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Abstract

In order to explore and understand the surrounding environment in an efficient manner, humans have developed a set of
space-variant vision mechanisms that allow them to actively attend different locations in the surrounding environment and
compensate for memory, neuronal transmission bandwidth and computational limitations in the brain. Similarly, humanoid
robots deployed in everyday environments have limited on-board resources, and are faced with increasingly complex tasks that
require interaction with objects arranged in many possible spatial configurations. The main goal of this work is to describe
and overview biologically inspired, space-variant human visual mechanism benefits, when combined with state-of-the-art
algorithms for different visual tasks (e.g. object detection), ranging from low-level hardwired attention vision (i.e. foveal
vision) to high-level visual attention mechanisms. We overview the state-of-the-art in biologically plausible space-variant
resource-constrained vision architectures, namely for active recognition and localization tasks.

Keywords Biologically inspired vision - Active vision - Space-variant vision - Selective and divided attention - Object
detection
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(foveal vision), and on stimulus-driven (bottom-up) and goal-
driven (top-down) information processing mechanisms to
define where in the visual input the attentional foci should
be oriented to Katsuki and Constantinidis (2014). This way,
information processing is constrained and directed towards
salient or task-relevant stimuli. Likewise, an important issue
in many computer vision applications requiring real-time per-
formance, resides in the involved computational effort (Borji
& Itti, 2013b), especially in robotics where energy efficient,
fast and accurate perception is a fundamental requirement,
e.g., in visual localization and servoing during grasping,
manipulation and hand-over of tools to human or machine
collaborators. In humanoid robotics, in particular, real-time
operation is conditioned by physical limitations on on-board
computational and power resources, as well as data trans-
mission bandwidth if one opts to outsource information
processing to outside servers. Therefore much effort has been
made towards understanding the underlying principles of
biological attention mechanisms and applying those mech-
anisms in robotics, in an attempt to build more efficient
solutions, capable of performing in real-time, under resource-
constrained settings (Begum & Karray, 2011).

We overview works on space-variant low-level vision (i.e.
foveal vision) to higher level perception, i.e., selective atten-
tion mechanisms.

The main topics over-viewed in this work, can be summa-
rized as follows:

(1) Neural and artificial mechanisms of visual information
processing;

(2) Computational models for foveal vision mechanisms

(3) Computational models of selective visual attention

(4) Biologically plausible methods for active object local-
ization and recognition;
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(5) Applications of the former mechanisms and computa-
tional models in humanoid robotics.

In the remainder of this article we overview the neurophys-
iology of the Human Visual System (HVS), and review the
state-of-the-art in biologically plausible space-variant vision
models, focusing on artificial foveal vision and visual atten-
tion mechanisms. This review focuses on highlighting the
state-of-the-art methods rather than providing quantitative
and qualitative comparisons between methodologies.

Our review on space-variant vision and attention mech-
anisms differs from other works (Posch, 2012; Kartheek
Medathati et al., 2016; Fernandez-Caballero & Ferrandez,
2017) by describing in detail the human visual system and
linking with classical and modern computational models for
artificial foveal vision, selective visual attention, and active
vision, focused on object recognition and localization, as well
as on implementations in robotics visual setups (see Table 1).

2 Neural and artificial mechanisms of visual
information processing

The process of seeing starts with light entering the eye
through the cornea. The eye has the ability to adapt to dif-
ferent levels of brightness (adaptation) and to shape its lens
and pupil size in order to focus objects at different distances
(accommodation). The light passing through the pupil, is
focused by the lens, onto the retina, a sensory membrane
responsible for receiving and converting the visual stimuli
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A. Space-variant Foveal Vision
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(b) Photo-receptors density in the retina. Rods (black) are

mostly concentrated in the periphery of the retina and

are responsible for low light level vision (scotopic vision).

Cones (red) are concentrated in the center of the retina

(fovea) and are responsible for high acuity color vision.

Fig. 1 Human eye physiology

into electric signals to be transmitted to the visual cortex in
the brain through the optic nerve (Mohlin et al., 2017).

The retina is mainly composed of two types of photo-
receptors: rods which are mostly concentrated at the periph-
ery and are sensitive to brightness and colorless low-light
vision (scotopic vision) and the cones that are concentrated
mostly in the center of the eye, in a place called fovea, and are
responsible for high acuity color vision (see Fig. 1). Finally,
the visual signals entering through the optic nerve reach the
back of the brain, where the visual cortex is located and the
stimuli interpreted.

