), (37b)

and imposing the collocation constraints

q̈k = gk, (38a)

q̈c = gc, (38b)

q̈k+1 = gk+1, (38c)

yields

qk+1 = qk + q̇kh + h2

6
(gk + 2gc), (39a)

q̇k+1 = q̇k + h

6
(gk + 4gc + gk+1), (39b)

where we recognize that (39b) is the Simpson quadrature
for the velocity. The terms gc in these equations involve the
midpoint coordinate qc = q(tc), and the velocity q̇c = q̇(tc),
but these can be obtained by evaluating (36) and its derivative
for τ = h/2, and imposing (38), which yields

qc = qk + h

2
q̇k + h2

96
(7gk + 6gc − gk+1), (40a)

q̇c = q̇k + h

24
(5gk + 8gc − gk+1). (40b)

Note however that, since qc and q̇c are to be used in the
evaluation of gc, we may prefer not to express them in terms
of gc itself. For this we simply isolate gc from (39b) and
substitute the result in (40) to obtain:

qc = qk + h

32
(13q̇k + 3q̇k+1)

+ h2

192
(11gk − 5gk+1), (41a)

q̇c = 1

2
(q̇k + q̇k+1) + h

8
(gk − gk+1). (41b)

Equations (39) and (41) together constitute a separated form
of theHermite–Simpsonmethod for 2nd order systems.Writ-
ten in this way, (41) can be replaced in the expression of gc
in (39) to transcribe the problem in compressed form, which
eliminates the need to treat qc and q̇c as decision variables.

In this collocation scheme, the continuity across knot
points is also of second order due to the coincidence of
the second derivative imposed by the collocation constraints,
what gives rise to smooth, continuous acceleration trajecto-
ries just like in the second order trapezoidal method.

5 Extensions for higher order systems

Second order systems are, by far, the most common in
robotics, but sometimes it may be necessary to deal with
dynamical systems of a higher order M , whose dynamics is
described by an ODE like (5), which we recall for conve-
nience:

q(M)(t) = g
(
q(t), q̇(t), . . . , q(M−1)(t), u(t), t

)
. (42)

We next see how the new methods can be extended to tran-
scribe (42).

5.1 The generalized trapezoidal method

To derive the trapezoidal method for M th order systems we
proceed as in Sect. 4.1. For each time interval [tk, tk+1] we
approximate each component q of the solution of (42) by a
polynomial q(t)whoseM th time derivative q(M)(t) is linear,
so its two coefficients may be determined by imposing (42) at
each interval bound. This implies that q(t) must be of order
M +1. Using a0, . . . , aM+1 as coefficients, this polynomial,
and its derivatives, may be written as

q(t) = a0
0! + a1

1! τ + . . . + aM+1

(M + 1)!τ
M+1 (43a)

q̇(t) = a1
0! + a2

1! τ + . . . + aM+1

M ! τM (43b)

...

q(M)(t) = aM + aM+1τ, (43c)

or, more compactly as

q(j)(t) =
M+1∑

i= j

ai
(i − j)!τ

i− j , (44)

for j = 0, . . . , M . We then can determine aM and aM+1 by
imposing the two collocation constraints

q(M)(tk) = gk, (45)

123

2 Page 8 of 20 Autonomous Robots (2024) 48 :2

q(M)(tk+1) = gk+1, (46)

where gk = g(qk, q̇k, . . . , q
(M−1)
k , uk, tk). With simple cal-

culations we find that

aM = gk, (47a)

aM+1 = 1
h (gk+1 − gk). (47b)

The remaining coefficients a0, . . . , aM−1 are determined by
imposing the initial value constraints

q(j)(tk) = q(j)
k (48)

for j = 0, . . . , M − 1. Using (43) we see that the left hand
side of (48) is a j , so we readily obtain

a j = q(j)
k (49)

for j = 0, . . . , M − 1. Finally, by evaluating (44) for τ = h
we find that the generalized versions of the Tz-2 formulas in
(32) are given by

q(j)
k+1 =

M+1∑

i= j

ai
(i − j)!h

i− j , (50)

for j = 0, . . . , M − 1.
One can check that, by particularizing (50) for M = 1 and

M = 2, we obtain the equations of the trapezoidal method
for first and second order systems given in (17) and (32),
respectively.

5.2 The generalized Hermite–Simpsonmethod

An analogous route can be followed to obtain a Hermite–
Simpsonmethod forM th order systems. In this case, q(M)(t)
must be quadratic in order to determine its coefficients by
imposing the collocation constraints at tk , tk+1, and tc =
tk +h/2. This means that q(t)must be of degree M +2 now,
so q(t), and its derivatives, will take the form

q(j)(t) =
M+2∑

i= j

ai
(i − j)!τ

i− j (51)

for j = 0, . . . , M . The last equation in (51) is

q(M)(t) = aM + aM+1τ + aM+2

2
τ 2, (52)

and its coefficients aM , aM+1, and aM+2 can be determined
by imposing

q(M)(tk) = gk, (53)

q(M)(tc) = gc, (54)

q(M)(tk+1) = gk+1, (55)

where

gc = g(qc, q̇c, . . . , q
(M−1)
c , uc, tc), (56a)

q(j)
c = q(j)(tc), j = 0, . . . , M − 1. (56b)

After simple calculations we find that

aM = gk, (57a)

aM+1 = − 1
h (3gk − 4gc + gk+1) , (57b)

aM+2 = 4
h2

(gk − 2gc + gk+1). (57c)

As in the trapezoidal method, the remaining coefficients are
determined by the initial value constraints, and we have

a j = q(j)
k , (58)

for j = 0, . . . , M −1. The generalized versions of Eqs. (39)
can then be obtained by evaluating the expressions up to order
M − 1 in (51) for τ = h, and using q(j)(tk+1) = q(j)

k+1. This
yields

q(j)
k+1 =

M+2∑

i= j

ai
(i − j)!h

i− j (59)

for j = 0, . . . , M − 1.
As it happens in the Hermite–Simpson method for 2nd

order systems, gc in (57) requires the midpoint values
qc, q̇c, . . . , q

(M−1)
c , but these are easily obtained by eval-

uating (51) for τ = h/2, which results in

q(j)
c =

M+2∑

i= j

ai
(i − j)!

