
Autonomous Robots (2023) 47:905–920
https://doi.org/10.1007/s10514-023-10102-y

A self-guided approach for navigation in a minimalistic foraging
robotic swarm

Steven Adams1 · Daniel Jarne Ornia1 ·Manuel Mazo Jr1

Received: 1 September 2021 / Accepted: 23 March 2023 / Published online: 27 April 2023
© The Author(s) 2023

Abstract
We present a biologically inspired design for swarm foraging based on ant’s pheromone deployment, where the swarm is
assumed to have very restricted capabilities. The robots do not require global or relative position measurements and the swarm
is fully decentralized and needs no infrastructure in place. Additionally, the system only requires one-hop communication over
the robot network, we do not make any assumptions about the connectivity of the communication graph and the transmission
of information and computation is scalable versus the number of agents. This is done by letting the agents in the swarm act
as foragers or as guiding agents (beacons). We present experimental results computed for a swarm of Elisa-3 robots on a
simulator, and show how the swarm self-organizes to solve a foraging problem over an unknown environment, converging to
trajectories around the shortest path, and test the approach on a real swarm of Elisa-3 robots. At last, we discuss the limitations
of such a system and propose how the foraging efficiency can be increased.

Keywords Swarm robotics · Collective learning · Navigation · Path planning

1 Introduction

In the past thirty years the use of multi-agent techniques to
solve robotic tasks has exploded. The advancement of pro-
cessing power, sensor accuracy and battery sizes has enabled
the realisation of coordinated multi-robot problems, where
a number of agents organize to solve a specific task. When
designing increasingly larger systems, a huge part of meth-
ods draw inspiration from biological systems (ants, bees…)
where large amounts of agents interact (directly or indirectly)
to produce emerging behaviour that results in an optimized
solution to a physical problem.Robotic swarms are at the core
of these solutions, being decentralised multi-robot systems
with biologically inspired minimalist dynamics that where
complex behaviours emerge (see e.g. Beni andWang (1993);

B Daniel Jarne Ornia
d.jarneornia@tudelft.nl

Steven Adams
s.j.l.adams@tudelft.nl

Manuel Mazo Jr
m.mazo@tudelft.nl

1 Delft Center for Systems and Control, Delft University of
Technology, 2628CD Delft, The Netherlands

Dorigo et al. (2007); Blum and Merkle (2008); Kennedy
(2006)).

These biological methods have enabled plenty of theoret-
ical developments, but the applicability of them is still sparse
partly due to problem complexities hard to satisfy with min-
imalistic robots. We focus in this work on the well known
foraging problem, defined as the dual problem of explo-
ration/exploitation, where a number of agents start at a given
point in space and must find a target in an unknown (pos-
sibly time varying) environment, while converging to cycle
trajectories that enable them to exploit the found resources
as efficiently as possible. Foraging is still a paradigmatic
problem when designing very large robotic systems since
it combines exploration and on-line path planning. Addi-
tionally the duality exploration vs. exploitation is nowadays
extremely relevant in Reinforcement Learning and other AI
related fields (Thrun, 1992; Ishii et al., 2002; Nair et al.,
2018). This problem has been addressed with robotic ant-
inspired swarms that use indirect communication through
some “pheromone” (either virtual or chemical) (Fujisawa
et al., 2008; Russell, 1997; Johansson and Saffiotti, 2009).
Some early work was done in Drogoul and Ferber (1993)
showing how robots can use pheromone based information
to explore and collect. After that, authors in e.g., Sugawara
et al. (2004); Fujisawa et al. (2014); Campo et al. (2010);

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10102-y&domain=pdf
http://orcid.org/0000-0001-5949-8761

906 Autonomous Robots (2023) 47:905–920

Alers et al. (2014); Font Llenas et al. (2018); Mayet et al.
(2010); Garnier et al. (2007); Ziparo et al. (2007); Ducatelle
et al. (2009); Svennebring and Koenig (2004) have explored
several practical methods to implement pheromone-based
robotic navigation. However, complexities explode when
designing very large multi-robot swarms, be it in terms of
computation, data transmission or dynamic coupling. Addi-
tionally, these systems often include restrictive assumptions
in terms of e.g., sensor range, memory storage in the agents,
computational capacity or reliability of communications.

