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Abstract
Mechanical search is a robotic problem where a robot needs to retrieve a target item that is partially or fully-occluded from its
camera. State-of-the-art approaches for mechanical search either require an expensive search process to find the target item, or
they require the item to be tagged with a radio frequency identification tag (e.g., RFID), making their approach beneficial only
to tagged items in the environment. We present FuseBot, the first robotic system for RF-Visual mechanical search that enables
efficient retrieval of bothRF-tagged and untagged items in a pile. Rather than requiring all target items in a pile to beRF-tagged,
FuseBot leverages the mere existence of an RF-tagged item in the pile to benefit both tagged and untagged items. Our design
introduces two key innovations. The first isRF-VisualMapping, a technique that identifies and locates RF-tagged items in a pile
and uses this information to construct an RF-Visual occupancy distribution map. The second is RF-Visual Extraction, a policy
formulated as an optimization problem that minimizes the number of actions required to extract the target object by accounting
for the probabilistic occupancy distribution, the expected grasp quality, and the expected information gain from future actions.
We built a real-time end-to-end prototype of our systemon aUR5e robotic armwith in-hand vision andRF perceptionmodules.
We conducted over 200 real-world experimental trials to evaluate FuseBot and compare its performance to a state-of-the-art
vision-based system named X-Ray (Danielczuk et al., in: 2020 IEEE/RSJ international conference on intelligent robots and
systems (IROS), IEEE, 2020). Our experimental results demonstrate that FuseBot outperforms X-Ray’s efficiency by more
than 40% in terms of the number of actions required for successful mechanical search. Furthermore, in comparison to X-Ray’s
success rate of 84%, FuseBot achieves a success rate of 95% in retrieving untagged items, demonstrating for the first time
that the benefits of RF perception extend beyond tagged objects in the mechanical search problem.
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1 Introduction

There has been increasing interest in robotic systems that
can find and retrieve occluded items in unstructured envi-
ronments such as warehouses, retail stores, homes, and
manufacturing (Danielczuk et al., 2019, 2020; Boroushaki
et al., 2021a, b; Huang et al., 2020). For example, in
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e-commerce warehouses, there is a need for robots that can
package customer orders from unsorted inventory or process
returns from a miscellaneous pile. Similarly, in manufactur-
ing plants, robots need to find and retrieve specific tools from
the environment (e.g., a wrench) that they need for assem-
bly tasks. In many of these scenarios, the target item may be
partially or fully occluded from the robot’s camera, requiring
the robot to actively explore the entire environment to find
and retrieve the desired item.

Existing robotic systems that aim to address this mechan-
ical search problem broadly fall in two main categories. The
first relies entirely on vision-based perception (Danielczuk
et al., 2019, 2020; Huang et al., 2020). In these systems,
the robot typically performs active perception by moving its
camera around a pile to identify the target item through par-
tial occlusions, and/or it performs manipulation to declutter
the scene by removing occluding items until it can observe
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Fig. 1 RF-visualmechanical search. FuseBot usesRF and visual sensor
data (from wrist-mounted camera and antenna) to perform mechanical
search and extract the occluded target items from the piles of both RFID
tagged and non-tagged items

the target. While this category of systems can perform well
on relatively small piles, they become inefficient in complex
scenarios with larger or multiple piles. The second category
of systems leverages radio frequency (RF) perception in addi-
tion to vision-based perception (Boroushaki et al., 2021a, b;
Wang et al., 2013). Unlike visible light and infrared, RF sig-
nals can go through standard materials like cardboard, wood,
and plastic. Thus, recent systems have leveraged RF signals
to locate fully occludedobjects taggedwithwidely-deployed,
passive, 3-cent RF stickers (called RFIDs). By identifying
and locating the RFID-tagged target items through occlu-
sions, these systems can make the mechanical search process
much more efficient. However, the benefits of existing sys-
tems in this category are restricted to scenarios where all
target items are tagged, thus providing limited benefit inmore
common scenarios where only a subset of items are tagged
with RFIDs.

In this paper, we ask the following question: Can we
design a robotic system that performs efficient RF-Visual
mechanical search for both RF-tagged and non-tagged tar-
get objects? Specifically, rather than requiring all items to be
RF-tagged, we consider more realistic and practical scenar-
ios where only a subset of items are tagged, and ask whether
one can improve the efficiency of retrieving non-tagged tar-
get items by leveraging RF perception. A positive answer
to this question would extend the benefits of RF perception
to new application scenarios, such as those where the target
item cannot be tagged with inexpensive RFIDs (e.g., metal

tools and liquid bottles)1 and instances when the robot is
presented with piles of items that are not fully tagged.

We present FuseBot, a robotic system that can efficiently
find and extract tagged and non-tagged items in line-of-sight,
non-line-of-sight, and fully occluded settings. Similar to past
work that leverages RF perception, FuseBot uses RF sig-
nals to identify and locate RFID tags in the environment
with centimeter-scale precision. Unlike the past systems, it
can efficiently extract both non-tagged and tagged items that
are fully occluded. As shown in Fig. 1, FuseBot integrates a
camera and an antenna into its robotic arm and leverages the
robotmovements to locate RFIDs, model unknown/occluded
regions in the environment, and efficiently extract target
items from under a pile independent of whether or not they
are tagged with RFIDs.

The key intuition underlying FuseBot’s operation is that
knowingwhere anRFID-tagged item iswithin a pile provides
useful information about the pile’s occupancy distribution
and allows the robot to significantly narrow down the can-
didate locations of non-tagged items. In its simplest form,
knowledge of where an RFID-tagged item is within a pile
negates the possibility of another item occupying the same
location. Since the in-hand antenna allows the robot to local-
ize all RFID tags in a pile, the robot can leverage this
knowledge to narrow down the likely locations of a non-
tagged target item, and thus plan efficient retrieval policies
for these items.

Translating this high-level idea into a practical system is
challenging.While the in-hand antenna can locate eachRFID
as a single point in 3D space, it cannot recover the 3D vol-
umetric occupancy map of the object an RFID is attached
to. Since an RFID is attached to the object’s surface and not
at its center, there is uncertainty about both the position and
orientation of the tagged item. The problem is further com-
plicated by the fact that retrieving an occluded item involves
manipulating the environment (e.g., by removing occluding
objects to uncover the target). Here, uncertainty about the tar-
get object’s location makes it difficult to identify the optimal
manipulation actions to most efficiently reveal and extract
the target.

FuseBot introduces two key components that together
allow it to overcome the above challenges:
(a) RF-Visual Mapping FuseBot’s first component con-
structs a probabilistic occupancy map of the target item’s
location in the pile by fusing information from the robot’s
in-hand camera and RF antenna as shown in Fig. 2a. This
component localizes the RFIDs in the pile and applies a con-
ditional (shape-aware) RF kernel to construct a negative 3D
probability mask, as shown in the red regions of Fig. 2b.