(
h

2

)i− j

(60)

for j = 0, . . . , M − 1.
The terms aM+1 and aM+2 in (60) involve gc and thus

the midpoint coordinate qc and its derivatives. However, we
can remove the dependence of q(j)

c on gc by using the last
equation in (59), which is

q(M−1)
k+1 = q(M−1)

k + h

6
(gk + 4gc + gk+1). (61)

By isolating gc from this equation we have

gc = gk+1 − gk
4

+ 3q(M−1)
k+1 − 3q(M−1)

k

2h
, (62)

which we can substitute in the expressions of aM+1 and
aM+2 involved in (60). With these substitutions applied, (59)

123

Autonomous Robots (2024) 48 :2 Page 9 of 20 2

and (60) form a separated form of the Hermite–Simpson
method forM th order systems. The condensed form is finally
achieved by substituting the newversion of (60) in the expres-
sions of aM+1 and aM+2 in (59).

Again, one can verify that, for M = 1 and M = 2,
Eqs. (59) and (60) yield the Hermite–Simpson formulas for
first and second order systems given in (26), and in (39) and
(41), respectively.

6 Comparison of themethods

Table 1 summarizes the equations for allmethods of the trape-
zoidal and Hermite–Simpson families. For short, we refer to
the methods in each family by TZ- and HS-, followed by
a number that indicates the order assumed for the system

dynamics. For the general TZ-M and HS-M methods, the
table provides the equations for q(M−l)

k+1 , as well as q(M−l)
k+1

and q(M−l)
c , respectively, where l runs from 1 to M in all

cases. We also specialize these equations for l = 1, 2, so the
reader can realize that, within each family, the equations for
a same value of l coincide for all orders.

In the table, the equations for the Hermite–Simpsonmeth-
ods are given in their separated form, and in the HS-M
method we show those that result from applying the manip-
ulations described in Sect. 5.2.

6.1 Problem size

It is not difficult to see that, for all methods in a same family,
the number of variables (nv), equations (ne), and degrees of
freedom (nDOF) is the same in the resulting transcriptions of

Table 1 Collocation equations for all methods of the trapezoidal and Hermite–Simpson families

Method Collocation equations

Tz-1
{
xk+1 = xk + h

2 (fk+1 + fk)

Tz-2

{
q̇k+1 = q̇k + h

2 (gk+1 + gk)

qk+1 = qk + q̇kh + h2
6 (gk+1 + 2gk)

Tz-M

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(M−1)
k+1 = q(M−1)

k + h
2 (gk+1 + gk)

q(M−2)
k+1 = q(M−2)

k + q(M−1)
k h + h2

6 (gk+1 + 2gk)
.
.
.

q(M−l)
k+1 =

(
l−1∑

i=0

hi
i ! q

(i+M−l)
k

)
+ hl

(l+1)! (l gk + gk+1)

HS-1

{
xk+1 = xk + h

6 (fk + 4 fc + fk+1)

xc = 1
2 (xk + xk+1) + h

8 (fk − fk+1)

HS-2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̇k+1 = q̇k + h
6 (gk + 4gc + gk+1)

q̇c = 1
2 (q̇k + q̇k+1) + h

8 (gk − gk+1)

qk+1 = qk + q̇kh + h2
6 (gk + 2gc)

qc = qk + h
32 (13q̇k + 3q̇k+1) + h2

192 (11gk − 5gk+1)

HS-M

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(M−1)
k+1 = q(M−1)

k + h
6 (gk + 4gc + gk+1)

q(M−1)
c = 1

2

(
q(M−1)
k + q(M−1)

k+1

)
+ h

8 (gk − gk+1)

q(M−2)
k+1 = q(M−2)

k + q(M−1)
k h + h2

6 (gk + 2gc)

q(M−2)
c = q(M−2)

k + h
32

(
13q(M−1)

k + 3q(M−1)
k+1

)
+ h2

192 (11gk − 5gk+1)

.

.

.

q(M−l)
k+1 =

(
l−1∑

i=0

hi
i ! q

(i+M−l)
k

)
+ hl

(
l2gk+4lgc+(2−l)gk+1

)

(l+2)!

q(M−l)
c =

(
l−2∑

i=0

hi

2i i !q
(i+M−l)
k

)
+ hl−1

(
3q(M−1)

k+1 +(2l2+4l−3)q(M−1)
k

)

2l l! (l+2)
+ hl

(
(2l2+2l−1)gk−(2l+1)gk+1

)

2l+1 (l+2)!

For the Tz-M andHS-M methods, we provide the general equation of q(M−l)
k+1 (where l is meant to run up toM) but also the particular instances of this

equation for l = 1, 2. The equation of q(M−l)
c , and its instances for l = 1, 2, are also provided in the HS-M method (where, again, l = 1, . . . , M).

This arrangement allows us to realize that, within each family, the equations for the same l coincide for all orders

123

2 Page 10 of 20 Autonomous Robots (2024) 48 :2

Table 2 Number of variables
(nv), equations (ne), and degrees
of freedom (nDOF) in the two
families of methods

Family nv ne nDOF

Trapezoidal (N + 1) (nx + nu) nx N − nb nx + (N + 1) nu − nb

Hermite–Simpson (2N + 1) (nx + nu) 2nx N − nb nx + (2N + 1) nu − nb

Problem (6). If nx and nu are the dimensions of x and u,
and nb is the number of boundary constraints in Eq. (6d),
we obtain the values in Table 2. Note that for an M-th order
ODE, the state x includes the configuration vector q and its
derivatives, so that nx = Mnq , where nq is the dimension
of q. The improved formulas, as compared to those of the
Tz-1 and HS-1 methods, neither increase the problem size,
nor reduce the freedom to find the optimal solution. More-
over, since the dynamic function must be evaluated at each
collocation point, the number of evaluations is the same in
all methods of a same family, so the new methods should
not increase the cost of each iteration when solving the tran-
scribed NLP problem. This point is also supported by the
computational experiments that we present in Sect. 7.

6.2 Accuracy of the approximations

While the newmethods introduced in this paper are explicitly
designed to preserve the consistency between the configura-
tion trajectory and its derivatives, a further question is how
the application of these methods may affect the accuracy of
the solution approximations and its rate of convergence as
h → 0. To answer this question, we draw upon the concept
of order of accuracy (Betts, 2010), or simply order (Hairer et
al., 2002) of a collocation method, which, in turn, relies on
the definition of local error of an approximation.