1.1 Related work

There have been multiple proposals for de-centralised multi
robot foraging systems. Authors in Payton et al. (2001) pro-
pose a network (multi-hop) algorithm that propagates counter
signals through a grid of robots, such that the robots accumu-
late around the shortest path between two targets in space,
propagating messages using line-of-sight communication.
The authors in Ducatelle et al. (2011b) present an naviga-
tional algorithm for a homogeneous swarm to travel between
two targets in space that requires the agents to flood the
network with their believe of the relative locations of each
unique identifiable agent, and assumes a pre-positioned agent
at the target locations.

In Nouyan et al. (2008) a path planning algorithm is
presented that explores the environment using chains of
sweeping robots, or growagrid of robots storing a vector field
pointing towards a given target relying on relative positioning
measures and one-hop line-of-sight communication via LED
signalling. In Hrolenok et al. (2010); Russell et al. (2015),
authors equip agents with deployable beacon devices to
guide navigation and store pheromone values. Authors treat
pheromones as utility estimates for environmental states, and
agents rely on line-of-sight one-hop communication and a
relative position measure to the beacons to generate forag-
ing trajectories. In Ducatelle et al. (2011a) the collaboration
between two different swarms is investigated, using forag-
ing as a paradigmatic problem, having a pre-deployed swarm
able to overlook the full domain and act as guiding agents for
the second swarm to solve the foraging problem. In this case
the use of vectors stored in the guiding swarm is explored,
with such vectors being updated using the relative positions
of the foraging swarm. In Reina et al. (2017); Talamali et al.
(2020) the authors use a virtual-reality approach to imple-
ment the pheromone field, allowing the robots to have access
to this virtual pheromone from a central controller, enabling
effective foraging.

In Lemmens et al. (2007); Lemmens and Tuyls (2009),
authors propose bee-inspired path integration algorithms on
a computational set-up, where agents use landmarks to store
pheromone-based information when a change in direction is
required.

Note that (Nouyan et al., 2008; Ducatelle et al., 2011b;
Payton et al., 2001) assume agents in the swarm communi-
cate directly with other agents, while (Hrolenok et al., 2010;
Russell et al., 2015; Ducatelle et al., 2011a) de-couple this
and propose an environment-based interactions where agents
onlywrite and read data into locally reachable beacons.How-
ever, all assume knowledge of relative positions between
agents.

1.2 Main proposal

We aim in this work to provide a scalable and robust solu-
tion to the problem of decentralised foraging robots, in terms
of communication disruptions, robot failures and changing
environment.We propose a design aminimalistic swarm sys-
tem capable of solving the foraging problem by using a form
of pheromone-inspired communication with the following
restrictions:

• All agents do not have knowledge of relative (or global)
positions with respect to other robots, and only need an
orientation measure (a compass).

• The system relies on one-hop communication only with
limited range, and does not require direction or distance
of signals nor line-of-sight connectivity.

• The system is fully distributed andneeds no infrastructure
in place.

The contribution is therefore split in two main branches:

1. Swarm doesn’t require position measurements, multi-hop
or line of sight communication.

2. Swarm is robust versus changing environments, com-
munication disruptions and agent failures, demonstrated
through extensive simulations.

The goal of our proposal is to obtain a swarm system that
is deployable in real life, without knowledge of the spe-
cific environment and that adapts to changing environments
and unforeseen events. This goal dictates contributions 1
and 2 above. In this way, contribution 1 is an improvement
with respect to, among others, Hrolenok et al. (2010); Rus-
sell et al. (2015); Ducatelle et al. (2011a, b); Nouyan et al.
(2008); Sperati et al. (2011); Hoff et al. (2013). Although
there are (few) examples of foraging swarm work that con-
siders changing environments, robustness studies in the form
of contribution 2 do not appear in detail in existing literature
(with the exception of Nouyan et al. (2008) where a swarm
path formation problem is considered) for a fully distributed
and autonomous foraging swarm, andwe believe it is of great
importance for a swarm intended to operate in the real world.