1 It is worth noting certain RFIDs canwork onmetal and liquids, but are
muchmore expensive than the 3-cent passiveRFIDs,makingprohibitive
for widespread adoption.
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Fig. 2 RF-visual mapping and RF-visual extraction. a As FuseBot
moves, it observes the environment using the wrist mounted camera
and RF module. b Using the RF measurements, FuseBot localizes the
RFID tagged items in the environment and computes RF kernels. c
Using the wrist mounted camera, FuseBot observes the environment. d
FuseBot fuses the vision observations and the RF kernels to create a 3D

occupancy distribution map which is visualized as a heat map. e Fuse-
Bot performs instance segmentation of the objects in the environment
using the depth information from the camera. f FuseBot optimized its
extraction strategy by integrating the 3D occupancy distribution over
each of the object segments and efficiently retrieves the target

By combining this information with its visual observation
of the 3D pile geometry (shown Fig. 2c), as well as prior
knowledge of the target object’s geometry, FuseBot creates
a 3D occupancy distribution, shown as a heatmap in Fig. 2d,
where red indicates high probability and blue indicates low
probability for the target item’s location. In this example, it is
worth noting how the probability of the occluded target item
is lower near the locations of RFID-tagged objects. Section4
describes this component in detail, and how it also leverages
the geometry of the tagged items and the pile.
(b) RF-Visual Extraction Policy After computing the 3D
occupancy distribution, FuseBot needs an efficient extraction
policy to retrieve the target item. Extraction is a multi-step
process that involves removing occluding items and itera-
tively updating the occupancy distribution map. To optimize
this process, we formulate extraction as aminimization prob-
lem over the expected number of actions that takes into
account the expected information gain, the expected grasp
success, and the probability distribution map. To efficiently
solve this problem, FuseBot performs depth-based instance
segmentation, as shown in Fig. 2e. The segmentation allows
it to integrate the 3D occupancy distribution over each of the
object segments, and identify the optimal next-best-grasp, as
we describe in detail in Sect. 5.

We implemented a real-time end-to-end prototype of
FuseBot with a Universal Robot UR5e (Universal Robots,
2021) and Robotiq 2f-85 gripper (Robotiq, 2019). As shown
in Fig. 1, we mount an Intel RealSense Depth camera D415
(Intel RealSense, 2019) and log-periodic antennas on the
wrist of the robotic arm. Our implementation localizes the

RFIDs by processing measurement obtained from the log-
periodic antennas using BladeRF software radios (Nuand,
2021).

We ran over 200 real-world experimental trials to evaluate
FuseBot. We compared our system to a state-of-the-art sys-
tem called X-Ray (Danielczuk et al., 2020), which computes
a 2D occupancy distribution based on an RGB-D image. Our
evaluation demonstrates the following:

• FuseBot can efficiently retrieve complex, non-tagged
items in line-of-sight and fully occluded settings, across
different target objects and number of RFID tags. It suc-
ceeds in 95% of trials across a variety of scenarios, while
X-Ray was able to extract the target item in 84% of the
scenarios.

• In scenarios where FuseBot and X-Ray succeed in
mechanical search, FuseBot improves the efficiency of
extraction by more than 40%. Specifically, it reduces the
number of actions needed for successful retrieval from 5
to 3 actions in the median, and from 11 to 6 in the 90th
percentile.

• Our results also demonstrate that the efficiency gains
from FuseBot’s RF-Visual mechanical search increase
with the number of tagged items in the environment,
reaching as much as 2.5× improvement over X-Ray in
environments where 25% of (non-target) items are RF-
tagged and 4× improvement when the target item is
tagged.
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Contributions FuseBot is the first system that enables
mechanical search and extraction of both non-tagged and
tagged RFID items in non-line-of-sight and fully-occluded
settings. The system introduces two new primitives, RF-
Visual Mapping and RF-Visual Extraction, to enable RF-
Visual scene understanding and efficient retrieval of target
items. The paper also contributes a real-time end-to-end pro-
totype implementation of FuseBot, and an evaluation that
demonstrates the system’s practicality, efficiency, and suc-
cess rate in challenging real-world environments.

2 Related work

Interest in the problem of mechanical search dates back to
research that recognizes objects through or around partial
occlusions via active and interactive perception. Researchers
explored the use of perceptual completion to identify partially
occluded objects (Huang et al., 2012; Price et al., 2019), and
developed systems that perform active perception whereby
a robot moves a camera around the environment in order
to search for items that are partially visible (Aydemir et
al., 2011; Bajcsy, 1988; Bohg et al., 2017). Other areas of
research focused on efficiently grasping partially occluded
objects using physics-based planners (Dogar et al., 2012).
While these works made significant progress on the task of
finding and retrieving partially occluded objects, they do not
extend tomechanical search scenarioswhere the target object
is fully occluded.

Over the past few years, there has been rising interest in
the mechanical search problem for fully occluded objects,
whereby the robot actively manipulates the environment to
uncover target objects. The majority of systems for mechan-
ical search rely entirely on vision, and employ heuristics or
knowledge of the pile structure in order to inform the search
process. For example, recognizing that mechanical search
is a multi-step retrieval process, pioneering research in this
space used a heuristic-based approach to remove larger items
in the environment to uncover the largest area and maximize
information gain at each step (Danielczuk et al., 2019). More
recent work has started looking at the structure of the pile and
constrains the potential target item locations by leveraging
the geometry of both the pile and the target object (Daniel-
czuk et al., 2020). Other work has also looked at lateral
search, where objects are retrieved from the side rather than
from a pile (Huang et al., 2020; Avigal et al., 2021). One of
themain challenges of this vision-based approach tomechan-
ical search is that as piles become larger and more complex,
the uncertainty grows and the systems become more inef-
ficient. FuseBot builds on this type of research to perform
efficient mechanical search of fully-occluded objects, and
outperforms state-of-the-art past vision-based systems (aswe

demonstrate empirically in Sect. 7) especially in the presence
of any RFID tagged item.

Most recently, researchers have explored the use of
RF perception to address the mechanical search problem
(Boroushaki et al., 2021a, b;Wang et al., 2013). This research
was motivated by recent advances in RF localization, which
has enabled locating cheap, passive, widely-deployed RF-
tags (called RFIDs tags) with centimeter scale accuracy, even
through occlusions (Ma et al., 2017; Wang & Katabi, 2013;
Luo et al., 2019). Thus, by tagging the target object with an
RFID, researchers have demonstrated the potential to per-
form efficient mechanical search by directly locating the
target RFID-tagged item in a pile, bypassing the exhaustive
search altogether. However, these past systems require the
target item to be tagged with an RFID to enable efficient
mechanical search and retrieval. Our work is motivated by
this line of work, and is the first to bring the benefits of RF
perception to non-tagged target items, leveraging the mere
existence of RFID tagged items in the pile.

3 System overview

We consider a general mechanical search problem where a
robot is tasked with retrieving a target item from a pile. The
target item may be unoccluded, partially occluded, or fully
occluded from the robot’s camera.

We focus on scenarios where one or more items in the pile
are taggedwithUHFRFID (Radio Frequency IDentification)
tags, but where the target item does not need to be tagged
with an RFID. We assume that the robot knows the shape
of the tagged item, and has a database with the shapes of
all RFID-tagged items. Such a database may be provided by
the item’s manufacturer. The robot is a 6-DOF manipulator
with a camera and an antenna mounted on its wrist, and we
assume that the target item is kinematically reachable from
the robotic arm on a fixed base.

