
Autonomous Robots (2023) 47:999–1012
https://doi.org/10.1007/s10514-023-10135-3

PROGPROMPT: program generation for situated robot task planning
using large languagemodels

Ishika Singh1 · Valts Blukis2 · Arsalan Mousavian2 · Ankit Goyal2 · Danfei Xu2 · Jonathan Tremblay2 ·
Dieter Fox2,3 · Jesse Thomason1 · Animesh Garg2,4

Received: 1 May 2023 / Accepted: 3 August 2023 / Published online: 28 August 2023
© The Author(s) 2023

Abstract
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate
that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate
action sequences directly, given an instruction in natural language with no additional domain information. However, such
methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions
not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan
generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with
program-like specifications of the available actions and objects in an environment, as well as with example programs that
can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation
experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical
robot arm for tabletop tasks. Website and code at progprompt.github.io

Keywords Robot task planning · LLM code generation · Planning domain generalization · Symbolic planning

B Ishika Singh
ishikasi@usc.edu

Valts Blukis
vblukis@nvidia.com

Arsalan Mousavian
amousavian@nvidia.com

Ankit Goyal
angoyal@nvidia.com

Danfei Xu
danfeix@nvidia.com

Jonathan Tremblay
jtremblay@nvidia.com

Dieter Fox
dieterf@nvidia.com

Jesse Thomason
jessetho@usc.edu

Animesh Garg
animeshg@nvidia.com

1 Computer Science, University of Southern California, Los
Angeles, CA 90089, USA

2 Seattle Robotics Lab, NVIDIA, Seattle, WA 98105, USA

1 Introduction

Everyday household tasks require both commonsense under-
standing of the world and situated knowledge about the
current environment. To create a task plan for “Make din-
ner,” an agent needs common sense: object affordances, such
as that the stove and microwave can be used for heating;
logical sequences of actions, such as an oven must be pre-
heated before food is added; and task relevance of objects
and actions, such as heating and food are actions related to
“dinner” in the first place. However, this reasoning is infea-
sible without state feedback. The agent needs to know what
food is available in the current environment, such as whether
the freezer contains fish or the fridge contains chicken.

Autoregressive large language models (LLMs) trained
on large corpora to generate text sequences conditioned on
input prompts have remarkable multi-task generalization.
This ability has recently been leveraged to generate plau-

3 Computer Science and Engineering, University of
Washington, Seattle, WA 98195, USA

4 School of Interactive Computing, Georgia Institute of
Technology, Atlanta, GA 30308, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10135-3&domain=pdf
https://progprompt.github.io/

1000 Autonomous Robots (2023) 47:999–1012

Fig. 1 ProgPrompt leverages LLMs’ strengths in both world knowl-
edge and programming language understanding to generate situated
task plans that can be directly executed

sible action plans in context of robotic task planning (Ahn et
al., 2022; Huang et al., 2022b, a; Zeng et al., 2022) by either
scoring next steps or generating new steps directly. In scoring
mode, the LLMevaluates an enumeration of actions and their
arguments from the space of what’s possible. For instance,
given a goal to “Make dinner” with first action being “open
the fridge”, the LLM could score a list of possible actions:
“pick up the chicken”, “pick up the soda”, “close the fridge”,
. . . , “turn on the lightswitch.” In text-generation mode, the
LLM can produce the next few words, which then need to be
mapped to actions and world objects available to the agent.
For example, if the LLM produced “reach in and pick up
the jar of pickles,” that string would have to neatly map to
an executable action like “pick up jar.” A key component
missing in LLM-based task planning is state feedback from
the environment. The fridge in the house might not contain
chicken, soda, or pickles, but a high-level instruction “Make
dinner” doesn’t give us that world state information. Our
work introduces situated-awareness in LLM-based robot
task planning.

We introduce ProgPrompt, a prompting scheme that
goes beyond conditioning LLMs in natural language. Prog-
Prompt utilizes programming language structures, leverag-
ing the fact that LLMs are trained on vast web corpora that
includes many programming tutorials and code documen-
tation (Fig. 1). ProgPrompt provides an LLM a Pythonic
program header with an import statement for available
actions and their expected parameters, a list of environ-
ment objects, and function definitions like make_dinner
whose bodies are sequences of actions operating on objects.
We incorporate situated state feedback from the environment
by asserting preconditions of our plan, such as being close
to the fridge before attempting to open it, and responding
to failed assertions with recovery actions. What’s more, we

show that including natural language comments in Prog-

Prompt programs to explain the goal of the upcoming action
improves task success of generated plan programs.

2 Background and related work

2.1 Task planning

For high-level planning, most works in robotics use search
in a pre-defined domain (Fikes and Nilsson, 1971; Jiang et
al., 2018; Garrett et al., 2020). Unconditional search can be
hard to scale in environments with many feasible actions
and objects (Puig et al., 2018; Shridhar et al., 2020) due to
large branching factors. Heuristics are often used to guide
the search (Baier et al., 2007; Hoffmann, 2001; Helmert,
2006; Bryce and Kambhampati, 2007). Recent works have
explored learning-based task&motion planning, usingmeth-
ods such as representation learning, hierarchical learning,
language as planning space, learning compositional skills
andmore (Akakzia et al., 2021; Eysenbach et al., 2019; Jiang
et al., 2019; Kurutach et al., 2018; Mirchandani et al., 2021;
Nair and Finn, 2020; Shah et al., 2022; Sharma et al., 2022;
Silver et al., 2022; Srinivas et al., 2018; Xu et al., 2018, 2019;
Zhu et al., 2020). Our method sidesteps search to directly
generate a plan that includes conditional reasoning and error-
correction.

We formulate taskplanning as the tuple 〈O,P,A, T , I,G,

t〉.O is a set of all the objects available in the environment,P
is a set of properties of the objects which also informs object
affordances, A is a set of executable actions that changes
depending on the current environment state defined as s ∈ S.
A state s is a specific assignment of all object properties, and
S is a set of all possible assignments. T represents the tran-
sition model T : S × A → S, I and G are the initial and
goal states. The agent does not have access to the goal state
g ∈ G, but only a high-level task description t.

Consider the task t = “microwave salmon”. Task rele-
vant objects microwave, salmon ∈ O will have properties
modified during action execution. For example, action a =
open(microwave) will change the state from closed
(microwave) ∈ s to ¬closed(microwave) ∈ s′ if a is
admissible, i.e., ∃(a, s, s′) s.t . a ∈ A∧s, s′ ∈ S∧T (s, a) =
s′. In this example a goal state g ∈ G could contain the con-
ditions heated(salmon) ∈ g, ¬closed(microwave) ∈ g
and ¬switchedOn(microwave) ∈ g.

