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Abstract
Training language-conditioned policies is typically time-consuming and resource-intensive. Additionally, the resulting con-
trollers are tailored to the specific robot they were trained on, making it difficult to transfer them to other robots with different
dynamics. To address these challenges, we propose a new approach called Hierarchical Modularity, which enables more
efficient training and subsequent transfer of such policies across different types of robots. The approach incorporates Super-
vised Attention which bridges the gap between modular and end-to-end learning by enabling the re-use of functional building
blocks. In this contribution, we build upon our previous work, showcasing the extended utilities and improved performance by
expanding the hierarchy to include new tasks and introducing an automated pipeline for synthesizing a large quantity of novel
objects. We demonstrate the effectiveness of this approach through extensive simulated and real-world robot manipulation
experiments.

Keywords Language-conditioned learning · Attention · Imitation · Modularity

1 Introduction

The word robot was introduced and popularized in the Czech
play, “Rossum’s Universal Robots”, also known as R.U.R.
In this seminal piece of theatre, robots understand and carry
out a variety of verbal human instructions. Roboticists and
AI researchers have long been striving to create machines
with such an ability to turn natural language instructions into
physical actions in the real world (Jang et al., 2022; Step-
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puttis et al., 2020; Lynch and Sermanet, 2021; Ahn et al.,
2022; Shridhar et al., 2021). However, this task requires
robots to interpret instructions in the current situational and
behavioral context in order to accurately reflect the inten-
tions of the human partner. Achieving such inference and
decision-making capabilities demands a deep integration of
multiple data modalities—specifically, the intersection of
vision, language, and motion. Language-conditioned imita-
tion learning (Lynch and Sermanet, 2021; Stepputtis et al.,
2020) is a technique that can help address these challenges
by jointly learning perception, language understanding, and
control in an end-to-end fashion.

However, a significant drawback of this approach is that,
once trained, these language-conditioned policies are only
applicable to the specific robot they were trained on. This is
because end-to-end policies are monolithic in nature, which
means that robot-specific aspects of the task, such as kine-
matic structure or visual appearance, cannot be individually
targeted and adjusted.While it is possible to retrain the policy
on a new robot, this comes with the risk of catastrophic for-
getting and substantial computational overhead. Similarly,
adding a new aspect, behaviors, or elements to the task may
also require a complete retraining.

This paper tackles the problem of creating modular
language-conditioned robot policies that canbe re-structured,
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Fig. 1 Our proposed method demonstrates high performance on a vari-
ety of tasks. It is able to transfer to new robots in a data-efficient manner,
while still keeping a high execution performance. It also accepts adding

new behaviors to an existing trained policy. Besides them, we also
demonstrate the ability to learn relational tasks, where there are two
objects involved in the same sentence

extended and selectively retrained. Figure 1, depicts a set of
scenarios that we want to address in this paper. For exam-
ple, we envision an approach which allows for the efficient
repurposing and transfer of a policy to a new robot. We also
envision situations in which a new behavior may be added
to an existing policy, e.g., incorporating obstacle avoidance
into an existing motion primitive. Similarly, we envision
situations in which the type of behavior is changed by incor-
porating additional modules into a policy, e.g., following
human instructions that define a relationship between multi-
ple objects, such as, “Put the apple left of the orange!”.

However, the considered modularity is at odds with the
monolithic nature of end-to-end deep learning. To overcome
this challenge, the paper proposes an attention-basedmethod-
ology for learning reusable building blocks, or modules, that
realize specialized sub-tasks. In particular, we discuss super-
vised attention which allows the user to guide the training
process by focusing the attention of a sub-network (or mod-
ule) on certain input–output variables. By imposing a specific
locus of attention, individual sub-modules can be guided to
realize an intended target functionality.Another contribution,
called hierarchical modularity, is a training regime inspired
by curriculum learning that aims to decompose the over-
all learning process into individual subtasks. This approach
enables neural networks to be trained in a structured fashion,
maintaining a degree of modularity and compositionality.

Our contributions can be summarize and extend our prior
work in Zhou et al. (2022) as follows: (1) we propose a
sample-efficient approach for training language-conditioned
manipulation policies that allows for rapid transfer across
different types of robots; (2) we introduce a novel method,
which is based on two components called hierarchical mod-
ularity and supervised attention, that bridges the divide
between modular and end-to-end learning and enables the
reuse of functional building blocks; (3) we demonstrate that
our method outperforms the current state-of-the-art methods

[BC-Z (Jang et al., 2022) and LP (Stepputtis et al., 2020)]; (4)
we extend the methodology by creating more complex tasks
that incorporate obstacle avoidance and relational instruction
following. Finally, we also perform an extensive number of
experiments that shed light on generalization properties of
the our methodology from different angles, e.g., dealing with
occlusions, synonyms, variable objects, etc (Fig. 1).

2 Preamble: how generative AI helped write
the paper

This paper largely centers around the training of generative
models at the intersection of vision, language and robot con-
trol. Besides being the topic of the paper, generative models
have also been instrumental in writing this paper. In partic-
ular, we incorporated such techniques into both (a) the text
editing process when writing the manuscript, as well as (b)
the process of generating 3D models and textures of manip-
ulated objects.

For text editing, we utilizedGPT-4 (OpenAI, 2023) to iter-
atively revise and refine our initial drafts, ensuring improved
readability and clarity of the concepts discussed.Weachieved
this by conducting prompt engineering and formulating a
specific prompt as follows:

“Now you are a professor at a top university, studying
computer science, robotics and artificial intelligence. Could
you please help me rewrite the following text so that it is
of high quality, clear, easy to read, well written and can be
published in a top level journal? Some of the paragraphs
might lack critical information. If you notice that, could you
please let me know? Let’s do back and forth discussions on
the writing and refine the writing.”

We initiate each conversation with this impersonation
prompt, followed by our draft text. GPT-4 then returns a
revised version of the text, ensuring the semantics remained
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Fig. 2 Using generative models to automatically synthesize an unlimited set of 3D models

unaltered while updating the literary style to incorporate pro-
fessional terminology and wording, as well as a clear logical
flow. This prompt also encourages GPT-4 to solicit feedback
on the revised text, thus facilitating back-and-forth conver-
sations. We manually determine when a piece of writing has
been fine-tuned to a satisfactory degree and bring the con-
versation to a close.

With regard to the generation of 3Dmodels and assets, we
created a new pipeline for automated synthesis of complete
polygonal meshes. Figure 2(top row) depicts the individual
steps of this process. First, we synthesize an image of the
intended asset using latent diffusion models (Rombach et al.,
2022) to produce an image of the required asset. We provide
as input to the model a textual description of the asset, e.g.,
“A front image of an apple and a white background.”. In turn,
the resulting image is fed into a monocular depth-estimation
algorithm (Ranftl et al., 2022) to generate the corresponding
depth map. At this stage, each pixel in the image has both
(1) a corresponding depth value and (2) an associated RGB
texture value. To generate a 3D object, we take a flat mesh
grid of the same resolution as the synthesized RGB image.
We then perform displacement mapping (Zirr and Ritschel,
2019) based on the values present in the depth image. Within
this process, each point of the originally flat grid gets elevated
or depressed according to its depth value. The result is a 3D
model representing the front half of the target object. For the
sake of this paper, we assume a plane symmetry—a feature
that is common among a large number of household objects.
Accordingly, we can mirror the displacement map in order to
yield the occluded part of the object. Finally, we also apply
a Laplacian smoothing operation (Sorkine et al., 2004) on
the final object. Texturing information is retrieved from the
source image. This automated 3D synthesis process allows us

to rapidly generate a potentially infinite number of variants of
an object. This is particularly usefulwhen studying the gener-
alization capabilities of a model. It also completely removes
any 3D modeling or texturing burden. At the moment, the
pipeline is limited to symmetric objects.