FuseBot’s objective is to extract the target(s) from the
environment using the smallest number of actions. It starts
by using its wrist-mounted antenna to wirelessly identify and
locate all RFIDs in the pile, even if they are in non-line-of-
sight. Using the RFID locations and its visual observation of
the pile geometry, it performs RF-Visual mechanical search
in two key steps. The first is RF-Visual Pile Mapping, where
FuseBot creates a 3D probability distribution of the target
object’s location within the pile. The second is RF-Visual
Extraction, where the robot uses the probability distribution
and its scene understanding to perform the next-best grasp.
The next two sections describe these steps in detail.
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Fig. 3 RF-visual mapping. FuseBot a constructs an initial map of
unknown regions using visual RGB-D information and b uses RFID
tag locations to construct RF kernels. c It then combines the RF and

Visual information to more accurately map probable target locations. d
Finally, it uses the target object geometry to further refine the probable
target locations

4 RF-visual pile mapping

In this section, we explain how FuseBot creates a 3D occu-
pancy distribution of a target item’s location in a pile. The
process of RF-Visual mapping consists of four key steps
where the robot first constructs separate RF and visual maps,
then fuses them together, and finally folds in information
about the target object’s geometry. For clarity of exposition,
we focus our discussion on scenarios where the target item is
both occluded and non-tagged, and discuss at the end of the
section how this technique generalizes to unoccluded and/or
non-tagged items.

4.1 Visual uncertainty map

The first step of RF-Visual pile mapping involves construct-
ing a 3Dvisual uncertaintymap of the environment. Thismap
is important to identify all candidate locations of an occluded
object. To create the visual uncertainty map, the robot moves
its downward pointing wrist-mounted camera above the pile
to cover the workspace. It follows a simple square-based tra-
jectory in a plane parallel to the table with a pile, similar to
past work that constructs point clouds of piles (Boroushaki
et al., 2021b).

FuseBot combines the visual information obtained dur-
ing its trajectory using an Octomap structure (Hornung et
al., 2013). The structure represents the 3D workspace as a
voxel grid.2 Using depth information and the position of the
camera, FuseBot can determine whether each voxel in the
environment is visible to the camera (the surface of the pile
and table), or free space (the air), or occluded (e.g., under the
pile or table). Formally, it creates a 3D uncertainty matrix

2 In our implementation, each voxel is a 2.5×2.5×2.5cmcubic volume.

C(x, y, z) as follows:

C(x, y, z) =
{
1 unobserved voxel

0 observed voxel

Here, the higher value (i.e., 1) represents more uncertainty. It
is worth noting that, in this representation, both unexplored
and occluded regions are considered uncertain.

As an example, consider the sample scenario shown in
Fig. 1. This scenario consists of two piles with three RFID-
tagged items, and where the target item is a toy (stuffed red
turtle shown in the top center) hidden under the pile. The
visual uncertainty map is depicted as a heatmap in Fig. 3a.
Here, we can see that the regions under the surface of the
piles have a high probability (red) of containing the target
object.

4.2 RF localization

So far, we have explained how FuseBot constructs a 3D
uncertainty map based on the camera’s depth information.
Next, we explain how it accurately localizes RFIDs to gain
more information about the environment. For simplicity, we
first describe the localization of a single tag, then describe
how we support multiple tags. Our localization system fol-
lows three steps:
Step (1) Measuring RFID response First, recall that Fuse-
Bot has a wrist-mounted antenna which it uses to performRF
perception. The antenna is used to read and localize RFID
tags in the pile. When the antenna transmits radio frequency
signals, passive RFID tags harvest energy from this signal to
power up and respond with their own identifier. FuseBot then
uses these responses to estimate the channel, which contains
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Fig. 4 RF localization. FuseBot sends and receives RF signals (red
arrows) to and from the battery-free RFID tag (in yellow) at different
vantage points in order to localize the RFID tags in the environment

information about the distance to the tag. We refer readers to
Tse and Viswanath (2005) for more details on RF channels.

Formally, if an RFID transmits a signal x(t), and the
received signal is y(t), one can estimate the wireless channel
ĥ( fi ) as:

ĥ( fi ) =
∑
t

y(t)x∗(t)

The above describes the channel estimation at a single
frequency fi . FuseBot repeats this process at multiple fre-
quencies to obtain {ĥ( fi )}i
Step (2) Leveraging robot mobility for localization Since
channel measurements from a single location are not enough
to localize an RFID tag in 3D space, FuseBot leverages
robotic mobility to collect measurements from different van-
tage points and combines them to localize the tag. Since
FuseBot already requires a scan of the environment to build
the Visual Uncertainty map in Sect. 4.1, we leverage this
motion and continuously collect RFID channel measure-
ments as the robot moves, allowing us to collect a set of
measurements:

{ĥ( fi , pak )}i,k

where pak is the location of the antenna. Figure 4 schemat-
ically shows the robot moving and collecting RF measure-
ments in order to localize an RFID tag that is hidden under
a pile. The red dotted lines demonstrate the RF signals that
are transmitted from the wrist mounted antenna to the RFID
tag and then received by the wrist mounted antenna. Remem-
ber that unlike visible light, RF signals can traverse through
occlusions, and, as a result, the RF channel can be estimated
even when the RFID tag is under the pile.
Step (3) Combining measurements Finally, given these
measurements, the robot can combine themusing a technique

called Synthetic Aperture Radar (Curlander & McDonough,
1991). This localization method combines measurements
across space and frequency (i.e., {ĥ( fi , pak )}i,k) to estimate
the probability of the tag being at each point in 3D space.
This can be done using the following equation (Curlander &
McDonough, 1991):

P(p) =
∑
i

∑
k

ĥ( fi , pak )e
j2πd(p,pak ) fi /c (1)

where P(p) is the estimated probability at point p, pak is
the antennas position at the time of the i th measurement, and
d(p, pak ) is the round-trip distance from point p to point pak .
The final tag location is then estimated to be the location in
space with the highest probability:

pRF I D = argmax(P(p)) (2)

where pRF I D is the estimated location of the tag.
To extend this to any number of RFIDs, we modify step

2 as follows. Instead of continuously reading one RFID, we
estimate the channels of all RFID tags in the environment
sequentially as the robot is moving.3 This allows us to collect
a set of measurements for each RFID. We then recompute
Eqs. 1 and 2 for each RFID in the environment.

Finally, it is worth noting that wireless noise may lead
to localization errors. FuseBot’s design incorporates a confi-
dence metric (described below) to identify and mitigate such
errors. Specifically, if the confidencemetric is low, the system
can choose either to ignore the corresponding tag altogether
or to take more RF measurements that enable it to increase
its localization confidence.