2.2 Planning with LLMs

A Large Language Model (LLM) is a neural network with
many parameters—currently hundreds of billions (Brown
et al., 2020; Chen et al., 2021)—trained on unsupervised
learning objectives such as next-token prediction or masked-

123

Autonomous Robots (2023) 47:999–1012 1001

language modelling. An autoregressive LLM is trained with
a maximum likelihood loss to model the probability of a
sequence of tokens y conditioned on an input sequence x,
i.e. θ = argmaxθ P(y|x; θ), where θ are model param-
eters. The trained LLM is then used for prediction ŷ =
argmaxy∈S P(y|x; θ), whereS is the set of all text sequences.
Since search space S is huge, approximate decoding strate-
gies are used for tractability (Holtzman et al., 2020; Luong
et al., 2015; Wiseman et al., 2017).

LLMs are trained on large text corpora, and exhibit multi-
task generalization when provided with a relevant prompt
input x. Prompting LLMs to generate text useful for robot
task planning is a nascent topic (Ahn et al., 2022; Jansen,
2020;Huang et al., 2022a, b; Li et al., 2022; Patel andPavlick,
2022). Prompt design is challenging given the lack of paired
natural language instruction text with executable plans or
robot action sequences (Liu et al., 2021). Devising a prompt
for task plan prediction can be broken down into a prompting
function and an answer search strategy (Liu et al., 2021).
A prompting function, fprompt(.) transforms the input state
observation s into a textual prompt. Answer search is the
generation step, in which the LLM outputs from the entire
LLM vocabulary or scores a predefined set of options.

Closest to our work, Huang et al. (2022a) generates open-
domain plans using LLMs. In that work, planning proceeds
by: 1) selecting a similar task in the prompt example (fprompt);
2) open-ended task plan generation (answer search); and
3) 1:1 prediction to action matching. The entire plan is
generated open-loop without any environment interaction,
and later tested for executability of matched actions. How-
ever, action matching based on generated text doesn’t ensure
the action is admissible in the current situation. Inner-
Monologue (Huang et al., 2022b) introduces environment
feedback and state monitoring, but still found that LLM
planners proposed actions involving objects not present in
the scene. Our work shows that a programming language-
inspired prompt generator can inform the LLM of both
situated environment state and available robot actions, ensur-
ing output compatibility to robot actions.

The related SayCan (Ahn et al., 2022) uses natural lan-
guage prompting with LLMs to generate a set of feasible
planning steps, re-scoring matched admissible actions using
a learned value function. SayCan constructs a set of all admis-
sible actions expressed in natural language and scores them
using an LLM. This is challenging to do in environments
with combinatorial action spaces. Concurrent with our work
are Socratic models (Zeng et al., 2022), which also use code-
completion to generate robot plans. We go beyond (Zeng et
al., 2022) by leveraging additional, familiar features of pro-
gramming languages in our prompts. We define an fprompt

that includes import statements to model robot capabilities,
natural language comments to elicit common sense reason-
ing, and assertions to track execution state.Our answer search

is performed by allowing the LLM to generate an entire, exe-
cutable plan program directly.

2.3 Recent developments following PROGPROMPT

Vemprala et al. (2023) further explores API-based planning
with ChatGPT1 in domains such as aerial robotics, manipula-
tion and visual navigation. They discuss the design principles
for constructing interaction APIs, for action and perception,
and prompts that can be used to generate code for robotic
applications. Huang et al. (2023) builds on SayCan (Ahn et
al., 2022) and generates planning steps token-by-token while
scoring the tokens using both the LLM and the grounded
pretrained value function. Cao and Lee (2023) explores gen-
erating behavior trees to study hierarchical task planning
using LLMs. Skreta et al. (2023) proposes iterative error
correction via a syntax verifier that repeatedly prompts the
LLM with previous query appended with a list of errors.
Mai et al. (2023), similar in approach as Zeng et al. (2022),
Huang et al. (2022b), integrates pretrainedmodels for percep-
tion, planning, control, memory, and dialogue zero-shot, for
active exploration and embodied question answering tasks.
Gupta and Kembhavi (2022) extends the LLM code gen-
eration and API-based perceptual interaction approach for a
variety of vision-langauge tasks. Some recentworksXie et al.
(2023a), Capitanelli and Mastrogiovanni (2023) use PDDL
as the translation language instead of code, and use the LLM
to generate either a PDDL plan or the goal. A classical plan-
ner then plans for the PDDL goal or executes the generated
plan. This approach ablated the need to generate precondi-
tions using the LLM, however, needs the domain rules to be
specified for the planner.

3 Ourmethod: PROGPROMPT

We represent robot plans as pythonic programs. Following
the paradigm of LLM prompting, we create a prompt struc-
tured as pythonic code and use an LLM to complete the code
(Fig. 2). We use features available in Python to construct
prompts that elicit an LLM to generate situated robot task
plans, conditioned on a natural language instruction.

3.1 Representing robot plans as pythonic functions

Plan functions consist of API calls to action primitives,
comments to summarize actions, and assertions for tracking
execution (Fig. 3). Primitive actions use objects as arguments.
For example, the “put salmon in the microwave” task includes
API calls like find(salmon).

1 https://openai.com/blog/chatgpt/

123

https://openai.com/blog/chatgpt/

1002 Autonomous Robots (2023) 47:999–1012

Fig. 2 Our ProgPrompts include import statement, object list, and
example tasks (PROMPT for Planning). The Generated Plan is for
microwave salmon. We highlight prompt comments, actions as
imported function calls with objects as arguments, and assertions with
recovery steps. PROMPT for State Feedback represents example asser-

tion checks. We further illustrate the execution of the program via a
scenario where an assertion succeeds or fails, and how the generated
plan corrects the error before executing the next step. Full Execution is
shown in bottom-right. ‘...’ used for brevity

Fig. 3 Pythonic ProgPrompt plan for “put salmon in the microwave”

We utilize comments in the code to provide natural
language summaries for subsequent sequences of actions.
Comments help break down the high-level task into logi-
cal sub-tasks. For example, in Fig. 3, the “put salmon in
microwave” task is broken down into sub-tasks using com-
ments “# grab salmon” and “# put salmon in microwave”.
This partitioning could help the LLM to express its knowl-
edge about tasks and sub-tasks in natural language and aid
planning. Comments also inform the LLM about immedi-
ate goals, reducing the possibility of incoherent, divergent,
or repetitive outputs. Prior work Wei et al. (2022) has also
shown the efficacy of similar intermediate summaries called

‘chain of thought’ for improving performance of LLMs on a
range of arithmetic, commonsense, and symbolic reasoning
tasks.We empirically verify the utility of comments (Table 1;
column Comments).

Assertions provide an environment feedback mechanism
that encourages preconditions to be met, and allow error
recovery possibility when they are not. For example, in
Fig. 3, before the grab(salmon) action, the plan asserts
the agent is close to salmon. If not, the agent first exe-
cutes find(salmon). In Table 1, we show that such assert
statements (column Feedback) benefit plan generation, and
improve success rates.

3.2 Constructing programming language prompts

We provide information about the environment and primitive
actions to the LLM through prompt construction. As done in
few-shot LLM prompting, we also provide the LLM with
examples of sample tasks and plans. Figure2 illustrates our
prompt function fprompt which takes in all the information
(observations, action primitives, examples) and produces a
Pythonic prompt for the LLM to complete. The LLM then
predicts the <next_task>(.) as an executable function
(microwave_salmon in Fig. 2).

