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Abstract
This paper proposes an approach to automate chemistry experiments using robots by translating natural language instructions
into robot-executable plans, using large language models together with task and motion planning. Adding natural language
interfaces to autonomous chemistry experiment systems lowers the barrier to using complicated robotics systems and increases
utility for non-expert users, but translating natural language experiment descriptions from users into low-level robotics lan-
guages is nontrivial. Furthermore, while recent advances have used large language models to generate task plans, reliably
executing those plans in the real world by an embodied agent remains challenging. To enable autonomous chemistry exper-
iments and alleviate the workload of chemists, robots must interpret natural language commands, perceive the workspace,
autonomously plan multi-step actions and motions, consider safety precautions, and interact with various laboratory equip-
ment. Our approach, CLAIRify, combines automatic iterative prompting with program verification to ensure syntactically
valid programs in a data-scarce domain-specific language that incorporates environmental constraints. The generated plan is
executed through solving a constrained task and motion planning problem using PDDLStream solvers to prevent spillages of
liquids as well as collisions in chemistry labs. We demonstrate the effectiveness of our approach in planning chemistry experi-
ments, with plans successfully executed on a real robot using a repertoire of robot skills and lab tools. Specifically, we showcase
the utility of our framework in pouring skills for various materials and two fundamental chemical experiments for materials
synthesis: solubility and recrystallization. Further details about CLAIRify can be found at https://ac-rad.github.io/clairify/.
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1 Introduction

The execution of chemistry experiments, which represents a
crucial stage in the process of material discovery, typically
relies on human experts. This manual experimentation poses
a number of significant challenges, such as difficulties in
reproducibility, high resource requirements, and limited scal-
ability. To address these obstacles, the concept of self-driving
labs (SDLs) has emerged (Seifrid et al., 2022). Although
specialized hardware for chemistry experiments has been
proposed and used in modern labs, we argue that using
general-purpose robots is beneficial in developing SDLs that
maximize the use of existing resources and are more con-
figurable. The functionality of general-purpose robots can
be expanded by programming them to interact with exist-
ing chemistry instruments designed for humans. This feature
contributes to reducing the cost related to introducing addi-
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Fig. 1 Task plans generated by LLMs may contain syntactical errors in
domain-specific languages. By using verifier-assisted iterative prompt-
ing, CLAIRify can generate a valid program. Once the program has
been verified, it is passed on to a task and motion planner (TAMP) for
execution by a robot

tional hardware for specific purposes. Therefore, this study
discusses the use of general-purpose robots for building
chemistry SDLs.

One of the principal obstacles in effectively using robots in
chemistry labs is to ensure that they are natural and intuitive
for chemists to operate. An approach to achieving a natural
and intuitive interfacebetween chemists and robots is through
the use of natural language as a communicationmedium.This
approach enables users to instruct robots in an efficient and
effective manner.

This work aims to facilitate autonomous and safe execu-
tion of chemistry experiments using general-purpose robot
manipulators. This is accomplished through natural language
instructions to generate plans. Several challenges must be
addressed at both the natural language processing (NLP) and
robotic planning levels for this purpose. At the NLP level, the
robotmust be capable of converting natural language instruc-
tions into executable robot instructions (Fig. 1).At the robotic
planning level, the robotic system should be capable of plan-
ning robot tasks and motions that take safety considerations
into account, using intermediate goals identified by NLP and
perceptual information of the robot workspace.

Natural language has been used in the literature to over-
come the communicationbarrier betweenhumans and robots,
for example in navigation tasks (Tellex et al., 2011). More
recently, numerous studies have demonstrated that large

language models (LLMs) can assist robots to reason with
common sense (Huang et al., 2022; Singh et al., 2022). LLMs
have been used to generate structured outputs (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022), includ-
ing code generation (Chen et al., 2021; Wang et al., 2021;
Li et al., 2022) and robot programming (Liang et al., 2022).
Nevertheless, the application of LLMs to task-plan genera-
tion for chemistry robots presents two key challenges. Just
like with all machine-executable code, generated plans must
adhere to strict syntax rules in order to be executed by a robot.
In robotics, task-plan verification is often desired, because it
increases the likelihood that a robot can reach the desired
goal (Garrett et al., 2020; Ahn et al., 2022). Furthermore,
LLMsmay perform poorly in generating task plans in a zero-
shotmanner for data-scarce, domain-specific languages, such
as the ones in robot planning, and thus require fine-tuning,
or in technical scientific domains (Gu et al., 2021), or scien-
tific coding (Liu et al., 2023). Several approaches have been
proposed in the literature to address these issues.One promis-
ing technique is iterative prompting, which has an advantage
over fine-tuning LLMs, as the latter requires access to the
model weights and training datasets to learn domain-specific
languages reasonably well and incurs high computational
costs (Mishra et al., 2021; Wang et al., 2011; Wu et al.,
2022). Iterative prompting enables the LLM to verify can-
didate plans while providing the rules of structured language
as input, thereby leveraging in-context learning.

The planning component of the robotic system takes
as input perception, vision-based outcome evaluation of
experiments and natural language instructions, and solves
a constrained task and motion planning (TAMP) problem.
To do so, the robot must possess both general and chemistry
domain-specific perception and manipulation skills, includ-
ing recognizing transparent and opaque objects (Xu et al.,
2021; Wang et al., 2023), estimating object poses, and mon-
itoring the state of materials synthesis, such as detecting if a
solution is dissolved (Shiri et al., 2021). Dexterous manipu-
lation and handling are also necessary, such as constrained
motion for picking and transporting objects without spilling
their contents, pouring skills, and manipulation of tools and
objects. Additionally, high precision and repeatability are
crucial for reproducible and reliable results in robot-executed
chemistry experiments.

Ensuring safety during experiments and interactions is
another challenge (Ménard & Trant, 2020). Multi-layered
safety requirements are necessary, including high-level con-
straints onmaterial synthesis order in experiment description
and taskplanning, and low-levelmanipulation andperception
skills to prevent spilling during transportation of chemistry
vials and beakers.
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Contributions We introduce an autonomous robotic sys-
tem for chemistry lab automation, an end-to-end closed-loop
robotic framework that translates natural language into struc-
tured long-horizon task plans and then executes them by a
constrained task and motion planning solver, integrated with
perception and manipulation skills, and vision-based evalua-
tion of experiment outcomes (Fig. 1). Our approach consists
of two modules. The first is CLAIRify, which translates a
natural language input into a structured plan. The second
is the translation of the plan to low-level robot actions. To
evaluate the framework, we use a domain-specific language
called Chemical Description Language (XDL) (Mehr et al.,
2020). XDL is an XML-based domain-specific language
used to describe action plans for chemistry experiments in
a structured format, and is suitable for commanding robots
in self-driving laboratories (Seifrid et al., 2022). XDL is
hardware-agnostic, meaning that it can be executed on many
robot platforms and lab setups. We showcase an example
of how XDL can be executed on a Franka robot in a chem-
istry lab setting by convertingXDL to low-level robot actions
using TAMP. Our method includes (I) a rule-based iterative
verifier to check for syntax correctness and environment con-
straints, which improves zero-shot task plan generation in a
data-scarce domain. (II) At the TAMP level, constrained task
andmotionplanning is incorporated via aPDDLStream (Gar-
rett et al., 2020) solver to avoid spillage when transporting
liquids and powders. When adding constraints to the robot’s
degrees of freedom, the motion planning success rate was
lower compared to unconstrained planning. To overcome
this difficulty, we introduced a new degree of freedom to
our robot. We demonstrate that an 8-DoF robot has 97%
success rate in constrained TAMP compared to 84% of a
7-DoF robot. Moreover, we present accurate and efficient
pouring skills inspired by human motions with an average
relative error of 8.1% and 8.8% for pouring water and salt,
respectively, compared to a baseline method with 81.4% and
24.1% errors. Our method achieves comparable results to
recent studies (Kennedy et al., 2019; Huang et al., 2021),
yet it stands out for its simplicity and the reduced need for
complex sensor feedback.

Our evaluation results demonstrate thatCLAIRify outper-
forms the current state-of-the-art model for XDL generation
presented in (Mehr et al., 2020). Additionally, our frame-
work represents an advancement from the approach in
(Fakhruldeen et al., 2022), which relied on a finite state
machine with fixed objects in a static workspace. Our frame-
work perceives the environment and plans long-horizon
trajectories to perform multistep chemistry experiments. It
can close the loop at two levels. The first is at the chemistry
task level, where online visual feedback is used to estimate
the progress of task execution. The second is at the robot
motion planning and skill level, where the robot is able to
adapt to uncertainties, for example, by refining its plan at

execution time using visual feedback. As a proof of concept
for chemistry lab automation, we achieved results that are
comparable to the literature ground truth for the solubility
experiment, with a 7.2% error rate for the solubility of salt,
and successful recrystallization of alum.

The paper is organized as follows: Section2 reviews the
state of the art. Section3 defines the problem and presents
the proposed end-to-end approach, covering natural language
and perceptual inputs to robot task and motion planning and
skill execution. Experiments and results are presented in Sec-
tion4. Discussion of the results is provided in Section5, and
conclusions are drawn in Section6.

2 Related work

This section describes recent advancements in lab automa-
tion, specifically focusing on robotics and the methods
through which large language models (LLMs) can be incor-
porated into these systems. Furthermore, the section high-
lights the challenges associated with generating verifiable
task plans from LLMs, which are necessary to generate robot
tasks and motion plans. Lastly, the section outlines recent
efforts that focus on identifying the essential robot skills
required to execute lab automation tasks effectively.