123

Autonomous Robots (2023) 47:905–920 907

1.3 Preliminaries

We use calligraphic letters for sets (A), regular letters for
scalars (a ∈ R) and bold letters for vectors (a ∈ R

n). We
consider discrete time dynamics k ∈ N, and we define an
inter-sampling time τ ∈ R+ such that we keep a “total” time
measure t = τk. With vectors we use ‖v‖ as the euclidean
norm, and 〈v〉 := v

‖v‖ . We use the diagonal operator D(·) =
diag(·).

2 Problem description

Take a swarm of N agents A = {1, 2, . . . , N } navigating in
a bounded domain D ⊂ R

2, where D is compact and con-
nected (possibly non-convex). We define xa(k) ∈ D as the
position of agent a at (discrete) time k, and velocity va(k) =
v0(cos(αa(k)) sin(αa(k)))T with αa(k) ∈ [−π, π) as its
orientation. We define the dynamics of the system to be in
discrete time, such that the positions of the agents evolve as

xa(k + 1) = xa(k) + va(k)τ. (1)

Consider the case where the swarm is trying to solve a for-
aging problem.

Definition 1 (Foraging problem). A foraging problem on an
unknown domain D is the joint problem of finding a target
regionT ⊂ Dwhen starting on a different regionS ⊂ D,S∩
T = ∅, and eventually following (sub) optimal trajectories.1

The main goal when solving a foraging problem is to com-
plete trajectories betweenS andT as fast as possible (through
the shortest path), back and forth. Then, the quality of the
solutions can be quantified by the amount of trips between
the S and T performed by all agents in some time interval.
To design such a swarm, wemake the following assumptions
on the swarm agents’ capabilities.

Assumption 1 (Swarm constraints2)

1. Agents have a small memory, enough to store scalars and
vectors in R

2, and enough computational power to per-
form sums and products of vectors.

2. Agents have the ability to send and receive basic signals
(up to 6 scalar values), within a maximum range δ, every
τ seconds.

1 A trajectory is optimal if there exists no other trajectory connecting
S and T that has a shorter length. We say (informally) it is sub-optimal
if it is relatively close (in travel time) to the optimal trajectory length
between S and T .
2 Many off-the-shelf small robotic systems satisfy these assumptions,
e.g. Elisa-3, e-Puck, Sphero Bolt….

3. Agents have some form of collision avoidance mecha-
nism, acting independently of the design dynamics.

4. Agents have sensing ability to detect S, T .
5. Agents have some measure of angular orientation (e.g., a

compass).
6. Agents are able to remain static.

Observe that we do not assume the ability to measure direc-
tionality in the signals, nor any form of self-localisation
capacity. Additionally, the agents do not have access to any
form of global information about D, do not have unique
identifiers and do not require line-of-sight interactions. The
swarm does not require either any form of infrastructure
in place. At last, the swarm relies on one-hop communica-
tion only, and we do not require the communication to be
synchronous. That is, communication happens on an agent-
to-agent basis, and agents donot cascade information through
the communication network. The challenge to be solved in
this work is then the following.

problem 1 Design a swarm of N agents that solves a forag-
ing problem over an unknown domainD, while satisfying the
set of Assumptions 1, and does so with guarantees.

3 Proposal: self guided swarm

We now present our design for a self-guided swarm that
solves the foraging problem presented in Sect. 2. Our design
is based on the idea of allowing agents in the swarm to
behave as “beacons” (agents in charge of guiding others)
or “foragers” (agents in charge of travelling from S to T).
Beacon agents store weight values and guiding velocity vec-
tors, which they broadcast to the foragers in the swarm to
generate foraging trajectories. We first describe the different
modes the agents can operate in, the switching rules between
modes, and then the dynamics in every mode.