In the task microwave_salmon, a reasonable first step
that an LLM could generate is take_out(salmon, grocery

123

Autonomous Robots (2023) 47:999–1012 1003

bag). However, the agent responsible for executing the plan
might not have a primitive action to take_out. To inform
theLLMabout the agent’s action primitives,we provide them
as Pythonic import statements. These encourage the LLM
to restrict its output to only functions that are available in the
current context. To change agents, ProgPrompt just needs a
new list of imported functions representing agent actions. A
grocery bag object might also not exist in the environment.
We provide the available objects in the environment as a list
of strings. Since our prompting scheme explicitly lists out
the set of functions and objects available to the model, the
generated plans typically contain actions an agent can take
and objects available in the environment.

ProgPrompt also includes a few example tasks—fully
executable program plans. Each example task demonstrates
how to complete a given task using available actions and
objects in the given environment. These examples demon-
strate the relationship between task name, given as the
function handle, and actions to take, aswell as the restrictions
on actions and objects to involve.

3.3 Task plan generation and execution

The given task is fully inferred by the LLM based on the
ProgPrompt prompt. Generated plans are executed on a
virtual agent or a physical robot system using an interpreter
that executes each action command against the environment.
Assertion checking is done in a closed-loop manner during
execution, providing current environment state feedback.

4 Experiments

We evaluate our method with experiments in a virtual house-
hold environment and on a physical robot manipulator.

4.1 Simulation experiments

We evaluate our method in the Virtual Home (VH) Environ-
ment (Puig et al., 2018), a deterministic simulation platform
for typical household activities.AVHstate s is a set of objects
O and properties P . P encodes information like in(salmon,
microwave) and agent_close_to(salmon). The action
space is A = {grab, putin, putback, walk, find,

open, close, switchon, switchoff, sit, standup}.
We experiment with 3 VH environments. Each environ-

ment contains 115 unique object instances (Fig. 2), including
class-level duplicates. Eachobject has properties correspond-
ing to its action affordances. Some objects also have a seman-
tic state like heated, washed, or used. For example, an
object in the Food category can become heated whenever
in(object, microwave) ∧ switched_on(microwave).

We create a dataset of 70 household tasks. Tasks are posed
with high-level instructions like “microwave salmon”. We
collect a ground-truth sequence of actions that completes the
task from an initial state, and record the final state g that
defines a set of symbolic goal conditions, g ∈ P .

When executing generated programs, we incorporate
environment state feedback in response to assertions. VH
provides observations in the form of state graph with object
properties and relations. To check assertions in this environ-
ment, we extract information about the relevant object from
the state graph and prompt the LLM to return whether the
assertion holds or not given the state graph and assertion as a
text prompt (Fig. 2 Prompt for State Feedback). We choose
this design over a rule-based checking since it’smore general.

4.2 Real-robot experiments

We use a Franka-Emika Panda robot with a parallel-jaw grip-
per. We assume access to a pick-and-place policy. The policy
takes as input two pointclouds of a target object and a tar-
get container, and performs a pick-and-place operation to
place the object on or inside the container. We use the sys-
tem of Danielczuk et al. (2021) to implement the policy, and
useMPPI formotion generation, SceneCollisionNet (Daniel-
czuk et al., 2021) to avoid collisions, and generate grasp poses
with Contact-GraspNet (Sundermeyer et al., 2021).

We specify a single import statement for the action
grab_and_putin(obj1, obj2) for ProgPrompt.We
use ViLD (Gu et al., 2022), an open-vocabulary object detec-
tion model, to identify and segment objects in the scene and
construct the available object list for the prompt.Unlike in the
virtual environment, where object list was a global variable in
common for all tasks, here the object list is a local variable for
each plan function, which allows greater flexibility to adapt
to new objects. The LLM outputs a plan containing function
calls of form grab_and_putin(obj1, obj2). Here,
objectsobj1 and obj2 are text strings that wemap to point-
clouds using ViLD segmentationmasks and the depth image.
Due to realworld uncertainty,we donot implement assertion-
based closed loop options on the tabletop plans.

4.3 Evaluationmetrics

We use three metrics to evaluate system performance: suc-
cess rate (SR), executability (Exec), and goal conditions
recall (GCR). The task-relevant goal-conditions are the set
of goal-conditions that changed between the initial and final
state in the demonstration. SR is the fraction of executions
that achieved all task-relevant goal-conditions. Exec is the
fraction of actions in the plan that are executable in the envi-
ronment, even if they are not relevant for the task. GCR is
measured using the set difference between ground truth final
state conditions g and the final state achieved g′ with the

123

1004 Autonomous Robots (2023) 47:999–1012

Table 1 Evaluation of generated programs on Virtual Home

— Prompt Format and Parameters —
Format Comments Feedback LLM Backbone SR Exec GCR

* ProgPrompt ✓ ✓ GPT4 0.37 ± 0.06 0.87 ± 0.01 0.64 ± 0.02

* ProgPrompt ✓ ✓ Davinci- 003 0.470.470.47± 0.15 0.85 ± 0.02 0.740.740.74±0.07

1 ProgPrompt ✓ ✓ Codex 0.40 ± 0.11 0.900.900.90± 0.05 0.72 ± 0.09

2 ProgPrompt ✓ ✓ Davinci 0.22 ± 0.04 0.60 ± 0.04 0.46 ± 0.04

3 ProgPrompt ✓ ✓ GPT3 0.34 ± 0.08 0.84 ± 0.01 0.65 ± 0.05

4 ProgPrompt ✓ ✗ GPT3 0.28 ± 0.04 0.82 ± 0.01 0.56 ± 0.02

5 ProgPrompt ✗ ✓ GPT3 0.30 ± 0.00 0.65 ± 0.01 0.58 ± 0.02

6 ProgPrompt ✗ ✗ GPT3 0.18 ± 0.04 0.68 ± 0.01 0.42 ± 0.02

7 LangPrompt – – GPT3 0.00 ± 0.00 0.36 ± 0.00 0.42 ± 0.02

8 Baseline from Huang et al. GPT3 0.00 ± 0.00 0.45 ± 0.03 0.21 ± 0.03

ProgPrompt uses 3 fixed example programs, except the Davinci backbone which can fit only 2 in the available API. Huang et al. (2022a) use
1 dynamically selected example, as described in their paper. LangPrompt uses 3 natural language text examples. Best performing model with
a GPT3 backbone is shown in italic (used for our ablation studies); best performing model overall shown in bold. ProgPrompt significantly
outperforms the baseline Huang et al. (2022a) and LangPrompt. We also showcase how each ProgPrompt feature adds to the performance of
the method

Table 2 ProgPrompt

performance on the VH
test-time tasks and their ground
truth actions sequence lengths
|A|