2.1 Lab automation

Lab automation aims to introduce automated hardware in a
laboratory to improve the efficiency of scientific discovery.
It has been applied to high-throughput screening (Pereira
& Williams, 2007) (Macarron et al., 2011) to discover
desired materials from a pool of candidates. With the rise
of AI technologies, the concept of a self-driving laboratory
(SDL) (Häse et al., 2019; Seifrid et al., 2022) that combines
experiment planning by AI and automated experimentation
platforms has emerged. A review on SDL can be found in
(Abolhasani & Kumacheva, 2023). Different hardware for
lab automation has been utilized in SDLs to meet the needs
of individual laboratories, such as pipetting robots (Higgins
et al., 2021) or flow reactors (Epps et al., 2020;Li et al., 2020).
TheChemputer (Mehr et al., 2020) is an example of a special-
ized machine for automated chemistry experiments. In the
corresponding paper, the authors demonstrated an automated
workflow that translates organic chemistry literature into a
structured language called XDL and synthesized the speci-
fied molecules. While specialized hardware for chemistry is
widely used in lab automation, general-purpose robots have
also been applied to chemistry because of their flexibility,
mobility, and dexterousmanipulation capabilities. The utility
of mobile general-purpose robots for discovering improved
photocatalysts for hydrogen production was demonstrated in
(Burger et al., 2020). ARChemist (Fakhruldeen et al., 2022),

123



1060 Autonomous Robots (2023) 47:1057–1086

a lab automation system, was developed to conduct exper-
iments, including solubility screening and crystallization,
without human intervention. Another work (Knobbe et al.,
2022) endowed a collaborative robot with a force-sensitive
pipetting skill by extending the robot with a pipetting fin-
ger system. Differently from other works where pick, place,
insertion, or liquid handling, were the focus of robot skills,
in (Pizzuto et al., 2022), the robot learns to scrape pow-
ders from vials for crystallization experiments. During the
experiment, crystallized materials tend to adhere to the inner
wall of the vial. Acquiring these crystals necessitates physi-
cal interaction between the crystals and the vial using a robot
arm, which is unattainable with a valve-pump-based system.
These examples demonstrate the potential utilization of a
versatile robot in expanding the scope of tasks automated
within chemistry laboratories. Similarly, an automated chem-
istry experiment system that mimics the motions of human
chemists has been proposed in (Lim et al., 2020). Addition-
ally, The properties of thin-film materials were optimized
using a robot arm in (MacLeod et al., 2020). Although these
major steps towards chemistry lab automation have been
made, their dependence on predefined tasks and on motion
plans without constraint satisfaction guarantees limits their
flexibility in new and dynamic workspaces. In those works,
pick & place was the primary task that the manipulators
were carrying out. Those works were tested in hand-tuned
and static environments to avoid occurrences of unsatisfied
task constraints and the associated problems, such as chem-
ical spills during the transfer of vessels filled with liquid.
Our framework resolves these gaps through using large lan-
guage models to generate long-horizon machine-readable
instructions and passing them to a constraint satisfaction and
scene-aware planning system with a variety of skills.

2.2 Large languagemodels for chemistry

Several languagemodels specialized for the chemistry or sci-
ence domain have been proposed, such as MolT5 (Edwards
et al., 2022), Chemformer (Irwin et al., 2022), and Galactica
(Taylor et al., 2022). After the release of GPT-3, chem-
istry applications were attempted without further training
(Jablonka et al., 2023). The abilities to do Bayesian opti-
mization (Ramos et al., 2023), to use external chemistry tools
(Bran et al., 2023), and to synthesize molecules by reading
documentation (Boiko et al., 2023) were explored. Our work
focuses on increasing the reliability of the output of LLMs
without further training by introducing iterative prompting
and low-level planning through a task and motion planning
framework.

2.3 Leveraging languagemodels with external
knowledge

A challenge with LLMs generating code is that the cor-
rectness of the code is not assured. There have been many
interesting works on combining language models with exter-
nal tools to improve the reliability of the output. Mind’s
Eye (Liu et al., 2023) attempts to ground large language
model’s reasoning with physical simulation. They trained
LLM with pairs of language and codes and used the simula-
tion results to prompt an LLM to answer general reasoning
questions.

Toolformer (Schick et al., 2023) incorporates API calls
into the language model to improve a downstream task, such
as question answering, by fine-tuning the model to learn how
to call the API. LEVER (Ni et al., 2023) improves LLM
prompting for SQL generation by using a model-based ver-
ifier trained to verify the generated programs. As SQL is a
common language, the language model is expected to under-
stand its grammar. However, for domain-specific languages,
it is difficult to acquire training datasets and expensive to
execute the plans to verify their correctness. Our method
does not require fine-tuning any models. Furthermore, there
is no need for prior knowledge of the target language within
the language model obtained during the training phase. Our
idea is perhaps closest to LLM-Augmenter (Peng et al.,
2023), which improves LLM outputs by giving it access
to external knowledge and automatically revising prompts
in natural language question-answering tasks. Our method
similarly encodes external knowledge in the structure of the
verifier and prompts, but for a structured and formally ver-
ifiable domain-specific language. A review on augmenting
LLMs with external tools is found in (Mialon et al., 2023).

2.4 Task planning with large languagemodels

High-level task plans are often generated from a limited set of
actions (Garrett et al., 2020), because task planning becomes
intractable as the number of actions and time horizon grows
(Kaelbling & Lozano-Pérez, 2011). One approach to do task
planning is using rule-based methods (Mehr et al., 2020;
Baier et al., 2009). More recently, it has been shown that
models can learn task plans from input task specifications
(Sharma et al., 2021; Mirchandani et al., 2021; Shah et al.,
2021), for example using hierarchical learning (Xu et al.,
2018; Huang et al., 2019), regression based planning (Xu et
al., 2019), or reinforcement learning (Eysenbach et al., 2019).
However, to effectively plan tasks using learning-based tech-
niques, large datasets are required that are hard to collect in
many real-world domains.

Recently, many works have used LLMs to translate natu-
ral language prompts to robot task plans (Ahn et al., 2022;
Huang et al., 2022; Liang et al., 2022; Singh et al., 2022). For
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example, Inner Monologue (Huang et al., 2022) uses LLMs
in conjunction with environment feedback from various per-
ception models and state monitoring. However, because the
system has no constraints, it can propose plans that are non-
sensical. SayCan (Ahn et al., 2022), on the other hand,
grounds task plans generated by LLMs in the real world
by providing a set of low-level skills the robot can choose
from. A natural way of generating task plans is using code-
writing LLMs because they are not open-ended (i.e., they
have to generate code in a specific manner in order for it to
be executable) and are able to generate policy logic. Sev-
eral LLMs trained on public code are available, such as
Codex (Chen et al., 2021), CodeT5 (Wang et al., 2021),
AlphaCode (Li et al., 2022) and CodeRL (Le et al., 2022).
LLMs can be prompted in a zero-shot way to generate
task plans. For example, Huang et al. (2022) analyzed the
planning ability of LLM in virtual environment, Code as
Policies (Liang et al., 2022) repurposes code-writing LLMs
to write robot policy code, and ProgPrompt (Singh et al.,
2022) generates plans that take into account the robot’s cur-
rent state and the task objectives. PaLM-E is an embodied
LLM that translates visual, state estimates, sensory data, and
language domains into embodied reasoning for robot plan-
ning (Driess et al., 2023). Text2Motion (Lin et al., 2023)
combines LLM with skill feasibility heuristics to guide task
planning. LLM-GROP (Ding et al., 2023) demonstrated
human-aligned object rearrangement from natural-language
commands combined with TAMP. Inagaki et al. (2023) gen-
erated Python code for an automated liquid-handling robot
from natural language instructions. However, these methods
generate Pythonic code, which is abundant on the Internet.
For domain-specific languages, naive zero-shot prompting is
not enough; the prompt has to incorporate information about
the target language so that the LLM can produce outputs
according to its rules.

Our approach, on the other hand, generates a task plan
directly from an LLM in a zero-shot way on a constrained
set of tasks that are directly translatable to robot actions. We
ensure that the plan is syntactically valid and meets envi-
ronment constraints using iterative error checking. However,
while the generated plan is verified for syntax and constraint
satisfaction, it does not consider the robot embodiment and
workspace scene, making its execution on a robot uncerti-
fied. To address this issue, we integrate the generated task
plans as intermediate goals into a certifiable task and motion
planner framework, which produces executable trajectories
for the robot.

2.5 Task andmotion planning with constraints

Task and motion planning (TAMP) (Garrett et al., 2021)
simultaneously determines the sequence of high-level sym-
bolic actions, such as picking and placing, and low-level

motions for the action, such as trajectory generation. Dif-
ferent approaches have been proposed in the literature to
solve the TAMP problem. For example, (Toussaint, 2015)
proposed a non-linear constrained programming formula-
tion for TAMP problems. In another work from the same
group, (Toussaint et al., 2018) integrated TAMP with kine-
matic or dynamic constraints for tool-use and manipulation.
Another TAMP solver, PDDLStream (Garrett et al., 2020),
extends PDDL (Ghallab et al., 1998), a common language to
describe a planning problemmainly targeting discrete actions
and states, by introducing streams, a declarative procedure
via sampling procedures. PDDLStream reduces a continuous
problem to a finite PDDL problem and invokes a classi-
cal PDDL solver as a subroutine. Although pure-planning
approaches to TAMP is general, it is computationally ineffi-
cient. To accelerate the planning, an approach to incorporate
geometric information has been proposed (Dantam et al.,
2018). Recently, geometric information also has been used
with learning-based approaches to improve planning effi-
ciency (Khodeir et al., 2023; Kim et al., 2022). In (Driess
et al., 2020), an initial scene image is inputted to a neural
network that predicts the robot’s discrete action, and subse-
quently, a motion planning problem is solved.

Another important aspect to take into account when solv-
ing a TAMP problem is the incorporation of safety measures
and constraints. Since PDDLStream verifies the feasibility
of action execution during planning time, it can inherently
enhance safety by avoiding unfeasible plans or plans that
may lead to unsafe situations. Nonetheless, PDDLStream
does not yet account for constraints in the planning process,
for example, to avoid material spillage from beakers during
transportation, which impedes its deployment in real-world
lab environments. For this purpose, sampling-based motion
constraint adherence (Berenson et al., 2011) or model-based
motion planning (Muchacho et al., 2022) are possible stream
choices. To overcome this shortcoming, our work extends
PDDLStream with a projection-based sampling technique
(Kingston et al., 2019) to provide constraint satisfaction,
completeness, and global optimality. The proposed PDDL-
Stream takes intermediate goals generated by LLMs in a
structured language as its input.