3.1 States and transitions

Let us then split the swarm into three groups of agents. We
will use the state variable sa(k) ∈ {B, F1, F2} with a ∈ A to
indicate:

1. sa(k) = B ⇒ a is a beacon.
2. sa(k) = F1 ⇒ a is a forager looking for T .
3. sa(k) = F2 ⇒ a is a forager looking for S.

We use s = F1, F2 as the different foraging states. Then, we
can group the agents in time-dependent sub-sets: the beacons
B(k) : {a ∈ A : sa(k) = B} and the foragers As(k) := {a ∈
A : sa(k) = s}.

123

908 Autonomous Robots (2023) 47:905–920

At t = 0 all agents are initialised at S. One agent is cho-
sen to be the initial beacon, and all others are initialised as
foragers looking for T :

xa(0) ∈ S ∀a ∈ A,

|B(0)| = 1,

|AF1(0)| = N − 1.

(2)

This initial beacon can be chosen at random, or based on
some order of deployment of the swarm. Let us now define
the regions of influence of every agent asDa(k) := {x ∈ D :
‖x − xa(k)‖2 ≤ δ}, for some maximum instrument range
δ ∈ R+. As time evolves, the agents switch between states
following the logic rules ∀a ∈ A:

sa(k + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

B if � b ∈ B(k) : xb(k) ∈ Da(k),
F1 if sa(k) = F2 ∧ xa(k) ∈ S,

F2 if sa(k) = F1 ∧ xa(k) ∈ T ,

sa(k) else,

. (3)

The switching rule in (3) is interpreted in the following way.
If a forager moves to a point in the domain where there is
no other beacons around, it becomes a beacon. If a forager
is looking for the set T (mode 1) and finds it, it switches
to finding the starting set S (mode 2), and the other way
around. For now we do not consider transitions from beacon
to forager.

3.2 Dynamics

We assume that beacons remain static while in beacon state:

vb(k) = 0, xb(k) = xb(kb) ∀k ≥ kb, (4)

where kb is the time step when agent b switched to beacon
state. Beacon agents store weight values ωs

b(k) ∈ R+ and
guiding velocity vectors usb(k) ∈ R

2, initialised at zero for
all agents in the swarm. At every time-step, beacon agents
broadcast their stored values ωs

b(k),u
s
b(k) with a signal of

radius δ. Let us define the set of neighbouring beacons to
a forager in state s, f ∈ As(k) as B f (k) := {b ∈ B(k) :
xb(k) ∈ D f (k)}, and the set of neighbouring foragers to
a beacon b ∈ B(k) as F s

b(k) := { f ∈ As(k) : x f (k) ∈
Db(k)}.

At every time-step each forager receives a set of signals
from neighbouring beacons, and computes a reward function
�s

f (k) ∈ R+:

�s
f (k) = γ s

f (k) + λ max
b∈B f (k)

ωs
b(k), (5)

where λ ∈ [0, 1] is a diffusion rate, and for some r ∈ R+,

γ s
f (k) =

⎧
⎨

⎩

r if s f (k) = F1 ∧ x f (k) ∈ S,

r if s f (k) = F2 ∧ x f (k) ∈ T ,

0 else.
(6)

The reward function in (5) works as follows: Foragers listen
for weight signals from neighbouring beacons and broadcast
back themaximumdiscountedweight, plus a constant reward
if they are in the regions S or T depending on their state. The
discounted term λ serves the role of a hop-count in other liter-
ature examples.However, in our case the robots donot need to
keep count of messages, nor cascade messages through the
network. This propagation of information through the net-
work is done in a fully sparse and memory-less way (since
robots only listen for messages, compute new weights and
broadcast messages to robots around them), without the need
of keeping connectivity in the beacon network. Observe that
(5) depends on s, indicating that foragers listen and reinforce
only the weights corresponding to their internal state value.
The beacons update their weight values using a (possibly
different) discount factor ρ ∈ [0, 1] as

ωs
b(k + 1) = (1 − ρ)ωs

b(k) + ρ

∑
f ∈F s

b (k) �s
f (k)

|F s
b(k)|

. (7)

The iteration in (7) is only applied if there are indeed
neighbouring foragers around a beacon, so |F s

b(k)| ≥ 1.
Otherwise, ωs

b(k + 1) = ωs
b(k).