Task desc |A| SR Exec GCR

watch tv 3 0.20 ± 0.40 0.42 ± 0.13 0.63 ± 0.28

turn off light 3 0.40 ± 0.49 1.00 ± 0.00 0.65 ± 0.30

brush teeth 8 0.80 ± 0.40 0.74 ± 0.09 0.87 ± 0.26

throw away apple 8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

make toast 8 0.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.33

eat chips on the sofa 5 0.00 ± 0.00 0.40 ± 0.00 0.53 ± 0.09

put salmon in the fridge 8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

wash the plate 18 0.00 ± 0.00 0.97 ± 0.04 0.48 ± 0.11

bring coffeepot and cupcake to the coffee table 8 0.00 ± 0.00 1.00 ± 0.00 0.52 ± 0.14

microwave salmon 11 0.00 ± 0.00 0.76 ± 0.13 0.24 ± 0.09

Avg: 0 ≤ |A| ≤ 5 0.20 ± 0.40 0.61 ± 0.29 0.60 ± 0.25

Avg: 6 ≤ |A| ≤ 10 0.60 ± 0.50 0.95 ± 0.11 0.79 ± 0.29

Avg: 11 ≤ |A| ≤ 18 0.00 ± 0.00 0.87 ± 0.14 0.36 ± 0.16

generated plan, divided by the number of task-specific goal-
conditions; SR= 1 only if GCR= 1.

5 Results

We show that ProgPrompt is an effective method for
prompting LLMs to generate task plans for both virtual and
physical agents.

5.1 Virtual experiment results

Table 1 summarizes the performance of our task plan gen-
eration and execution system in the seen environment of
VirtualHome. We utilize a GPT3 as a language model back-
bone to receive ProgPrompt prompts and generate plans.

Each result is averaged over 5 runs in a single VH envi-
ronment across 10 tasks. The variability in performance
across runs arises from sampling LLM output. We include
3 Pythonic task plan examples per prompt after evaluating
performance on VH for between 1 prompt and 7 prompts
and finding that 2 or more prompts result in roughly equal
performance for GPT3. The plan examples are fixed to be:
“put the wine glass in the kitchen cabinet”, “throw away the
lime”, and “wash mug”.

We also include results on the recent GPT4 backbone.
Unlike the GPT3 language model,GPT4 is a chat-bot model
trained with reinforcement learning with human feedback
(RLHF) to act as a helpful digital assistant OpenAI (2023).
GPT4 takes as input a systemprompt followedbyoneormore
user prompts. Instead of simply auto-completing the code
in the prompt, GPT4 interprets user prompts as questions

123

Autonomous Robots (2023) 47:999–1012 1005

and generates answers as an assistant. To make GPT4 auto-
complete our prompt, we used the following system prompt:
You are a helpful assistant.. The user prompt is the same
fprompt as shown in Fig. 2.
We can draw several conclusions from Table 1. First,

ProgPrompt (rows 3–6) outperforms prior work (Huang
et al., 2022a) (row 8) by a substantial margin on all metrics
using the same large language model backbone. Second, we
observe that the Codex (Chen et al., 2021) and Davinci

models (Brown et al., 2020)—themselves GPT3 variants—
show mixed success at the task. In particular, Davinci, the
original GPT3 version, does not match base GPT3 perfor-
mance (row 2 versus row 3), possibly because its prompt
length constraints limit it to 2 task examples versus the 3
available to other rows. Additionally, Codex exceeds GPT3
performance on every metric (row 1 versus row 3), likely
because Codex is explicitly trained on programming lan-
guage data. However, Codex has limited access in terms of
number of queries per minute, so we continue to use GPT3
as our main LLM backbone in the following ablation experi-
ments. Our recommendation to the community is to utilize a
program-like prompt for LLM-based task planning and exe-
cution, for which baseGPT3works well, and we note that an
LLMfine-tuned further on programming language data, such
as Codex, can do even better. We additionally report results
onDavinci- 003 andGPT4 (row *), which is the latest GPT3
variant and the latest GPT variant in the series respectively
at the time of this submission. Davinci- 003 has a better SR
and GCR, indicating it might have an improved common-
sense understanding, but lower Exec compared to Codex.
The newest model, GPT- 4 does not seem to be better than
latest GPT3 variant, on our tasks. Most of our results use
the Davinci- 002 variant (that we refer to as GPT3 in this
paper), which was the latest model available when this study
was conducted.

We explore several ablations of ProgPrompt. First, we
find that Feedback mechanisms in the example programs,
namely the assertions and recovery actions, improve perfor-
mance (rows 3 versus 4 and 5 versus 6) across metrics, the
sole exception being that Exec improves a bit without Feed-
back when there are no Comments in the prompt example
code. Second, we observe that removing Comments from
the prompt code substantially reduces performance on all
metrics (rows 3 versus 5 and 4 versus 6), highlighting the
usefulness of the natural language guidance within the pro-
gramming language structure.

We also evaluate LangPrompt, an alternative to Prog-

Prompt that builds prompts from natural language text
description of objects available and example task plans
(row 7). LangPrompt is similar to the prompts built
by Huang et al. (2022a). The outputs of LangPrompt

are generated action sequences, rather than our proposed,
program-like structures. Thus, we finetune GPT2 to learn a

Table 3 ProgPrompt results onVirtualHome in additional scenes.We
evaluate on 10 tasks each in two additional VH scenes beyond scene
Env- 0 where other reported results take place

VH scene SR Exec GCR

Env- 0 0.34 ± 0.08 0.84 ± 0.01 0.65 ± 0.05

Env- 1 0.56 ± 0.08 0.85 ± 0.02 0.81 ± 0.07

Env- 2 0.56 ± 0.05 0.85 ± 0.03 0.72 ± 0.09

Average 0.48 ± 0.13 0.85 ± 0.02 0.73 ± 0.10

policy P(at |st ,GPT3 step, a1:t−1) to map those generated
sequences to executable actions in the simulation environ-
ment. We use the 35 tasks in the training set, and annotate
the text steps and the corresponding action sequence to get
400 data points for training and validation of this policy. We
find that while this method achieves reasonable partial suc-
cess through GCR, it does not match (Huang et al., 2022a)
for program executability Exec and does not generate any
fully successful task executions.
Task-by-Task Performance ProgPrompt performance for
each task in the test set is shown in Table 2. We observe
that tasks that are similar to prompt examples, such as throw
away apple versus wash the plate have higher GCR since
the ground truth prompt examples hint about good stop-
ping points. Even with high Exec, some task GCR are low,
because some tasks havemultiple appropriate goal states, but
we only evaluate against a single “true” goal. For example,
after microwaving and plating salmon, the agent may put the
salmon on a table or a countertop.
Other Environments We evaluate ProgPrompt in two
additional VH environments (Table 3). For each, we append
a new object list representing the new environment after the
example tasks in the prompt, followed by the task to be com-
pleted in the new scene. The action primitives and other
ProgPrompt settings remain unchanged.We evaluate on 10
tasks with 5 runs each. For new tasks like wash the cutlery in
dishwasher, ProgPrompt is able to infer that cutlery refers
to spoons and forks in the new scenes, despite that cutlery
always refers to knives in example prompts.