2.6 Skills and integration of chemistry lab tools

In the process of lab automation, robots interact with tools
and objects within the workspace and require a repertoire of
many laboratory skills. Some skills can be completed with
existing heterogeneous instruments and sensors in chem-
istry labs, such as scales, stir plates, pH sensors, and heating
instruments. Other skills are currently done either manually
by humans in the lab or with expensive special instru-
ments. In a self-driving lab, robots should acquire those
skills by effectively using different sensory inputs to compute
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appropriate robot commands. Pouring is a common skill in
chemistry labs. Recent work (Kennedy et al., 2019; Huang
et al., 2021) used vision and weight feedback to pour liquid
with manipulators. (Kennedy et al., 2019) proposed using
optimal trajectory generation combined with system identi-
fication and model priors. To achieve milliliter accuracy in
water pouring tasks with a variety of vessels at human-like
speeds, (Huang et al., 2021) used self-supervised learning
from human demonstrations. In this work, we have reached
similar results for pouring, using commercial scales that have
delayed feedback. Our approach is model-free, and it can
pour granular solids as well. Granular solids have different
dynamics from liquids, similar to the avalanchephenomenon.
Lastly, while executing a chemistry experiment, the robot
should possess perception skills to measure progress toward
completing the task. For example, in solubility experiments,
the robot should perceivewhen the solution is fully dissolved,
and therefore stop pouring the solvent into the solution. There
are different ways to measure solubility. In our work, we use
the turbidity measure (Shiri et al., 2021), which is based on
optical properties of light scattering and absorption by sus-
pended sediment (Kitchener et al., 2017).

3 Methods

We propose an automated robotic experiment platform that
takes instructions from a human in natural language and exe-
cutes the corresponding experiment. The natural language
input is converted into a sequence of robot plans written in
a structured language by an LLM-based system, CLAIRify.
XDL(Steiner et al., 2019)was used as the robot programming
language. The task and motion planning module generates
the robot motion from the generated XDL. The overview of
the proposed method is shown in Fig. 2.

3.1 CLAIRIFY: natural language to structured
programs

CLAIRify takes a chemistry experiment description in nat-
ural language and generates a structured experiment plan in
XDL format, whichwill be fed into the subsequentmodule to
generate robotmotions.A general overviewof theCLAIRify
pipeline is given in Fig. 2a.

CLAIRify generates XDL with an automated iterative
prompting between a generator and a verifier. The generator
outputs XDL from a prompt that combines the experiment
description and the target language format description. How-
ever, we cannot guarantee the output from the generator is
syntactically valid, meaning that it would definitely fail to
compile into lower-level robot actions. To generate syntac-
tically valid programs, we pass the output of the generator
through a verifier. The verifier determines whether the gener-

ator output follows all the rules and specifications of the target
structured language and can be compiled without errors. If
it cannot, the verifier returns error messages stating where
the errors were found and what they were. These are then
appended to the generator output and added to the prompt
for the next iteration. This process is repeated until a valid
program is obtained, or until the timeout condition is reached.
Algorithm 1 describes our proposed method.

Once the generator output passes through the verifier with
no errors, we are guaranteed that it is a syntactically valid
structured language. This output will then be translated into
lower-level robot actions by passing it through TAMP for
robot execution. Each component of the pipeline is described
in more detail below.

3.1.1 Generator

The generator takes a user’s instruction and generates unver-
ified structured language using an LLM. The input prompt
to the LLM is composed of a description of the target lan-
guage, a sentence specifying what the LLM should do (i.e.
“Convert to XDL”), the command to the LLM, and the nat-
ural language instruction for which the task plan should be
created. The description of the XDL language includes its
file structure and lists of the available actions (which can
be thought of as functions), their allowed parameters, and
their documentation. The input prompt skeleton is shown in
Snippet 1, Fig. 3.

Although the description of the target structured language
is provided, the output may contain syntactic errors. To
ensure syntactical correctness, the generator is iteratively
prompted by the automated interaction with the verifier. The
generated code is passed through the verifier, and if no errors
are generated, then the code is syntactically correct. If errors
are generated, we re-prompt the LLMwith the incorrect task
plan from the previous iteration along with the list of errors
indicatingwhy the generated steps were incorrect. The skele-
ton of the iterative prompt is shown in Snippet 2, Fig. 3. The
feedback from the verifier is used by the LLM to correct the
errors from the previous iteration. This process is continued
until the generated code is error-free or a timeout condition
is reached, in which case the system reports not being able
to generate a task plan.

3.1.2 Verifier

The verifier works as a syntax checker and static analyzer to
check the output of the generator and send feedback to the
generator. It first checks whether the input can be parsed as
correct XML and then checks the allowance of action tags,
the existence of mandatory properties, and the correctness
of optional properties using a rule-based method that checks
for permissible functions and parameters in the XDL docu-
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Fig. 2 Our framework. aCLAIRify: LLM-based natural language pro-
cessing module. The LLM takes the input (1), structured language
definition, and (optionally) resource constraints and generates unver-
ified structured language (2). The output is examined by the verifier
and is passed to LLM with feedback (3). The LLM-generated outputs
pass through the verifier (4). The correct output (5) is passed to the task
and motion planning module (6) to generate robot trajectories. b Robot
planning module, which is composed of Perception, Task and Motion
Planning, and Skills blocks. Our framework enables the robot to lever-
age available chemistry lab devices (including sensors and actuators) by

adding them to the robot network through ROS. The robot is equipped
with an additional DoF at the end-effector, allowing it to perform con-
strained motions. Our framework receives the chemical synthesis goal
inXDL format. The procedure component is converted into correspond-
ing PDDL goals, and hardware and reagents components identify the
required initial condition for synthesis. Perception detects objects and
estimates their positions, contents in the workspace, and task progress.
PDDLStream generates a sequence of actions for the robot execution
(7)
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Algorithm 1 CLAIRify: Verifier-Assisted Iterative Prompts
Input: Structured language description L, instruction x
Output: Structured language task plan, ySL
procedure IterativePrompting(L, x)

ySL ′ = Generator(L, x)
errors = Verifier(ySL ′ )
while len(errors) > 0 and timeout condition != True do

ySL ′ = Generator(L, x, ySL ′ , errors)
errors = Verifier(ySL ′ )

end while
ySL = ySL ′

end procedure

Fig. 3 Prompt skeleton: (1) At the initial generation, we prompt the
LLM with a description of XDL and the natural language instruction.
(2) After the LLM generates structured-language-like output, we pass
it through our verifier. If there are errors in the generated program, we
concatenate the initial prompt with the XDL from the previous iteration
and a list of the errors. The full prompt can be viewed in “Appendix B”

mentation. This evaluates if the input is syntactically correct
XDL. The verifier also checks the existence of definitions of
hardware and reagents used in the procedure or provided as
environment constraints, which works as a basic static anal-
ysis of necessary conditions for executability. If the verifier
catches any errors, the candidate task plan is considered to
be invalid. In this case, the verifier returns a list of errors it
found, which is then fed back to the generator. The role of the
verifier is limited to pointing out the errors, and it does not
propose how to fix them. To propose a correct modification,
the verifier requires an understanding of the meaning of the
input. However, semantic understanding is beyond the ability
of a rule-based system. Therefore, in CLAIRify, the LLM-
based generator fixes the errors using the feedback messages

Fig. 4 Web interface for CLAIRify. Users input natural language
descriptions of the experiment in the left column. XDL is generated
in the right column when the user pushes the Translate button

from the verifier. The error message is designed to be concise
to save the context length of LLM.

3.1.3 Incorporating environment constraints

Because resources in a robot workspace are limited, we need
to consider those constraints when generating task plans. If
specified, we include the available resources in the gener-
ator prompt. The verifier also catches if the candidate plan
uses any resources aside from those mentioned among the
available robot resources. Those errors are included in the
generator prompt for the next iteration. If a constraint list is
not provided, we assume the robot has access to all resources.
In the case of chemistry lab automation, those resources
include experiment hardware and reagents.

3.1.4 User interface

We provide a graphical user interface for CLAIRify to
increase accessibility. Users can access it via a web browser
and CLAIRify is called by the Python backend implemented
in Flask (Grinberg, 2018). In Fig. 4, we show the user inter-
face. The user enters an experiment (in the figure, we show
Experiment 0 from the Chem-EDU dataset). After pressing
the Translate button, the interface shows the execution log
and generated XDL in the right panel with syntax highlight-
ing. The time taken to generate XDL from a natural language
using CLAIRify is mainly dependent on the OpenAI server
response time and the number of times the generator is called.
For the experiment in Fig. 4, we measured the translation
time. These measurements were performed on three separate
occasions, spanning different days and times.On average, the
generation process took approximately 33 ± 3s per iteration
and required two generator calls.
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Algorithm 2 TampForLabAutomation()

Input: A XDL recipe χ , sensory input H, PDDLStream domain D
Output: Reference plan to execute
1: Goals,O ←xdlParser(χ) � Objects
2: I ← perception(H,O) � Initial conditions
3: if not passConditions(I, O) then return
4: plan = ∅, P = ∅
5: for all G ∈ Goals do
6: while time() ≤ tmax do
7: P = optimisticPddlStreamPlan(I, G, D)

8: if P �= ∅ and isStreamFeasible(P) then break
9: end while
10: if P = ∅ then return
11: plan ← plan ∪ P
12: I = updateSceneRepresentation(I,P)
13: end for
14: return plan

3.2 Task andmotion planning for chemistry
experiments

Our task plan execution framework consists of three com-
ponents: perception, task and motion planning (TAMP), and
a set of manipulation skills, as shown in Fig. 2b. XDL input
coming from CLAIRify provides a high-level description of
experiment instructions to the TAMP module. The percep-
tion module updates the scene description by detecting the
objects and estimating their positions using fiducial markers.
We used AprilTag (Olson, 2011). Currently, we assume prior
knowledge of vessel contents and sizes, and each vessel is
mapped to a unique marker ID. Given the instructions from
XDL and the instantiated workspace state information from
perception, a sequence of high-level actions and robot tra-
jectories are simultaneously generated by our PDDLStream
TAMP solver (Yoshikawa et al., 2023). The resulting plan
is then realized by the manipulation module and robot con-
troller, while closing the loop with perception feedback, such
as updated object positions and status of the solution.

TheTAMPmodule converts experiment instructions given
byXDL intoPDDLStreamgoals andgenerates amotionplan.
The TAMP algorithm is shown in Algorithm 2.

3.2.1 PDDLStream

APDDLStreamproblemdescribedbya tuple (P,A,S,O, I,

G) is defined by a set of predicates P , actions A, streams
S, initial objects O, an initial state I, and a goal state G.
A predicate is a boolean function that describes the logical
relationship of objects. A logical action a ∈ A has a set
of preconditions and effects. The action a can be executed
when all the preconditions are satisfied. After execution, the
current state changes according to the effects. The set of
streams, S, distinguishes a PDDLStream problem from tra-
ditional PDDL. Streams are conditional samplers that yield
objects that satisfy specific constraints. The goal of PDDL-
Stream planning is to find a sequence of logical actions and
a continuous motion trajectory starting from the initial state

until all goals are satisfied, ensuring that the returned plan is
valid and executable by the robot. We define four types of
actions in our PDDLStream domain: pick, move, place, and
pour. For example, the move action translates the robot end-
effector from a grasping pose to a placing or pouring pose
using constrained motion planning. PDDLStream handles
continuous motion using streams. Streams generate objects
from continuous variables that satisfy specified conditions,
such as feasible grasping pose and collision-free motion. An
instance of a stream has a set of certified predicates that
expands I and functions as preconditions for other actions.