The local error εk of a collocation method at interval k is
defined as the difference between the computed value qk+1

and the value for t = tk+1 of the exact solution of the ODE,
q̂(t), that passes through the computed point qk . If a colloca-
tion method approximates the solution with polynomials of
degree d, we have for interval k:

q(t) = qk + a1τ + a2
2

τ 2 + · · · + ad
d! τ

d ,

and the computed valueqk+1 is obtained by setting t = tk+h,
which means setting τ = h:

qk+1 = qk + a1h + a2
2
h2 + · · · + ad

d! h
d . (63)

On the other hand, the Taylor expansion of the exact solution
q̂(t) that passes through the computed point qk is

q̂(tk + t) = qk + ˙̂q(tk) τ +
¨̂q(tk)

2
τ 2 + · · ·

+ q̂(d)(tk)

d! τ d + O(τ d+1),

and evaluating for τ = h we have:

q̂(tk + h) = qk + ˙̂q(tk) h +
¨̂q(tk)

2
h2 + · · ·

+ q̂(d)(tk)

d! hd + O(hd+1),

(64)

thus, the local error εk is given by the difference of the two
Taylor expansions (63) and (64):

εk =
(
a1 − ˙̂q(tk)

)
h + a2 − ¨̂q(tk)

2
h2 + . . .

+ad − q̂(d)(tk)

d! hd + O(hd+1).

(65)

A collocation method is said to have order of accuracy p
if the sum of the first p terms of (65) is zero. Note that this
does not imply that each term vanishes by itself: when h takes
a specific numerical value, different non-null terms of the
sum may add to zero. In the hypothetical case that the exact
solution q̂(tk + t)was a polynomial of degree p, a method of
order p would have no local error. For this reason, the order
of accuracy is also called the degree of exactness (Dahlquist
and Björck, 2008), and an equivalent definition for it is that
a collocation method has order of accuracy p if it is exact for
all polynomials of degree ≤ p.

In the limit, when h → 0, the error of the approximation
will converge to zero. The rate of this convergence is an
important property of a method, and is directly given by its
order. If amethod has order p, the lower power of h appearing
in εk is p+ 1, so that, when h → 0, the local error decreases
as h p+1:

εk = O(h p+1).

In all collocation methods discussed here, the interpo-
lating polynomial used in each interval has degree d =
M + s − 1, where M is the order of the ODE and s is the
number of collocation points of each interval. This value d

123

Autonomous Robots (2024) 48 :2 Page 11 of 20 2

ensures the unique determination of the d + 1 polynomial
coefficients given the s collocation constrains and the M ini-
tial conditions. In the event that the exact solution happens to
be a polynomial q̂(t) of degree d, it must necessarily coincide
with the interpolating polynomial, and qk+1 will coincide
with the exact value q̂(tk + h). This shows that the order of
accuracy of any method is at least p = d = M + s − 1,
so the orders of Tz-1 and HS-1 are at least 2 and 3, respec-
tively, while the orders of Tz-2 and HS-2 are at least 3 and
4. However, these lower bounds can be surpassed in some
cases. For example, theHS-1 method is known to have order
4 (Hairer et al., 2002), while its corresponding lower bound
is 3. This is because it takes advantage of a special property
of a family of polynomials of fourth degree. It can be proved
that any fourth degree polynomial satisfying

q̂(tk) = qk, (66a)

˙̂q(tk) = q̇k, (66b)

˙̂q(tk + h/2) = q̇c, (66c)

˙̂q(tk + h) = q̇k+1 (66d)

takes always the same value q̂(tk+h) = qk+1. Since the only
third degree polynomial satisfying these same conditions is
a particular case of this family, it satisfies q(tk + h) = qk+1,
so its order of accuracy is 4.

Even if the HS-2 method does not benefit from a similar
property, it is granted that its order is at least as large as that
of HS-1, i.e., 4.

So, we can say that the order of accuracy of the presented
methods for second order systems is equal or higher than
that of the corresponding methods for first order systems. In
general, for the same number of collocation points, a method
for M th order systems has this lower bound M − 1 units
higher than the correspondingmethod for first order systems.

6.3 Consistency errors

The order of accuracy of a method is useful, but it only pro-
vides hints onhow the local errors εk converge to zero in terms
of h. For a particular problem, obtaining the local errors of
the computed splines q(t) and u(t) is seldom possible, as this
requires knowing the actual solutions q̂(t) and û(t), which
are rarely available. For this reason, to see the extent to which
q(t) and u(t) are consistent with the system dynamics, we
will compute the residual of Eq. (5),

ε(t) = q(M)(t) − g(t), (67)

where g(t) = g
(
q(t), q̇(t), . . . , q(M−1)(t), u(t), t

)
. Some

authors, like Kelly (2017) or Betts (2010), refer to ε(t) as
the “error in the differential equations”, though they restrict
their attention to the case M = 1.

In those situations inwhichEq. (5) has beendiscretized via
Tz-1 and HS-1, we can define additional residuals to assess
whether the obtained trajectories for the velocity, accelera-
tion, and remaining components of the state, match those of
the corresponding derivatives of the configuration. To define
these residuals, recall from (7) that when a 1st order ODE
encodes an M th order one, the computed trajectory for the
state takes the form

x(t) = (x1(t), x2(t), . . . , xM (t)) , (68)

where x1(t), x2(t), . . . , xM (t) approximate the configura-
tion trajectory and its first and higher order derivatives,
respectively. For the trajectories xi (t) to be compatible
among themselves, therefore, they should verify

ẋ1(t) = x2(t),

ẍ1(t) = x3(t),

.

.

.

x(M−1)
1 (t) = xM (t),

(69)

which leads us to computing

ε[r](t) = x(r)
1 (t) − xr+1(t), (70)

for r = 1, . . . , M − 1 to verify their consistency.
In what follows, we will refer to ε(t) and ε[r](t) as

the dynamics error and the r th order compatibility error,
respectively, and we will use them to compare the presented
methods in illustrative situations.