5.2 Qualitative analysis and limitations

Wemanually inspect generated programs and their execution
traces from ProgPrompt and characterize common fail-
ure modes. Many failures stem from the decision to make
ProgPrompt agnostic to the deployed environment and its
peculiarities, which may be resolved through explicitly com-
municating, for example, object affordances of the target
environment as part of the ProgPrompt prompt.

• Environment artifacts: the VH agent cannot find or inter-
act with objects nearby when sitting, and some

123

1006 Autonomous Robots (2023) 47:999–1012

Fig. 4 Robot plan execution rollout example on the sorting task show-
ing relevant objects banana, strawberry, bottle, plate and box, and a
distractor object drill. The LLM recognizes that banana and straw-

berry are fruits, and generates plan steps to place them on the plate,
while placing the bottle in the box. The LLM ignores the distractor
object drill. See Fig. 1 for the prompt structure used

common sense actions for objects, such as open tvs-
tand’s cabinets, are not available in VH.

• Environment complexities: when an object is not acces-
sible, the generated assertions might not be enough. For
example, if the agent finds an object in a cabinet, it may
not plan to open the cabinet to grab the object.

• Action success feedback is not provided to the agent,
which may lead to failure of the subsequent actions.
Assertion recovery modules in the plan can help, but
aren’t generated to cover all possibilities.

• Incomplete generation: Some plans are cut short by LLM
API caps. One possibility is to query the LLM again with
the prompt and partially generated plan.

In addition to these failure modes, our strict final state
checking means if the agent completes the task and some,
we may infer failure, because the environment goal state will
not match our precomputed ground truth final goal state. For
example, after making coffee, the agent may take the cof-
feepot to another table. Similarly, some task descriptions are
ambiguous and have multiple plausible correct programs.
For example, “make dinner” can have multiple possible
solutions. ProgPrompt generates plans that cooks salmon
using the fryingpan and stove, and sometimes the agent adds
bellpepper or lime, or sometimeswith a side of fruit, or served
in a plate with cutlery. When run in a different VH environ-
ment, the agent cooks chicken instead. ProgPrompt is able
to generate plans for such complex tasks as well while using
the objects available in the scene and not explicitly men-
tioned in the task. However, automated evaluation of such
tasks requires enumerating all valid and invalid possibilities
or introducing human verification.

Furthermore, we note that while the reasoning capabilities
of current state LLMs are impressive, our proposed method
does not make any claims of providing guarantees. However,
the evaluations reported in Table 1 offer insights into the
capabilities of different LLMswithin our task settings.While
our method effectively prevents the LLM from generating
unavailable actions or objects, it is worth acknowledging that
depending on the LLM’s generation quality and reasoning
capabilities, there is still a possibility of hallucination.

Table 4 Results on the physical robot by task type

Task description Distractors SR Plan SR GCR

put the banana in the bowl 0 1 1 1/1

4 1 1 1/1

put the pear on the plate 0 1 1 1/1

4 1 1 1/1

put the banana on the plate 0 1 1 2/2

and the pear in the bowl 3 1 1 2/2

sort the fruits on the plate 0 0 1 2/3

and the bottles in the box 1 1 1 3/3

2 0 0 2/3

5.3 Physical robot results

The physical robot results are shown in Table 4. We evaluate
on 4 tasks of increasing difficulty listed in Table 4. For each
task we perform two experiments: one in a scene that only
contains the necessary objects, andwith one to four distractor
objects added.

All results shown use ProgPrompt with comments, but
not feedback. Our physical robot setup did not allow reliably
tracking system state and checking assertions, and is prone
to random failures due to things like grasps slipping. The
real world introduces randomness that complicates a quan-
titative comparison between systems. Therefore, we intend
the physical results to serve as a qualitative demonstration
of the ease with which our prompting approach allows con-
straining and grounding LLM-generated plans to a physical
robot system. We report an additional metric Plan SR, which
refers to whether the plan would have likely succeeded, pro-
vided successful pick-and-place execution without gripper
failures.

Across tasks, with and without distractor objects, the sys-
tem almost always succeeds, failing only on the sort task.
The run without distractors failed due to a random gripper
failure. The run with 2 distractors failed because the model
mistakenly considered a soup can to be a bottle. The exe-

123

Autonomous Robots (2023) 47:999–1012 1007

cutability for the generated plans was always Exec=1. An
execution rollout example is illustrated in Fig. 4.

After this studywas conducted, we re-attempted plan gen-
eration of the failed plan withGPT- 4, using the same system
prompt as in Sect. 5.1. GPT- 4 was able to successfully pre-
dict the correct plan and not confuse the soup can for a bottle.

6 Conclusions and future work

We present an LLM prompting scheme for robot task
planning that brings together the two strengths of LLMs:
commonsense reasoning and code understanding. We con-
struct prompts that include situated understanding of the
world and robot capabilities, enabling LLMs to directly gen-
erate executable plans as programs. Our experiments show
that ProgPrompt programming language features improve
task performance across a range of metrics. Our method is
intuitive and flexible, and generalizes widely to new scenes,
agents and tasks, including a real-robot deployment.

As a community, we are only scratching the surface of task
planning as robot plan generation and completion.Wehope to
study broader use of programming language features, includ-
ing real-valued numbers to represent measurements, nested
dictionaries to represent scene graphs, and more complex
control flow. Several works from the NLP community show
that LLMs can do arithmetic and understand numbers, yet
their capabilities for complex robot behavior generation are
still relatively under-explored.

7 FAQs and discussion

Question 1 How does this approach compare with end-
to-end robot learning models, and what are the current
limitations?

ProgPrompt is a hierarchical solution to task planning
where the abstract task descriptions leverage LLM’s reason-
ing and maps the task plan to the grounded environment
labels. On the other hand, in end-to-end approaches, gen-
erally the model implicitly learns reasoning, planning, and
grounding, while mapping the abstract task description to the
action space directly.

Pros:

• LLMs can do long-horizon planning froman abstract task
description.

• Decoupling the LLM planner from the environment
makes generalization to new tasks and environments fea-
sible.

• ProgPrompt enables LLMs to intelligently combine the
robot capabilities with the environment and their own

reasoning ability to generate an executable and valid task
plan.

• The precondition checking helps recover from some fail-
ure modes that can happen if actions are generated in the
wrong order or are missed by the base plan.

Cons:

• Requires action space discretization, formalization of
environments and objects.

• Plan generation is open-loop,with commonsense precon-
dition checking-based environment interaction.

• Plan generation doesn’t consider low-level continuous
aspects of the environment state, and only reasons with
the semantic state for planning as well as precondition
checking.

• The amount of information exchange between language
models and other modules such as the robot’s perceptual
or proprioceptive state encoders is limited, since API-
based access to these recent LLMs only allows textual
queries. However, this is still promising as it indicates
the need for a multimodal encoder that can work with
input such as vision, touch, force, temperature, etc.

Question 2 How does it compare with the concurrent work:
Code-as-Policies (CaP) (Liang et al., 2023)?