The update rule of usb(k) is similarly:

usb(k + 1) = (1 − ρ)usb(k) − ρ

∑
f ∈F s

b (k) v f (k)

|F s
b(k)|

. (8)

and again, |F s
b(k)| = 0 ⇒ usb(k + 1) = usb(k). At the same

time that beacons update their stored weight values based on
the foragers around them, they update as well the guiding
velocity vectors by adding the corresponding velocities of
the foragers around them (with an opposite sign). The logic
behind this has to do with the reward function in (5). For-
agers looking for T update weights and guiding velocities
associated with state F1, but to indicate that they are in fact
moving out of S, we want to update the guiding velocities
based on the opposite direction that they are following.

Until now we have defined the dynamics of the beacon
agents: position and velocities in (4) and update rules for
ωs
b(k), u

s
b(k) in (7) and (8).We have yet to define the dynam-

ics of the foragers. At every step, the foragers listen for
guiding velocity and weight signals from beacons around
them. With this information, they compute the guiding vec-

123

Autonomous Robots (2023) 47:905–920 909

tor:

v̂sf (k) := v0

〈
∑

b∈B f (k)

ωs
b(k)u

s
b(k)

〉

, (9)

where s is the opposite state to s, s = F1 ⇐⇒ s = F2. At
every time-step foragers choose stochastically, for a design
exploration rate ε ∈ (0, 1), if they follow the guiding vector
v̂sf (k) or they introduce some random noise to their move-
ment. Let αu be a random variable taking values (−π, π],
following some probability density function p(αu), and let
α̃a(k) := αa(k) + αu . Then, ∀ f ∈ As(k):

Pr

{

v f (k + 1) = v0

(
cos (α̃a(k))
sin (α̃a(k))

)}

= ε,

Pr{v f (k + 1) = v̂sf (k)} = 1 − ε.

(10)

Additionally, we add a fixed condition for an agent to turn
around when switching between foraging states. That is,

v f (k + 1) = −v f (k) if s f (k + 1) �= s f (k). (11)

With (10) and (11) the dynamics of the foragers are defined
too.We have experimentally verified that, over a diverse vari-
ety of set-ups, the weights ωs

b(k) converge on average to a
fixed point forming a gradient outwards fromS and T , there-
fore guiding the swarm to and from the goal regions.

3.3 Implementation

The dynamics presented result in the following algorithms
running in the robots. The robots switch between Algorithms
1 and 2, depending on if they are beacons or foragers.

Algorithm 1 Behaviour of beacons
while sb(k) = 0 do

Broadcast ωs
b(k),u

s
b(k);

Listen for signals during τ seconds;
Compute ωs

b(k + 1),usb(k + 1);
Move according to vb(k + 1);
if Obstacle then

Move to avoid obstacle;
end if
Check transitions in (3);

end while

4 Results and guarantees

To show that the swarm finds the target region T and even-
tually converges to close to optimal trajectories between S
and T , let us first state the assumptions for the following
theoretical results.

Algorithm 2 Behaviour of foragers
while s f (k) �= 0 do

Listen for signals during τ seconds;
Broadcast v f (k),�s

f (k);
Compute v f (k + 1) from (10) and (11);
Move according to v f (k + 1);

� Asynchronous action
if Obstacle then

Move to avoid obstacle;
end if
Check transitions in (3);

end while

Assumption 2

1. Any Dk ⊆ D is a compact disc of radius δ.
2. τ < δ

2v0
, and can be chosen small enough in comparison

to the diameter of the domain D.
3. The regions S and T are compact discs of radius, at least,

2τv0.

4.1 Domain exploration

Remark 1 It holds by construction that ∃b : xa(k) ∈
Db(k) ∀k, ∀a ∈ As(k).

From the transition rule in (3) it follows that, whenever
xa(k) /∈ Db(k) for any beacon b ∈ B(k), it becomes a
beacon, therefore covering a new sub-region of the space.
To obtain the first results regarding the exploration of the
domain, we can take inspirations from results in RRT explo-
ration (Kuffner & LaValle, 2000), where the agents perform
a similar fixed length step exploration over a continuous
domain. Let pa(x, k) be the agent probability density of point
x at time k. We obtain the following results.