3 Related work

Imitation learning offers a straightforward and efficient
method for learning agent actions based on expert demon-
strations (Dillmann andFriedrich, 1996; Schaal, 1999;Argall
et al., 2009). This approach has proven effective in diverse
tasks including helicopter flight (Coates et al., 2009), robot
control (Maeda et al., 2014), and collaborative assembly.
Recent advancements in deep learning have enabled the
acquisition of high-dimensional inputs, such as vision and
language data (Duan et al., 2017a; Zhang et al., 2018a;
Xie et al., 2020)—partially stemming from improvements
in image and video understanding domains (Lu et al., 2019;
Kamath et al., 2021; Chen et al., 2020; Tan and Bansal,
2019; Radford et al., 2021; Dosovitskiy et al., 2021), but
also in language comprehension (Wang et al., 2022; Ouyang
et al., 2022). Specifically, the work presented in Radford
et al. (2021) paved the way for multimodal language and
vision alignment. The generalizability of such large mul-
timodal models (Singh et al., 2022; Alayrac et al., 2022;
Ouyang et al., 2022; Zhu et al., 2023) enables a variety of
downstream tasks, including image captioning (Laina et al.,
2019; Vinyals et al., 2015; Xu et al., 2015), visual ques-
tion answering systems (VQA) (Antol et al., 2015; Johnson
et al., 2017), and multimodal dialog systems (Kottur et al.,
2018; Das et al., 2017). However, most importantly, these
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models have shown their utility when learning language-
conditioned robot policies (Shridhar et al., 2021; Nair et al.,
2022) that conduct a variety of manipulation tasks (Lynch
andSermanet, 2021; Stepputtis et al., 2020; Jang et al., 2022).
Utilizing multimodal inputs for task specification and robot
control (Anderson et al., 2019; Kuo et al., 2020; Rahmati-
zadeh et al., 2018; Duan et al., 2017b; Zhang et al., 2018b;
Abolghasemi et al., 2019; Mees et al., 2022) plays a cru-
cial role, as the environment and verbal instruction needs to
be grounded across modalities. Most notably, BC-Z (Jang
et al., 2022) proposes a large multimodal dataset which is
trained via imitation learning in order to complete a variety of
diverse household tasks. Similar in spirit, LanguagePolicies
(LP) (Stepputtis et al., 2020) learns a language-conditioned
policy to comprehend commands that describes what, where
and how to do a task, but describes the outputs of the policy in
terms of a dynamic motor primitive (DMP) (Schaal, 2006).
Going beyond single instruction following, SayCan (Ahn
et al., 2022) focuses on planning of longer horizon tasks and
incorporates prompt engineering. Most recently, even large
language models have achieved impressive performance on
embodied agents (Vemprala et al., 2023), with a push to gen-
erally capable agents that can play Atari, caption images,
chat, and stack blocks with a real robot arm (Reed et al.,
2022).

While these model achieve impressive performance, they
usually require large quantities of data and are mostly “black
box” approaches that do not lend themselves well to human
interpretation in case the policy behavior is not perform-
ing as desired. A potential solution to this problem that
retains the end-to-end training benefits of deep learning
is the utilization of a modularized approach, allowing the
creation of entire policies from a set of modules that can
afford additional insights into the inference process of the
neural network. Such modularization can be achieved by
introducing auxiliary tasks that have shown to improve pol-
icy performance (Huang et al., 2022). Recent works on
modularity investigate the question of whether “modules
implementing specific functionality emerge” in neural net-
works automatically (Csordás et al., 2021; Filan et al.,
2020). However, in contrast to these emergent modularity
approaches, our prior work (Zhou et al., 2022) introduced
supervised attention, together with a hierarchical learning
regime akin to curriculum learning. Originating in machine
translation (Liu et al., 2016), supervised attention and hier-
archical modularity allow for such functional modules to be
implemented in a top-down manner. In this work, we delve
deeper into the benefits of this approach by investigating how
it can be extended to more complex tasks including obstacle
avoidance and instructions utilizing referential expressions
across tasks that utilize a large qunatity of automatically gen-
erated scene objects.

4 Methodology

In this section, we present our approach for modularity in
language-conditioned robot policies. The main objective of
the approach is to build neural networks out of composable
building blocks which can be reused, retrained and repur-
posed whenever changes to the underlying task occur. A
distinguishing feature of our approach is itsmodular training,
while maintaining end-to-end learning benefits. In particu-
lar, the shift from training individual components to training
the complete network occurs progressively, yet modules can
be trained quickly without requiring gradient propagation
throughout the entire network. Owing to its modularity, πθ

can be transferred to a new robot in a sample-efficient man-
ner. The modular nature of the resulting neural networks also
enables easy introspection into the intermediate computation
steps at runtime.

The introduced methodology builds upon two essential
components, namely supervised attention and hierarchical
modularity—two ingredients that are used in conjunction
to crystallize individual modules within an end-to-end deep
learning system. Subsequently, we first introduce the prob-
lem statement underlying language-conditioned imitation
learning. Thereafter, a detailed description of the training
process is provided. Initially, we focus on efficient training of
language-conditioned policies that can be transferred across
a variety of robots. Thereafter, we shift our focus to the ques-
tion of hownewmodules can be incorporated or howmultiple
modules can be interrelated.

4.1 Problem statement

In Language-Conditioned Imitation Learning (Lynch and
Sermanet, 2021; Stepputtis et al., 2020), the goal is to learn
a policy πθθθ (a | s, I) that can execute a human instruction
while taking into account situational and environmental con-
ditions. The result of the learning process is a deep neural
network parameterized by weight vector θ . Input s is a ver-
bal task instruction provided by a human whereas I is an
image captured by an RGB camera mounted on the robot.
Throughout this paper, policy πθθθ is trained to generate an
action a ∈ R

7 containing the Cartesian position (x, y, z)
and orientation (r , p, y) for the robot end-effector, as well
as a binary label g = {open, closed} indicating the gripper
state. Policies are trained following the imitation learning
paradigm from a dataset D = {d0, . . . , dN } of N expert
demonstrations and corresponding verbal commands. In this
dataset, each demonstration dn represents a sequence with T
steps ((a0, s0, I0), . . . , (aT , sT , IT )). Each step in demon-
stration dn is defined as a tuple (at , st , I t ) containing the
action, language command, and image at time step t . Upon
completion of training, the policy is expected to execute novel
configurations of the task.
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Fig. 3 Overview: different input modalities, i.e., vision, joint angles
and language are fed into a language-conditioned neural network to
produce robot control values. The network is setup and trained in a

modular fashion—individual modules address sub-aspects of the task.
The neural network can efficiently be trained and transferred onto other
robots and environments (e.g. Sim2Real)

4.2 Trainingmodular language-conditioned policies

Our overall method is illustrated in Fig. 3. First, camera
image I is processed togetherwith a natural language instruc-
tion s and the robot’s proprioceptive data (i.e., joint angles)
through modality-specific encoders to generate their respec-
tive embeddings. The resulting embeddings are subsequently
supplied as input tokens to a transformer-style (Vaswani et al.,
2017) neural network consisting of multiple attention lay-
ers. This neural network is responsible for implementing the
overall policyπθ and produces the final robot control signals.

The encoding process ensures that distinct input modal-
ities, e.g., language, vision and motion, can effectively be
integrated within a single model. To that end, Vision Encod-
ings eI = fV (I) are generated using an input image
I ∈ R

H×W×3. Taking inspiration from (Carion et al., 2020;
Locatello et al., 2020), we maintain the original spatial
structure while encoding the image into a sequence of lower-
resolution image tokens. The resolution is reduced via a
convolutional neural network while increasing the number of
channels, yielding eIII ∈ R

(H/s)×(W/s)×d , with s representing
a scaling factor and d denoting the embedding size. Conse-
quently, the low-resolution pixel tokens are transformed into
a sequence of tokens eI ∈ R

Z×d , where Z = (H × W )/s2

through a flattening operation.
By contrast, Language Encodings es = fL(s) ∈ R

1×d

are produced via a pre-trained and fine-tuned CLIP (Radford
et al., 2021) model. Particularly, each instruction s is rep-
resented as a sequence of words [w0, w1, . . . , wn] in which
each word wi ∈ W is a member of vocabulary W . During
training, we employ automatically generated, well-formed
sentences; however, after training, we allow any free-form
verbal instruction that is presented to the model, including
sentences affected by typos or bad grammar. Finally, Joint
Encodings e j = fJ (a) ∈ R

1×d are created by transforming
the current robot state a into a latent representation using
a simple multi-layer perceptron. The main purpose of this

step is to transform the joint representation into a compatible
shape that aligns with the other input embeddings.