• We believe that the general approach is quite similar to
ours. CaP defines Hints and Examples which may corre-
spond to Imports/Object lists and Task Plan examples in
ProgPrompt .

• CaP uses actions as API calls with certain parameters for
the calls such as robot arm pose, velocity, etc. We use
actions as API calls with objects as parameters.

• CaP uses APIs to obtain environment information as
well, like object pose or segmentation, for the pur-
pose of plan generation. However, ProgPrompt extracts
environment information via precondition checking on
current environment state, to ensure plan executability.
ProgPrompt also generates the prompt conditioned on
information from perception models.

Question 3 During “PROMPT for State Feedback”, it seems
that the prompt already includes all information about the
environment state. Is it necessary to prompt the LLM again for
the assertion (compared to a simple rule-based algorithm)?

• The environment state input to the model is not the full
state for brevity. Thus, checking pre-conditions with the
full state separately helps, as shown in Table 1.

• The environment state could change during execution.

123

1008 Autonomous Robots (2023) 47:999–1012

• Using LLM as opposed to a rule-based algorithm is a
design choice made to keep the approach more general,
instead of using a hand-coded rule-based algorithm. The
assertion checking may also be replaced with a visual
state conditioned module, when a semantic state is not
available, such as in the real-world scenario. However,
we leave these aspects to be addressed in future research.

Question 4 Is it possible that the generated code might lead
the robot to be stuck in an infinite loop?

LLM code generation could lead to loops by predicting
the same actions repeatedly as a generation artifact. LLMs
used to suffer from such degeneration, but with latest LLMs
(i.e. GPT-3) we have not encountered it at all.

Question 5 Why are real-robot experiments simpler than vir-
tual experiments?

The real-robot experiments were done as a demonstration
of the approach on a real-robot, while studying the method
in depth in a virtual simulator, for the sake of simplicity and
efficiency.

Question 6 What’s the difference between various GPT3
model versions used in this project?

We name GPT3, which is the latest available version of
GPT3 model on OpenAI at the time the paper was written:
text- davinci- 002. We name davinci as the original ver-
sion of GPT3 released: text- davinci.2

Question 7 Why not a planning language like PDDL (or
other planning languages) be used to construct Prog-

Prompt? Any advantages of using a pythonic structure?

• GPT-3 has been trained on data from the internet. There
is a lot of python code on the internet, while PDDL is a
language of much more narrow interest. Thus, we expect
the LLM to better understand python syntax.

• Python is a general purpose language, so it has more
features than PDDL. Furthermore,wewant to avoid spec-
ifying the full planning domain, instead relying on the
knowledge learned by the LLM to make common-sense
inferences. A recent work Xie et al. (2023b) uses LLMs
to generate PDDL goals, however, it requires full domain
specification for a given environment.

• Python is an accessible language that a larger community
is familiar with.

Question 8 How to handle multiple instances of the same
object type in the scene?

2 More info on GPT3 models variations and naming can be found here:
https://platform.openai.com/docs/models/overview

ProgPrompt doesn’t tackle the issue, however, Xie et al.
(2023b) shows thatmultiple instances of the same objects can
be handled by using labels with object IDs such as “book_1,
book_2”.

Question 9 Why doesn’t the paper compare the performance
of the proposed method to InnerMonologue, SAYCAN, or
Socratic models?

At the time of writing, the dataset or model from the
above papers were not public. However, we do compare with
a proxy approach, similar in underlying idea to the above
approaches, in the VirtualHome environment. LangPlan in
our baselines, uses GPT3 to get textual plan steps, which are
then executed using a GPT-2 based trained policy.

Question 10 So the next step in this direction of research is
to create highly structured inputs and outputs that could be
compiled, since eventually we want something that compiles
on robotic machines?

The disconnect and information bottleneck between LLM
planning module and skill execution module might make it
less concrete on “howmuch” and “what” information should
be passed through the LLM during planning. That said, we
think that this would be an interesting direction to pursue and
test the limits ofLLM’shighly structured input understanding
and generation.

Question 11 How does it compare to a classical planner?

• Classical planners require concrete goal condition speci-
fication.AnLLMplanner reasons out a feasible goal state
from a high level task description, such as “microwave
salmon”. From a user’s perspective, it is desirable to not
have to specify a concrete semantic goal state of the envi-
ronment and just be able to give an instruction to act on.

• The search space would also be huge without common
sense priors that an LLM planner leverages as opposed
to a classical planner. Moreover, we also bypass the need
to specify the domain knowledge needed for the search
to roll out.

• Moreover, the domain specification and search space will
grow non-linearly with the complexity of the environ-
ment.

Question 12 Is it possible to decouple high-level language
planning from low-level perceptual planning?

It may be feasible to an extent, however we believe that a
clean decoupling might not be “all we need”. For instance,
imagine an agent being stuck at an action that needs to be
resolved at semantic level of reasoning, and probably very
hard for the visual module to figure out. For instance, while
placing a dish on an oven tray, the robot may need to pull the
dish rack out of the oven to be successful in the task.

123

https://platform.openai.com/docs/models/overview

Autonomous Robots (2023) 47:999–1012 1009

Question 13 What are the kinds of failures that can happen
with ProgPrompt-like 2 stage decoupled pipeline?

A few broad failure categories could be:

• Generation of a semantically wrong action.
• Robotmight fail to execute the action at perception/action
/skill level.

• Robot needs to recover from a failure by taking a different
high-level action, i.e., a precondition needs to be satisfied.
The challenge is to identify that precondition from the
current state of the environment and the agent.

Question 14 What are the assumptions made about the
actions used for ProgPrompt?

We assume a set of available action APIs that are imple-
mented on the robot, without assuming the implementation
method (e.g. motion planning or reinforcement learning).
ProgPrompt abstracts over and complements other research
on developing flexible robot skills. This assumption is sim-
ilar to those made in classical TAMP planners, where the
planning space is restricted by the available robot skills.

Question 15 Can the ProgPrompt planner handle more
expressive situations when “the embodied agent has to grasp
an object in a specific way in order to complete an aspect of
the task”?

This is possible, provided the deployed robot is capable of
handling the requested action. For example, one can specify
‘how’ along with ‘what’ parameters for an action as function
arguments, which may be discrete semantic grounded labels
affecting the low-level skill execution, e.g. to select between
different modes of grasping intended for different task pur-
poses. However, it is an open question as to what the right
level of abstraction is between high-level task specification
and continuous control space actions, and the answer might
depend on the application domain.

Author Contributions IS lead the research, conducted experiments, and
drafted the manuscript; VB provided feedback, conducted experiments,
drafted and reviewed the manuscript; JT and AG provided feedback,
drafted and reviewed themanuscript;AM,AG,DX, JT, andDFprovided
feedback and reviewed the manuscript.

Funding Open access funding provided by SCELC, Statewide Califor-
nia Electronic Library Consortium. This project was conducted at and
funded by NVIDIA.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B.,
& Yan, M. (2022). Do as i can, not as i say: Grounding language
in robotic affordances. arXiv.