When reporting our results, we will sometimes use εqi (t)

and ε
[r]
qi (t) to refer to the dynamics error and r th order com-

patibility error for the qi component of q. However, when all
components of q have the same units, we will provide the
values of the joint errors

ε(t) = |εq1(t)| + · · · + |εqnq (t)|, (71)

ε[r](t) = |ε[r]
q1 (t)| + · · · + |ε[r]

qnq
(t)|. (72)

Finally, when an error function needs to be summarized
in just one number, we will compute the integral of its abso-
lute value over [0, t f]. Such a quantity will be denoted by
prepending a small integral symbol to the error in consider-
ation. Thus, for example, “∫ εqi ” will be a shorthand for

∫ t f

0
|εqi (t)| dt . (73)

123

2 Page 12 of 20 Autonomous Robots (2024) 48 :2

7 Test cases

The performance of all methods is next evaluated and com-
pared using three trajectory optimization problems shown in
Fig. 2.We refer to them as the cart-pole, bipedal walking, and
ball throwing problems, respectively. The first two problems
are solved and documented in detail by Kelly (2017), and
thus serve to compare our results with those in the literature.
The third problem is proposed by the authors to illustrate the
methods on a widely-used robot with a complex dynamics.
The cart-pole problem is also used to exemplify a situation
in which a third-order ODE arises, which calls for the appli-
cation of Tz-3 or HS-3.

To compare the methods, we have implemented them in
Python, using CasADi to solve the constrained optimization
problems that result (Andersson et al., 2019). CasADi pro-
vides the necessary means to formulate such problems and to
compute the gradients and Hessians of the transcribed equa-
tions using automatic differentiation. These are necessary to
solve the optimization problems, a task for which we rely on
the interior-point solver IPOPT (Wächter and Biegler, 2006)
in conjunction with the linear solver MUMPS (Amestoy et
al., 2001). The whole implementation can be downloaded
from https://github.com/AunSiro/optibot, but the reader can
also reproduce the results for the cart-pole and bipedal walk-
ing problems through interactive Jupyter notebooks online
(Moreno-Martín, 2023a, b, c). The execution times we report
have been obtained with a single-thread implementation run-
ning on an iMac computer with an Intel i7, 8-core 10th
generation processor at 3.8 GHz. In all cases we have set
the “desired” and “acceptable” tolerances of IPOPT to 10−16

and 10−6, respectively (The IPOPT Team, 2023).

7.1 The cart-pole swing-up problem

The cart-pole system comprises a cart that travels along a
horizontal track and a pendulum that hangs freely from the
cart. A motor drives the cart forward and backward along the
track. Starting with the pendulum hanging below the cart at
rest at a given position, the goal is to reach a final config-
uration in a given time t f , with the pendulum stabilized at
a point of inverted balance and the cart staying at rest at a
distance d from the initial position. The cost to be minimized
is

∫ t f

0
u2(t)dt, (74)

where u is the force applied to the cart, and we adopt the
samedynamics equations and problemparameters as inKelly
(2017). An animation of the solution obtained withHS-2 and
N = 25 can be seen in https://youtu.be/M0ivg_8s-I8.

Table 3 Performance data for the cart-pole problem

N Tc
∫

ε
[1]
q1

∫
ε
[1]
q2

∫
εq1

∫
εq2

(s) (m) (rad) (m/s) (rad/s)

Tz-1 50 0.038 0.0066 0.0167 0.504 1.281

Tz-2 50 0.038 0 0 0.052 0.170

HS-1 25 0.045 0.0014 0.0043 0.113 0.338

HS-2 25 0.044 0 0 0.016 0.052

Figure3 compares the compatibility and dynamics errors
obtained by the methods for the variables q1 and q2 shown in
Fig. 2.Thenumber N of intervals used in the comparison is 50
for the trapezoidal scheme, and 25 for the Hermite–Simpson
one. This yields a fair comparison, as then the number of
collocation points, variables, and degrees of freedom are the
same in all NLP problems (cf. Table 2). The plots of the com-
patibility errors ε

[1]
qi (t), in the first and third rows of Fig. 3,

confirm thatTz-1 andHS-1 present a non-negligible value for
these errors, while in Tz-2 and HS-2 these errors are exactly
zero as expected.

The plots in the second and fourth rows of Fig. 3 clearly
show a discontinuity at the knot points of the dynamics error
εqi (t) for Tz-1 and HS-1, reflecting the discontinuity of q̈(t)
at these points. In contrast, for Tz-2 andHS-2, the error func-
tions are continuous and vanish at the collocation points,
evidencing that, as anticipated inSect. 3.4, the systemdynam-
ics is exactly satisfied at all collocation points for the new
methods, but not for the conventional ones.

The figure also shows the dramatic reductions of εqi (t)
for the new methods when compared with the corresponding
Tz-1 and HS-1 ones. The numerical evaluation of the results
appears in Table 3, which provides the computation times Tc
and the integral errors

∫
ε
[1]
qi and

∫
εqi for this problem. It can

be seen that the values of
∫

εqi are about one order of magni-
tude lower for Tz-2 andHS-2 than for their counterparts Tz-1
and HS-1, despite using a very similar computation time. It
is interesting to see that the errors

∫
εqi achieved by Tz-2 are

about a half of those ofHS-1 for the same number of colloca-
tion points. The comparison is relevant since both methods
use polynomials of the same degree to approximate qi (t).

7.2 The bipedal walking problem

We next apply the methods to optimize a periodic gait for the
planar biped robot shown in Fig. 2. The robot involves five
links pairwise connected with revolute joints, forming two
legs and a torso. All joints are powered by torque motors,
with the exception of the ankle joint, which is passive. Like
the cart pole system, this robot is underactuated, but it is
substantially more complex. The system is commonly used
as a testbed when studying bipedal walking (Westervelt et

123

https://github.com/AunSiro/optibot
https://youtu.be/M0ivg_8s-I8

Autonomous Robots (2024) 48 :2 Page 13 of 20 2

Fig. 2 Benchmark problems. Left: A cart-pole system that has to per-
form a swing-up motion. Center: a walking biped whose periodic gait
must be optimized (the three snapshots illustrate the motion that occurs

between the toe off and heel strike events defining a period of the gait).
Right: A 7R Panda robot that has to pick a ball at the shown configura-
tion, and throw it from the same configuration at 10m/s horizontally

al., 2003; Yang et al., 2009; Park et al., 2012; Saglam and
Byl, 2014).

For this example we use the dynamic model given by
Kelly (2017), which matches the one in Westervelt et al.
(2003) with parameters corresponding to the RABBIT pro-
totype (Chevallereau et al., 2003). We assume the robot is
left-right symmetric, so we can search for a periodic gait
using a single step, as opposed to a stride, which involves
two steps. This means that the state and torque trajectories
will be the same on each successive step.