4.2.1 Supervised attention

After encoding, the inputs are processed within a single
neural network in order to produce robot control actions.
However, a unique element of our approach is the formation
of semantically meaningful sub-modules during the learn-
ing process. These modules may solve a specific sub-task,
e.g., detecting the robot end-effector or calculating the dis-
tance between the robot and the target object. To achieve this
effect,webuild uponmodern attentionmechanisms (Vaswani
et al., 2017) in order tomanage the flowof informationwithin
attention layers, thereby explicitly guiding the network to
concentrate on essential inputs.

More specifically, we adopt a supervised attention mech-
anism in order to enable user-defined information routing
and the formation of modules within an end-to-end neural
network. The main idea underlying this mechanism is that
information about optimal token pairings may be available
to the user. In other words, if we know which key tokens
are important for the queries to look at, we can treat their
similarity score as a maximization goal. In Fig. 4, we see
the information routing for three modules. The first module
LANG is supposed to identify the target objectwithin the sen-
tence. Hence, the corresponding attention layer is trained to
only focus on the language input. The attention for the robot
joint values and vision input is trained to be zero. In order to
provide the output of this module to the attention layer in the
next level, we use so-called register slots. Register slots are
used to store the output of a module so that it can be accessed
in subsequent modules in the hierarchy. Accordingly, each
module within our method has corresponding register slot
tokens. The role of the register slots is to provide access to
the output of previously executed modules within the hierar-
chy. Coming back to Fig. 4, the secondmodule EE2D locates
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Fig. 4 Different sub-aspects of the tasks are implemented as modules (via supervised attention). LANG identifies the target object. EE2D locates
the robot end-effector

the robot end-effector in the image. Accordingly, the atten-
tion for this module is trained such that the focus is on the
vision and language inputs only. In turn, the result is writ-
ten into the corresponding register slot. The final module in
Fig. 4, DISP, calculates the distance between the end effector
(EE) and the target object (O). Since this module is higher up
in the hierarchy, it accesses the register slots of lower-level
modules as inputs in order to calculate the distance.

Registers serve multiple purposes and can either be used
as inputs to a module, in which case they serve as a learnable
latent embedding, or be used to store the output of a partic-
ular module. An output register of a module is calculated by
utilizing the standard transformer architecture. In particular,
we define a transformer based attention module over queries
(Q), keys (K ), and values (V ), which are subsequently pro-
cessed as follows:

rout = Attn.(Q, K , V ) = softmax

(
QK T

√
dk

)
V (1)

where dk is the dimensionality of the keys. In our use case,
the queries are initialized with either learnable and previ-
ously unused register slots, or with registers that have been
set by modules operating in prior layers, thus encoding their
respective results. Our keys are equivalent to the values and
are initialized with all formal inputs (language, vision, and
joint embeddings) as well as all previously set registers from
prior layers. In contrast to common practice, we control the
information flow when learning each module via our pro-
posed supervised attention, which is a specific optimization
target for attention layers.

As an illustrative example, consider a query identifying the
location of the end-effector, as demonstrated in Fig. 5 (first
key and query combination in the top left) or finding the tar-
get object (key and query combination near the center). For
simplicity, we omit the other formal inputs and only focus
on the visual input. However, the Tar Reg. would also

Fig. 5 Supervised attention example for the second layer of processing
information throughout our overall policy

depend on the language register from the prior LANG mod-
ule. Following common practice, the keys and values derive
from the input image,with each image embedding vector cor-
responding to an image patch (Fig. 5 left). In this particular
example, the EE uses a trainable, previously unused register
as query, while the Tar register utilizes the output register of
the language module to find the correct object (Fig. 5 top).
The EE register is supervised to focus on the robot’s gripper
image patch, thereby creating a sub-module for detecting the
robot end-effector. Similarly, the target register attends to the
target object’s image patch, forming a sub-module respon-
sible for identifying the target object. When these queries
accurately attend to their respective patches, these patches
will primarily contribute to the output register’s embedding
vector, which can then be used as subsequent module inputs.

More formally, wemaximize the similarity between query
qi and key k j if a connection should exist, thus optimizing
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Table 1 Explanation of the
various modules utilized in our
hierarchical attention module

Module Layer Formulation, supervised attention mask, and explanation

LANG 1 rL AN G = fLANG(r0, {es , e j , eI })
Supervised to connect r1 ↔ es

Identify the target object in the user’s language

EE2D 2 rE E2D = fEE2D(r1, {es , e j , eI , rL AN G})
Supervised to connect r2 ↔ eI
Identify the robot’s end-effector in the image patches

TAR2D 2 rT AR2D = fTAR2D(r2, {es , e j , eI , rL AN G})
Supervised to connect rL AN G ↔ eI
Identify visual representation of the target object in the image

EE3D 3 rE E3D = fTAR2D(r3, {es , e j , eI , rL AN G , rE E2D, rT AR2D})
Supervised to connect r3 ↔ e j , rE E2D

Similar to forward kinematics, calculates the end-effector’s 3D position

TAR3D 3 rT AR3D = fTAR3D(r4, {es , e j , eI , rL AN G , rE E2D, rT AR2D})
Supervised to connect r4 ↔ rT AR2D

Identify the robot’s end-effector in 3D space

DISP 4 rDI S P = fDISP(r5, {es , e j , eI , rL AN G , rE E2D, rE E3D, rT AR2D, rT AR3D})
Supervised to connect r5 ↔ rE E3D, rT AR2D

Calculate the displacement between the end-effector and the target object

CTRL 5 rCT RL = fCTRL(r6, {es , e j , eI , rL AN G , rE E2D, rE E3D, rT AR2D, rT AR3D, rDI S P })
Supervised to connect r5 ↔ rE E3D, rT AR3D, rDI S P , es , e j

Calculates the controll signal for the robot

The bold “e” refer to the embeddings as introduced in Sec. 4.2. the bold “r” refers to the registers as introduced
in Equation 1

argmaxθ qi k
T
j . This process is equivalent to maximizing

the corresponding attention map element M i j , where M i =
softmax( Qi K

T√
dk

). Since each element M i j < 1, we mini-
mize the distance between M i j and 1 according to Eq. 2. We
assume that N supervision pairs are provided in a set S, indi-
cating the query and key tokens that should pay attention to
each other. Each pair (i, j) ∈ S contains the indices defining
which queries qi should attend to which corresponding keys
k j . Individual supervision pairs in this set can be addressed
by S(p) = (i p, jp). We then define the cost function for
supervised attention as follows:

L(S) =
N∑

n=0

(
softmax

(
qr k

T
s√

dk

)
− 1

)2

(2)

where (r , s) correspond to the indices held by the n-th super-
vision pair (r , s) = S(n). While Eq. 2 defines the loss as a
minimization problem with a mean squared error loss, other
cost functions such as the cross-entropy (de Boer et al., 2004)
can also be applied, but have empirically resulted in lower
performance.

Fig. 6 Hierarchy of the modules used in our method

4.2.2 Hierarchical modularity

In this section, we describe hierarchical modularity—an
algorithm for training hierarchies of modules which is
inspired by curriculum learning (Bengio et al., 2009).
The previously introduced supervised attention mechanism
enables the training of modules or building blocks relevant
to the task. However, such modules also have to be stacked
and cascaded together in other to realize the overall goal
of the policy. In that sense, one module’s output becomes
the subsequent module’s input. This can be represented as a
directed graph, as shown in Fig. 6 (top), in which a cascade
of specialized modules implements the overall control pol-
icy. Here, each module is represented by a node, while edges
represent the information flow between nodes.