Proposition 1 Let D ⊂ R
2 be convex. Let some a ∈ A have

xa(k0) = x0. Then, for any convex region Dn ⊂ D with
non-zero Lebesgue measure, there exists κn ∈ R+ and time
kn ∈ N such that

Pr[xa(kn + k0) ∈ Dn | xa(k0)] ≥ εknκn . (12)

Proof (Sketch of proof) At every time-step k, with probabil-
ity ε, it holds αa(k + 1) = αa(k) + αu, and observe that
αa(k + 1) ∈ (−π, π]. Let agent a be at point x0 at time
k0, and take the event where for every time-step after k0 the
agent always chooses the random velocity. For k = k0 + 1,
the set of points Xa(1) ⊆ D satisfying pa(k0 + 1, x) > 0
is Xa(k0 + 1) = {x ∈ D : ‖x − x0‖2 = v0τ }. One can
verify that Xa(k0 + 1) forms a circle in R

2 around x0. Now
for k = k0 + 2, the set Xa(k0 + 2) is

Xa(k0 + 2) = {x ∈ D :‖x − x1‖2 = τv0,

x1 ∈ Xa(k0 + 1)}. (13)

123

910 Autonomous Robots (2023) 47:905–920

In this case, the set in (13) forms a ball of radius 2v0τ around
x0. At k = k0 + 2, it holds from (13) that pa(x, k0 + 2) >

0 ∀ x ∈ Xa(2). Then, for any subsetD2 ⊆ Xa(2), it holds that
Pr[xa(2) ∈ D2 | xa(k0)] ≥ ε2κ2, where κ2 ∈ R+ is a func-
tion of the set D2 and the probability density pa(x, k0 + 2).
The sets Xa(k) are balls centred at x0 and radius k τ , and
pa(x, k) > 0 ∀ x ∈ Xa(k). Let at lastDn be any convex sub-
set ofD with non-zero Lebesgue measure, and kn = min{k :
Dn ⊂ Xa(k)}. Then, Pr[xa(k0+kn) ∈ Dn | xa(k0)] ≥ εknκn
for some κn > 0.

��
Now we can draw a similar conclusion for the case where D
is non-convex.

Lemma 1 Let D be a non-convex path-connected domain.
Let some a ∈ A have xa(k0) = x0. Then, for any convex
region Dn ⊂ D of non-zero Lebesgue measure, there exists
τ > 0 and κn > 0 such that we can find a finite horizon
kn ∈ N:

Pr[xa(kn + k0) ∈ Dn | xa(k0)] ≥ εknκn . (14)

Proof (Sketch of proof) If D is connected, then for any
two points x0, xn ∈ D, we can construct a sequence of
balls {X0,X1, . . . ,Xkn } of radius R ≥ v0τ centred at
x0, x1, . . . , xkn such that the intersections Xi ∩ Xi+1 �= ∅
and are open sets, and xi ∈ Xi−1. Then, we can pick τ to be
small enough such that every ball Xi ⊂ D does not intersect
with the boundary of D, and we can apply now Proposi-
tion 1 recursively at every ball. If ‖xi − xi−1‖2 < 2v0τ ,
then from Proposition 1 we know p(xi , ki−1 + 2) > 0
since, for a given xi−1 and ki−1, any point xi has a non-
zero probability density in at most 2 steps. Then, it holds
that p(xn, kn−1 + 2) > 0 for some kn−1 ∈ [kn, 2kn], and
for a target region Dn : Pr[xa(kn + k0) ∈ Dn | xa(k0)] ≥
εkn

∫

Dn
pa(xn, kn + k0)dx ≥ εknκn for some κn > 0. ��

It follows from Lemma 1 that for a finite domain D every
forager agent visits every region infinitely often. For a given
initial combination of foraging agents, we have now guar-
antees that the entire domain is be explored and covered by
beacons as k → ∞.