2.1 Space-variant foveal vision

Unlike uniform vision provided by conventional imaging
sensors, human vision is space-variant, due to the uneven
organization of the photo-receptors in the retina. Visual acu-
ity, provided by the cones, is highest at the fovea, located in
the center of the retina, and declines monotonically towards
the periphery, with increasing eccentricity (see Fig. 1). This

space-variant resolution perception phenomenon—named
foveation—is a hardwired mechanism and a natural way of
reducing the amount of information streamed to the brain, in
order to cope with power, neuronal transmission bandwidth
limitations, and the brain machinery processing capacity. In
fact, if foveal resolution visual stimuli across the whole field
of view was to be processed, the human brain weigh would be
significantly increased [to approximately 60 kg (Balasuriya
& Siebert, 2005)]. However this compression phenomenon
introduces a space-variant uncertainty in visual processes.
In order to efficiently explore and understand the surround-
ing environment (Posner, 2012), humans have developed a
set of attention and oculo-motor mechanisms, namely sac-
cades, that allow them to actively and sequentially direct
their eyes towards different regions of interest in the sur-
rounding environment, and thus, to cleverly compensate for
the aforementioned limitations.

Similar to humans, robots deployed in everyday envi-
ronments, are faced with increasingly complex scenarios
where objects are arranged in many possible different spa-
tial configurations. The problem of deciding which regions
in the visual field are to be attended during visual search
tasks is computationally demanding or even intractable if
approximate solutions are not considered (Tsotsos, 1990).
Therefore, like biological systems, humanoid robots must be
endowed with mechanisms to allow them to locate objects
of interest and to sequentially build detailed representations
of the scene, while avoiding the potential overload of pro-
cessing irrelevant sensory stimuli. Under the assumption that
biological systems perform quasi-optimally in their environ-
ment due to multiple generations of genetic improvement,
researchers have been developing robotics systems (Metta
et al., 2008) provided with biologically inspired space-
variantimage processing (Schwartz etal., 1995; Javier Traver
& Bernardino, 2010), gaze control models (Roncone et
al., 2016; Bernardino & Santos-Victor, 1999) and atten-
tion systems (Begum & Karray, 2011; Borji & Itti, 2013b;
Vijayakumar et al., 2001; Frintrop et al., 2010; Potapova et
al., 2017). These implementations not only mimic the mech-
anisms observed in humans but, in general, also lead to more
efficient and effective behaviors under resource-constrained
settings (bandwidth, computational and energetic). In the
context of robotics, and from a practical standpoint, uncon-
ventional space-variant sensing representations, in particular
human-like foveal vision, offer multiple advantages when
compared to conventional uniform counterparts, including
reduced resolution with wide field-of-view, being suitable
for real-time performance in active vision systems (Bajcsy
etal., 2018; Schwartz et al., 1995) that are able to manipulate
the view-point and other visual parameters.

@ Springer
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(b) Retinal (left) and cortical (right) log-polar representations with overlapping circular RFs. Left: the =z and y
correspond to Cartesian coordinates in the retinal plane. While p and 6 correspond to coordinates in the cortical

domain.

(c) Self-organized Gaussian receptive field tessellation produced with self-similar neural network units. Left: node
tessellation. Right: Gaussian receptive fields on top of a retina tessellation.

Fig.2 Log-polar transform

2.2 Computational foveal vision mechanisms

All levels of the visual system are highly regular and sym-
metric, from the photoreceptors distribution in the retina, to
higher-level cell organization in the striate cortex. Different
digital sensing architectures exist in the literature that attempt
to mimic biological vision structures, namely adaptive and
reconfigurable hardware-based ones (Garciaetal., 2014; Bai-
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ley & Bouganis, 2009), as well as algorithmic-based human
like vision ones (Almeida et al., 2018).

Biologically plausible foveated digital image processing
techniques attempt to mimic the space-variant phenomena
in the visual pathways, and have numerous applications,
including video streaming in low-bandwidth networks (e.g.
teleoperation and remote surveillance) and scene understand-
ing tasks (e.g. object detection (Akbas & Eckstein, 2017),
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tracking (Bernardino & Santos-Victor, 1999; Gould et al.,
2007), and robot navigation (Santos-Victor & Bernardino,
2003)). The algorithms proposed in the literature, try to
mimic foveal vision and can be classified as geometric (Javier
Traver & Bernardino, 2010), multi-resolution (Adelson et al.,
1984), filtering-based (Geisler & Perry, 1998; Wang, 2003),
or learning-based (Lukanov et al., 2021; Cheung etal., 2017).

2.2.1 Geometric-based approaches

Studies from neurophysiology have shown that the receptive
field spacing and size scale exponentially with eccentricity
in the retina, and that light stimuli produces activation dis-
placements in the cortex that are inversely proportional to the
distance to the fovea.

Geometric-based approaches attempt to model the retino-
topic mapping transformation, using geometric shapes, that
occurs between RFs in the retina and the Lateral Geniculate
Nucleus (LGN) (Hubel & Wiesel, 1968), where neighboring
retinal locations are mapped to neighboring cortical loca-
tions. This RFs mapping distribution can be mathematically
approximated using the log-polar transformation (Schwartz,
1977), which is given by the following mathematical expres-
sion:

w,®==<Mg</«x—x02—(y—yJ§>>,

atan <u> (1)

(x —xc)

and has attracted much interest within the robotics com-
munity (see Fig.2a, b). First, because it allows trading-off
field-of-view, resolution and data compression. Second, they
provide some degree of invariance to rotations and scaling
transformations, as these become linear shifts in the cortical
plane.