Table 1 formally defines each of the modules (nodes)
by introducing their functionality, queries, keys, and super-
vised attentionmask. Broadly speaking, eachmodule follows
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Algorithm 1 Hierachical Modularity: training algorithm
returns network weights θ .

Input:
(D, {Sk}K

k=1, {Lk}K
k=1, {�k}K

k=1

)
Output: Weights θ

for subtask k ← 1 to K do
while not converged do

Ek ← ∑k
t=0 Lt (St ) + �t

θ ← Train (D, {S1, . . . ,Sk}, Ek)

end while
end for
return θ

equation Eq. 1 with keys being the set of original sensor
modalities, as well as registers. In the first layer of Fig. 6, the
LANG module identifies the target object, as referred to in
the verbal command, and stores the result in the rLANG reg-
ister. Subsequently, in the second layer, the fTAR2D module
utilizes the rLANG register as a query while the fEE2D mod-
ule utilizes a new, previously unused register as a query. This
chain continues until the final control output of the robot is
generated in the CTRL module.

Recall that sub-modules address intermediate tasks in the
overarching control problem, making the output register r
suitable for human interpretation and allowing for super-
vised training of the resulting embedding. To achieve this,
we employ small multi-layer perceptron (MLP) decoders to
convert the module outputs into their respective numeric out-
puts. For example, we train a small MLP on top of the rEE2D
register that predicts the end-effector location (eex , eey) via
a single linear transformation. This approach enables our
policy to predict intermediate module outputs, enhancing
training accuracy and allowing monitoring and debugging
during inference, which is particularly valuable when trans-
ferring the policy to different robots or scenarios.
Training Cascaded Modules

Intuitively, the cascaded modules can be trained in a man-
ner inspiredby curriculum learning,wherein each component
is trained before further layers of the hierarchy are added
to the training objective. This ensures that each module is
trained until convergence before being employed for more
sophisticated decision-making processes, ultimately leading
to the prediction of robot control parameters. Algorithm 1
outlines the training procedure for our hierarchical approach
in further detail. The algorithm trains each module of the
hierarchy one after another, until the currently trained mod-
ule is converged according to its respective loss function.
After that, we progressively incorporate additional modules
in amanner reminiscent of curriculum learning. Eachmodule
k is trained with an attention loss Lk given the supervision
signal S of our proposed supervised attention approach, as
well as a task-specific loss functions �k which trains the
MLP decoder for every module. Thus, each module is opti-
mized with regard to two targets. Note that the policy loss for

the robot controller CTRL is also implemented as an MLP
decoder, which also represents the overall prediction target
of our training process. Notably, in our scenario, this decoder
predicts the next ten goal positions at each timestep instead
of predicting only the next action. This choice is inspired
by Jang et al. (2022), which also allows for a fair comparison
in the subsequent evaluation sections.

While the modular approach requires manually defining
loss terms for eachmodule, it is essential to note that all mod-
ules form a single overarching neural network implementing
the robot policy, inherently learning necessary features in an
end-to-end manner. Modularization arises solely from train-
ing the network with various supervised attention targets and
a cost function that successively integrates more sub-tasks.

4.3 Use-cases and extensions of hierarchy

We present our model as a cascade of sub-modules, trained
hierarchically, enabling seamless integration of additional
modules. In this section, we discuss the incorporation of
obstacle avoidance, tracking a predefined obstacle, and
describe the generalization of this approach to arbitrary
“referential objects” that let users specify commands that
reference any other object. These enhancements are imple-
mented by introducing new modules, as depicted in Fig. 8.

4.3.1 Runtime introspection

All sub-modules retain their functionality, even after training.
Consequently, they can be used at runtime to query indi-
vidual outputs (e.g., LANG, TAR2D, EE3D). This feature
allows users to monitor the intermediate computations of
the end-to-end network to identify potential deviations and
misclassifications. Figure 7 visually depicts the outputs of
each model during the execution on a real robot. A textual
description (left upper corner) shows the currently identified
object name, as well as the displacement (in cm) between
the end-effector and the target object. The current attention
map is visualized in yellow, whereas the end-effector posi-
tion and the target position are highlighted by red and blue
points. Computing these intermediate outputs of the network
generates negligible to no computation overhead. In our spe-
cific system, we implemented a real-time visualization tool
that can be used at all times to monitor the above features.
Such tools for introspection can help in debugging and trou-
bleshootingof the language-conditionedpolicy. For example,
they can be used to detectwhen individualmodules need to be
retrained, or where in the hierarchy a problem is manifesting.
In addition, such outputs can be used with formal runtime
monitoring and verification systems, e.g., Yamaguchi and
Fainekos (2021) and Pettersson (2005), to improve the safety
of the neural network policy.
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Fig. 7 Sequence of real-time outputs of the networkmodules: the object
name (white) and visual attention (yellow region), the length of the dis-
placement (white text), the object pos (blue), and end-effector pos (red).

All values are generated from a single network that also produces robot
controls (Color figure online)

Fig. 8 Extensions of hierarchy. aThe hierarchy used for obstacle avoid-
ance. 3 new modules, OBST2D, OBST3D and DISP2 are plugged in
post-training for detecting the obstacle and avoiding collision with it.
b The hierarchy for the relational tasks. These tasks involve 2 objects
in a sentence, e.g., “Put the apple right to the orange”, where “orange”
is the referral object. We add LANG2D, REF2D, REF3D and DISP2
for detecting the referral object and generating the according trajectory
(Color figure online)

4.3.2 Adding new behaviors

An important benefit of the modular architecture of our
approach is the ability to add new modules into a neural
network, even after successful training. To demonstrate this
functionality, we add an obstacle avoidance behavior into the
system, i.e., the robot is expected to detect an obstacle and
generate controls to avoid any collisions.

In our specific scenario, we introduce an obstacle in the
form of an orange basketball that must be avoided when
approaching the target object. To incorporate this ability into
the existing system, we add new modules into the previous
hierarchy. This can be seen in Fig. 8 (top).

In particular, we add OBST2D and OBST3D, which iden-
tify the obstacle’s position, and DISP2, which computes the
displacement between the end-effector and obstacle. Simi-
lar to target object detection, the obstacle is identified from

object embeddings and ultimately results in a displacement
value. The controller module incorporates the additional dis-
placement as an additional input. In general, new modules
can be added or existing modules removed according to the
needs of the task.

4.3.3 Creating new types of behaviors by interconnecting
modules

The modular approach also enables new types of behaviors
to be incorporated; in particular, behaviors that interconnect
multiple existing modules. For example, we may want to
learn a robot policy that allows for relational queries, e.g.,
“Put the coke can in front of the pepsi can.”. Such a fea-
ture would require the dynamic identification of a secondary
object and its desired relationship to the target object. In
the previous example, the model must infer the target object
(“coke can”), the reference object (“pepsi can”), and their
relation (“in front of”).

Figure 8 (bottom) shows the new hierarchy for this use
case. Similar to the object avoidance case, we can incor-
porate additional modules REF2D, REF3D, and DISP2 for
this purpose. However, in contrast to the obstacle avoid-
ance case, an additional module LANG2 is added to extract
the object reference from the user’s instruction and sub-
sequently informs the REF2D for further processing. This
process of adding and removing modules allows for extensi-
ble language-conditioned policies whose complexity can be
increased or reduced according to the necessities of the task.
In the evaluation section, we will see that such an incremen-
tal approach has advantages over a complete retraining of the
entire policy.