To understand whether we have confidently localized an
RFID, we leverage information from the probability com-
puted in Eq. 1. For simplicity of exposition, we demonstrate
this idea in Fig. 5, which shows a two-dimensional heatmap
of the probability, where yellow indicates a higher likelihood
of the RFID being located in that location and blue indicates
a lower likelihood. We consider two cases. In Fig. 5a), the
heatmap shows a small area of high probability surrounding
the tag’s location (denoted by a green x), which indicates a
high level of confidence in the RFID location. On the other
hand, Fig. 5b) shows a case where there is a large area of
yellow, so FuseBot has a low confidence in the location of
the RFID.

To quantify this phenomenon, FuseBot computes the
bounding box around the area of the heatmap that is within
0.75dB (∼84%) of the peak value (shown by δx and δy in
Fig. 5).When these dimensions have fallen belowa threshold,

3 RFID readers can read 1000s of tags per second. Moreover, the
readers support a medium-access protocol as part of the EPCGen 2 pro-
tocol (http://www.gs1.org/epcrfid/epc-rfid-uhf-air-interface-protocol/
2-0-1) that easily allows FuseBot to select specific RFIDs if need be.
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Fig. 5 Confident RFID
localization. FuseBot uses the
heatmap of the probability (high
probability in yellow, low
probability in blue) to determine
its confidence in an RFID
location. a A highly confident
localization, with a small area of
yellow surrounding the RFID
tag (green x). b A low
confidence location, with a large
area of yellow (Color figure
online)

FuseBot declares the RFID confidently localized. Formally,
FuseBot’s criteria for declaring a successful RFID localiza-
tion is:

δx < τx & δy < τy & δz < τz

where δx , δy , and δz are the x, y, and z dimensions of the
bounding box around the area of the power where P(p) >

0.84max[P(p)]. τx , τy , and τz are the thresholds in the x, y,
and z dimenions, respectively.

4.3 RF certainty map

Next, we explain how FuseBot leverages the estimated RFID
locations from the above section to construct a certainty map
based on RF measurements.

FuseBot uses the RFID tag locations to identify regions in
the pile that the target item is less likely to occupy, since they
are occupied by the RFID-tagged items (rather than the non-
tagged target item). A key challenge here is that the system
can only recover the RFID tag’s location as a single point
in 3D space. Since an RFID is attached to the surface of the
tagged item, there remains nontrivial uncertainty about the
orientation and exact position of the item in the pile (as it
may occupy a non-trivial region in the near vicinity of the
localized tag).
RFKernel FuseBot encodes the uncertainty about the RFID-
tagged object’s location by constructing a 3D RF kernel that
leverages the known dimensions of the tagged object. TheRF
kernel is modeled as a 3D Gaussian, centered at the RFID
tag, and masked with a sphere whose radius is equal to the
longest dimension of the tagged item. The spherical mask
represents an upper bound on the furthest distance from the
tag that the object can occupy. Formally, we represent its RF
kernel through the following equation:

m(p, pRF I D) =
⎧⎨
⎩− e‖p−pRF I D‖2/ds√

πds
‖p − pRF I D‖2 ≤ dl

0 ‖p − pRF I D‖2 > dl

where p is the point where we are evaluating the kernel,
pRF I D is the location of the RFID, ds and dl are the shortest

and longest distance of the RFID tagged object’s bounding
box respectively, and ‖·‖2 represents the L2 norm. Here, it
is worth noting that the negative sign represents the negative
likelihood for the target item to occupy the corresponding
region.

In the presence of multiple RFID tagged items, the RF
certainty map is a linear combination of all RF kernels

R(x, y, z) = −
N∑
i=0

m(p, pi )

where N is the number of RFID tagged items in the environ-
ment. pi is the ith RFID location, and m(p, pi ) is the ith RF
kernel.

The RF certainty distribution for the example scenario
(described in Fig. 1) is shown in Fig. 3b. Since there are three
RFID-tagged items in the pile, the figure shows three spher-
ical regions that represent the Gaussians centered at each of
the localized RFIDs.
RF-Visual Uncertainty Map: Given both the visual uncer-
tainty map and the RF certainty map, FuseBot constructs an
RF-Visual uncertainty map by adding the two maps pixel-
wise (i.e., C + R). In the above example with two piles
and three RFID-tagged items, Fig. 3c shows the resulting
RF-Visual uncertainty map. Notice how by applying the RF
masks as a negative mask to the voxel grid values, FuseBot
folded the certainty gained fromRF into the uncertainty from
the visual information.

4.4 RF-visual occupancy distributionmap

So far, we have described how FuseBot constructs a 3D prob-
ability distribution of possible locations of the target item by
fusing RF and visual information. Next, we describe how
FuseBot also leverages the target item’s size and shape to
further improve the occupancy distribution map. Intuitively,
the target’s size constrains the potential regions it can occupy
in the occluded region since, for example, larger targets can-
not fit into narrow regions of the pile.

To fold the target size into the distribution, FuseBot
employs a similar approach to the RF kernel described in
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Sect. 4.3. Specifically, it creates a target occupancy kernel
that summarizes all the possible orientations of a target object
using the following target gaussian kernel:

k(p) =
⎧⎨
⎩

e‖p‖2/(2d2s )

ds
√
2π

‖p‖2 ≤ dl
2

0 ‖p‖2 >
dl
2

(3)

where p is the point where we are evaluating the kernel, ds
and dl are the shortest and longest distance of the target object
bounding box respectively, and ‖·‖2 represents the L2 norm.4

To combine the geometric data from this target gaussian
kernel with the previously computed RF-Visual uncertainty
map, FuseBot performs a 3D convolution of the RF-Visual
uncertainty map and the target’s gaussian kernel. Intuitively,
after convolution, the regions that can fit the item of interest
in more possible orientations will have voxels with higher
weights than other regions of the unknown environment.
Hence, the resulting 3D occupancy distribution now encodes
the visual uncertainty, RFID tagged items, and the shape and
size of the target item.

Figure 3d shows the resulting RF-Visual occupancy dis-
tribution from this convolution operation (for the scenario
described earlier in Fig. 1). Notice that in this distribution,
regions near the RFID tags, as well as those near the edge
of the pile, have lower probabilities (blue/white) than other
regions in the pile.

4.5 Generalizing to other scenarios

Our discussion so far has focused on the case of a fully-
occluded non-tagged target item. The method can be gener-
alized to other scenarios in a number of ways:

4.5.1 Tagged target object

In scenarios where the target object is tagged with an RFID
tag and is not in the line of sight, FuseBot uses the calculated
RF kernel in order to build the occupancy distribution of
the RFID tagged target object. The RF kernel in this case
is positive and the visual uncertainty is ignored. FuseBot in
this case knows where the target object is and declutters the
environments efficiently to extract the target object.

4.5.2 Unoccluded target object

In cases where the target object is unoccluded (or partially
occluded), FuseBot can leverage prior approaches for identi-
fication and grasping to retrieve the target item from the pile

4 One interesting difference between the RF kernel and the target kernel
is that the RF kernel is larger since the RFID tag is on the surface of the
object, while the target item kernel is defined from the object’s center
(dl for the RF kernel vs dl/2 for the target kernel).

(Chen et al., 2020; Danielczuk et al., 2019; Krizhevsky et al.,
2012; Liu & Deng, 2015).