Many log-polar models have been proposed in the liter-
ature (Bolduc & Levine, 1998) and may be categorized as
conformal non-overlapping or overlapping, depending on
the RF support radius (see Fig.2). Although being com-
putationally more intensive than their non-overlapping RFs
counterparts, overlapping models are better at approximat-
ing the space-variant averaging phenonema in the retina, and
produce smoother retinal mappings. Still, the literature falls
short on works that attempt to model uncertainty in 3D recon-
struction due to space-variant quantization phenomena in the
retina, and to leverage these uncertainty measures for Next-
Best-View (NBV) planning during exploration and visual
search tasks (de Figueiredo et al., 2018).

While the previous approaches attempt to capture the
retina receptive field tessellation structure through analytic
geometric modeling, other approaches capture its underly-
ing structure through exploration and learning strategies. One

example is the self-organized retina of Balasuriya (2006) that
unlike previous approaches can deal with sampling discon-
tinuities between the fovea and the peripheral region of the
visual field. During the structure creation process, they use
self-similar neural network units, whose weights undergo
random transformations to produce randomized tessellations
(see Fig.2c).

2.2.2 Multi-resolution pyramids

Image pyramids (Adelson et al., 1984) have been proposed
for multi-resolution image processing and are particularly
suited for multi-scale image analysis, data compression, and
as an intermediate step of key point extraction algorithms
(e.g. Scale Invariant Feature Transform (SIFT)). The basic
principle resides on low-pass smoothing and downsampling.

Gaussian pyramids are the most common in the literature
and utilize Gaussian kernels for the smoothing operation.
The first level in the pyramid (level 0) contains the origi-
nal image go that is first low-pass filtered via convolution
with 2D isotropic and separable Gaussian filter kernels, and
then downsampled by a factor of two, yielding the image
g1 atlevel 1. Successive images gi4 are obtained from the
previous levels g, by iteratively repeating the low-pass fil-
tering and down-sampling procedures (see Fig. 3a). Gaussian
pyramids are useful for many applications, in particular for
recognizing patterns of unknown scale (e.g. scale invariant
template matching), and for fast foveated coarse-to-fine pat-
tern localization (see Fig.3b).

The Laplacian pyramid (see Fig.3c) was first introduced
in Burt and Adelson (1983), for image compression, and is
constructed by computing differences of Gaussians. During
the construction of the pyramid, each level of the Gaussian
pyramid gy is subtracted from an expanded version of g1,
to ensure similar resolution and obtain a band-pass image Ly.
Data compression is achieved by storing the largely decor-
related L; and the low-pass filtered image g+ 1, instead of

8k-
2.2.3 Filtering-based methods

In the work of Geisler and Perry (1998) the authors pro-
posed a foveation mechanism for digital image streaming
in low-bandwidth communication channels, that allows the
user to point the high spatial resolution focus to regions of
interest, with pointing devices (e.g. eye tracker or mouse),
being also suitable for studies involving eye movements. The
method starts by building a Laplacian pyramid, then, each
level is multiplied by an exponential kernel, centered at the
foveation point, upsampled and summed with the previous
levels, to obtain an image that matches the psychophysical
space-variant contrast sensitivity of the HVS (see Fig.4).
Matching the falloff resolution of the HVS, makes optimal

@ Springer
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Fig.3 Multi-resolution pyramid representations

use of compression resources, by discarding only the details
that cannot be resolved by the human eye, via manipulation
of the exponential kernel standard deviation. Inspired by this
model the authors of Almeida et al. (2018), Melicio et al.
(2018) developed a real-time implementation that was used
to study the impact of artificial foveal vision mechanisms in
gaze sequence modelling.

2.2.4 Learning-based methods
More recent learning-based approaches employ deep neu-

ral networks, that learn to deploy attention at specific image
locations, depending on the task. The approach of (Recasens
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et al., 2018) proposes a saliency-based distortion layer for
convolutional neural networks that is optimized to perform
task-dependent spatial sampling of input visual data. The pro-
posed layer learns to deform high-resolution image data by
downsampling in a non-uniform and non-linear manner such
that task-relevant information is preserved while irrelevant
discarded.