A PDDLStream problem is solved by invoking a classical
PDDLplanner, such asFastDownward (Helmert, 2006),with
optimistic instantiation of streams (line 7, Algorithm 2). If a
plan for the PDDL problem is found, the optimistic stream
instances s ∈ S in the plan are evaluated to determine the
actual feasibility (line 8). If no plan was found or the streams
are not feasible, other plans are explored with a larger set of
optimistic stream instances.

Chemical description language (XDL) XDL is based on
XML syntax and is mainly composed of three mandatory
sections:Hardware, Reagents, and Procedure.WeparseXDL
instructions and pass them to the TAMP module. The Hard-
ware and Reagents sections are parsed as initial objects O.
Procedure is translated into a set of goalsGoals (line 1,Algo-
rithm 2). I is generated from O and sensory inputs (line 2).
Each intermediate goal G ∈ Goals is processed by PDDL-
Stream (line 5). If a plan to attain G is found, it is stored
(line 10) and I is updated according to the plan (line 11).
After a set of plans to attain all goals is found, we obtain a
complete motion plan (line 12).

Plan refinement at execution time We adopt two consid-
erations for the dynamic nature of chemistry experiments:
motion plan refinement and task plan refinement.

The generated motion plan is refined to reflect the updated
status of the scene and to overcome perception errors. The
initial object pose detection may contain errors, therefore,
the object may not be present in the expected position during
execution. This error arises for two reasons. First, when the
robot interacts with the objects in the workspace, their posi-
tion changes, for example when regrasping an object after
placing it in the workspace. This change is not always fore-
seeable by the planner ahead of time. Second, the perception
error is lower when the grasping pose is estimated when the
robot in-hand camera is closer to the target object, consider-
ing the hand-eye calibration error. Lowering the perception
error makes the execution more robust to grasping failures.
Therefore, to improve the success rate, the object pose is
estimated just before grasping, and the trajectory is refined.
We assume that the perturbation of the perceived state of
the objects is bounded so that it does not cause a change
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in the logical state of the system, which would necessitate
task-level replanning.

In addition to motion refinement, we consider task plan
refinement. Task execution can be repeated using the feed-
back from perception modules at execution time to support
conditional operations in chemistry experiments, such as
adding acid until pH reaches 7. The number of repetitions
required to satisfy conditions is unknown at planning time,
so the task plan is refined at execution time.

3.2.2 Motion constraints for spillage prevention

Unlike pick-and-place of solid objects, robots in a chemistry
lab need to carry beakers that contain liquids, powders, or
granular materials. These chemicals are sometimes harmful,
so the robot motion planner should incorporate constraints
to prevent spillage. To this end, an important requirement for
robotmotion is the orientation constraints of the end-effector.
To avoid spillage, the end-effector orientation should be kept
in a limited range while beakers are grasped. We incorpo-
rated constrained motion planning in the framework to meet
these safety requirements, under the assumption of velocity
and acceleration upper bounds. Moreover, we introduced an
additional (8th) degree of freedom to the robot arm, in order
to increase the success rate of constrained motion planning.
We empirically observed no spillage as long as orientation
constraints are satisfied in the regular acceleration and veloc-
ity of the robot end-effector, particularly since beakers are
typically not filled to their full capacity in a chemistry lab.

Algorithm 3 ConstrainedMotionPlanning()

1: for all i ∈ tr ials do
2: qg ← solveIK((I pB,I RB))

3: pathPlanner← init(q0, qg )
4: while path is ∅ do
5: q ← sample()

6: while ‖F(q)‖ > ε do
7: δq ← J †(q)F(q)

8: q ← q − δq
9: end while
10: path ← pathPlanner(q)

11: end while
12: if path �= ∅ then return path
13: end for
14: return path

Constrainedmotion planning Given a robot with n degrees
of freedom in the workspace Q ∈ R

n with obstacle regions
Qobs ∈ R

n , the constrained planning problem can be
described as finding a path in the manipulator’s free con-
figuration space Q f ree = Q − Qobs that satisfies initial
configuration q0 ∈ R

n , end-effector goal pose (I pB ∈
R
3,I RB ∈ SO(3)), and equality path constraints F(q) :

Q → R
k . The constrained configuration space can be repre-

sented by the implicit manifold M = {q ∈ Q | F(q) = 0}.

The implicit nature of the manifold prevents planners from
directly sampling since the distribution of valid states is
unknown. Further, since the constraint manifold resides in
a lower dimension than the configuration space, sampling
valid states in the configuration space is highly improbable
and thus impractical. Following the constrainedmotion plan-
ning framework developed in (Kingston et al., 2019, 2018),
our framework integrates the projection-based method for
finding constraint-satisfying configurations during sampling
as described in Algorithm 3. In this work, the constraints are
set to the robot end-effector, hence they can be describedwith
geometric forward kinematics, with its Jacobian defined as
J (q) = δF

δq . After sampling fromQ f ree in line 5, projected
configurations q are found by minimizing F(q) iteratively
using Newton’s method (highlighted in grey). We use prob-
abilistic roadmap methods (PRM�) to plan efficiently in the
8-DoF configuration space found in our chemistry laboratory
domain (Karaman & Frazzoli, 2011; Kavraki et al., 1996).

The constrained path planning problem is sensitive to
the start and end states of the requested path, since paths
between joint states may not be possible under strict or mul-
tiple constraints. If constrained planning is executed with
any arbitrary valid solution from the IK solver, the planner
typically fails. To address this shortcoming, three consider-
ations are made. First, a multi-threaded IK solver with both
iterative and random-based techniques is executed, and the
solution that minimizes an objective function φ is returned
with TRAC-IK, proposed in (Beeson & Ames, 2015). Dur-
ing grasping and placing, precision is paramount, and we
only seek to minimize the sum-of-squares error between
the start and goal Cartesian poses. Second, depending on
the robot task, the objective function is extended to maxi-
mize themanipulability ellipsoid as described in (Yoshikawa,
1985), which is applied for more complicated maneuvers,
such as transferring liquids across the workspace. Finally,
note that configuration sampling must account for the fact
that multiple goal configurations are possible. For this pur-
pose, Algorithm 3 can iterate several times to find various
goal configurations in line 2.

8-DoF robot arm To increase the success rate of planning
and grasping under non-spillage constraints, we introduced
an additional degree of freedom to the 7-DoF Franka robot
and mounted the end-effector parallel to the floor as shown
in the bottom right of Fig. 2b. The parallel grasping and
introduction of a revolute joint facilitate the manipulation
of liquids within beakers. Parallel grasping, where the grip-
per is horizontal, is advantageous over top-down grasping to
pour liquids because the robot hand does not touch the rim
of a beaker and does not block the flow of liquid. Frequently,
when planning constrained motion, the initial 7-DoF robot
arm would encounter joint limit issues with parallel grasping
poses, rendering the subsequent pouring action impractical.
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It is possible to achieve parallel grasping by adjusting the
angle of the end-effector without adding an extra revolute
joint by connecting the end-effector with a rigid link to the
robot. However, the integration of a servo motor directly
before the gripper facilitates pouring control, as it enables
the accomplishment of pouring actions using a single motor.
Limiting the pouring motion to the last joint is also advan-
tageous for the safety of humans near the robot because
pouring motion sometimes entails quick rotations. Mount-
ing the robot base on the wall instead of the default tabletop
placement is another possible solution to parallel grasping,
but it is not supported by the manufacturer. In addition to the
advantage in pouring, the 8-DoF robot has a higher empiri-
cal success rate in constrainedmotion planning in the parallel
grasping pose, as shown in Sect. 4.4.2,which leads to a higher
success rate in total task and motion planning. As a result,
adding one degree of freedom was the most suitable solution
for our purpose.

3.2.3 Manipulation and perception skills

Chemistry lab skills require a particular suite of sensors,
algorithms, and hardware. We provide an interface for
instantiating different skill instances throughROS and simul-
taneously commanding them. For instance, recrystallization
experiments in chemistry require pouring, heating, and stir-
ring, which uses both weight feedback for volume estimation
and skills for interacting with the liquid using available hard-
ware.

Pouring controller In chemistry labs, a frequently used skill
in chemical experiments is pouring. Pouring involves high
intra-class variations depending on the underlying objective
(e.g., reaching a desired weight or pH value); the substances
and material types being handled (e.g., granular solids or
liquids); the glassware being used (e.g., beakers and vials);
the overall required precision; and the availability of accu-
rate and fast feedback. Pouring is a closed-loop process, in
which feedback should be continuously monitored. Among
these pouring actions, in our work, we consider the follow-
ing variations: pouring of liquids and pouring of granular
solids. Note that, in contrast to many control problems, pour-
ing is a non-reversible process where we cannot compensate
for overshoot (as the poured material cannot go back to the
pouring beaker if mixed with another material).

Inspired by observations of chemists pouring reagents, we
propose a controller that allows the robot to perform differ-
ent pouring actions. As shown in Fig. 5, the proposedmethod
takes sensor measurements (e.g., weight feedback from the
scale) as feedback and a reference pouring target. The algo-
rithm outputs a robot end-effector joint velocity describing
oscillations of the arm’s wrist. Since sensors are character-
ized bymeasurement delays, chemical reactions require time

Fig. 5 Pouring skill controller: given the XDL and TAMP reference
values and sensor feedback, the pouring controller computes the end-
effector velocity for the robot by blending a shaping function s(t) and
a PD control output vPD(t)

Fig. 6 An example of pouring control. The velocity of the end-effector
is controlled based on the feedback error and shaping function

to stabilize, and pouring is a non-reversible action, chemists
tend to conservatively pour a small amount of content from
the pouring vessel into the target vessel. They periodically
wait for some time to observe any effects and then pour
micro-amounts again. In our approach, we use a shaping
function s(t) to guide the direction and frequency of this
oscillatory pouring behavior,while a PDcontroller lowers the
pouring error. The end-effector velocity vector is computed
by blending the shaping function s(t) over the PD control sig-
nal, vPD(t) = kpe+ kd ė, where e(t) = xre f − x f b. Figure6
shows an example of the angular velocity of the end-effector
and the error during actual pouring. More information about
the pouring skill method can be found in “Appendix A”.