Akakzia, A., Colas, C., Oudeyer, P. Y., Chetouani, M., & Sigaud, O.
(2021). Grounding language to autonomously-acquired skills via
goal generation. In International conference on learning represen-
tations.

Baier, J. A., Bacchus, F., & McIlraith, S. A. (2007). A heuristic search
approach to planning with temporally extended preferences. In
Proceedings of the 20th international joint conference on artifical
intelligence (pp. 1808–1815). Morgan Kaufmann Publishers Inc.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., & Amodei, D. (2020). Language models are few-shot learners.
arXiv.

Bryce, D., & Kambhampati, S. (2007). A tutorial on planning graph
based reachability heuristics. AI Magazine, 28(1), 47.

Cao, Y., & Lee, C. (2023). Robot behavior-tree-based task generation
with large language models. arXiv preprint arXiv:2302.12927

Capitanelli, A., & Mastrogiovanni, F. (2023). A framework to gen-
erate neurosymbolic pddl-compliant planners. arXiv preprint
arXiv:2303.00438

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J.,
& Zaremba, W. (2021). Evaluating large language models trained
on code. arXiv.

Danielczuk, M., Mousavian, A., Eppner, C.,& Fox, D. (2021). Object
rearrangement using learned implicit collision functions. In IEEE
international conference on robotics and automation (ICRA).

Eysenbach, B., Salakhutdinov, R. R., &Levine, S. (2019). Search on the
replay buffer: Bridging planning and reinforcement learning. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
& R. Garnett (Eds.), Advances in neural information processing
systems (vol. 32). Curran Associates, Inc.

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the
application of theorem proving to problem solving. InProceedings
of the 2nd international joint conference on artificial intelligence
(pp. 608–620). Morgan Kaufmann Publishers Inc.

Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2020). Pddl-
stream: Integrating symbolic planners and blackbox samplers via
optimistic adaptive planning. Proceedings of the International
Conference on Automated Planning and Scheduling, 30(1), 440–
448.

Gu, X., Lin, T. Y., Kuo, W., & Cui, Y. (2022). Open-vocabulary object
detection via vision and language knowledge distillation. In Inter-
national conference on learning representations.

Gupta, T., & Kembhavi, A. (2022). Visual programming: Com-
positional visual reasoning without training. arXiv preprint
arXiv:2211.11559

Helmert, M. (2006). The fast downward planning system. Journal of
Artificial Intelligence Research, 26(1), 191–246.

Hoffmann, J. (2001). Ff: The fast-forward planning system. AI Maga-
zine, 22(3), 57.

Holtzman, A., Buys, J., Du, L., Forbes, M., &Choi, Y. (2020). The curi-
ous case of neural text degeneration. In International conference
on learning representations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2302.12927
http://arxiv.org/abs/2303.00438
http://arxiv.org/abs/2211.11559

1010 Autonomous Robots (2023) 47:999–1012

Huang, W., Abbeel, P., Pathak, D., & Mordatch, I. (2022). Language
models as zero-shot planners: Extracting actionable knowledge for
embodied agents. arXiv preprint arXiv:2201.07207

Huang,W., Xia, F., Shah, D., Driess, D., Zeng, A., Lu, Y., others (2023).
Grounded decoding: Guiding text generation with grounded mod-
els for robot control. arXiv preprint arXiv:2303.00855

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., & Ichter,
B. (2022). Inner monologue: Embodied reasoning through plan-
ning with language models. arxiv preprint arxiv:2207.05608.

Jansen, P. (2020). Visually-grounded planning without vision: Lan-
guage models infer detailed plans from high-level instructions. In
Findings of the association for computational linguistics: Emnlp
2020 (pp. 4412–4417). Online: Association for Computational
Linguistics.

Jiang, Y., Gu, S. S., Murphy, K. P., & Finn, C. (2019). Language as
an abstraction for hierarchical deep reinforcement learning. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
& R. Garnett (Eds.), Advances in neural information processing
systems. (vol. 32). Curran Associates, Inc.

Jiang, Y., Zhang, S., Khandelwal, P., & Stone, P. (2018). Task planning
in robotics: An empirical comparison of pddl-based and asp-based
systems. arXiv.

Kurutach, T., Tamar, A., Yang, G., Russell, S. J., & Abbeel, P. (2018).
Learning plannable representations with causal infogan. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, &
R. Garnett (Eds.), Advances in neural information processing sys-
tems (vol. 31). Curran Associates, Inc.

Li, S., Puig, X., Paxton, C., Du, Y., Wang, C., Fan, L., & Zhu,
Y. (2022). Pre-trained language models for interactive decision-
making. arXiv.

Liang, J., Huang,W., Xia, F., Xu, P., Hausman,K., Ichter, B.,&Zeng,A.
(2023). Code as policies: Language model programs for embodied
control.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021).
Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. arXiv.

Luong, T., Pham, H., & Manning, C. D. (2015). Effective approaches
to attention-based neural machine translation. In Proceedings of
the 2015 conference on empirical methods in natural language
processing (pp. 1412–1421). Association for Computational Lin-
guistics.

Mai, J., Chen, J., Li, B., Qian, G., Elhoseiny, M., & Ghanem, B. (2023).
Llm as a robotic brain: Unifying egocentric memory and control.
arXiv preprint arXiv:2304.09349

Mirchandani, S., Karamcheti, S.,&Sadigh,D. (2021). Ella: Exploration
through learned language abstraction. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P. Liang, J. W. Vaughan (Eds.), Advances in
neural information processing systems (vol. 34, pp. 29529–29540).
Curran Associates, Inc.

Nair, S., & Finn, C. (2020). Hierarchical foresight: Self-supervised
learning of long-horizon tasks via visual subgoal generation. In
International conference on learning representations.

OpenAI (2023). Gpt-4 technical report. arXiv.
Patel, R., & Pavlick, E. (2022). Mapping language models to grounded

conceptual spaces. In International conference on learning repre-
sentations.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., & Tor-
ralba, A. (2018). Virtualhome: Simulating household activities via
programs. In 2018 IEEE/cvf conference on computer vision and
pattern recognition (pp. 8494–8502).

Shah,D., Toshev,A.T., Levine, S.,&brian ichter. (2022).Value function
spaces: Skill-centric state abstractions for long-horizon reasoning.
In International conference on learning representations.

Sharma, P., Torralba, A., & Andreas, J. (2022). Skill induction and
planning with latent language. In Proceedings of the 60th annual
meeting of the association for computational linguistics (volume

1: Long papers) (pp. 1713–1726). Association for Computational
Linguistics.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi,
R., & Fox, D. (2020). ALFRED: A Benchmark for Interpreting
Grounded Instructions for Everyday Tasks. In The IEEE confer-
ence on computer vision and pattern recognition (cvpr).

Silver, T., Chitnis, R., Kumar, N., McClinton, W., Lozano-Perez, T.,
Kaelbling, L. P., &Tenenbaum, J. (2022). Inventing relational state
and action abstractions for effective and efficient bilevel planning.
In The multi-disciplinary conference on reinforcement learning
and decision making (rldm).