Spatial transformer networks (Jaderberg et al., 2015)
introduced the ability to learn space-invariant representa-
tions, from simple invariance to translations, rotations and
scaling to more complex warpings. The similarly minded
method of Thavamani et al. (2021), learns to magnify regions
in the field-of-view that are likely to enclose objects. These
salient regions are processed at high resolution, to ensure high
detection accuracy, while keeping computational complex-
ity tractable. The use of differentiable image warping, using
spatial transformer networks, ensures bounding box estima-
tions can be mapped back to the original image space. In the
work of Lukanov et al. (2021), the authors propose a method
in which the input image is foveated with Foveal Cartesian
Geometry (FCG) and classified by a CNN. An attention map
is computed from the last convolutional layer, that is used
for attention using salient features. A Global Average Pool-
ing (GAP) layer is used before the classification output layer,
to assist the attention mechanism in augmenting the attention
map such that features specific to particular classes of objects
are inhibited or prioritized. Finally, the maximum intensity in
the attention map is used as the location to which the fovea
should move next. The PatchDrop method of Uzkent and
Ermon (2020) proposes a reinforcement learning approach
that dynamically identifies when and where to acquire high
resolution data conditioned on low resolution images.

2.3 Visual attention and spatial selectivity as
resource constrained perception

Visual attention is the process through which organisms
select a sub-part of the visual stimuli to be processed in detail,
while suppressing the rest, to obtain an efficient perception
and cope with limited brain computational resources.

The first studies on visual attention date back to the
mid 19th century, pioneered by Von Helmholtz (1866) and
motivated by the willingness to understand how humans
attend stimuli at the periphery of the visual field. By design-
ing a device called tachistoscope Helmholtz demonstrated
independence between the ocular attention focus (i.e. gaze
location) and the peripheral attentional foci.

The first model for visual attention was proposed by
Broadbent (1958), Quinlan and Dyson (2008), in his filter
theory, which introduced the structural bottleneck concept (a
limitation on the amount of information that the brain can
process), that suggests that selective filters are necessary to
decide which stimuli to process and which to ignore. Nowa-
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Perry (1998)]
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days, the literature on visual attention is vast, and covers
a wide range of scientific fields, including cognitive neuro-
science (Carrasco, 2011) and computer science (Borji & Itti,
2013b), playing an important role in computer vision and
robotics applications (Begum & Karray, 2011). Attention
modeling is not just a multidisciplinary but also a challenging
topic under active research due to its importance in control-
ling the regions (where) and the features or objects (what)
the observer should attend to, over time (when). Attention
mechanisms can be either selective or divided.

Seminal studies from Hubel and Wiesel (1959, 1962) sug-
gest that the RFs in the mammalian visual cortex increase
in size along the visual stream, covering wider areas of the
visual field. In parallel, information is selectively processed
and the abstraction level of the representations selected along
the visual pathways, increase in complexity and in a hierar-
chical tree manner. Selective attention mechanisms deploy
resources to single features or locations, in a serial manner,
while divided mechanisms prioritize resources to multiple
features or locations, in a parallel manner.

2.3.1 Selective attention mechanisms

Selective visual attention mechanisms are the processes
through which biological organisms select only part of the
visual signal to be processed while suppressing and ignor-
ing the rest to obtain an efficient perception, and cope with
limited neural resources in the brain, allocated to vision. It
covers all factors that influence information selection mecha-
nisms, whether they are driven by visual stimuli (bottom-up)
or by task-related expectations (top-down) (Bisley, 2011).
In particular, spatial attention has been often compared to
a spotlight that selectively discards information outside a
subarea of the field-of-view. The more sophisticated zoom
lens model of Eriksen and St James (1986) suggests that the
size of the attentional spotlight is dynamic and object mag-
nification inversely proportional to the lens power (i.e. the

[ ] O

spotlight size). Other selective attention theories attempt to
explain feature integration (Treisman, 1980), based on Treis-
man (1985) the idea of determining which visual features
are detected preattentively and how the visual system makes
the preattentive processing (Treisman, 1980). To identify the
preattentive features, (Treisman, 1980) made experiments to
detect targets and measuring performance response time and
accuracy. In the response time model, viewers were asked to
complete the task as quickly as possible and the number of
distractors on the display varied. To understand how preat-
tentive processing is done, Treisman proposed a model (see
Fig.5). where each feature map registers the activity of a
specific visual feature channel like contrast or size. When an
image is shown, features are encoded in parallel into their
respective maps. These maps only provide us the activity log
of each feature. If the target has a unique feature, we just
have to check if there is activity on the respective feature
map. However, for conjunction target, one feature map is not
enough. Thereby, a serial search must be done in order to
find the target that has the correct combination of features.
In this case, a focus of attention is used to increase the time
and effort spent.