Turbidity-based solubilitymeasurement The solubility of a
solute is measured by determining the minimum amount of
solvent (water) required to dissolve all solutes at a given tem-
perature when the overall system is in equilibrium (Shiri et
al., 2021). Since the solutions get transparentwhen all solutes
dissolve into water, turbidity, or opaqueness of the solution,
is used as themetric to determine the completion of the exper-
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Fig. 7 An example of automated turbidity measurement. The cam-
era detects the Petri dish using Hough Circle Transform. The average
brightness of the detected area (red square) is used as a proxy of turbidity
(Color figure online)

iment. The average brightness of the solution was used as a
proxy for the relative turbidity, inspired by HeinSight (Shiri
et al., 2021). That work compared the current measured
turbidity value with a reference value (coming from pure sol-
vent) to determinewhen the solutewas dissolved. Differently
from them, we use the relative turbidity changes between
the current and previous measurement values to detect when
the solution is dissolved. Moreover, to make the perception
pipeline autonomous, when the robot with an in-hand camera
observes the dish containing the solution, it detects the largest
circular shape as the dish using a Hough Circle Transform
implemented in OpenCV. The square region containing the
dish is converted into the HSV color space, and the average
Value (brightness) of the region is used as a turbidity value.
Figure7 shows an example of the automated turbidity mea-
surement. Although the detected area contains the dish and
stir bar, they do not affect the relative value because these are
a constant bias in all measurements.

4 Experiments

4.1 XDL generation

Weconducted experiments to evaluate the followinghypothe-
ses: i) Automated iterative prompting increases the success
rate of unfamiliar language generation, ii) The quality of
generated task plans is better than existing methods. To gen-
erate XDL plans, we use text-davinci-003, the most
capable GPT−3.5 model accessible using the OpenAI API
at the time of performing experiments (February 2023). We
chose to use this instead of code-davinci-002 due to
query and token limits. Additionally, ChatGPT was not yet
available through the API at that time.

4.1.1 Datasets

We evaluated our method on two different datasets (Table 1):

Chem-RnD (chemistry research and development) This
dataset consists of 108 detailed chemistry-protocols for
synthesizing different organic compounds in real-world
chemistry labs, sourced from the Organic Syntheses dataset
(volume 77) (Mehr et al., 2020a). Due to GPT-3 token limits,
we only use experiments with less than 1000 characters. We
use Chem-RnD as a proof-of-concept that our method can
generate task plans for complex chemistry methods. We do
not aim to execute the plans in the real world, and so we do
not include any constraints.

Chem-EDU (everyday educational chemistry) We evaluate
the integration of CLAIRify with real-world robots through
a dataset of 42 natural language instructions containing
only safe (edible) chemicals and that are, in principle, exe-
cutable by our robot. The dataset consists of basic chemistry
experiments involving edible household chemicals, includ-
ing acid–base reactions and food preparation procedures.1

We show some data samples in “Appendix C”. When gen-
erating the XDL, we also included environment constraints
based on what equipment our robot had access to (for exam-
ple, our robot only had access to a mixing container called
“beaker”).

4.1.2 Metrics and results

The results section is organized based on the four perfor-
mance metrics that we will consider, namely: Ability to
generate structured-language output, Quality of the gener-
ated plans, Number of interventions required by the verifier,
and Robotic validation capability. We compared the perfor-
mance of our method with SynthReader, a state-of-the-art
XDL generation algorithm which is based on rule-based tag-
ging and grammar parsing of chemical procedures (Mehr et
al., 2020).
1. Ability to generate a structured language plan. First,
we investigate the success probability for generating plans.
For CLAIRify, if it is in the iteration loop for more than
x steps (here, we use x = 10), we say that it is unable to
generate a plan and we exit the program. When compar-
ing with SynthReader, we consider that approach unable to
generate a structured plan if the SynthReader IDE (called
ChemIDE) throws a fatal error when asked to create a plan.2

For both models, we also consider them unable to generate
a plan if the generated plan only consists of empty XDL

1
CLAIRify Data & code: https://github.com/ac-rad/xdl-generation/.

2 ChemIDEusingXDL:https://croningroup.gitlab.io/chemputer/xdlapp/.
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Table 1 Comparison of our
method with existing methods
on the number of successfully
generated valid XDL plans and
their quality on 108 organic
chemistry experiments from
(Mehr et al., 2020a) by 10
expert chemists

Dataset Method Number generated ↑ Expert preference↑
Chem-RnD SynthReader (Mehr et al., 2020) 92/108 13/108

CLAIRify [ours] 105/108 75/108

Chem-EDU SynthReader (Mehr et al., 2020) 0/42 –

CLAIRify [ours] 42/42 –

Results of the best-performing models for a given metric and dataset are given in bold

Fig. 8 Violin plots showing distributions of different error categories
in XDL plans generated for experiments for the Chem-RnD (left) and
Chem-EDU (right) datasets. The x-axis shows the error categories and
the y-axis shows the number of errors for that category (lower is bet-
ter). For the Chem-RnD dataset, we show the error distributions for both
CLAIRify and SynthReader. Each violin is split in two, with the left

half showing the number of errors in plans generated from CLAIRify

(teal) and the right half showing those from SynthReader (navy). For
the Chem-EDU dataset, we only show the distributions for CLAIRify.
In both plots, we show the mean of the distribution with a gold dot (and
the number beside in gold) and the median with a grey dot (Color figure
online)

tags (i.e., no experimental protocol). For all experiments, we
count the total number of successfully generated language
plans divided by the total number of experiments. Using
this methodology, we tested the ability of the two models
to generate output on both the Chem-RnD and Chem-EDU
datasets. The results for both models and both datasets are
shown in Table 1. We find that out of 108 Chem-RnD exper-
iments, CLAIRify successfully returned a plan 97% of the
time, while SynthReader returned a plan 85%of the time. For
the Chem-EDU dataset, CLAIRify generated a plan for all
instructions. SynthReader was unable to generate any plans
for that dataset, likely because the procedures are different
from typical chemical procedures (they use simple action
statements). This demonstrates the generalizability of our
method: we can apply it to different language styles and
domains and still obtain coherent plans.
2. Quality of the predicted plan (without executing the
plan). To determine if the predicted task plans actually
accomplish every step of their original instructions, we
report the number of actions and parameters that do not
align between the original and generated plan, as anno-
tated by expert experimental chemists. To compare the
quality of the generated plans between CLAIRify and
SynthReader, we ask expert experimental chemists to,
given two anonymized plans, either pick a preferred plan
among them or classify them as equally good. We also
ask them to annotate errors in the plans in the follow-
ing categories: Missing action, Missing parameter, Wrong

action, Wrong parameter, Ambiguous value, Other error.
Here, actions refer to high-level steps in the procedure
(e.g., <Add reagent=“acetic acid”> is an action)
and parameters refer to reagents, hardware, quantities and
experiment descriptors (e.g., in <HeatChill vessel
=“beaker” temp=“100C”>, vessel and temp are both
parameters).

The chemists were 10 graduate students and postdoctoral
fellows from the University of Toronto and ETH Zürich.
For the first 20 experiments, the chemists labelled them
together as a group to resolve any labelling ambiguities and
then labelled the rest individually (approximately 9 experi-
ments per chemist). The annotations were performed using
the LightTag Text Annotation Tool (Perry, 2021).

Chem-RnD dataset The results for the Chem-RnD dataset
with respect to expert preference are reported in the last col-
umn of Table 1. We found that out of 108 experiments,
experts preferred the XDL plan generated from CLAIRify

75 times and the one fromSynthReader 13 times (the remain-
ing 20 were considered to be of similar quality).

The distributions of the annotated errors are shown in
Fig. 8. We find that for 4 out of 6 error categories, our model
does at least as well as or better than the baseline method
when considering the mean and median of the distributions.
We also find that for those categories, our method produces
more experiments with 0 errors.
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One advantage of our method is that it generates less plans
with missing actions compared with the baseline. As XDL
generation in SynthReader is implemented by rule-based
pattern-matching techniques, any actions that do not match
those templateswould not appear in the finalXDL. For exam-
ple, for the protocol:
To a solution of m-CPBA (200 mg , 0.8 mmol)
in dichloromethane (10 mL), cooled to 0 ◦C,
was added dropwise a solution of 5-chloro
-10-oxa -3-thia -tricyclo [5.2.1.01 , 5] dec -8-
ene (150 mg , 0.8 mmol) in dichloromethane
(10 mL).

the plan generated by CLAIRify was
<Add vessel="V1" reagent="m-CPBA" amount="
200 mg"/>
<Add vessel="V1" reagent="dichloromethane "
volume="10 mL"/>
<HeatChill vessel="V1" temp="0 ◦C" time="3
min"/>
<Add vessel="V2" reagent="5-chloro -10-oxa -3-
thia -tricyclo [5,2,1,0*1,5*]dec -8-ene" amount
="150 mg"/>
<Add vessel="V2" reagent="dichloromethane "
volume="10 mL"/>
<Transfer from_vessel="V2" to_vessel="V1"/>

while the plan generated from SynthReader was
<Add vessel="reactor" reagent="5-chloro -10-
oxa -3-thia -tricyclo" volume="0" speed="40.0"
/>

Our model is able to decompose a complicated procedure
into simpler actions by making two solutions in separate
beakers and combining them with a Transfer procedure. It
also assumes that the solutions don’t already exist as mix-
tures and creates them from scratch. This is another benefit
of our model, as it is able to understand implicit actions. For
example, given the prompt
L-Ornithine (31.92 g, 120 mmol) was added to
a mixture of KOH (6.72 g, 120 mmol), water

(200 ml) and THF (100 ml)

SynthReader considers a mixture of three chemicals as a sin-
gle solution and creates the action:
<Add vessel="reactor" reagent="a mixture of
KOH (6.72 g, 120 mmol), water (200 ml) and
THF (100 ml)" volume="0" speed="40.0"/>
<AddSolid vessel="reactor" reagent="L-
Ornithine" mass="31.92 g"/>

On the other hand, CLAIRify correctly understand the
implicit action to mix them beforehand and generates an
appropriate XDL:
<Add vessel="V1" reagent="L-Ornithine"
amount="31.92 g"/>
<Add vessel="V1" reagent="KOH" amount="6.72
g"/>
<Add vessel="V1" reagent="Water" amount="200
ml"/>

<Add vessel="V1" reagent="THF" amount="100
ml"/>

However, our model produced plans with a greater num-
ber ofwrong actions than SynthReader. This is likely because
our model is missing domain knowledge on certain actions
that would need to be included in the prompt or verifier.