As in Kelly (2017), we define q as the vector that contains
the absolute angles of all links relative to ground, while u
encompasses all motor torques. Also as in Kelly (2017), and
similarly to the cart-pole problem, our goal is to find state
and action trajectories x(t) and u(t) that define an optimal
gait under the cost

∫ t f

0
u(t)Tu(t) dt . (75)

Several constraints are added to ensure a feasible gait. First
of all, we require the gait to be periodic, so

x0 = f H (x f), (76)

where x0 and x f are the initial and final states of the robot,
and f H is the heel-strike map. The states x0 and x f are
unknown a priori, but constrained by (76), which is the par-
ticular form of the boundary constraint (6d) in this case. To
construct f H it is assumed that, at heel strike, an impul-
sive collision occurs that changes the joint velocities but not
their angles, and that, as soon as the leading foot impacts the
ground, the trailing foot loses contact with it. The collision

conserves angular momentum but introduces an instanta-
neous drop of kinetic energy in the system (Kelly, 2017).
Next, we require the robot to march at a certain speed, which
is achieved by setting thefinal timeof the period to t f = 0.7s,
and the length D in Fig. 2 to 0.5m.We also constrain the ver-
tical velocity component of the trailing foot to be positive at
t = 0, and negative when it touches the ground for t = t f .
Finally, we require the swing foot to be above the ground at
all times. An animation of the solution we obtain can be seen
in https://youtu.be/dtS-WbESiW0.

Figure 4 shows the dynamics errors ε(t) for the differ-
ent collocation methods. As before, the number of intervals
used in the trapezoidal cases is twice that used in theHermite–
Simpsonones so as to have an identical number of collocation
points and achieve balanced comparisons. The results are
qualitatively similar to those of the cart-pole, though here
the error diminution obtained by the new methods is even
more accentuated. As we can see in Table 4, the integral
dynamics error

∫
ε ofHS-2 improves in more than one order

of magnitude that of HS-1, and still using a similar compu-
tation time. In the case of Tz-2, its improvement over Tz-1 is
still higher, reaching a reduction factor near 66, and using a
slightly lower computation time.

7.3 A ball throwing problem

As a third example, we apply the methods to compute an
object-throwing trajectory for a 7R Panda manipulator. The
robot is initially at rest, grasping a ball with its gripper,
and its task is to throw the ball from the same configura-
tion after 1 second, with an horizontal velocity of 10m/s.
Since the dynamic model is complex in this case, we rely
on the advanced dynamics engine Pinocchio (Carpentier et

123

https://youtu.be/dtS-WbESiW0

2 Page 14 of 20 Autonomous Robots (2024) 48 :2

Fig. 3 Cart-pole problem: Plots of the compatibility errors ε
[1]
qi (t) and

the dynamics errors εqi (t) for the coordinates q1 (left column) and q2
(right column), using the trapezoidal and Hermite–Simpson methods.

To compare the results with those of Kelly (2017), note that this author
actually provides the plots of −ε

[1]
qi (t) for HS-1

123

Autonomous Robots (2024) 48 :2 Page 15 of 20 2

Fig. 4 Dynamics errors ε(t) for the bipedal walking problem

Table 4 Performance data for the bipedal walking problem (
∫

ε is the
integral of ε(t) in Fig. 4)

Method N Tc
∫

ε[1] ∫
ε

(s) (rad) (rad/s)

Tz-1 50 0.117 0.0025 0.5328

Tz-2 50 0.111 0 0.0081

HS-1 25 0.110 8.2×10−5 0.0182

HS-2 25 0.113 0 0.0011

al., 2019) to compute the fk and gk values in the colloca-
tion formulas. This engine implements the forward dynamics
algorithms by Featherstone (2008) in C++, which speeds up
the computations considerably. As for the cost function, we
use

∫ t f

0

[
u(t)Tu(t) + Ka q̈(t)T q̈(t)

]
dt, (77)

where Ka is a small value that we fixed to 0.1. While the
first term in the integrand penalizes large control torques, the
second helps to achieve smoother trajectories for the state.

To compare themethods on an equal footing, in all runswe
feed the NLP solver with an initial guess that allows the con-
vergence to a similar solution. This guess is obtained using
the Tz-1 method with N = 25, initialized with uk = 0 for
all k, and using xk values that interpolate the initial state, a
guessed state for t = 0.5s, and the final state. The trajec-
tory obtained via Tz-1 is then used to warm start all methods
in the comparisons. As a reference, Fig. 5 shows the tra-
jectory obtained using HS-2 and N = 100. Note how the
robot performs a circular motion, exploiting gravity to gain
momentum so as to get back to the launch point with the
required speed.

Figure 6 compares the dynamics error ε(t) for the trape-
zoidal and Hermite–Simpson methods (left and right plots,
respectively). As in the previous problems, the new methods
notably outperform the conventional ones in terms of this

Table 5 Performance data for the ball throwing problem (
∫

ε is the
integral of ε(t) in Fig. 6)

N Tc
∫

ε[1] ∫
ε

(s) (rad) (rad/s)

Tz-1 100 6.362 0.0189 6.1229

Tz-2 100 6.064 0 1.0644

HS-1 50 6.269 0.0034 1.2388

HS-2 50 6.268 0 0.4275

Table 6 Performance data for the cart-pole problem with 3rd order
dynamics

N Tc
∫

ε
[1]
q1

∫
ε
[1]
q2

∫
εq1

∫
εq1

(s) (m) (rad) (m/s2) (rad/s2)

Tz-1 50 0.07 0.0060 0.0169 45.926 127.614

Tz-3 50 0.06 0 0 1.075 3.174

HS-1 25 0.06 0.0011 0.0033 8.614 26.451

HS-3 25 0.06 0 0 0.497 1.616

error. The integral errors
∫

ε corresponding to these figures
can be seen in Table 5, together with those of

∫
ε[1] and Tc,

confirming similar trends as in the earlier problems.