Mishkin et al. (1983) proposed that the visual pathways
can be functionally distinguished between ventral and dorsal,
both originating in the primary visual area (V1) (see Fig. 6).
The ventral stream mediates feature extraction and object
recognition (what) whereas the dorsal stream is specialized
in motion and location selectivity (where).

a) Recognition Pathway

Visual stimuli entering the ventral pathway is foveal and
neurons within the ventral stream respond selectively to
visual features that are important for recognition tasks. Input
is grouped in increasingly complex and meaningful visual
elements along the pathway. Stimuli selectivity ranges from
low-level orientation and color contrast selectivity in V1 and
V2, to aggregated contour features and complex shapes in
V4 ending in higher-level object representations in the infe-

@ Springer
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Fig.6 Human Visual System
Pathways: Mishkin et al. (1983)
suggested that the visual
pathways of primates are
organized in two functionally
distinct cortical areas (ventral
and dorsal), both originating in
the primary visual area (V1).
The visual stimuli is captured in
the retina and is projected into
the striate cortex (V1) via the
lateral geniculate nucleus of the
thalamus (LGN). The ventral
stream is responsible for feature
extraction and object
recognition (what) and the
dorsal stream for motion and
location selectivity (where)
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Fig.5 Treisman’s feature integration model of early vision—detection
of activity in individual feature maps can be done in parallel, but to
search for a combination of features, attention must be focused. Figure
adapted from Healey and Enns (2011)

rior temporal (IT) cortex, which comprise category-specific
cells. Visual representations are encoded in allocentric or
object-centric reference frames. Neurons involved in low-
level detection of disparity, were mainly found in the visual
cortex, in areas V1, V2 and V3 (Tsutsui et al., 2005),
whereas neurons involved in high-level disparity processing
facilitate computation of view-point invariant object-specific
attributes, to ease recognition functions.
b) Localization Pathway

Neural circuits in the dorsal pathways are tuned for spa-
tial location and motion detection, playing an important role
in visuomotor coordination (e.g. in visually guided reach-
ing and grasping). The dorsal stream processes both foveal
and peripheral stimulus, and builds a detailed spatial map of

@ Springer

object locations and orientations in the field of view. High-
level disparity processing, or the reconstruction of 3D surface
orientation through the computation of disparity gradients,
were found mainly in the Caudal Intraparietal Sulcus (CIP),
in the dorsal stream.

In Rosenberg et al. (2013), the authors studied how 3D
shape orientation is visually encoded in the brain. In par-
ticular, they developed analytical methods to study neural
encoding of 3D surface orientation features in the CIP, in the
dorsal stream. By varying the orientation of a planar chess
pattern positioned frontoparallel with respect to human sub-
jects, the authors concluded that neurons in the CIP jointly
encode pan and tilt orientation of 3D surfaces, and that the
distribution of preferences over orientations is statistically
close to uniform. Nevertheless, it is still unclear if other
areas in the brain exhibit unbiased activation selectivity. It is
known, however, that areas such as V4 are tuned for specific
3D orientations (Hinkle & Connor, 2002), and that 3D fea-
tures for grasping and manipulation are context-dependent
in the CIP area.

At last, although different neuro computational models
have been proposed in the computer vision literature for ori-
entation selectivity in 2D (orientation, motion), it is scarce on
works that attempt to model space-variant biases for stimuli
selectivity in 3D for enhanced pose estimation (Figueiredo
etal., 2019, 2017).
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2.4 Computational models of visual attention

James (1980) defined two modes of attention orienting
that facilitate the processing and selection of information:
stimuli-driven (exogenous) and task-driven (endogenous).
The observer attention can be stimuli-driven, triggered by
scene characteristics like color or orientation (bottom-up fac-
tors) or by specific visual characteristics that depend on the
current task or goal (top-down factors). On the one hand,
bottom-up processing refers to the involuntary mechanisms
responsible for directing resources to salient regions based
on differences from a region and its surround (e.g. contrast).
In this case, the stimuli directly triggers our attention and,
thus, it is a data-driven process. The exogenous system is
responsible for orienting our attention, in an involuntary and
reflexive manner, to salient locations, features or to where
sudden changes occur. For instance, when a light source
flashes, ones reaction will be to reflexively direct the gaze
to the source (Sokolov & Vinogradova, 1975). On the other
hand, top-down processing corresponds to allocating atten-
tion voluntarily to features, objects or spatial regions based
on prior knowledge and the agent current goals (Posner,
1980). Thus, prior knowledge and the task at hand are used
to influence attention in a goal-driven manner. The endoge-
nous mechanisms are voluntary and responsible for directing
the attentional resources to predetermined locations, fea-
tures or objects. Orienting of attention results from taking
into account task-specific internal goals, for example, when
searching for specific objects or counting how many people
will pass through a door. By guiding our attention to task-
relevant places we make the counting process more efficient.
Computational models of visual attention attempt to mimic
the behavioral aspects of the HVS. The proposed models in
the literature may belong to three different branches namely
bottom-up, top-down, or hybrid models combining the pre-
viously.

(a) Bottom-up

Bottom-up mechanisms are agnostic to the task at hand
and have the purpose of extracting relevant low-level features
and finding the most salient regions where attention should
be deployed.