For example, given the instruction “Dry solution over mag-
nesium sulfate”, our model inserts a <Dry.../> into the
XDL plan, dbut the instruction is actually referring to a
procedure where one passes the solution through a short car-
tridge containing magnesium sulphate, a procedure which
seems to be encoded in SynthReader. Another wrong action
our model performs is reusing vessels. In chemistry, one
needs to ensure a vessel is uncontaminated before using it.
However, our model generates plans that can use the same
vessel in two different steps without washing it in between.
Our model also sometimes generates plans with ambigu-
ous values. For example, many experiment descriptions
include conditional statements such as “Heat the solution
at the boiling point until it becomes white”. Conditions
in XDL need a numerical condition as a parameter. Our
model tries to incorporate them by including actions such
as <HeatChill temp=“boiling point” time =
“until it becomes white”/>, but they are ambigu-
ous. We can make our model better in the future by
incorporating more domain knowledge into our structured
language description and improving our verifier with real-
world constraints. For example, we can incorporate visual
feedback from the environment, include look-up tables for
common boiling points, and ensure vessels are not reused
before cleaning. Other errors includemisunderstanding nota-
tions commonly used in chemistry experiments. For instance,
instructions such as “Wash with EtOAc (2 × 10mL)” indi-
cate the need for two separate WashSolid() actions in
XDL. However, the large language model often struggles to
parse the (2 × 10mL) notation correctly, resulting in either
performing a single WashSolid() action with 10mL (or
occasionally 20mL if a multiplication action is inferred) or
(more rarely) omitting the action entirely.

Another cause of errors occurs when a specific value is
not provided in the instruction. For example, if an instruc-
tion states “wash product in EtOAc” without specifying a
volume, the model is unable to generate a reasonable value
and defaults to writing 0mL in the generated plan.

Despite the XDL plans generated by our method contain-
ing errors, we found that the experts placed greater emphasis
on missing actions than ambiguous or wrong actions when
picking the preferred output, indicating larger severity of this
class of error for the tasks and outputs investigated here.

Chem-EDU dataset We annotated the errors in the Chem-
EDU datasets using the same annotation labels as for the
Chem-RnD dataset. The breakdown of the errors is in the
right plot of Fig. 8.Note thatwe did not performa comparison
with SynthReader as no planswere generated from it.Wefind
that the error breakdown is similar to that from Chem-RnD,
where we see amibiguous values in experiments that have
conditionals instead of precise values. We also encounter
a few wrong parameter errors, where the model does not
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Table 2 Verifier analysis Dataset Average num. Max/min Error type caught by verifier [count]
verifier calls verifier calls

Chem-RnD 2.58 ± 2.00 10/1 Missing property in action [306]

Property not allowed [174]

Wrong tag [120]

Action does not exist [21]

Item not defined in hardware or reagents list [15]

Plan cannot be parsed as XML [6]

Chem-EDU 1.14 ± 0.47 3/1 Item not defined in hardware or reagents list [47]

Property not allowed [26]

Wrong tag [40]

Missing property in action [3]

We report the average number of times CLAIRify calls the verifier for the experiments in a given dataset, as
well as the minimum and maximum number of times. We also report the type of error encountered by the
verifier and the number of times it caught that type

include units for measurements. This can be fixed in future
work by improving the verifier to check for these constraints.
3. Number of interventions required by the verifier. To
better understand the interactions between the generator and
verifier in CLAIRify, we analyzed the number of interac-
tions that occur between the verifier and generator for each
dataset to understand the usefulness of the verifier. In Table 2,
we show that each experiment in the Chem-RnD dataset
runs through the verifier on average 2.6 times, while the
Chem-EDU dataset experiments runs through it 1.15 times
on average. The difference between the two datasets likely
exists because the Chem-EDU experiments are shorter and
less complicated. The top Chem-EDU error encountered by
the verifier was that an item in the plan was not defined in
the Hardware or Reagents list, mainly because we included
hardware constraints for this dataset that we needed to match
in our plan. In Fig. 9, we show a sample loop series between
the generator and verifier.

4.2 Robot execution

To analyze how well our system performs in the real world,
we execute a few experiments from the Chem-EDU dataset
on our robot. Three experiments from theChem-EDUdataset
were selected to be executed.

4.2.1 Experiment setup

Hardware The proposed lab automation framework has
been evaluated using the Franka Emika Panda arm robot,
equippedwith aRobotiq 2F-85gripper and an IntelRealSense
D435i stereo camera mounted on the gripper to allow for
active vision. The robot’s DoF has been extended by one
degree (in total 8-DoF) at its end-effector using a Dynamixel

XM540-W150 servo motor. Figure2 shows the hardware
setup.

Lab tools integration The robot framework is expanded
by incorporating lab tools. We used an IKA RET control-
visc device, which works as a scale, hotplate, and stir plate,
and a Sartorius BCA2202-1S Entris, which works as a high-
precision weighing scale. The devices communicate with the
TAMP solver to execute chemistry specific skills.

Software The robot is controlled using FrankaPy (Zhang
et al., 2020). We implemented a ROS wrapper for the
servo motor (8th DoF). To detect fiducial markers, we use
the AprilTag library (Olson, 2011). We use the MoveIt
motion planning framework (Coleman et al., 2014) for our
TAMP solver and its streams. The constrained planning func-
tion (Kingston et al., 2019) is an extension of elion.3

4.2.2 Solution color change based on pH

As a basic chemistry experiment, we demonstrated the color
change of a solution containing red cabbage juice. This is a
popular introductory demonstration in chemistry education,
as the anthocyanin pigment in red cabbage can be used as a
pH indicator (Fortman&Stubbs, 1992).Weprepared red cab-
bage solution by boiling red cabbage leaves in hot water. The
colour of the solution is dark purple/red. Red cabbage juice
changes its color to bright pink if we add an acid and to blue
if we add a base, and so we acquired commercially-available
vinegar (acetic acid, an acid) and baking soda (sodium bicar-
bonate, a base).

3 https://github.com/JeroenDM/elion.
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Fig. 9 Feedback loop between the Generator and Verifier. The input
text is converted to structured-like language via the generator and is
then passed through the verifier. The verifier returns a list of errors
(marked with a yellow 1). The feedback is passed back to the generator
along with the erroneous task plan, generating a new task plan. Now

that previous errors were fixed and the tags could be processed, new
errors were found (including a constraint error that the plan uses a ves-
sel not in the environment). These errors are denoted with a blue 2. This
feedback loop is repeated until no more errors are caught, which in this
case required 3 iterations (Color figure online)

In this experiment, we generated XDL plans using
CLAIRify from two language inputs:

[1] Add 40 g of red cabbage solution into a
beaker. Add 10 g of acetic acid into the
beaker , then stir the solution for 10
seconds.

[2] Add 40 g of red cabbage solution into a
beaker. Add 10 g of baking soda into the
beaker , then stir the solution for 10
seconds.

Figure 10 shows the flow of the experiment. Our system
generated aXDLplan that correctly captured the experiment;
the plan was then passed through TAMP to generate a low-
level action plan and was then executed by the robot.

4.2.3 Kitchen chemistry

We then tested whether our robot could execute a plan
generated by our model for a different application of house-
hold chemistry: food preparation. We generated a plan using
CLAIRify for the following lemonade beverage, which can
be viewed on our website:

Add 15 g of lemon juice and sugar mixture to
a cup containing 30 g of sparkling water.

Stir vigorously for 20 sec.

Figure 11 shows the flow of an experiment. Since we
deal with edible material, we implemented a different stir-
ring motion that does not touch the content of the container.

4.2.4 Solubility measurement

We finally measured the solubility of household solutes as
an example of basic educational chemistry experiments for
students (Wolthuis et al., 1960). Measuring solubility has
desirable characteristics as a benchmark for automated chem-
istry experiments: (i) it requires basic chemistry operations,
such as pouring, solid dispensing, and observation of the
solution status, (ii) solubility can be measured using ubiqui-
tous food-safe materials, such as water, salt, sugar, and (iii)
the accuracy of the measurement can be evaluated quantita-
tively by comparing with literature values. We measured the
solubility of three solutes: table salt (sodium chloride), sugar
(sucrose), and alum (aluminum potassium sulfate).

The robot estimates the amount of water to make a satu-
rated solution by repeatedly pouring a small amount of water.
After pouring, the solution is stirred and the turbidity before
and after stirring was compared. The turbidity decreases by
stirring if the remaining solutes dissolved intowater, whereas
it stays at a constant value if there are no residues. If the tur-
bidity decrease after the N -th pouring is smaller than 5%,
we assume there were no residues at the beginning of N -th
pouring and that the amount of water required to dissolve all
solutes is between the volume of water added at the (N −2)-
th and (N − 1)-th pouring. We use the average of the two
for simplicity of presentation. Figure13 shows an example
of turbidity change during the experiment.

A natural language explanation for the above solubility
measurement protocol is as follows:
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Fig. 10 Robot execution: The robot executes the motion plan generated from the XDL for given natural language input. a CLAIRify converts the
natural language input from the user into XDL. b The robot interprets XDL and performs the experiment. Stirring is done by a rotating stir bar
inside the beaker

Fig. 11 Kitchen chemistry: The robot executes the motion plan generated from the XDL for given natural language input. a CLAIRify converts
the natural language input from the user into XDL. b The robot interprets XDL and performs the experiment. Stirring is done by shaking a cup with
the robot arm

Add 10 g of salt to the beaker.
Repeat the following steps for five times.
Add 10 g of water into the beaker , and
measure the turbidity.
After stirring for 90 seconds , measure the
turbidity again.

Note thatwe extended theXDL to allow turbidity as amea-
surable quantity of <Monitor> since the XDL standard at
the time of writing (XDL 2.0.1) only supports temperature
and pH. We added this skill to our defintion of XDL that we
input to the LLM in CLAIRify. The amount of solute and
stirring time were changed for different solutes. The work-
flow of the solubility experiments is shown in Fig. 12.

The measured solubility for three solutes is shown in
Table 3. The robot framework managed to measure the sol-
ubility with sufficient accuracy that they are comparable to
solubility values found in the literature (NAOJ, 2022).