7.4 A third order example

As an example of a higher order system, we take again the
problem of the cart-pole of Sect. 7.1 and impose the addi-
tional requirement of the control function u(t) to be smooth,
i.e., not only continuous as in the standard approach, but with
continuous derivative. A smooth trajectory u(t)will give rise
to smooth accelerations and continuous jerks for the con-
figuration variables, all of which are desirable properties in
many robotics applications. To achieve these properties, we
include the applied force u as a state variable and define a
new control variable w as the temporal derivative of u by
imposing w(t) = u̇(t). Thus, the continuity of w(t) will

123

2 Page 16 of 20 Autonomous Robots (2024) 48 :2

Fig. 5 Trajectory obtained for the ball throwing task. The robot, initially at rest, progressively gains momentum assisted by gravity so as to get
back to the initial configuration to throw the ball at the required speed. An animation of the trajectory can be seen in https://youtu.be/NsEv6JrSN8c

Fig. 6 Dynamics errors ε(t) for the ball throwing problem

grant the smoothness of u(t). By differentiating the dynam-
ics equations with respect to time, we obtain the differential
equations involving the new control variable w in the form:

...
q (t) = g(q(t), q̇(t), q̈(t), u(t), w(t), t). (78)

The resulting system is a 3rd order ODE which will provide
the same solution as the original 2nd order one except for an
arbitrary choice of the initial state. By imposing the condition
that the initial state satisfies the original 2nd order ODE, both
systems become completely equivalent.

Note that the use of (78) now allows us to apply Tz-3 and
HS-3, both of which ensure the continuity of the obtained tra-
jectory for

...
q (t), and thus the smoothness of q̈(t) as desired.

In other words, whereas the splines q(t) computed with Tz-
1 and HS-1 will be just once differentiable, those obtained
with Tz-3 and HS-3 will be three times differentiable. To
avoid high rates of change in the applied force, moreover, in

Fig. 7 Comparison of the jerk trajectories
...
q 1(t) obtained by HS-1 and

HS-3 in the cart-pole problem with 3rd order dynamics

this example we minimize

∫ t f

0
w(t)2 dt .

123

https://youtu.be/NsEv6JrSN8c

Autonomous Robots (2024) 48 :2 Page 17 of 20 2

Fig. 8 Dynamics error (left) and optimization time (right) for the four test problems, as N is increased

123

2 Page 18 of 20 Autonomous Robots (2024) 48 :2

Table 6 shows the computation times Tc and the errors we
obtain for Tz-1 and HS-1, compared with those for Tz-3 and
HS-3. Aswe see, when Tz-3 andHS-3 are used, the dynamics
errors are reduced in more than one order of magnitude with
respect to those of Tz-1 and HS-1, respectively, while the
values of Tc remain similar.

To assess the difference in the continuity of the trajecto-
ries, Fig. 7 shows the curves obtained for the third derivative
of the position,

...
q 1(t), both forHS-1 andHS-3. As expected,

whileHS-1 gives piece-wise constant and discontinuous val-
ues for

...
q 1(t), HS-3 provides a high-quality trajectory with

continuous jerk.

7.5 Performance scaling with N

To evaluate the performance of themethodswhen the number
N of intervals increases, a series of experiments have been
conducted by progressively rising N from 20 to 200. Each
experiment has been launched several times and the average
of the integral dynamics errors and computation times are
shown in Fig. 8 as a function of N . For the bipedal walking
and ball throwing problems we plot

∫
ε. For the cart-pole

problem we do not use
∫

ε as the coordinates q1 and q2 have
different units. Instead we provide only the plot of

∫
εq1 , as

the one of
∫

εq2 is very similar.
In all test problems, the best results for the dynamics error

(shown on the left column of Fig. 8 using logarithmic scale
on both axes) are those of HS-2 and HS-3, which, in many
cases, improve the results of HS-1 in about one order of
magnitude, or even more, and the improvement rate tends to
increasewith the number N of intervals. The samebehavior is
observed forTz-2 andTz-3with respect toTz-1. Interestingly,
in all cases the performance of Tz-2 produces, for the same
number of intervals N , only about twice the error of HS-1,
and this rate is kept rather constant with N . However, a more
balanced comparison would be to look at experiments with
equal number of collocation points, what means to compare
each N value of HS-1 with the 2N value of Tz-2. A close
look at the plots will convince the reader that this comparison
gives equal or better results for Tz-2 in all cases. Noticeably,
as evidenced in the last row of Fig. 8, the results for Tz-
3 outperform those for HS-1 even for the same number of
intervals.

The plots on the right hand side of Fig. 8 show the growth
of the computation times with the number N of intervals.
The plots consistently show that the difference in computa-
tion time between a method for first order systems and the

corresponding method for second or third order systems is
not relevant. In all cases, the growth is nearly linear in N , but
the increase rate is higher for the HS methods than for the
Tz ones. Despite the different complexity of the four prob-
lems analyzed, reflected in the different time scales involved,
in all cases the increase rate of theHSmethods is nearly twice
that of the Tz methods. In other words, the increasing rate is
very similar for all methods when comparing the computa-
tion times for the same number of collocation points.

8 Conclusions

Trapezoidal and Hermite–Simpson collocation methods are
very popular in the robotics community. However, they are
conceived for dynamical systems of first order, while the
dynamics of the systems found in robotics are often M th
order, with M > 1. The transcription of an M th order ODE
as a first order one has the unexpected effect that the dynamic
equations are not actually imposed at the collocation points.
Properly imposing the M th order constraints at the same
such points as in the original algorithms requires increasing
the degree of the polynomials approximating the configura-
tion trajectory, while keeping the implied degrees for its time
derivatives. This is achieved with the methods we propose,
which grant the functional consistency between the trajecto-
ries of all the state coordinates, not only at the collocation
points, but also along the whole time horizon. Using bench-
mark problems of increasing complexity, we have also shown
that the newmethods provide trajectorieswith amuch smaller
dynamic error than those of conventional methods, despite
they require a comparable amount of computation time. This
implies that the obtained trajectories will be more compliant
with the system dynamics, so they should be easier to track
with a feedback controller. Moreover, the trajectories of the
new methods are M times differentiable, so in addition to
enjoying smooth velocities, their accelerations will be con-
tinuous, or even smooth if M ≥ 3, which are very desirable
properties from a control perspective.

Points that deserve further attention are the extension of
these ideas to pseudospectral collocation methods, which we
initially explored for M = 2 in Moreno-Martín et al. (2022),
or generalizations to deal with constrained multibody sys-
tems (Posa et al., 2016; Bordalba et al., 2023), or systems
involving SO(3) (Manara et al., 2017).