5 Evaluation

In this section, we present a set of experiments designed to
evaluate various aspects of our approach. We firstly elabo-
rate on the data collection process in Sect. 5.1. In Sect. 5.2,
we investigating basic performance metrics of our approach
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and compare them to other state-of-the-art methods. To this
end, we carry out ablation studies in order to probe the impact
of our hierarchical modularity and supervised attention mod-
ules, aswell as structure of the hierarchy itself. Thereafter,we
study the robustness of our approach when exposed to occlu-
sions (Sect. 5.2.2) and linguistic variability (Sect. 5.2.3). In
Sect. 5.3, we focus on the ability of our approach to transfer
existing policies between different robots in simulation, but
also demonstrate the transfer to real-world robots in a sample
efficient manner. Section 5.4 examines the policy’s ability to
generalize to novel objects. Lastly, we explore the possibility
of incorporating new modules into an existing hierarchy for
the purposes of obstacle avoidance and relational instructions
(Sect. 5.5).

We evaluate our method on a tabletop manipulation task
of six Robosuite (Zhu et al., 2020) and up to 100 automati-
cally generated objects across five different tasks. Our tasks
include three basic objectives namely picking objects, push-
ing them across the table, and rotating them. Further, we have
twoobstacle avoidance task, focusing on a single object, or all
non-target objects simultaniously. In addition, we also inves-
tigate a more complex placing task in which objects need
to be placed in relation to other objects in the environment,
thus requiring the understanding and correct interpretation of
relational instructions. Tasks are performed on three differ-
ent robots in simulation and one robot in the real world. Our
simulated robots include a Franka Emika, Kinova Jaco, and
Universal Robot UR5 compliant robot arm. In the real world
scenario, we utilize a UR5 robot. The following sections will
first provide the details of our experimental setup and data
collection strategy and then discuss evaluation results.

Training Resources To train our method from scratch,
a single Quadro P5000 GPU takes approximately 48h until
convergence. In conjunction with this paper, we will release
our final code base (and dataset) which is capable of leverag-
ing multi-GPU setups, thereby resulting in further speed-ups
with regards to the absolute training time.

5.1 Data generation

We perform a series of simulated experiments in MuJoCo
(Todorov et al., 2012), employing three distinct robotic plat-
forms (Kinova, UR5, and Franka) that closely resemble our
real-world experimental setup with a UR5 robot.

Figure 9 illustrates all four configurations, along with the
six Robosuite objects utilized in our investigations, includ-
ing a red cube, a Coke can, a Pepsi can, a milk carton, a
green bottle, and a loaf of bread. Further, our comprehen-
sive set of 100 procedurally generated objects is depicted in
Fig. 3. Demonstrations are collected using a heuristic motion
planner that orchestrates fundamental motion planning tech-
niques to control each target robot. By contrast, real-world
demonstrations are collected via kinesthetic teaching utiliz-

Fig. 9 A human instruction is turned into robot actions via a learned
language-conditioned policy. The neural network is then successfully
transferred to different robots in simulation and real-world

ing a gravity-compensated robot arm. Beyond the robots’
motion, we store each action’s respective command (e.g.,
“Pick up the green bottle!”) and the corresponding RGB
video stream captured by an overhead camera from the same
angle as shown in Fig. 9with a resolution of 224×224 pixels.

As a simple data augmentation technique,we utilize a tem-
plating system that generates syntactically correct sentences
during the collection of training, validation, and testing data.
These templates are derived from two human annotators
who, after watching pre-recorded robot behavior videos,
were assigned the task of providing instructions on what the
robot was executing in the video. This small dataset served
as the foundation for extracting command templates, as well
as a collection of the used nouns, verbs, and adjectives. This
collection is then extended with commonly available syn-
onyms to allow the creation of an automated system for
command generation during data collection. The template
initially selects a random verb phrase in accordance with
Table 10. Subsequently, a noun phrase is determined through
random selections fromAdj andNoun, as outlined in Table 9.

Table 2 presents the datasets utilized in our experimen-
tal setup. Each sample is collected with 125Hz, resulting in
trajectories containing 100–500 steps, depending on the dis-
tance between the robot’s initial position and the target object,
as well as the task being executed. The smaller datasets in
rows three to five are for transferring a previously trained
policy from one robot or task to another. The transfer learn-
ing datasets are purposefully over-provisioned, as we assess
the minimal size required to achieve performance compa-
rable to a policy trained from scratch in Sect. 5.3. Finally,
the datasets in rows 4, 6, 7, 8, and 9 undergo evaluation in
an interactive, live setting in which a user engages with a
deployed policy, either within a simulation or the real world;
thus, these datasets do not have a formal test split.
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Table 2 Utilized dataset during our experiments

Dataset Samples Objects Tasks Env. Robot Purpose
Train/val/test Robosuite Gen. Base Place

DUR5 1600/400/400 � � Simulation UR5 Training from scratch

DKinova 1600/400/400 � � Simulation Kinova Training from scratch

DUR5
TF 320/80/80 � � Simulation UR5 Transfer Kinova → UR5

DUR5
RW 260/80/live � � Real-World UR5 Transfer UR5 → real-world

DFranka
TF 320/80/80 � � Simulation Franka Transfer Kinova → Franka

DUR5
OBST 200/400/live � � Simulation UR5 Extend skill obstacle-avoidance

DUR5
M-OBST 200/400/live � � Simulation UR5 Multiple-obstacle-avoidance

DUR5
NO 3000/600/live � � Simulation UR5 Training 100 novel objects

DUR5
ET 3000/600/live � � Simulation UR5 Training relational task

A “live” designation indicates that testing has been conducted interactively and no formal test dataset exists

Table 3 Comparison with the state-of-the-art baseline as well as ablations in Mujoco

Model Success rate (%) Prediction error (cm)
Pick Push Putdown Overall TAR3D EE3D DISP

LP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 – – –

Vanilla attention 17.7 ± 1.8 8.3 ± 0.0 12.5 ± 4.2 13.3 ± 0.7 – – –

BC-Z 81.6 ± 6.2 85.6 ± 7.9 49.1 ± 5.8 73.1 ± 4.5 – – –

Ours (UR5 sim) 91.3± 5.3 97.2± 2.0 55.6 ± 8.6 82.4± 4.9 2.24± 0.48 0.51± 0.09 2.42± 0.52

Ours: no S. Attn 88.9 ± 4.2 92.6 ± 4.7 55.1 ± 11.6 79.9 ± 5.8 3.18 ± 1.80 0.42± 0.10 3.10 ± 1.64

Ours: no H. Mod 44.4 ± 3.8 39.4 ± 7.1 22.7 ± 7.9 36.4 ± 3.3 22.96 ± 0.99 0.59 ± 0.16 23.16 ± 1.05

Ours: TAR 87.5 ± 4.8 93.8 ± 2.3 59.3± 11.5 80.9 ± 6.0 2.77 ± 0.80 0.71 ± 0.08 3.24 ± 1.45

Ours: no TAR 20.8 ± 1.8 13.9 ± 2.4 8.3 ± 4.2 15.0 ± 1.3 32.23 ± 0.05 0.81 ± 0.01 32.29 ± 0.29

Ours: no DISP 65.6 ± 3.1 83.3 ± 4.2 33.3 ± 8.3 61.3 ± 3.3 3.37 ± 0.17 0.69 ± 0.01 27.49 ± 0.20

Ours: Extra 94.8± 1.8 98.6± 2.4 62.5± 7.2 86.3± 2.5 1.53± 0.14 0.68 ± 0.13 2.25± 0.22

Ours: Joint 10.9 ± 2.2 25.0 ± 5.9 2.1 ± 2.9 12.5 ± 3.5 6.19 ± 0.35 1.71 ± 0.01 10.83 ± 0.53

The bold numbers are the ones with top 2 performance within all methods

5.2 Model performance and baseline comparison

In this section, we evaluate our model on the three basic
actions across the six Robosuite objects, utilizing the DUR5

dataset. We also compare our method to two state-of-the-art
baselines, specifically BC-Z (Jang et al., 2022) and LP (Step-
puttis et al., 2020). As our third baseline, we investigate
vanilla, unsupervised attention. In this scenario, the same
network as before is trained, but without supervision of the
attention process as introduced in this paper.