The primary reason for the difference from the literature
value is the range of minimum amount of water required
for dissolving. In an example of turbidity change shown in
Fig. 13, the robot can only tell the second pouring is insuffi-
cient and the third pouring is sufficient to dissolve all solutes,
but it cannot tell the exact required amount. As a result, the
solubility measurement inherently includes error caused by
the resolution of pouring.We can reduce the error by pouring
a smaller amount of water at once, but pouring less than 10g
is difficult because of the delayed feedback of the scale and
the scale minimum resolution. We can improve the accuracy
of solubility measurements by developing a pipette designed
for a robot.
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Fig. 12 Workflow of solubility experiment. a We translate a natural
language input to XDL using CLAIRify. b We then execute the plan
on a robot using TAMP. First, a fixed amount of the solute is added to
the dish on the weighing scale and stirrer. The robot pours 10g of water

into the dish. The solution is mixed with the magnetic stirrer. After stir-
ring, the turbidity of the solution is measured to check dissolvement.
If undissolved, another 10g of water is added until no solutes remain.
The experiment was conducted at room temperature (25◦C)

Table 3 Results of the solubility experiments

Solute Solute (g) Water (g) Solubility Lit. % error

Salt 13.9 41.8 33.2 35.8 7.2

Sugar 60.00 26.46 226.8 203.9 11.2

Alum 3.00 29.87 10.0 11.4 12.3

Amount of solute in the beaker, amount of water to dissolve all solute,
calculated solubility (the amount of solute dissolved per 100g of water),
and literature data (lit.) for solubility at 20◦C is shown. Literature data
are taken or calculated from (NAOJ, 2022)

4.2.5 Recrystallization experiment

Recrystallization is a purifying technique to obtain crystals
of a solute by using the difference in solubility at different

temperatures. Typically, solutes have higher solubility at high
temperatures, meaning hot solvents will dissolvemore solute
than cool solvents. The excess amount of solute that cannot
be dissolved anymore while cooling the solvent precipitates
and forms crystals.We tested the recrystallization of alum by
changing the temperature of the water. Alum was chosen as
the target solute since its solubility greatly changes accord-
ing to water temperature. The recrystallization experiment
setup extends the solubility test by pre-heating the solvent.
A natural language explanation for the above recrystalliza-
tion experiment protocol is as follows:
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Fig. 13 Turbidity change during experiment. Water is poured into the
dish during pouring (grey) and turbidity is measured during observation
(blue). The endof the experiment is determinedby turbidity comparison.
In this example, all solutes are dissolved at the third pouring because
the turbidity change after the fourth pouring is below the threshold. The
average weight of the second and third pouring is used to calculate the
solubility (Color figure online)

Fig. 14 Recrystallization of
alum inside the water. After
heating water by putting a
beaker with water on a hotplate,
the robot poured alum into a
dish. The robot then poured hot
water, and the solution was
heated and stirred. The
formation of a precipitate is
observed after the dish is cooled
down. The dried crystals in a
vial are shown

Add 50g of water to beaker.
Heat the beaker filled with water for 1 min
to 60 C.
Add 20 g of alum into an empty beaker , and
add 50 g of the heated water into the beaker.
Cool the beaker for 30 min to 20 C.

Figure 14 shows the result of the experiment.

4.3 Ablation studies

We assess the impact of various components in our prompt
designs and feedback messaging from the verifier. We per-
formed these tests on a small validation set of 10 chemistry
experiments from Chem-RnD (not used in the test set) and
report the number of XDL plans successfully generated (i.e.,
was not in the iteration loop for x = 10 steps).

4.3.1 Prompt design

To evaluate the prior knowledge of the GPT-3 on XDL, we
first tried prompting the generator without a XDL descrip-
tion, i.e., with the input:

initial_prompt = """
Convert to XDL:
# <Natural language instruction >"""

The LLM was unable to generate XDL for any of the
inputs from the small validation set that contains 10 chem-
istry experiments. For most experiments, when asked to
generated XDL, the model output a rephrased version of
the natural language input. In the best case, it output some
notion of structure in the form of S-expressions or XML tags,
but the outputs were very far away from correct XDL and
were not related to chemistry. We tried the same experiment
withcode-davinci-002; the outputs generally hadmore
structure but were still nonsensical. This result suggests the
LLM does not have the knowledge of the target language and
including the language description in the prompt is essential
to generate an unfamiliar language.

4.3.2 Feedback design

We experimented with prompts in our iterative prompting
scheme containing various levels of detail about the errors.
The baseline prompt contains a description as well as the
natural language instruction. We wanted to investigate how
much detail is needed in the error message for the generator
to be able to fix the errors in the next iteration. For example,
is it sufficient to write “There was an error in the generated
XDL", and do we need to include a list of errors from the
verifier (such as “Quantity is not a permissible attribute for
the Add tag"), or do we also need to include the erroneous
XDL from the previous iteration?We alsowanted to keep any
feedback messages as general as possible to reduce prompt
lengths, considering there is a limit for how many tokens we
can query OpenAI models with.

The XDL generation success rate for different error mes-
sage designs is shown in Table 4. We find that including the
erroneous XDL from the previous iteration and specifying
why it was wrong resulted in the highest number of success-
fully generated XDL plans. Including a list of errors was
better than only writing “This XDL was not correct. Please
fix the errors”, which was not informative enough to fix any
errors. Including the erroneous XDL from the previous iter-
ation is also important; we found that including only a list
of the errors without the context of the XDL plan resulted in
low success rates.

4.4 Component analysis for robot execution

4.4.1 Pouring skill evaluation

We evaluated the accuracy and efficiency of the pouring skill
for liquid and powder. To evaluate the effect of our pro-
posedpouringmethod,we implemented aPDcontrol pouring
methodwhere end-effector angular velocity is proportional to
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Table 4 Number of XDL plans successfully generated for different error message designs in the iterative prompting scheme on a validation set
from Chem-RnD consisting of 10 experiments

Variations of iterative prompt design using verifier error messages Plan’s generated success rate (%)↑
Naive: XDL from previous iteration and string “This XDL was not correct. Please fix the errors.” 0

Last error: Error list from verifier from previous iteration 30

All errors cumulative: Accumulated error list from all previous iterations 50

XDL + Last error: XDL and error list from verifier from previous iteration 100

the difference between target and feedback weight as a base-
line. Figure15 shows the pouring experiment results. The
results show that the shaping function contributed to reduc-
ing the overshooting compared to PD control pouring. The
overshoot of the PD control pouring is mainly because of
the scale’s delayed feedback (∼3s). The intermittent pour-
ing caused by the shaping function compensated for the delay
and improved the overall pouring accuracy. On average, the
pouring errors using the shaping approach for water and salt
were 2.2±1.5 g (8.1±4.8 %) and 2.1±1.4 g (8.8±6.2 %).
The errors for PD control were 24.5± 12.0 g (81.4± 4.5 %)
and 7.7±4.3 g (24.1±5.2 %). Moreover, as we can see both
the error and relative error stay approximately constant with
respect to the target amount when using the shaping method,
in contrast to the PD controller. The average pouring times
with the shaping function for 50g water and salt were 25.1
s and 36.8 s, respectively. Our results are comparable with
previous work (Kennedy et al., 2019; Huang et al., 2021)
in terms of pouring error and time, without using a learned,
vision-based policy, or expensive equipment setup.

In order to assess the pouring skill more effectively, a
series of experiments were carried out involving three human
subjects. The experiments aimed to measure both the accu-
racy and speed of pouring, with each experiment being
repeated five times. The average errors for 50g of water and
salt were 0.8 g and 1.0 g, and the average pouring times were
16.4 s and18.6 s respectively.Themain factor causing thedis-
parity in pouring time between human subjects and the robot
stems from their distinct behaviors during the pre-pouring
phase. Humans have the ability to quickly rotate a beaker
during the pre-pouring stage by relying on visual cues to
determine when the pouring begins. Conversely, the robot’s
movements during the pre-pouring stage were deliberately
slow to prevent overshooting. On average, the pre-pouring
stage of the robot took approximately 6 s, whereas it was
negligible for humans.

4.4.2 Constrained motion planning in 7/8-DoF robot

The constrained motion planning performance of 7-DoF and
8-DoF robots is evaluated in two scenarios: (1) single step,
(2) two steps. In scenario (1), robots find a constrained path
with a fixed orientation from initial to final positions that

are randomly sampled. Scenario (2) extends the first with
an additional intermediate sampled waypoint. For each sce-
nario, we run 50 trials in Algorithm 3 with random seeding
of the IK solver.

Fig. 15 Evaluation of pouring error. The pouring errors of our shaping
pouring andPDcontrol baseline pouring are comparedusingawater and
b salt. The bar plot shows the error (poured amount—target amount) and
the line plot shows the relative error. The error bars show the standard
deviation (Color figure online)

123



Autonomous Robots (2023) 47:1057–1086 1077

Table 5 Success rate comparison of 7 and 8-DoF robot

Scenario 1 (%) Scenario 2 (%)
IK Plan IK Plan

7-DoF 99 84 99 70

8-DoF 100 97 100 84

In scenario (2), we restart the sequence planning from the
first step if a step fails. Constraints are set to the robot end-
effector pitch and roll (‖θ, φ‖ ≤ 0.1 rad).

The performance of the 7-DoF and 8-DoF robot arms for
the two scenarios are shown in Table 5. The results show that
the IK and constrained motion planning have higher success
rates in 8-DoF compared with the 7-DoF robot.