4.5.3 Deformable RFID tagged objects

In principle, FuseBot’s probabilistic approach described so
far allows it to operate with deformable objects. However, to
further improve the efficiency for such objects, we designed
amore advancedmodel. Recall that from the recorded data in
the RFID dataset, FuseBot knows if an RFID tagged object is
deformable or rigid. Specifically, when a deformable RFID
tagged object is present under a pile, it is likely to compress,
changing the object’s dimensions. This compression causes
the object to deviate from themodel of the existingRF kernel.
FuseBot can leverage this observation to update theRFkernel
for such deformable objects. Specifically, instead of using a
spherical RF kernel as mentioned in Sect. 4.3, which is more
representative of rigid objects whose dimensions are fixed,
we introduce a Deformable RF Kernel.

We demonstrate this concept in Fig. 6. Figure 6a shows
the RFID tagged object before it was deformed. Figure 6b
shows the same RFID tagged object under a pile, deformed
due to the weight of the rest of the pile. Figure 6c shows
the original spherical RF kernel with variance σ = ds/2 (as
described in 4.3), with blue indicating more negative and red
indicating more positive probability. This RF kernel is over-
layed with the compressed deformable object that the kernel
is attempting to model. In this case, the model poorly aligns
with the object. Instead, Fig. 6d shows the new deformable
RF kernel. The variances of the Gaussian are updated to cre-
ate an elliptical kernel, better matching the expected shape
of the object.

Formally, we first define a deformation factor for the
RFID tagged object, α(ρ, z) ∈ [0, 1], which estimates how
deformed the object is. Here, α(ρ, z) = 0 represents a fully
deformed object and α(ρ, z) = 1 represents a non-deformed
object:

α(ρ, z) =
{
1 ρ = 1

z/zmax ρ = 0

where ρ ∈ {0, 1} is 1 if the object is rigid and 0 if the object
is deformable, z is the height of the RFID location from the
table surface, and zmax is the maximum height of the pile
directly above the RFID tag location.5 Then, we define the
deformable RF kernel as:

5 In our implementation, zmax is the maximum height of the pile within
a 3cm radius of the tag’s (x,y) location.
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Fig. 6 Spherical and Deformed RF Kernel. a A non-deformed RFID
tagged object. b RFID tagged object that is deformed (compressed in
the vertical direction and expanded in the horizontal direction) under a
pile of objects. c The heatmap of the spherical RF kernel overlayed on

the RFID tagged object if deformation is not considered. d The heatmap
of the deformable RF kernel overlayed on the RFID tagged object when
deformation is considered

md(p, pRF I D)

=
⎧⎨
⎩− e

1
2 (p−pRF I D )T �−1(p−pRF I D )√

2π |�| ‖p − pRF I D‖2 ≤ dl

0 ‖p − pRF I D‖2 > dl

� =
⎡
⎣σx 0 0
0 σy 0
0 0 σz

⎤
⎦

where � is the covariance matrix, and σx , σy , and σz are the
variances in the x, y, and z dimensions, respectively:

σx = σy = (2 − α(ρ, z))
ds
2

σz = α(ρ, z)
ds
2

5 RF-visual extraction policy

In the previous section, we explained how FuseBot builds a
3DRF-Visual occupancy distribution for a target item’s loca-
tion. Given this distribution, one might think that the robot
could immediately move towards the voxel with the highest
probability to extract the target object. However, since the tar-
get object is fully occluded, the robot cannot directly access
it. Instead, it must first remove anything covering the tar-
get object. In this section, we describe FuseBot’s RF-Visual
extraction policy that decideswhich object to remove in order
to most efficiently extract the target object.

The goal of designing the extraction policy is to minimize
the overall number of actions required to retrieve the target
object. If the robot was certain of the target item’s location,
it could simply remove anything covering the object, then
extract the target object. However, while FuseBot leverages
RF-Visual perception tominimize uncertainty, the occupancy
distribution may still have multiple areas of high probability,

leaving ambiguity in the target item’s location. One could
think of moving towards the region with the highest proba-
bility and searching for the target object there until it either
finds the object or eliminates the search area. However, this
may result in an inefficient search, especially in complex sce-
narios, where there are multiple large piles. Thus, to enable
efficient retrieval, FuseBot needs an extraction policy that
not only leverages the probability distribution of the target
item’s location but also the expected information gain of a
given action and the likelihood of a successful grasp action.

At the core of enabling an efficient retrieval policy is iden-
tifying the next best object to grasp. To this end, FuseBot
transform its voxel-based representation of the environment
into an object-based representation, which assigns a certain
expected gain for grasping each of the visible objects. To do
this, FuseBot performs instance segmentation which gives
the mask and surface area of each visible object in the scene,
as shown in Fig. 7a. Next, in Fig. 7c, it vertically projects all
the voxels below a given mask onto the mask and integrates
over the mask area. In principle, this provides it with the total
utility of extracting the corresponding item (including both
the probability distribution and information gain).

Note however that the approach of simply projecting all
the probability below an object onto the surface assumes that
removing that object would reveal all the voxels below it.
In practice, this is not true because the object only has a
limited thickness. While FuseBot does not know the thick-
ness of each item, we can safely assume that voxels near
the top of the pile are more likely to be eliminated when an
object is removed. To bias the search towards this informa-
tion gain, FuseBot applies aweighting function that increases
the weights of voxels closer to the surface of the pile. The
sum of these weighted probabilities, or score of each mask,
now optimizes for both the information gain and probable
tag locations for each visible object. The score is formalized
in the below equation:
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Fig. 7 RF-visual extraction. a FuseBot performs depth-based object
segmentation to separate different objects in the environment. b Fuse-
Bot uses the 3D occupancy distribution of the target item. c FuseBot
projects the occupancy distribution on each segmented mask. d Fuse-

Bot sums the projected distribution on the area of each mask, and then
chooses the mask with the highest sum. e FuseBot chooses the next-
best-grasp to extract the target item

si =
∑

x,y∈mi

zmi∑
z=0

γ
(zmi −z)
0.025 × px,y,z (4)

where si is the score ofmask i,mi is all (x,y) points contained
within the ithmask, zmi is themaximum z under the ithmask,
and px,y,z is the probability from the occupancy distribution
for point (x,y,z). γ is the discount factor for weighting the
probability.6

Incorporating Grasp Quality While these scores incen-
tivize both exploiting the probability distribution and max-
imizing information gain, they do not account for the
likelihood of failed grasping attempts. To do this, FuseBot
computes the probability of a successful grasp for each point
in the environment using a grasp planning network. FuseBot
then selects the best possible grasp within each object mask.
The grasp qualities of each mask are formalized in the below
equation:

gi ← max
(x,y)∈mi

g(x, y) (5)

where gi is the best grasp probability for the ithmask, g(x, y)
is the grasp probability for point (x,y) given by the grasping
network, and mi is all (x,y) points contained within the ith
mask.