123

Autonomous Robots (2024) 48 :2 Page 19 of 20 2

Author Contributions Mr. Moreno-Martín carried out the implementa-
tions and the computational experiments, and all authors developed the
theory and prepared the paper.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work has been partially funded
by Agencia Estatal de Investigación under project Kinodyn+, with ref-
erence PID2020-117509GB-I00/AEI /10.13039/50110001103, and by
a Ph.D. contract supporting the first author, with reference PRE2018-
085582.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., & Koster, J. (2001). A
fully asynchronous multifrontal solver using distributed dynamic
scheduling. SIAM Journal on Matrix Analysis and Applications,
23(1), 15–41. https://doi.org/10.1137/S0895479899358194

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M.
(2019). CasADi: A software framework for nonlinear optimization
and optimal control. Mathematical Programming Computation,
11(1), 1–36. https://doi.org/10.1007/s12532-018-0139-4

Becerra, V. M. (2010). Solving complex optimal control problems at
no cost with PSOPT. In 2010 IEEE International Symposium on
Computer-aided Control System Design (pp. 1391–1396). https://
doi.org/10.1109/CACSD.2010.5612676.

Berscheid, L. & Kröger, T. (2021). Jerk-limited real-time trajectory
generation with arbitrary target states. In Robotics: Science and
Systems. https://doi.org/10.15607/RSS.2021.XVII.015

Betts, J. T. (2010).Practical methods for optimal control and estimation
using nonlinear programming. Philadelphia: SIAM. https://doi.
org/10.1137/1.9780898718577

Bordalba, R., Schoels, T., Ros, L., Porta, J. M., & Diehl, M. (2023).
Direct collocation methods for trajectory optimization in con-
strained robotic systems. IEEE Transactions on Robotics, 39(1),
183–202. https://doi.org/10.1109/TRO.2022.3193776

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F.,
Stasse, O., & Mansard, N. (2019). The Pinocchio C++ library:
A fast and flexible implementation of rigid body dynamics algo-
rithms and their analytical derivatives. In IEEE International
Symposium on System Integrations (SII). https://doi.org/10.1109/
SII.2019.8700380.

Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.
R., De Wit, C. C., & Grizzle, J. (2003). RABBIT: A testbed for
advanced control theory. IEEE Control Systems Magazine, 23(5),
57–79. https://doi.org/10.1109/MCS.2003.1234651

Constantinescu,D.,&Croft, E.A. (2000). Smooth and time-optimal tra-
jectory planning for industrial manipulators along specified paths.
Journal of Robotic Systems, 17(5), 233–249. https://doi.org/10.
1115/IMECE1999-0065

Conway, B. A., & Paris, S. W. (2010). Spacecraft trajectory optimiza-
tion using direct transcription and nonlinear programming. In B.
Conway (Ed.), Spacecraft trajectory optimization (pp. 37–78).
Cambridge: Cambridge University Press. https://doi.org/10.1017/
cbo9780511778025.004

Dahlquist, G., & Björck, A. (2008). Numerical Methods in Scientific
Computing, Volume I. Society for Industrial and Applied Mathe-
matics.

De Luca, A., & Book, W. J. (2016). Robots with flexible elements. In
Springer handbook of robotics (pp. 243–282. Springer. https://doi.
org/10.1007/978-3-319-32552-1_11.

Della Santina, C. (2020). Flexible Manipulators. In Encyclopedia
of robotics. Springer. https://doi.org/10.1007/978-3-642-41610-
1_182-1.

Featherstone, R. (2008). Rigid body dynamics algorithms. Berlin:
Springer. https://doi.org/10.1007/978-1-4899-7560-7

Hairer, E., Wanner, G., & Lubich, C. (2002). Geometric numerical
integration. Berlin: Springer. https://doi.org/10.1007/978-3-662-
05018-7

Hairer, E., Wanner, G., & Nørsett, S. P. (1993). Solving ordinary differ-
ential equations. I. Berlin: Springer. https://doi.org/10.1007/978-
3-540-78862-1

Hargraves, C. R., & Paris, S. W. (1987). Direct trajectory optimization
using nonlinear programming and collocation. Journal of Guid-
ance, Control, and Dynamics, 10(4), 338–342. https://doi.org/10.
2514/3.20223

Hereid, A., Hubicki, C. M., Cousineau, E. A., & Ames, A. D. (2018).
Dynamic humanoid locomotion: A scalable formulation for HZD
gait optimization. IEEETransactions onRobotics, 34(2), 370–387.
https://doi.org/10.1109/TRO.2017.2783371

Kelly, M. (2017). An introduction to trajectory optimization: How to do
your own direct collocation. SIAMReview, 59(4), 849–904. https://
doi.org/10.1137/16M1062569

Macfarlane, S., & Croft, E. A. (2003). Jerk-bounded manipulator
trajectory planning:Design for real-time applications. IEEETrans-
actions on Robotics Automation, 19(1), 42–52. https://doi.org/10.
1109/TRA.2002.807548

Manara, S., Gabiccini, M., Artoni, A., & Diehl, M. (2017). On the
integration of singularity-free representations of SO(3) for direct
optimal control. Nonlinear Dynamics, 90, 1223–1241.

Moreno-Martín, S. (2023a). Online Jupyter notebook for cart-pole
problem (with 3rd order ODE). https://mybinder.org/v2/gh/
AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-3rd-
order-demo.ipynb.

Moreno-Martín, S. (2023b). Online Jupyter notebook for the cart-pole
problem (standard version). https://mybinder.org/v2/gh/AunSiro/
Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb.

Moreno-Martín, S. (2023c). Online Jupyter notebook for the bipedal
walking problem. https://mybinder.org/v2/gh/AunSiro/Second-
Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb.

Moreno-Martín, S., Ros, L., & Celaya, E. (2022). A Legendre-Gauss
pseudospectral collocation method for trajectory optimization in
second order systems. In 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (pp. 13335–13340).
https://doi.org/10.1109/IROS47612.2022.9981255.

Moreno-Martín, S., Ros, L., & Celaya, E. (2022). Collocation methods
for second order systems. In Robotics: Science and Systems, New
York. http://www.roboticsproceedings.org/rss18/p038.html.