The pioneering works of Koch and Ullman (1987), Itti
et al. (1998) combine multi-scale low-level features into
a single saliency map. At first, spatial feature maps are
built by extracting prominent local features from different
feature modalities (color, intensity, orientation), using center-
surround operations at different scales. Then, each map is
normalized and linearly combined in a single saliency map.
Finally, the Winner Take All (WTA) principle is applied to
select the most salient locations to be sequentially analyzed,
in order of decreasing conspicuity, using an Inhibition of
Return (IOR) mechanism (Tipper et al., 1991).

Osberger’s approach (Osberger & Maeder, 1998) starts by
performing image segmentation and then assigning percep-
tual importance based on low-level image features—contrast,
size, shape, color and motion—and high-level features—
location, people and context. Osberger chose only 5 features
to use in his algorithm and, per region, assigns an impor-
tance score to each. Lastly, a combination of these features
results in a map which represents important regions in an
image. Kadir and Brady (2001) identify salient regions based
on entropy measures of image intensity while Gao and Vas-
concelos (2007) defined a salient region considering how
different this is from the surrounding background (center-
surround mechanism (Siagian & Itti, 2007)).

The method of Gao et al. (2018) proposes a reinforce-
ment learning framework for coarse-to-fine object detection.
The method starts by applying an object detector at a
down-sampled version of the original images, then on higher-
resolution regions, that are likely to increase object detection
accuracy. More specifically, the approach utilizes detection
estimates to predict the accuracy gain for analyzing a region
atahigher resolution (R-model) and a model that sequentially
selects regions to zoom in (Q-net). The approach maintains
high detection accuracy on the YFCC100M dataset while
reducing the number of processed pixels by about 70% and
the detection time by over 50%.

(b) Top-down

The top-down models take into account the observer’s
prior knowledge, expectations and current goals. The litera-
ture on visual attention suggests several sources of top-down
influences (Borji & Itti, 2013b) when the problem is to decide
which stimuli is important: attention can be drawn to spe-
cific object visual features in search models to easily reach
the goal or use the context or gist to constrain search loca-
tions. Whenever there is a search task, top-down processes
tend to dominate guidance and target-specific features are an
essential source to draw attention more effectively. Moreover,
our attention is oriented to task-relevant features. This way,
attentional resources are not wasted and time and computa-
tional effort are saved for processing more pertinent/relevant
parts of the visual field. Under these conditions, one knows
what is looking for (goal) and we know from a priori knowl-
edge to distinguish the features that we should be searching
for. Thereby as defended by guided search theory (Wolfe et
al., 1989; Wolfe, 1994), we are able to modulate the gains
assigned to different features. If, for example, the task is to
find a green object, the gain assigned to green color will be
higher.

(c) Hybrid

Most visual attention approaches, model bottom-up and
top-down processes independently. However, there must be
a trade-off between purely bottom-up models that typically
miss to detect inconspicuous objects of interest and top-down
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systems that confine visual understanding according to prior
expectations related to the task.

In recent years, a combination of bottom-up and top-
down models, that we designate as hybrid models, have
been presented. For instance, Frintrop’s model (Frintrop,
2006) is compound by two saliency maps: one corresponding
to top-down influences and another related with bottom-up
influences. The aggregated saliency map is computed as a
linear combination of those maps using a fixed weight which
revealed to be a non-flexible approach. Rasolzadeh et al.
(2007) presented a more flexible model where the combi-
nation of top-down and bottom-up saliency maps is done
dynamically, using entropy measures that provide informa-
tion of how the linear combination of weights should change
over time. Conspicuity maps were created following Itti’s
approach in Itti et al. (1998) besides the extra parameters used
to weight the saliency map. They used a neural network to
learn the bias of the top-down saliency map based on infor-
mation provided by contextual scene and the current task.
These hybrid models suggest that the HVSs can guide atten-
tion by applying top-down weights on bottom-up saliency
maps allowing quicker target detections in backgrounds full
of distractors (Rasolzadeh et al., 2007). The authors in Zhang
etal. (2008) proposed a probabilistic Bayesian framework for
saliency learning using natural statistics (SUN). The most
salient features are the ones with the highest point-wise self-
information from features prior learned from a set of natural
images, i.e., features that mostly differ from the learned aver-
age and are statistically unexpected (bottom-up modulation),
or have the highest mutual information when searching for a
specified target object (top-down modulation).