FuseBot now uses the grasping quality and mask scores
to find the optimal extraction policy by optimizing for the
following:

6 In our implementation, γ is set to 0.95.

max
i

si ×
⌈
gi − τ

⌉

where i is the mask number and τ is the threshold for accept-
able grasping quality. gi and si are the grasping quality and
the score for the ith mask, and 	.
 is the ceiling function.
FuseBot first evaluates objects with a greater than τ grasp
quality, selecting the object with the best weighted proba-
bility score.7 If no high probability grasps are available, it
then selects the object with the best score regardless of grasp
quality. The overall algorithm is summarized in Alg. 1.

A few additional points are worth noting:

• Since the workspace may be larger than the field of view
of the robot’s camera, FuseBot begins by clustering the
occupancy distribution and selecting the area with the
highest average probability. The robot moves over this
area before computing the object masks and grasp qual-
ities and executing the RF-Visual extraction policy. This
ensures that FuseBot can extend to any size workspace
within the robot arm’s reach.

• After each grasp attempt, the robot returns to the position
where it grasps in order to locally update the occupancy
distribution. It takes new RGB-D images to update a
10cm × 10cm × 10cm region around the grasp point,
as well as determine if the target object was uncovered
by the latest grasp.

7 In our implementation, τ is set to 0.8.
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• At anypoint, if FuseBot identifies the target object, it ends
the RF-Visual extraction policy and proceeds to grasping
the target object.

Algorithm 1 RF-Visual Extraction Policy
while Grasp Actions ≤ 15 do

SEGMENTATION
Compute object segmentation with SDMRCNN(Danielczuk et al.,

2019)

TARGET OBJECT SEARCH
for mask mi in SDMRCNN do

if mi == Target Object then
Grasp Target Object
Return

end if
end for

MASK SCORING
for mask mi in SDMRCNN do

si = ∑
x,y∈mi

∑zmi
z=0 γ

(zmi −z)
0.025 × px,y,z

gi ← max(x,y)∈mi g(x, y)
end for

MASK SELECTION
if Any gi > τ then

selected_mask ← maxgi>τ (si )
else

selected_mask ← maxi (si )
end if
Grasp selected_mask

end while

6 Implementation

Physical Setup. We implemented FuseBot on a Univer-
sal Robots UR5e robot (Universal Robots, 2021) with a
Robotiq 2F-85 gripper (Robotiq, 2019). We mounted an
Intel Realsense D415 depth camera (Intel RealSense, 2019)
and two WA5VJB Log Periodic PCB antennas (850–6500
MHz) (Kent Electronics, 2021) on the gripper. The antennas
are connected to two Nuand BladeRF 2.0 Micro software
radios (Nuand, 2021) through a Mini-Circuits ZAPD-21-S+
splitter (0.5−2.0 GHz). To obtain RFID locations, we imple-
mented anRFID localizationmodule using thewristmounted
antenna and BladeRFs through a similar method as past work
(Ma et al., 2017; Boroushaki et al., 2021b).We used standard
off-the-shelf UHF RFID tags (the Smartrac DogBone RFID
(Inlay, 2021)) that costs around 3–5 cents.
Control Software The system was developed and tested on
Ubuntu 20.04 and ROS Noetic. We used MoveIt [31] as the
inverse-kinematic solver to control the robot through the UR
Robot Driver package (Universal Robots ROSDriver, 2020).

Fig. 8 Example evaluation scenarios. This shows some of the evalua-
tion scenarios for a 1 pile, b 2 piles, and c 3 piles. The target item is
fully occluded in all the scenarios

The visual map of the environment is created using Octomap
(Hornung et al., 2013). We used Synthetic Depth (SD) Mask
R-CNN (Danielczuk et al., 2019) to perform instance seg-
mentation of the scene and segments objects in the scene.
To predict the grasping quality from the depth images, we
used GG-CNN (Morrison et al., 2018a, b). The baseline, X-
Ray (Danielczuk et al., 2020) was implemented based on the
published code (Danielczuk et al., 2021).

7 Evaluation

7.1 Real-world evaluation scenarios

We evaluated FuseBot in a variety of real-world scenarios
with varying complexity, some ofwhich can be seen in Fig. 8.
The scenarios had between 1 and 3 distinct piles of items,
0–10 RFID tagged objects, and a variety of target object
and RFID tagged object sizes. Each experiment had one
target item and 10–40 other distractor objects. Experiments
included varying distances between the target item and the
nearest RFID tagged item, including setups with an RFID
tagged item touching the target item, RFID tagged items in
the same pile as the target item, or all RFID tagged items in
different piles than the target item. We also evaluated Fuse-
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Bot in scenarios where the target object was tagged with an
RFID.8

Similar to prior work (Danielczuk et al., 2020) that uses
color-based object identification for simplicity, the target
item is a red item and FuseBot uses an HSV color segmen-
tation to identify when the target item is in line-of-sight. We
note that this step can be replaced by any target template
matching network such as the one used in Danielczuk et al.
(2019) to identify target objects of any type.

We use everyday objects, both deformable and solid, in
our evaluation, including office supplies, toys, and house-
hold items like gloves, beanies, tissue packs, travel shampoo,
stuffed animals, and thread skeins.

7.2 Baselines

We compared FuseBot’s performance with X-Ray (Daniel-
czuk et al., 2020). X-Ray works by estimating 2D occupancy
distributions and selecting the object with the highest total
probability within its mask to pick up. X-Ray relies entirely
on visual information and has no mechanism for RF-
perception.

7.3 Metrics

Number of actions We measured the number of grasping
actions that were needed to extract the target item from the
environment. Actions include grasping a non-target object,
target object, or failing to grasp anything.
Success rateWealso evaluated the success rate of our system
and the baseline. An experimental trial was considered a fail-
ure if the robot performed 15 actions and failed to retrieve the
target item, or if the robot performed 5 consecutive grasping
attempts that failed to grasp any item.
Search and retrieval time We measured the time during
which the robot was moving in each successful mechanical
search and retrieval task. For FuseBot, this time included the
scanning step required to localize the RFIDs.

8 Results

8.1 Baseline comparisons

We evaluated FuseBot and X-Ray in 181 real-world exper-
imental trials. The experiments covered multiple different
scenarios of various complexities with 1–3 piles, 0–10 RFID
tagged items, and different target object sizes. We tested X-
Ray and FuseBot in the exact same scenarios, butwe repeated

8 Unless otherwise stated, we leverage a spherical RF kernel in our
experiments.

FuseBot multiple times in each scenario with different com-
binations of RFID tagged item locations and numbers. We
measured the number of actions it took to find and retrieve the
target item, the success rate of each system, and the search
and retrieval time for each system. Recall from Sect. 7(c) that
an experimental trial is considered successful if the robot can
find and retrieve the target item within 15 actions.

8.1.1 Overall number of actions

Table 1 shows the 10th, 50th, and 90th percentiles of the num-
ber of actions required to find and extract the target object. It
includes results from FuseBot with RF-tagged target objects,
FuseBotwith non-tagged target objects, andX-Ray.Wemake
the following remarks:

• FuseBot needs only 3 actions at the median to retrieve
non-tagged target item, improving 40% over X-Ray’s
median number of actions of 5. This shows that FuseBot
is able to retrieve non-tagged target itemsmore efficiently
than the state-of-the-art vision-based baseline across a
variety of scenarios.