Table 3 summarizes these results in which each training
and testing procedure was executed three times to provide a
better understanding of the stability of the compared meth-
ods.We evaluate not only the overall success rates but also the
performance of each individual module within our language-
conditioned policy. Specifically, we employ the following
metrics: (1) Success Rate describes the percentage of suc-
cessfully executed trials among the test set, (2) Target Object
Position Error (TAR3D)measures the Euclidean 3Ddistance
between the predicted target object position and the ground

truth, (3) End Effector Position Error (EE3D) quantifies the
Euclidean 3D distance between the predicted end effector
position and the ground truth, (4)Displacement Error (DISP)
calculates the 3Ddistancebetween thepredicted3Ddisplace-
ment vector and corresponding ground truth vector.

Our method (line 4) outperformed BC-Z (line 3) on
all basic tasks with an average success rate of 82.4%, as
compared to 73.1% for BC-Z. Furthermore, we separately
assessed the prediction error of the proposed network’s com-
ponents, namely EE3D, TAR3D, and DISP. We note that
the end-effector pose prediction accuracy (approximately
0.5cm) surpasses the target object’s accuracy, which could
be attributed to the presence of the robot’s joint state infor-
mation. The target object’s position estimation deviates by
around 2–3, possibly due to the absence of depth information
in our input dataset (solely consisting of RGB).

By contrast, the LP model (line 1) is not able to success-
fully complete any of the tasks. We hypothesize that this
low performance is due to the training dataset’s significantly
smaller size compared to the LP’s usual training data size,
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as indicated by Stepputtis et al. (2020). Finally, the vanilla,
unsupervised attention approach (line 2) achieves a success
rate of 13.3%. Qualitatively, we observe in this scenario that
the vanilla attention model is not able to recognize the cor-
rect object. Similarly to the LP approach, we hypothesize that
the issue could potentially be resolved with a larger dataset.
However, for the sake of a fair comparison within this paper,
we utilize the same dataset DUR5 across all methods.

5.2.1 Ablations

In order to evaluate the impact of our twomain contributions—
supervised attention and hierarchical modularity—we con-
duct an ablation study to investigate the impact of each
contribution on training performance. In addition, we also
ablate the structure of the hierarchy itself in order to investi-
gate its resiliency to structural changes.

Results of the ablation experiments can be found in
Table 3. Our model (line 3) has an overall success rate of
82.4% across three seeds. When ablating the usage of hier-
archical modularity, performance drops to 36.4% (line 5).
Utilizing our runtime introspection approach to investigate
potential issues in the modules (Sect. 4.3.1), we find that the
target and displacement errors increased to over 20cm,which
is likely the cause for the reduced performance.When remov-
ing the supervision signal (line 4) for the attention inside our
modules (and instead relying on end-to-end training), we see
a drop of ≈ 2.5% in performance to about 80%.

When ablating the hierarchy itself, wemerged the TAR2D
and TAR3D module (line 7) into a single module instead of
maintaining two. The underlying rationale is that the sepa-
ration of the target detection between 2D and 3D detection
is not strictly necessary and thus a single target module may
be sufficient. The resulting success rate in this case is 80.9%
which is only slightly below the original rate of 82.4%. Next
we removed the displacement module DISP (line 9) alto-
gether, which results in a performance of about 61.3% (a
loss of around 20%). Finally, we added spurious modules
that are not necessary for the policy’s success in these tasks
(line 10). In particular, we added a specific module that only
detects the “Coke” can. In this case, we achieved a success
rate of 86.3%which is slightly higher than the original result.

As a general observation, the approach seems to be
favorable to superfluous modules, combined modules, or
variations of a hierarchy. However, the absence of certain
critical modules, e.g., the DISP or TARmodules (lines 9 and
8 respectively), may have a more drastic effect on perfor-
mance. In the above case of removing the DISP module (line
9), the performance reduces to about 61.3% which is below
the corresponding value for BC-Z (73.1%).

Fig. 10 Success rate when part of the target object is occluded

5.2.2 Occlusion

Next, we evaluate the robustness of our approach to partial
occlusions of the target objects during task execution. To this
end, occlusions are introduced by removing image patches
in the camera feed of the simulated experiments. This step is
performed by covering approximately 20%, 42%, 68% and
80% of the target object’s total area; calculated via a pixel-
based segmentation approach of the input image provided
by the simulator. All experiments are conducted on all six
Robosuite objects across all three basic tasks. The results are
shown in Fig. 10. We observe that our method is robust to
occlusions of up to 20% of the target object, while our base-
line model, BC-Z, already experiences a significant drop in
accuracy. While our model only loses about 1.1% in per-
formance, BC-Z drops by 9.35%. However, for occlusions
greater than 40%, our method performs on-par with BC-Z.
We argue that our robustness to 20% occlusions is signifi-
cant since small, partial, occlusions are more likely to occur
during tabletop manipulation tasks.

5.2.3 Synonyms

Our final robustness experiment is concerned with the vari-
ability of free-form spoken language. While our system is
trained with sentences from a template-based generator, we
evaluate its performance when exposed to a set of addi-
tional synonyms, as well as free-form spoken language from
a small set of human subjects. When replacing synonyms,
as shown in Table 8, in the single-word and short-phrase
case, we observe that our model achieves a 82.5% success
rate on the pushing task. When using BC-Z, on the same
task with the same synonyms, performance drops to 28.57%,
indicating the robustness of our methods to variations in the
language inputs. Finally, we also evaluate the performance
on 30 examples of free-form natural language instructions
that were collected from human annotators and report a suc-
cess rate of 73.3%. The sentences used by the annotators can
be found in Table 11 and show that our model can work with
unconstrained language commands.
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5.3 Transfer to different robots and real-world

In this section, we evaluate the ability of our approach to
efficiently transfer policies between different robots that
may have different morphologies. Rather than retraining our
model from scratch to accommodate the altered dynamics
between different robots, we posit that our modular approach
enables the transfer of substantial portions of the prior pol-
icy. This necessitates onlyminimal fine-tuning, consequently
resulting in a reduced demand for data collection on the dif-
ferent robots. In particular, we evaluate fine-tuning of the
entire policy, and fine-tuning of only the modules affected
by a change in visual appearance of robot morphology.

5.3.1 Transfer in simulation

Our initial policy is trained from scratch on the DKinova

dataset while the transfer of the trained policy to the Franka
andUR5 robot is realized with theDFranka

TF andDUR5
TF datasets

respectively.
As noted earlier, the DTF datasets are intentionally over-

provisioned to allow an evaluation regarding how much data
is required in order to match the performance of the trans-
ferred policy to a policy that is trained from scratch on the
same robot. In order to shed some light on this, we sub-
sampled the transfer datasets to a total size of 80, 160, 240 and
320 demonstrations and conducted the training. Figure 11
shows the results of this analysis (reported as “Ours”) given
the varying dataset sizes when fine-tuning the entire policy
initialized with the Kinova weights. With 160 demonstra-
tions, our model achieves a success rate of 80%, which is
only slightly below the policy’s performance when trained
on the full 1600 demonstrations from scratch. Further, given
the full 320 demonstrations of the transfer dataset, the pol-
icy reaches a performance that is on-par with one trained
from scratch. When fine-tuning BC-Z with the same dataset
splits, we observe that our model consistently outperforms

Fig. 11 Results of transferring policies from Kinova (K) robot to UR5
(U) and Franka (F) robots. “Ours-f” refers to freezing parts of ourmodel
during transferring. Experiments are performed in Mujoco simulator

BC-Z. Interestingly, we also observe that ourmodel performs
similarly when transferring to the Franka and UR5 robots
across the dataset splits, while BC-Z seems to initially per-
form worse when transferring the Franka robot. Note here
that Franka is a 7 degree of freedom (DoF) robot while the
source policy, which operates over theKinova robot, only has
six. This discrepancy likely affects robot dynamics thereby
affecting the transfer process.