Skreta, M., Yoshikawa, N., Arellano-Rubach, S., Ji, Z., Kristensen, L.
B., Darvish, K., & Garg, A. (2023). Errors are useful prompts:
Instruction guided task programming with verifier-assisted itera-
tive prompting. arXiv preprint arXiv:2303.14100

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., & Finn, C. (2018). Uni-
versal planning networks: Learning generalizable representations
for visuomotor control. In J. Dy, & A. Krause (Eds.), Proceedings
of the 35th international conference on machine learning (vol. 80,
pp. 4732–4741). PMLR.

Sundermeyer, M., Mousavian, A., Triebel, R., & Fox, D. (2021).
Contact-graspnet: Efficient 6-dof grasp generation in cluttered
scenes. In 2021 IEEE international conference on robotics and
automation (icra) (pp. 13438–13444).

Vemprala, S., Bonatti, R., Bucker, A., & Kapoor, A. (2023). Chatgpt
for robotics: Design principles and model abilities. 2023

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., &
Zhou, D. (2022). Chain of thought prompting elicits reasoning in
large language models. arXiv.

Wiseman, S., Shieber, S., & Rush, A. (2017). Challenges in data-
to-document generation. In Proceedings of the 2017 conference
on empirical methods in natural language processing (pp. 2253–
2263). Association for Computational Linguistics.

Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., & Soh, H. (2023a). Translating
natural language to planning goals with large-language models.
arXiv preprint arXiv:2302.05128

Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., &Soh,H. (2023b). Translating
natural language to planning goals with large-language models.

Xu, D., Martín-Martín, R., Huang, D. A., Zhu, Y., Savarese, S., & Fei-
Fei, L. F. (2019). Regression planning networks. In H.Wallach, H.
Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, &R. Garnett
(Eds.), Advances in neural information processing systems (vol.
32). Curran Associates, Inc.

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., & Savarese, S.
(2018). Neural task programming: Learning to generalize across
hierarchical tasks. In 2018 IEEE international conference on
robotics and automation (icra) (pp. 3795–3802).

Zeng, A., Attarian, M., Ichter, B., Choromanski, K., Wong, A., Welker,
S., & Florence, P. (2022). Socratic models: Composing zero-shot
multimodal reasoning with language. arXiv

Zhu, Y., Tremblay, J., Birchfield, S., & Zhu, Y. (2020). Hierarchical
planning for long-horizon manipulation with geometric and sym-
bolic scene graphs. arXiv.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2303.00855
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2304.09349
http://arxiv.org/abs/2303.14100
http://arxiv.org/abs/2302.05128

Autonomous Robots (2023) 47:999–1012 1011

Ishika Singh is a 3rd year PhD
student advised by Professor Jesse
Thomason in the Computer Sci-
ence department at the Univer-
sity of Southern California. Her
research focuses on problems in
language-conditioned robot learn-
ing such as vision-language nav-
igation, manipulation and task plan-
ning. Previously, she was an under-
grad at IIT Kanpur.

Valts Blukis is a research scien-
tist at NVIDIA. His research goal
is creating scalable and generaliz-
able machine learning algorithms
and models that enable robots to
interact with people through nat-
ural language while observing the
unstructured world through first-
person sensor observations. He received
his PhD from Cornell University
and Cornell Tech.

Arsalan Mousavian s a senior
research scientist at NVIDIA Seat-
tle Robotics Lab. He is interested
in using computer vision and 3D
vision for robotics tasks such as
object manipulation. Prior to NVIDIA,
he finished his PhD in the Com-
puter Science department at George
Mason University.

Ankit Goyal is a Research Scientist
in Robotics at NVIDIA. He did
his Ph.D. in Computer Science
at Princeton University. I com-
pleted Masters from University of
Michigan and Bachelors from IIT
Kanpur. He is interested in under-
standing various aspects of intel-
ligence, especially reasoning and
common sense. In particular, he
wants to develop computation mod-
els for various reasoning skills
that humans possess.

Danfei Xu is an Assistant Pro-
fessor at the School of Interac-
tive Computing at Georgia Tech
and a (part-time) Research Sci-
entist at NVIDIA AI. His cur-
rent research focuses on visuo-
motor skill learning, long-horizon
manipulation planning, and data-
driven approaches to human-robot
collaboration. He received his Ph.D.
in CS from Stanford University.

Jonathan Tremblay is a research
scientist at NVIDIA. His research
interests are in computer vision,
synthetic data, and reinforcement
learning for robotics applications.
At NVIDIA, Jonathan has focused
on using synthetic data to train
object detectors, object pose esti-
mation, few shot learning, etc. Jonathan’s
goal is to create robust and acces-
sible computer vision systems for
roboticists to use on their sys-
tem. Prior to joining NVIDIA,
Jonathan received Ph.D. in com-
puter science from McGill Uni-

versity.

Dieter Fox is Senior Director of
Robotics Research at Nvidia. His
research is in robotics, with strong
connections to artificial intelligence,
computer vision, and machine learn-
ing. He is currently on partial
leave from the University of Wash-
ington, where he is a Professor
in the Paul G. Allen School of
Computer Science & Engineer-
ing. At UW, he also heads the
UW Robotics and State Estima-
tion Lab. From 2009 to 2011, he
was Director of the Intel Research
Labs Seattle. Dieter obtained his

Ph.D. from the University of Bonn, Germany.

Jesse Thomason is an Assis-
tant Professor at USC leading the
Grounding Language in Multimodal
Observations, Actions, and Robots
(GLAMOR) lab. GLAMOR brings
together natural language process-
ing and robotics (RoboNLP). Jesse
joined USC in 2021 and received
his PhD from the University of
Texas at Austin in 2018.

123

1012 Autonomous Robots (2023) 47:999–1012

Animesh Garg is an Stephen
Fleming Early Career Professor
in Computer Science at Georgia
Tech. Previously, he was an Assis-
tant Professor of Computer Sci-
ence at University of Toronto and
a Faculty Member at the Vector
Institute. He is also a Sr. Research
Scientist at Nvidia. He earned his
Ph.D. in Operations Research from
UC Berkeley and postdoc at Stan-
ford. His group focuses on multi-
modal object-centric and spatiotem-
poral event representations, self-
supervised pre-training for rein-

forcement learning & control, principle of efficient dexterous skill
learning.

123

	ProgPrompt: program generation for situated robot task planning using large language models
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Task planning
	2.2 Planning with LLMs
	2.3 Recent developments following ProgPrompt

	3 Our method: ProgPrompt
	3.1 Representing robot plans as pythonic functions
	3.2 Constructing programming language prompts
	3.3 Task plan generation and execution

	4 Experiments
	4.1 Simulation experiments
	4.2 Real-robot experiments
	4.3 Evaluation metrics

	5 Results
	5.1 Virtual experiment results
	5.2 Qualitative analysis and limitations
	5.3 Physical robot results

	6 Conclusions and future work
	7 FAQs and discussion
	References