• The 90th percentile of FuseBot with non-tagged items
is 6 actions, while X-Ray’s 90th percentile is 11 actions.
This shows that FuseBot is able to performmore reliably,
with a 45% improvement over the state-of-the-art at the
90th percentile.

• When searching for a tagged target item, FuseBot
requires only 2 actions on median, and 5 actions for the
90th percentile. Note that here it performs better than
extracting a non-tagged item. This is expected because
localizing the tagged target item reduces the uncertainty
about its location and makes mechanical search more
efficient. This result shows that FuseBot’s performance
matches that of past state-of-the-art systems that are
designed to extract RFID-tagged items (Boroushaki et
al., 2021b)9; moreover, unlike these prior systems, Fuse-
Bot’s benefits also extend to non-tagged items.

8.1.2 End-to-end success rate

Table 1 reports the end-to-end success rate. The results show
that FuseBot is able to retrieve the target item 95% of the
time for non-tagged and tagged target objects, while X-Ray
is only able to do so in 84% of scenarios. This demonstrates
that FuseBot not only improves the efficiency, but also the
success rate of mechanical search.

9 See Fig. 14 in Boroushaki et al. (2021b).
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Table 1 Efficiency and success
rate

System Number of actions Success rate (%)
10th pctl Median 90th pctl

FuseBot (untagged) 2 3 6 95

FuseBot (tagged) 2 2 5 95

X-Ray 2 5 11 84

The table shows the success rate as well as the 10th, 50th, and 90th percentiles for the number of actions for
both FuseBot and X-ray. The performance of FuseBot is shown for scenarios where the target item is tagged
and where it is non-tagged

Table 2 Search and retrieval
time

System Search and retrieval time (s)
10th percentile Median 90th percentile

FuseBot (untagged) 40 62 132

X-ray 50 142 237

The table shows the 10th, 50th, and 90th percentiles for the search and retrieval time of both FuseBot and
X-Ray

8.1.3 Search and retrieval time

Table 2 shows the search & retrieval time for both FuseBot
and X-Ray. Here, it is worth noting that the robot was pro-
grammed to move at the same speed across all experimental
trials. We make the following remarks:

• FuseBot only requires 62 s at the median, while X-Ray’s
median is 142s, showingmore than 2x improvement over
the baseline’s performance.

• The 90th percentile of FuseBot is 132s, while X-Ray
requires a 90th percentile of 237s, showing the improve-
ment in reliability of FuseBot over X-Ray.

• This improvement in search & retrieval time shows that
FuseBot ismore efficient than the baseline despite requir-
ing an additional scanning step.

8.1.4 Scenario complexity

We evaluated FuseBot for non-tagged target objects and X-
Ray across three scenarios of different complexities.

• In thefirst level of complexity, the systemswere evaluated
on a setup with 2 distinct piles of objects and a total of
20 distractor objects.

• In the second level of complexity, the systems were eval-
uated on a setup with 3 distinct piles of objects and a total
of 25 distractor objects.

• In the third level of complexity, the systems were evalu-
ated on a setup with 3 distinct piles of objects and a total
of 42 distractor objects.

Figure 9a plots the number of actions required to find and
retrieve the target object for both FuseBot (green) and X-Ray
(blue) across three scenarios of different complexities. The

error bars indicate the 10th and 90th percentiles. We make
the following remarks:

• Across all levels of complexity, FuseBot outperforms the
baseline in terms of both its median and 90th percentile
efficiency. This shows that the benefits of RF-perception
extends to complex scenarios.

• In more complicated scenarios with a larger number of
distractor objects, both FuseBot and X-Ray require more
actions to retrieve the target item. Interestingly, for more
complex scenarios, FuseBot’s efficiency gains increase
over the baseline.

8.2 Microbenchmarks

In addition tobaseline comparisons,weperformedmicrobench-
marks to quantify how different factors impact the perfor-
mance of FuseBot.

8.2.1 Number of RFID tagged items

Recall from 4.3 that FuseBot creates an RF kernel for each
identified and localized RFID tagged item, and uses the
kernels to build the occupancy distribution. The occupancy
distribution gives FuseBot better insight into the location of
the target item. We quantified how the system performs with
different numbers of RFID tagged items through 54 experi-
ments in the same scenario with varying numbers of RFIDs.
In this scenario, we have 3 different piles with a total of 25
objects.

Figure 9b plots the number of actions required to retrieve
the target item vs. the number of localized RFIDs in the envi-
ronment for FuseBot (green) and X-Ray (blue). The error
bars denote the 10th and 90th percentiles. Since X-Ray does
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Fig. 9 Impact of different parameters on performance. a This figure
plots the number of actions required by both FuseBot and X-ray across
three different scenarios of increasing complexity. b The figure plots
the number of actions versus the number of localized RFIDs across
fully occluded real-world experiments. c This figure plots the median

number of actions for FuseBot to retrieve the target item for different
RFID to target item distances. X-ray’s median number of actions across
all scenarios is shown in blue. The error bars denote the 10th and 90th
percentile respectively

not utilize RFIDs, the results are not separated by number of
RFIDs. We make the following remarks:

• As the number of localized RFIDs in the environ-
ment increases, FuseBot’s median number of actions
decreases, dropping from 4 with no RFIDs to 2 with only
6–9 RFIDs. This improvement in efficiency is expected,
because additional RFID tagged items increase the num-
ber of RF kernels, which in turn narrows down the
candidate locations for the non-tagged target item. More
generally, this result shows that leveraging RF percep-
tion improves the efficiency of mechanical search, and
that the improvement is proportional to the number of
RFID tagged items.

• Interestingly, even with 0 RFIDs, FuseBot outperforms
X-Ray. Specifically, it requires amedianof only 4 actions,
while X-Ray requires 7 for the same scenario. This is due
to two main reasons. First, while FuseBot leverages a 3D
distribution, X-Ray only uses a 2D probability distribu-
tion which does not account for the height of different
objects. Second, unlike FuseBot, X-Ray does not account
for grasp qualitywhen selecting an object to remove from
the pile. Thismakes it susceptible to choosing objects that
are more difficult (hence less efficient) to grasp.

8.2.2 Distance from nearest RFID to target item

Our next microbenchmark aims to investigate whether the
presence of an RFID-tagged item near the target item would
impact the performance. Specifically, one concern with
applying the negative mask is that it biases the extraction
policy away from the RFID-tagged item. To investigate this,
we ran 51 real-world experiments across three scenarios:

• Touching In this category, there is at least one RFID
tagged item in direct contact with the target item.

• Opposite Side of Pile In this category, all RFIDs are either
on the opposite side of the target item’s pile or in different
piles than the target item.

• Different Piles In this category, all RFIDs are in different
piles than the target object.

Figure 9c plots the median number of actions required to
find the target item in each of the three categories of scenarios
described above, shown in green. The error bars denote the
10th and 90th percentiles. For comparison, the blue bar show
the performance of X-Ray in the same scenario. Since X-Ray
does not leverage RFIDs, its performance is not separated
into different categories.