5 Discussion

In this paper, we demonstrate how LLMs are effective tools
for translating natural language inputs into domain-specific
target languages without any fine-tuning. We find that by
prompting an LLM with errors that it makes, it is able
to correct its own output and generate syntactically valid
plans. We also tested the ability of CLAIRify to generate
plans for the same experiment written in different ways (see
“Appendix D”), which is important for generalizability since
humans have different writing styles. We find that LLMs are
robust to variations in natural language, which is important
for lowering the barrier to successful user interaction. The
XDL plans generated by CLAIRify can then be combined
with our TAMP pipeline to effectively perform multistep
chemistry experiments in the real world. However, the cur-
rent study is limited to a few types of chemistry experiments
because the number of skills incorporated in the framework is
limited. Increasing the repertoire of skills, such as glassware
perception in 3D and clutter, without fiducial markers (Eppel
et al., 2020), can improve the framework scalability. As we
develop more and more skills, we can append their descrip-
tions to the language model input. We demonstrated this by
appending a new skill,<Monitor>, to theXDLdescription,
and the LLM was able to accurately incorporate it into the
plan. Another issue is that the inefficiency of PDDLStream
inhibits the framework frombeing reactive in a dynamic envi-
ronment. Incorporating the learning-based search heuristics
for PDDLStream (Khodeir et al., 2023, 2022)may overcome
this limitation. Constrained motion planning was shown to
effectively avoid spillage of the beaker contents during trans-
fer in our experiments. We have also shown that adding an
extra 8th DoF to the robot enabled more flexibility and a
higher success rate for constrained motion planning. How-
ever, the proposed constrainedmotion planning embedded in
TAMP cannot run in real-time. Considering the dynamics of

the beaker contentmay help to have higher flexibility in robot
manipulation (Muchacho et al., 2022). Although our skill
has currently attained 8% error for liquid and powder pour-
ing, higher accuracy is desirable for precise experiments in a
chemistry lab. We used a scale with integrated functionality
for stirring andheating, but itsmeasurement is delayed for 3 s.
Higher precision pouring can be attained using a scale with a
shorter response time; also, it can be achieved by specialized
tools, such as a pipette (Yoshikawa et al., 2023). In addition,
visual feedback during pouring may lead to faster and more
accurate pouring and be helpful in avoiding spillage.

Moreover, CLAIRify was successful in generating plans
beyond the state-of-the-artmethod for the chemistry domain-
specific structured language XDL. Although the generated
plans were syntactically correct and satisfied the constraints,
they contained errors. However, experts placed greater
emphasis on missing actions than on ambiguous or incor-
rect actions when selecting the preferred output, indicating
that this class of error is more severe for the tasks and
outputs investigated here. These results demonstrate the gen-
eralizability of our method, which uses zero-shot iterative
prompting verification. We can apply it to different language
styles and domains and still obtain coherent plans. While
our approach, which combines LLMs and TAMP, showed
promising results in generating feasible and executable plans,
as evidenced by our evaluation, the capabilities of pure LLMs
in generating semantically correct plans remain limited. The
limitation in task planning abilities has been highlighted in
a recent study (Bubeck et al., 2023) as well. To address this
shortcoming, an alternative approach could be to incorpo-
rate human-in-the-loop planning or to utilize multi-modal
foundation model that consider the surrounding scene of the
robot.

Another important consideration to address is the tradeoff
between the human interpretability and expressive power of
the target structured language. Our approach to using inter-
mediate language enables users to ensure the LLM’s natural
language interpretation is reasonable; however, the expres-
sive power of XDL imposed limitations on the framework’s
abilities. The robot framework can conduct more diverse
actions than XDL can express, but the use of XDL limits the
available actions. This problem may be alleviated by gener-
ating the robot program directly, but human interpretability
may be decreased as a result.

6 Conclusions

In this paper, we presented a framework for automat-
ing chemistry lab experiments using general-purpose robot
manipulators and natural language commands. In order to
facilitate the closed-loop execution of long-horizon chem-
istry experiments, CLAIRify maps natural language com-
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mands to XDL, a human-interpretable intermediate language
that standardizes chemistry experiment descriptions. Sub-
sequently, XDL instructions are converted into a sequence
of subgoals for a constrained task and motion plan solver,
and the robot executes those plans using its diverse set of
skills. Finally, the robot visually monitors the progress of the
tasks. We demonstrated that our approach lowers the bar-
riers to instructing robots by non-experts to execute robot
task plans. The robot handles solubility and recrystallization
experiments autonomously when provided with natural lan-
guage inputs.
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Appendix A: Pouring policy

The pouring policy is the blending of a shaping function
s(t) and a model-free PD controller vPD(t), expressed as
vPD(t) × s(t). The PD controller is defined as:

vPD(t) = kpe + kd ė, (1)

where e(t) = xre f − x f b. The shaping function is imple-
mented via the summation of several unit functions u(t) as
follows:

s(t) = u(t) − 2 u(t − t0)
+∑N

k=1{u(t − (t0 + k Tdeactive))
+u(t − (t0 + k (Tdeactive + Tidle)))

−2 u(t − (t0 + k (Tdeactive + Tidle + Tactivate)))}
(2)

where t0 is the moment in which e(t) starts to change, mean-
ing that the material is getting added to the target dish.
Tdeactive, Tidle, and Tactive are the parameters set by the user
to describe the periodicmotion of the robot end-effector. This
motion continues till thematerial transferred to the target dish
reaches the desired amount.

Appendix B: Full prompt

The fullXDLdescription and an experiment description from
the Chem-EDU dataset are shown as an example of a full
prompt to the LLM.

initial_prompt = """
XDL files will follow XML syntax and consist
of three mandatory sections: Hardware ,

where virtual vessels that the reaction
mixture can reside in are declared. Reagents
, where all reagents that are used in the
procedure are declared , and Procedure , where
the synthetic actions involved in the

procedure are linearly declared.

XDL File Stub:
<XDL >

<Synthesis >
<Hardware >

<!-- ... -->
</Hardware >

<Reagents >
<!-- ... -->

</Reagents >

<Procedure >
<!-- ... -->

</Procedure >
</Synthesis >

</XDL >

Hardware:
Each individual reagent , unless otherwise
stated should be contained within their own
vessels.

(format is(Property , Type , Description))

id, str , Name of hardware

Reagents:
The Reagents section contains Reagent
elements with the props below.
Any reagents which were combined before the
experiment should be combined as one reagent
before the procedure. (i.e. ’lime juice

mixed with sugar ’ = <Reagent name=’lime
juice mixed with sugar ’)

Reagent:
Reagent used by procedure.

(format is(Property , Type , Description))

name , str , Name of reagent
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Procedure:
All steps included in the Full Steps
Specification may be given within the
Procedure block of a XDL file. Additionally ,
the Procedure block may be , but does not

have to be , divided up into Prep , Reaction ,
Workup and Purification blocks , each of
which can contain any of the steps in the
specification.

Here is a list of tags that can be used in
this language:
Liquid Handling: Add , Separate , Transfer ,
Stirring: StartStir , Stir , StopStir ,
Temperature Control: HeatChill ,
HeatChillToTemp , StartHeatChill ,
StopHeatChill
Inert Gas: EvacuateAndRefill , Purge ,
StartPurge , StopPurge
Filtration: Filter , FilterThrough , WashSolid
Special: Wait , Repeat ,
Other: CleanVessel , Crystallize , Dissolve ,
Dry , Evaporate , Irradiate , Precipitate ,
ResetHandling , RunColumn

Steps:
Liquid Handling:
Add liquid or solid reagent. Reagent
identity (ie liquid or solid) is determined
by the solid property of a reagent in the
Reagent section.

The quantity of the reagent can be specified
using either volume (liquid units) or

amount (all accepted units e.g. ’g’, ’mL’, ’
eq’, ’mmol ’).

format(Property Type Description)
vessel vessel Vessel to add reagent to.
reagent reagent Reagent to add.

Separate:
Perform separation.
format(Property Type Description)
Property Type Description
purpose str ’wash’ or ’extract ’. ’wash’
means that product phase will not be the
added solvent phase , ’extract ’ means product
phase will be the added solvent phase. If

no solvent is added just use ’extract ’.
product_phase str ’top’ or ’bottom ’. Phase
that product will be in.

from_vessel vessel Contents of from_vessel
are transferred to separation_vessel and
separation is performed.
separation_vessel vessel Vessel in which
separation of phases will be carried out.
to_vessel vessel Vessel to send product
phase to.

Transfer:
Transfer liquid from one vessel to another.

The quantity to transfer can be specified
using either volume (liquid units) or amount
(all accepted units e.g. ’g’, ’mL’, ’eq’, ’

mmol ’).

format(Property Type Description)
from_vessel vessel Vessel to transfer
liquid from.
to_vessel vessel Vessel to transfer
liquid to.

Stirring:
StartStir:
Start stirring vessel.
format(Property Type Description)
vessel vessel Vessel to start stirring.

Stir:
Stir vessel for given time.

format(Property Type Description)
vessel vessel Vessel to stir.
time float Time to stir vessel for.

StopStir:
Stop stirring given vessel.
format(Property Type Description)
vessel vessel Vessel to stop stirring.

Temperature Control:
HeatChill:
Heat or chill vessel to given temp for given
time.

format(Property Type Description)
vessel vessel Vessel to heat or chill.
temp float Temperature to heat or chill
vessel to.

time float Time to heat or chill vessel
for.

Convert to XDL:
Add 30 g of red cabbage soup into a beaker.
Add 10 g of acetic acid into the beaker ,
then stir the solution for 10 seconds.
"""

Appendix C: Chem-EDU dataset

We show some examples of experiments in the Chem-EDU
dataset.

Add 30 g of red cabbage soup into a beaker.
Add 10 g of acetic acid into the beaker ,
then stir the solution for 10 seconds.

Experiment 0

Acacia Honey Syrup
Add 200g of hot water to a beaker. Add 430g
acacia honey to the beaker. Stir for 10
minutes while heating.

Experiment 13

Add 250g water to beaker. Heat until it
reaches 100 degrees C. Add 40 g of pasta.
Heat for 6 minutes at 100 degrees C.

Experiment 30

Appendix D: Variations in natural language

Since humans have different writing styles, we wanted to
determine if our model is able to generate consistent XDL
plans from natural language descriptions written in differ-
ent ways. We took two experiments from Chem-EDU and
prompted ChatGPT to rewrite the experiment. We ran all
experiments through CLAIRify and examined the outputs.4

We find that CLAIRify can generate the same XDL plans
with different natural language descriptions.

4 https://beta.openai.com.
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Fig. 16 XDL generated for different writing styles for Experiment
0 from Chem-EDU. The first writing style (writing style 1) is taken
directly from Chem-EDU. For the second writing style (writing style
2), we asked ChatGPT to rewrite it. For both prompts, we generate a

XDL plan. The output is semantically the same for both (note that the
extra <StartSir> and <StopStir> actions in (d) are redun-

dant, as the presence of the <Stir> action automatically does a

<StartSir> and <StopStir> action)
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Fig. 17 XDL generated for different writing styles for Experiment 30 from Chem-EDU. The first writing style (writing style 1) is taken directly
from Chem-EDU. For the second writing style (writing style 2), we asked ChatGPT to rewrite it. For both prompts, we generate a XDL plan. The
output is identical for both
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