Further, we conducted experiments in which we froze
parts of our model during transfer of a pre-trained policy
from the Kinova to the UR5 and Franka robot. In particular,
the TAR3D, EE3D, and DISP prediction modules are unaf-
fected by the change in visual appearance and morphology
of the new robot and, thus, do not need to be retrained. Note,
however, that we retrain TAR2D since partial occlusions by
the new robot could lead to false positives for target objects.
We have conducted further experiments with the same fine-
tuning datasets and report their results in Fig. 11 (reported as
“Ours-f”). In this setting, with a dataset of only 80 demon-
strations, the partially frozen module produces a result of
60% and 72.5% when transferring to the Franka and UR5
respectively. This poses a substantial performance improve-
ment of up to 18% in the case of transfer to the UR5 robot
while utilizing less data than fine-tuning the entire model.
This result further underlines the gains in data-efficiency that
can be achieved through the hierarchical modularity.

5.3.2 Real-world transfer

Havingdemonstrated the ability of our approach to efficiently
transfer policies between robots in simulation, we demon-
strate that a policy can also be transferred to the real world
(Sim2Real Transfer) in a sample-efficient way. To this end,
we first trained a policy for the UR5 robot in simulation uti-
lizing theDUR5 dataset and subsequently transferred it with a
substantially smaller real-world datasetDUR5

RW . More specifi-
cally, 260 demonstrations on the real-robot are collected for
transfer—this corresponds to about 1

6 -ththe size of the origi-
nal training set. The overall robot setup can be seen in Fig. 12.
The scene is observed via an external RGB camera and robot
actions are calculated in a closed-loop fashion by provid-
ing the current camera image and language instruction to the
policy.

To investigate the contributions of our proposed methods,
we conduct experiments under 3 different baseline settings.
These include directly applying the simulated policy on
the real robot, fine-tuning the simulated policy using the
real-world datasetDUR5

RW , and transferring the simulated pol-
icy to the real world using our proposed method. Image
sequences of real-robot executions can be seen in Figs. 7
and 9. As expected, the policy trained in simulation is unable
to complete any task when being directly applied to the real
robot despite coordinate systems and basic dynamics being
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Fig. 12 Experimental setup of real-robot experiments. Objects are seen
through an external camera and actions are generated in a closed-loop

Fig. 13 Robot performing a taskwith objects which are generated auto-
matically generated. The top row is the robot picking up an object, while
the second row is the robot pushing an object

matched between the simulation and the real world. This
failure is due to the substantial variation in visual appear-
ance of the robot and objects.When using a naive fine-tuning
approach that does not use our core contributions, the result-
ing success rate is 56.7% over 30 trials, thus demonstrating
partial success. However, we observe that the noise in the
attention maps is unusually high, which we attribute to the
intricacies of real-world vision and dynamics. Finally, when
training the system with our approach, including supervised
attention and hierarchical modularity, the approach achieve
a success rate of 80% in the real world when prompted with
30 commands issued by a human operator.

5.4 Generalization to novel objects

To investigate the importance of modularity for general-
ization, we extend the experiment setup to include a more
challenging scenario. In particular, we incorporate a total of
100 objects, which are automatically generated following the
approach outlined inSect. 2. They are comprised of 10 unique
classes, each with 10 objects. We utilize 3 objects from each
class for training, while the remaining 7 objects, which were
previously unobserved by themodel, are reserved for testing.
For this experiment, we utilize theDUR5

NO dataset and perform
an evaluation with 100 trials (Fig. 13).

Fig. 14 Test results of simulated experiments with 70 unseen objects
from 10 classes which are generated automatically using the data
pipeline proposed in Sect. 2

As before, we compare ourmodel’s performance to BC-Z,
as well as an ablated version of ourmodel without supervised
attention or hierarchical modularity. The results are shown
in Fig. 14 on the 100 object generalization task. During this
study, we removed either one or both of our components
from the model during training to examine their individ-
ual and combined contributions. The most basic version
of the model, identified as “Base” and not using super-
vised attention, nor hierarchical modularity, demonstrates
poor performance with a score of 47%. Models without
Supervised Attention (“w/ Sup. Attn”) and those without
Hierarchical Modularity (“w/ Hier. Mod.”) each exhibit sig-
nificantly better performance compared to the base model.
Notably, the optimal model is our proposed full model
(“Ours”), which combines both Supervised Attention and
Hierarchical Modularity, resulting in an impressive success
rate of 87%.For comparison, the baselinemodelBC-Zattains
a 76% success rate, which is surpassed by our proposed
model by 9%.

5.5 Hierarchy extension

In this section, we explore two extension to our hierarchy
by introducing new models that allow the policy to conduct
new tasks. As we have shown in prior sections, our modular
approach allows for easy transfer between different robots;
however, this approach can also be utilized to introduce novel
tasks to the policy. The following sections introduce an obsta-
cle avoidance task in which an object is placed in the path
between the robot and the described target object which has
to be detected and avoided. In a subsequent experiment, we
further extend the hierarchy by not only focusing on a fixed
“obstacle object”, but allow the user to specify a secondary
reference object, ultimately affording a novel placement task
that allows objects to be placed in relation to others objects
in the environment.
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Fig. 15 Robot trained to avoid all obstacles in the scene. On the way to the Coke can, the robot first avoids a basketball and then the green bottle.
We move the bottle in front of the robot to generate an instantaneous response

Fig. 16 Robot performing a task while avoiding a basketball. The top
row shows a pick action and the bottom row shows a push action. In both
cases, the robot changes its course to avoid collision with the obstacle

5.5.1 Obstacle avoidance

In this experiment, we demonstrate a seamless way to inte-
grate new modules into an existing trained hierarchy by
introducing an obstacle avoidance task. First, we discuss a
setup wherein a single, specific object needs to be avoided,
before extending the approach to avoid any obstacle in the
scene (Figs. 15, 16).

In our first setting, a basketball is placed between the
end-effector and the objects that are to be manipulated, serv-
ing as an obstacle. The robot must first identify the obstacle
and subsequently formulate a trajectory to navigate around it
effectively. In this task, newmodulesOBST2D andOBST3D
are added to the hierarchy and trained to generate the loca-
tion of the obstacle in image space and world space. More
specifically, OBST2D identifies image patches that belong
to the object. In turn, these patches are fed into OBST3D
to generate a 3D world coordinate. We relate the obstacle’s
position to the robot by calculating a second displacement
DISP2 which utilizes EE3D and OBST3D. Figure 8 shows
the updated hierarchy. The output of DISP2 feeds into the
calculation of the control value where it is combined with
the output of DISP (the displacement of the end-effector to
the target object).

The expert trajectories which avoid the obstacle are gen-
erated by using a potential field approach (Khatib, 1986).
More specifically, the basketball is a repulsor that pushes the
end-effector away from it. Using this approach, 200 train-
ing demonstrations are collected, forming the datasteDUR5

OBST.
The policy for this task has been trained from a UR5 policy
by utilizing the above datatet that introduces the novel task.

For evaluation, we define a successful trial as the absence
of any collision between the robot and the obstacle. After
training, our method achieves a success rate of 88% where
failure cases mostly revolve around premature contact with
the target object.

We further extend the capabilities of the proposed hierar-
chical approach by avoiding any object in the environment.
To this end, we utilize a single module that is trained to focus
on all objects with exception of the target object. This mod-
ule can viewed as the inverse of the target detection module,
i.e., all but the target object are highlighted. In this multiple-
obstacle case, the trained network achieves a success rate
of 83%. An image sequence of the resulting behavior can
be seen in Fig. 15. Notice the robot response after a second
obstacle (green bottle) is moved in front of it. The image
sequence also highlights the closed-loop control underly-
ing our approach—robot actions are constantly recalculated
based on the current environmental conditions.