3 Attention in visual understanding tasks

Object classification consists of assigning a single label to
a given image. Localisation includes not only classifying
the subject of an image but also identifying its position,
usually by means of a rectangular bounding box. Object
detection assumes the possibility that more than a single
instance can exist in a single image, namely of different
classes. Thus the desired output consists of every instance’s
class label and respective bounding box. Classical methods
for visual recognition tasks in the computer vision literature,
extract key point features from the image, using hand-crafted
filters, namely Histogram of Gradients (HOG) (Dalal &
Triggs, 2005) or SIFT (Lowe, 1999). During a training phase,
features are extracted from a set of different viewpoints,
and stored in a database. In the online recognition phase,
extracted features are matched against the database, based
on their Euclidean distance. The implementation is typically
a hash table and the Generalized Hough Transform (GHT)
employed for fast and robust model matching. One successful
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example in the literature is the Aggregated Channel Fea-
tures (ACF) of Dolldr et al. (2012) for pedestrian detection,
which employs a sliding window detection by classifica-
tion approach, in which each window is binary classified
as “person” or “not a person”. Classification is performed
using boosted decision trees, trained with labeled samples
of full body pedestrians, using the Adaboost algorithm (Fre-
und & Schapire, 1997). The classification method relies on
handcrafted features that combine several image channels:
LUV, Gradient Magnitude and HOGs channels aggregated
in a blockwise manner. For multi-scale detection, the method
uses multi-channel pyramids. The computational burden of
constructing full pyramids is cleverly avoided by approxi-
mating in-between scales from interpolations of the coarser
scales. Finally, non-maximum suppression is applied to avoid
multiple detections (only a few pixels apart) that correspond
to the same person (see Fig. 7a).

Recently, DNNs which are potent machine learning tools
for pattern recognition inspired by neuronal network mod-
els in the brain, were developed to autonomously generate
visual characteristic hierarchies. These can implicitly learn
highly non-linear and non-convex functions, in an end-to-end
manner, and hierarchical feature representations, optimized
by training with large annotated datasets for recognizing
complex patterns, circumventing the need of explicit fea-
ture engineering and selection. Deep learning techniques
have been successful in different challenging visual tasks,
not only on object detection (Redmon et al., 2016; Liu et al.,
2016) (see Fig. 7b), but also on segmentation (He et al., 2017)
and tracking (Held et al., 2016; Mnih et al., 2014), having
recently surpassed humans in some classification tasks (He
etal., 2015).

The aforementioned network architectures show the progress
in object classification tasks. However, we have not yet
addressed intuitively more challenging problems such as
object detection.

Their proposed method entitled R-Convolutional Neural
Network (CNN) (Long et al., 2015) first extracts region pro-
posals from the image, and then feeds each region to a CNN
with a similar architecture to that of AlexNet (Krizhevsky
et al., 2012). The output of the CNN is then evaluated by
a Support Vector Machine (SVM) classifier. Finally, the
bounding boxes are tightened by resorting to a linear regres-
sion model. This network produces the set of bounding boxes
surrounding the objects of interest and the respective classi-
fication. The region proposals are obtained through selective
search (Uijlings et al., 2013). This method has a major
pitfall—it is very slow. This is due to requiring the training
of three different models simultaneously, namely the CNN to
generate image features, the SVM classifier and the regres-
sion model to tighten the bounding boxes. Moreover, each
region proposal requires a forward pass of the neural net-
work.
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Image Processing Machine Learning
Sliding Feature
_window _ extraction Classifier
o F SIFT
' , HoG
80 g ACF

Person

(a) Classical Approaches
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Fig.7 Example architectures for visual object detection tasks. a Repre- based on simultaneously extracting features and regressing to bounding
sents traditional methods in which hand-engineered features are fed to boxes, in an end-to-end manner, using deep learning based architectures

classical machine learning approaches. b Illustrates modern methods,

JACAMAR BEE EATER BLACK STORK KITE COUCAL

Fig. 8 Representation of the saliency map and the corresponding rectangles represent the bounding boxes that cover all non-zero saliency
bounding box for each of the top-5 predicted class labels of a bee eater pixels resultant from a segmentation mask
image of the ILSVRC 2012 data set (Russakovsky et al., 2015). The
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Fig. 9 A summary of the steps in the foveation system of Almeida et
al. (2018) with four levels. The image G corresponds to the original
image and Fj to the foveated image

In 2015, Fast R-CNN (Girshick, 2015) was proposed
to address the above-mentioned issues. This network has
drastically faster performance and achieves higher detection
quality. This is mainly due to two improvements: the first
leverages the fact that there is generally an overlap between
proposed interest regions, for a given input image. Thus, dur-
ing the forward pass of the CNN it is possible to reduce the
computational effort substantially by using Region of Inter-
est (Rol) Pooling (RoIPool). The high-level idea is to have
several regions of interest sharing a single forward pass of
the network. Specifically, for each region proposal, we keep
a section of the corresponding feature map and scale it to a
pre-defined size, with a max pool operation. Essentially this
allows us to obtain fixed-size feature maps for variable-size
input rectangular sections. Thus, if an image section includes
several region proposals we can execute the forward pass of
the network using a single feature map, which dramatically
speeds up training times. The second major improvement
consists of integrating the three previously separated models
into a single network. A Softmax layer replaces the SVM
classifier altogether and the bounding box coordinates are
calculated in parallel by a dedicated linear regression layer.