Pardo, D., Möller, L., Neunert, M., Winkler, A. W., & Buchli, J.
(2016). Evaluating direct transcription and nonlinear optimization
methods for robot motion planning. IEEE Robotics and Automa-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/CACSD.2010.5612676
https://doi.org/10.1109/CACSD.2010.5612676
https://doi.org/10.15607/RSS.2021.XVII.015
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1109/TRO.2022.3193776
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/MCS.2003.1234651
https://doi.org/10.1115/IMECE1999-0065
https://doi.org/10.1115/IMECE1999-0065
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1007/978-3-319-32552-1_11
https://doi.org/10.1007/978-3-319-32552-1_11
https://doi.org/10.1007/978-3-642-41610-1_182-1
https://doi.org/10.1007/978-3-642-41610-1_182-1
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1007/978-3-662-05018-7
https://doi.org/10.1007/978-3-662-05018-7
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.2514/3.20223
https://doi.org/10.2514/3.20223
https://doi.org/10.1109/TRO.2017.2783371
https://doi.org/10.1137/16M1062569
https://doi.org/10.1137/16M1062569
https://doi.org/10.1109/TRA.2002.807548
https://doi.org/10.1109/TRA.2002.807548
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-3rd-order-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-3rd-order-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-3rd-order-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://doi.org/10.1109/IROS47612.2022.9981255
http://www.roboticsproceedings.org/rss18/p038.html

2 Page 20 of 20 Autonomous Robots (2024) 48 :2

tion Letters, 1(2), 946–953. https://doi.org/10.1109/LRA.2016.
2527062

Park, H.-W., Sreenath, K., Ramezani, A., & Grizzle, J. W. (2012).
Switching control design for accommodating large step-down
disturbances in bipedal robot walking. In 2012 IEEE Interna-
tional Conference on Robotics and Automation (pp. 45–50). IEEE.
https://doi.org/10.1109/ICRA.2012.6225056.

Posa, M., Kuindersma, S., & Tedrake, R. (2016). Optimization and
stabilization of trajectories for constrained dynamical systems. In
IEEE International Conference on Robotics and Automation (pp.
1366–1373). https://doi.org/10.1109/ICRA.2016.7487270.

Saglam, C. O. & Byl, K. (2014). Robust policies via meshing for
metastable rough terrain walking. In Robotics: Science and Sys-
tems. https://doi.org/10.15607/RSS.2014.X.049.

Tedrake, R. (2023). Underactuated robotics: Algorithms for walk-
ing, running, swimming, flying, and manipulation (Course Notes
for MIT 6.832). MIT. Accessed 16 June 2023 from http://
underactuated.mit.edu/.

The Drake Team (2023). Drake: Model-based design and verification
for robotics. https://drake.mit.edu/.

The IPOPT Team (2023). IPOPT Documentation. Accessed 16 June
2023 from https://coin-or.github.io/Ipopt/OPTIONS.html.

Topputo, F., & Zhang, C. (2014). Survey of direct transcription for low-
thrust space trajectory optimization with applications. Abstract
and Applied Analysis, 2014, 1–15. https://doi.org/10.1155/2014/
851720

Wächter, A., & Biegler, L. T. (2006). On the implementation of an
interior-point filter line-search algorithm for large-scale nonlin-
ear programming. Mathematical Programming, 106(1), 25–57.
https://doi.org/10.1007/s10107-004-0559-y

Westervelt, E. R., Grizzle, J. W., & Koditschek, D. E. (2003). Hybrid
zero dynamics of planar biped walkers. IEEE Transactions on
Automatic Control, 48(1), 42–56. https://doi.org/10.1109/TAC.
2002.806653

Yang, T., Westervelt, E. R., Serrani, A., & Schmiedeler, J. P. (2009). A
framework for the control of stable aperiodic walking in underac-
tuated planar bipeds.Autonomous Robots, 27(3), 277–290. https://
doi.org/10.1007/s10514-009-9126-y

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Siro Moreno-Martín received the
Aeronautics Engineering degree in
2015 from the Universidad Politéc-
nica de Madrid (UPM), Spain.
From 2016 to 2018 he worked
as R&D Engineer at the Insti-
tuto Nacional de Técnica Aeroes-
pacial (INTA). He is currently a
PhD candidate at the Computa-
tional Robotics Group of the Insti-
tut de Robòtica i Informàtica Indus-
trial (IRI, CSIC-UPC), Barcelona.
His research interests include kine-
matics, dynamics, and control, with
applications to robotics.

Lluís Ros received the Mechanical
Engineering degree in 1992, and
the Ph.D. degree (with honors)
in Industrial Engineering in 2000,
both from Universitat Politècnica
de Catalunya (UPC). From 1993
to 1996 he worked with the Con-
trol of Resources Group of Insti-
tut de Cibernètica (Barcelona). He
joined the Institut de Robòtica i
Informàtica Industrial (Barcelona)
in 1997, where he is an Asso-
ciate Researcher of the Spanish
National Research Council (CSIC)
since 2004. He has been a vis-

iting scholar at York University (Toronto), University of Tokyo
(Tokyo), and the Laboratoire d’Analyse et Architecture des Systèmes
(Toulouse). His current research interests include kinodynamic motion
planning, trajectory optimization, and control, of general multibody
systems.

Enric Celaya received the B.S.
degree in Theoretical Physics from
the Universitat de Barcelona in
1979 and the Ph.D. in Artificial
Intelligence from de Universitat
Politécnica de Catalunya (UPC)
in 1992. Currently retired, he has
hold a position of Scientific
Researcher of the CSIC at the
Institut de Robòtica i Informàtica
Industrial (CSIC-UPC) in
Barcelona. Along its professional
career he has been working in
the fields of Kinematics, legged
robots, computer vision, reinforce-

ment learning, and trajectory optimization.

123

https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/ICRA.2012.6225056
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.15607/RSS.2014.X.049
http://underactuated.mit.edu/
http://underactuated.mit.edu/
https://drake.mit.edu/
https://coin-or.github.io/Ipopt/OPTIONS.html
https://doi.org/10.1155/2014/851720
https://doi.org/10.1155/2014/851720
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1007/s10514-009-9126-y
https://doi.org/10.1007/s10514-009-9126-y

	Collocation methods for second and higher order systems
	Abstract
	1 Introduction
	2 Problem formulation
	3 Methods for first order systems
	3.1 Trapezoidal collocation
	3.2 Hermite–Simpson collocation
	3.3 Trajectory interpolation
	3.4 Downsides of the methods

	4 Methods for second order systems
	4.1 Trapezoidal method for second order systems
	4.2 Hermite–Simpson method for second order systems

	5 Extensions for higher order systems
	5.1 The generalized trapezoidal method
	5.2 The generalized Hermite–Simpson method

	6 Comparison of the methods
	6.1 Problem size
	6.2 Accuracy of the approximations
	6.3 Consistency errors

	7 Test cases
	7.1 The cart-pole swing-up problem
	7.2 The bipedal walking problem
	7.3 A ball throwing problem
	7.4 A third order example
	7.5 Performance scaling with N

	8 Conclusions
	References