5.5.2 Relational reference

While the obstacle avoidance tasks showed the basic pipeline
of adding a secondary object and defining a desired behavior
for it, the approach can be extended to also allow the user to
verbally specify this secondary object. For this purpose, we
introduce a relational placing task in which a user specifies a
reference object, requiring the system to identify the two task
related objects and generating a control signal in accordance
to it. Relational tasks involve instructions that not only spec-
ify a target object for manipulation (e.g., an “apple”) but also
mention an additional referential object (e.g., an “orange”),
such as “Place the apple to the right of the orange.” In these
scenarios, the robot must identify the two objects and under-
stand the intention behind the given language. We aim to
demonstrate that our model can effectively handle such tasks
even under generalization constraints. For this purpose we
again utilize our 100 automatically generated objects and
train a policy over 30 of them, which are composed of 3
objects per class, while evaluating it’s generalization capa-
bilities on the remaining 70 objects. For this experiment, we
utilize the DUR5

ET dataset (Fig. 17).
For this task, we have made modifications to the orig-

inal hierarchies. Firstly, we introduce a LANG2 module
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Fig. 17 Robot performing relational tasks with 2 objects involved in 1 command. The top row is the robot putting an avocado left to a hamburger,
while the second row is the robot putting a donut right to a hamburger

to determine the referential object based on the language
input. Besides that, we add TAR2D2 and TAR3D2 mod-
ules to identify the image patch corresponding to the second
object and generate its 3Dworld coordinate, respectively.We
also include a DISP2 module to calculate the displacement
between the end-effector and the second object.

In this scenario, the robot is directed by a verbal sentence
to identify the first object, pick it up, recognize the second
object, and then place the first object either to the left or right
of the second object according to the command given.

The entire process is carried out in the MuJoCo environ-
ment, evaluated on 100 test trials. For comparison, we also
train and evaluate the BC-Z model. Our model achieves a
success rate of 76%, which is a 7% improvement over the
BC-Z performance. Considering the increased complexity
of this task compared to previous ones—due to the need to
identify two objects from both the sentence and image, and
the more extended manipulation steps required—a 76% suc-
cess rate and a 7% increment compared to the baseline are
commendable results.

6 Discussion and limitations

The above experiments show a variety of benefits of the intro-
duced modular approach. On one hand, it allows for new
components and behaviors to be incorporated into an exist-
ing policy. This property is particularly appealing in robotics,
since many popular robot control architectures are based
on the concept of modular building-blocks, e.g., behavior-
based robotics (Arkin, 1998) and subsumption architecture
(Brooks, 1986). Modularity also enables the user to employ
modern verification and runtime monitoring tools to better
understand and debug the decision-making of the system. At
the same time, the overall system is still end-to-end differ-
entiable and was shown in the above experiments to yield
practical improvements in sample-efficiency, robustness and
extensibility.

However, amajor assumptionmade in our approach is that
a human expert correctly identifies the logical flow of com-

ponents and subtasks into which a task can be divided. This
process requires organizing these subtasks into a hierarchical
cascade. Early results indicate that an inadequate decomposi-
tion can hamper, rather than improve, learning. Furthermore,
the approach does not incorporatememory and therefore can-
not perform sequential actions. In a few cases we observed
a failure to stop after finishing a manipulation - the robot
continues with random actions. Another open question is the
scalability of the approach. In our investigations, we looked
at behaviors with a small number of sub-tasks. Is it possible
to scale the approach to hierarchies with hundreds or thou-
sands of nodes? The prospect is appealing since this would
bridge the divide between the expressiveness and plasticity of
neural networks and the ability to create larger robot control
systems which require the interplay of many subsystems.

For future work, we are particularly interested in using
unsupervised and supervised attention side-by-side, i.e., sev-
eralmodulesmaybe supervised by the human expertwhereas
other modules are adjusted in an unsupervised fashion. This
would combine the best of both worlds, namely the abil-
ity to provide human structure and knowledge while at the
same time maximally profiting from the network’s plasticity.
This is a particularly promising direction, since the ablation
experiments indicate that having superfluous modules does
not drastically alter the network performance. Further, we
would like to investigate the potential of inferring a suitable
hierarchy in a data-driven manner.

7 Conclusions

In this paper, we present a data-efficient approach for
language-conditioned policies in robot manipulation tasks.
We introduce a novel method called Hierarchical Modular-
ity, and adopt supervised attention, to train a set of reusable
sub-modules. This approach maintains the end-to-end learn-
ing advantages while promoting the reusability of the learned
sub-modules. As a result, we are able to customize the hier-
archy according to the specific task demand, or integrating
new modules to an existing hierarchy for new tasks. Our
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method demonstrates high performance in a comprehensive
set of experiments including training manipulation policies
with limited data, transferring between multiple robots, and
extension of module hierarchies. We also develop an auto-
mated data generation pipeline for creating simulated objects
to manipulate with, and show our model’s generalization
capability on unseen objects generated by such pipeline.
Furthermore, we demonstrate that the learned hierarchy of
sub-modules can be employed for introspection and visual-
ization of the robot’s decision-making processes.
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Appendix A: Training details

A.1: Network architectures and hyperparameters

We use a convolutional neural network for image encod-
ing, as shown in Table 4. We use fully connected layers
for joint encoders, target position decoders, displacement

Table 4 Image encoder architecture

Layer Kernel Channel Stride Padding

CNN 7 64 1 3

CNN 3 128 2 1

CNN 3 256 2 1

CNN 3 256 2 1

ResBlock 3 256 1 1

ResBlock 3 256 1 1

ResBlock 3 256 1 1

Table 5 Joint encoder
architecture

Layer Dimension

FC 256

FC 128

FC 192

Table 6 Position and
displacement decoder
architecture

Layer Dimension

FC 128

FC 9

Table 7 Controller architecture Layer Dimension

FC 2048

FC 1024

FC 256

FC 120

decoders and controllers, which are shown in Tables 5, 6 and
7 respectively. We use 4 eight-head attention layers of 192
dimensions for modality fusing and interaction. The Adam
optimizer with learning rate of 1e−4 is adopted for training
(Tables 8, 9, 10, 11).
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Table 8 Synonyms used in test Milk carton Bottle Coke Cube Bread

Skimmed milk package Soda Coke zero Brick Cinnamon roll

Goat milk carton Perrier Round container Block Sourdough

Milk case Tonic Can Cuboid Brown bread

White packet Flask Coca cola Bar Loaf

Milk parcel Pitcher Red soda Solid lump Naan

Cream carton Container Cola Rectangular object Rye bread

Cream package Decanter Metal container Solid piece Toast

Heavy milk carton Vial Small soft drink Slab Gluten free food

Almond milk box Vessel Fizzy drink Cuboidal slice Light bread

Goat milk packs Cruet Diet coke Square object Food

Table 9 The noun phrase template

Object Adj Noun

Coke Red Can

Coke Bottle

Cocacola

Pepsi Blue Can

Pepsi Bottle

Pepsi coke

Bottle green Bottle

Glass

‘’

Green glass

Carton Milk Carton

White Box

Cube Red Object

Maroon Cube

Square

Bread ‘’ Bread

Yellow object

Brown object

Table 10 The verb phrase template

Verb pick Verb push Verb put

Pick Push Put down

Pick up Move Place down

Raise

Table 11 Sentences collected from annotators for evaluation purposes

Annotator labeled sentences Success

Grab the loafs F

Put down the lime soda T

Lay down the red block T

Tip over the azure can T

Lift the white carton F

Knock over the pastry T

Lift the coke can T

Put down the sprite T

Grab the pepsi T

Elevate the red cube T

Pick up the red cube T

Lift up the blue cylinder T

Move away the brown object T

Push away the white object T

Lift the blue object T

Put down the green sprite T

Push the green sprite T

Push the reddish can T

Pick up the milk container F

Hold up the milk carton F

Please pick up the green thing F

Lift the red colored coke can T

Push the yellow bread T

Grab the blue colored can T

Nudge that green bottle F

Put down the red colored cuboid T

Lift the white box T

Take the pepsi off the table F

Push the green object forward F

Put down the zero coke on the desk T

Our model achieves 73.3% success rate on variations of languages
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