The progress of Fast R-CNN exposed the region proposal
procedure as the bottleneck of the object detection pipeline.
A Region Proposal Network (RPN) is a fully convolutional
neural network (i.e. every layer is convolutional) (Ren et al.,
2017) for simultaneously predicting objects’ bounding boxes
as well as objectness score. The latter term refers to a metric
for evaluating the likelihood in the presence of an object of
any class in a given image window. Since the calculation of
region proposals depends on features of the image computed
during the forward pass of the CNN, the authors merge RPN
with Fast R-CNN into a single network, which was named
Faster R-CNN. This further optimises runtime while achiev-
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ing state of the art performance in the PASCAL VOC 2007,
2012 and Microsoft’s COCO (Linetal., 2014) datasets. How-
ever, the method is still too computationally intensive to be
used in real-time applications, running at roughly 7 frames
per second (FPS) in a high-end graphics card.

In the work of Almeida et al. (2018) the authors propose
to capture visual attention through feedback Deep Con-
volutional Neural Network (DCNN). Their method uses a
biologically inspired hybrid attention model, that combines
bottom-up and top-down mechanisms and, additionally uses
artificial human-like foveal vision, to efficiently locate and
recognize objects in foveal digital images. More specifically,
for a given inputimage I, the method computes a set of object
class proposals by performing a feed-forward pass. The prob-
ability scores for each class label (N.) are collected by
accessing the network’s output softmax layer. Then, retaining
our attention on the five highest predicted class labels, then
they compute the saliency map for each one of the predicted
classes (see Fig. 8). Then, a top-down back-propagation pass
is performed to compute the score derivative of the specific
class c¢. The computed gradient indicates which pixels are
more relevant for the class score (Simonyan et al., 2014).
Figure9 exemplifies the foveation model with four levels
and Fig. 10 depicts examples of resulting foveated images.
Kaplanyan et al. (2019) utilizes encoder-decoder networks
that learn from sampled sparse video, a manifold of videos. It
is trained on a large set of real-life videos, and uses recurrent
convolutional neural networks that allows ensuring temporal
stability of the reconstruction, by super-resolving features
through time. The method is fast enough to be used in gaze-
driven head-mounted real-time displays.

4 Resource-constrained perception in
humanoid robotics

Space-variant vision and attention mechanisms have played
arole of major importance in the design of energy and com-
putational efficient robotics anthropomorphic heads (Rojas-
Quintero & Rodriguez-Lifian, 2021). The Infanoid was an
infant humanoid robot that featured efficient foveated stereo
vision. The authors of Asfour et al. (2019) propose a
humanoid robot for high performance complex tasks such as
object manipulation, natural language understanding, inte-
grated perception, and compliant motion-execution. It is
equipped with a stereo camera system that has a baseline
of 27c¢m and is used for foveal stereo active vision and a
narrow one. The Karlsruhe humanoid head (Asfour et al.,
2009) is a successful example in which foveal vision allows
simple visuo-motor behaviors, such as smooth-pursuit and
saccadic eye movements. Another example of mechanical
head design is the work of Rojas-Quintero et al. (2021) that
proposes a bio-inspired foveal and peripheral stereo vision
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(@) fo=30

(b) fo =160

(¢) fo=90

Fig. 10 Example images obtained with the foveation system of Almeida et al. (2018) where f; = 2¥ f; defines the size of the region with highest

acuity (the fovea), from a 227 x 227 uniform resolution image

system with kinematics that allow replicating saccadic move-
ments. In the work of Adams etal. (2014), the authors propose
aneuroanatomical model of visual attention in which objects
in the surrounding environment of the cognitive agent (iCub
(Sandini et al., 2007)) are attended depending on their event-
driven (contrast change) bottom-up saliency (Galluppi et al.,
2012), implemented using a Dynamic Video Sensor (DVS),
and a neuromimetic biologically principled chip, SpiNNaker.
The method of Ruesch et al. (2008) implements a multi-
model saliency guided saccadic system in which not only
visual (intensity, color, directional and motion features) but
also sound cues are considered, and encoded in an ego-sphere
to guide fixations.

5 Conclusions

In this article we have described the biological principles
behind the human visual system and over-viewed approaches
for biologically inspired artificial vision, ranging from low-
level hardwired attention vision (i.e. foveal vision) to high-
level visual attention mechanisms for robotics applications.
More specifically, we over-viewed the state-of-the-art com-
putational models for space-variant resource-constrained
vision methods (foveal vision, selective attention, active
vision), with application in important visual tasks (e.g. recog-
nition and localization).

In particular, we have covered methods that show that bio-
logically inspired selective attention mechanisms improve
task execution, efficiency and speed, focusing on two impor-
tant visual tasks: object recognition and localization. In the
case of recognition, we emphasized approaches based on
neural saliency mechanisms to actively center objects within
the fovea through saccades. Finally, we over-viewed suc-
cessful use-cases in robotics applications, namely anthropo-

morphic humanoid robotics heads, endowed with peripheral-
foveal vision, active vision, and attention mechanisms.
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