We make the following remarks:

• Different Piles, Opposite Side of Pile, and Touching
require only 2, 3, and 3 actions at the median, respec-
tively. However, X-Ray requires 7 actions to retrieve the
target item. This shows that FuseBot outperforms the
baseline across all categories of scenarios, even when
an RFID tagged item is touching the target object.

• In Touching, the median number of actions is similar to
Different Piles and Opposite Side of the Pile, however
the 90th percentile is worse. This is expected because the
negative RF mask biases the search away from the target
object. However, it is important to note that the 90th is
only 5 actions.

8.2.3 Impact of extraction policy

Next,we evaluate the benefits of FuseBot’sRF-Visual extrac-
tion policy. To do so, we compare to the performance of a
naive extraction policy. Unlike FuseBot’s policy, this naive
policy is designed such that the robot is unaware of the indi-
vidual objects on the pile, and therefore does not have a
way to estimate the expected information gain of remov-
ing an item. This naive policy operates in two steps: first, it
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Table 3 Impact of extraction policy on efficiency

Extraction policy Number of actions
10th pctl Median 90th pctl

RF-visual extraction 2.0 2.5 4.0

Naive extraction policy 2.1 4.0 6.9

The table shows the 10th, 50th, and 90th percentiles of the number of
actions of FuseBot with different extraction policies

selects the voxelwith the highest probability in theRF-Visual
occupancy distribution (from RF-Visual Mapping); then, it
performs the best grasp that is within 5cm of the voxel’s
projection on the surface of the pile.

Table 3 shows the 10th, 50th, and 90th percentiles of the
number of actions required to successfully extract the target
item for FuseBot with both extraction policies for the same
set of scenarios with a fully-occluded untagged target item.
The result shows that the RF-Visual extraction policy allows
FuseBot to successfully complete the task with 2.5 median
actions. In contrast, when using the naive extraction policy, it
requires 4 median actions. Furthermore, the 90th percentile
of FuseBot’s extraction policy is only 4 actions, while the
naive policy requires 6.9 actions. This performance improve-
ment is due to the fact that FuseBot’s RF-Visual extraction
policy optimizes for information gain, allowing it to search
the environment more efficiently than the simpler extraction
policy.

8.2.4 Impact of deformable RF kernel

Recall from Sect. 4.5 that FuseBot can leverage deformable
RF kernels to more accurately model deformable RFID
tagged objects. The aim of this benchmark is to evaluate the
performance improvement of this model.We evaluated Fuse-
Bot with both spherical and deformable RF kernels. We ran
20 trials across multiple scenarios where at least one RFID
tagged item was deformable and FuseBot was tasked with
retrieving a non-tagged target item that was fully occluded
under the piles. In order to ensure a fair comparison, we
did not include failed grasp attempts in the total number
of actions for this microbenchmark as they were caused by
grasping network errors rather than RF Kernels.

Table 4 compares the number of actions needed to retrieve
target item when using deformable RF kernels compared to
spherical RF kernels. We make the following remarks:

• FuseBot with deformable RF kernels retrieved the target
object with median of 3.0 actions and 90th percentile
of 4.0 actions. However, FuseBot with spherical kernel
required a median of 4.0 actions and 90th percentile of
6.2 actions to finish the same tasks. This demonstrates

Table 4 Impact of deformable RF kernel on efficiency.

Number of actions
RF kernels 10th pctl Median 90th pctl

Deformable 2.0 3.0 4.0

Spherical 3.0 4.0 6.2

The table shows the 10th, 50th, and 90th percentiles of the number of
actions that FuseBot needed to finish the retrieval tasks with deformable
RF Kernels and with spherical RF Kernels

that accounting for object deformability in RF kernels
further improves the system’s efficiency.

• Importantly, FuseBot with spherical kernels was still able
to successfully retrieve the target object in all trials.
This shows that despite decreased efficiency, FuseBot’s
probabilistic approach still allows for successful task
completion despite inaccurate kernel models.

8.2.5 RFID localization accuracy

In our final microbenchmark, we evaluated the accuracy of
FuseBot’s RFID localization over 37 experiments. To evalu-
ate the impact of occlusions on RFID localization accuracy,
we computed the error in two cases: one where the tag was in
line-of-sight (LOS) to the antennas and onewhere the tagwas
in non-line-of-sight (NLOS) (e.g., covered by clothes, stuffed
animals, etc). We used the Optitrack motion capture system
(Optitrack, 2017) to obtain accurate ground truth locations.
Since the RF signal can emanate from any position on the
RFID tag, we measure the error as the L2 norm between the
estimated RFID location and the nearest point on the RFID
tag.10

Table 5 shows the RFID localization accuracy in LOS,
NLOS and overall. We make the following remarks:

• FuseBot is able to accurately localize RFIDs, achiev-
ing a median of 3.6 cm and a 90th percentile of 6cm
of error. We note that this level of error is typically less
than the dimensions of the object to which the RFID
object is attached, allowing FuseBot to accurately model
the environment. We also note that FuseBot’s probabilis-
tic approach is specifically designed to account for these
small errors.

• The localization accuracy in LOS and NLOS scenar-
ios is very similar, with the median error increasing
by less than half a cm and the 90th percentile increas-
ing by 1cm in NLOS scenarios. This is expected since
RF signals can go through most occlusions, and this

10 We performed a one-time calibration to remove offsets from the
localization.
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Table 5 RFID tags localization error

Localization environment RFID localization accuracy (m)
10th pctl Median 90th pctl

LOS 0.015 0.034 0.055

NLOS 0.023 0.038 0.065

Overall 0.017 0.036 0.060

The table shows the 10th, 50th, and 90th percentiles of L2 norm of
localization error of RFIDs in line of sight, non line of sight, and all
scenarios

matches results reported in state-of-the-art RFID local-
ization work (Boroushaki et al., 2021b).

9 Discussion and conclusion

This paper presented FuseBot, the first RF-Visual mechani-
cal search system that leverages RF perception to efficiently
retrieve both RF-tagged and non-tagged items in the envi-
ronment. The paper presents novel primitives for RF-Visual
mapping and extraction and implements them into a real-time
prototype evaluated in practical and challenging real-world
scenarios. Our evaluation demonstrated that the mere exis-
tence of RFID-tagged items in the environment can deliver
important efficiency gains to the mechanical search problem.

Our evaluation of FuseBot in end-to-end retrieval tasks
also revealed a number of interesting insights. While Fuse-
Bot’s design focused on retrieving untagged target items,
our results showed that its efficiency in extracting RFID
tagged target objects matches that of state-of-the-art RF-
Visual mechanical search systems that can only extract
RFID-tagged objects. Our evaluation also showed that Fuse-
Bot is successful and efficient in performing mechanical
search across piles with deformable objects.

In conclusion, with the rapid and widespread adoption of
RFID tags across various industries, this paper uncovers how
RF perception can play a role in making robotic tasks more
efficient and reliable for various industries such as warehous-
ing, manufacturing, retail, and others.
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