4.2 Foraging

We leave for future work the formal guarantees regarding
the expected weight field values ωs

b(k) and guiding veloci-
ties usb(k). Based on existing literature (Payton et al., 2001;
Jarne Ornia &Mazo, 2020), one could model the network of
beacons as a discrete graph with a stochastic vertex weight
reinforcement process based on the movement of the robots
to proof convergence of both ωs

b(k) and usb(k). Such results
would also allow us to study the limiting distribution of the

robots across the space, as well as their trajectories. In this
work we have experimentally verified that, over a diverse
variety of set-ups, the weights ωs

b(k) converge on average
to a fixed point forming a gradient outwards from S and T ,
therefore guiding the swarm to and from the goal regions.

5 Experiments

For the experiments we present an extensive statistical
analysis of simulations running on Webots (Michel, 2004),
adaptability results simulated in a particle swarm simulator
and an application running on real Elisa-3 robot (GCTronic).
We used theWebots simulator for the implementation of the
work given its capabilities to simulate realistic robots in phys-
ical environments, and since it includes Elisa-3 robot models
which satisfy the restrictions in Assumption 1 (using odome-
try for direction of motion measures). The swarm agents are
able to listen almost-continuously, store any incoming sig-
nals in a buffer, and empty the buffer every τ seconds. The
maximum range δ is virtually limited to restrict the com-
munication range and simulate larger environments where
not all robots are capable of reaching each-other. Addition-
ally, the robots use a built-in collision avoidance mechanism,
triggered when the infra-red sensors detect an obstacle closer
than 2cm. See Appendix 4 for a detailed description of the
collision avoidance mechanism.

The final parameters used for both the simulation and the
real swarm are presented in Table 1. For details on how these
parameters were selected and more information on how they
affect the system, see Appendix 1. To fully evaluate the per-
formance of the method we now include results regarding
convergence and efficacy metrics. We are interested in mea-
suring two main properties in such swarm:

1. Foraging performance over finite horizon t ∈ [thit, T]:
Navigation delay d(thi t , T) (Ducatelle et al., 2011b).

d(thit, T) = 1

|A|
∑

i∈A

T − thit
#tripsi

, (15)

where thit is defined as the first time step an agent reaches
the target region.

2. Accumulation of agents around foraging trajectories:
Hyerarchic social entropy S(A).

For conciseness in the results we will address in this sec-
tion the performance in terms of navigation delay. For further
details on the entropy metric and results see Appendix 2. The
experiment section is split in three parts:

123

Autonomous Robots (2023) 47:905–920 911

Table 1 Simulation parameters

Parameters

ρ λ r ε τ (s) δ (m) v0(
m
s) σ 2

0.01 0.8 1 0.05 1 0.4 0.25 0.01

1. Foraging results We perform a statistical analysis of the
foraging performance in terms of the metrics above for
different swarm sizes.

2. Swarm adaptability We present the results obtained for
the cases with mobile obstacles, communication errors
and measurement errors.

3. Real swarmWe demonstrate an example of a real robotic
swarm solving a foraging problem.

5.1 Foraging results

We simulated a Webots swarm in an environment of size
2.5m × 3m, with and without obstacles, where the nest and
food are 2m apart, to evaluate the influence of the number of
agents N in a foraging benchmark scenario. All simulations
are run for horizon T = 400 s, since that was observed to
be enough for the swarm to stabilize the trajectories. A first
result on the swarm configuration under these parameters is
shown in Fig. 1.

The robots are released in batches to avoid that the starting
regions is overcrowded and the movements of the agents in
the densely populated region are solely determined by their
collision avoidance mechanism, which is called the over-
crowding effect. Fig. 1a and b are simplified visualizations of
the Webots simulator, The size of green dots represents rela-
tive amount of weights stored at the beacons, and the plotted
vectors are the guiding velocities us(k) at each beacon. One
can see how the swarm is able to navigate to the target set,
and does so around the shortest path. Note however how the
randommotion still affects somemembers of the swarm, and
how the agents’ accumulation seems to be restricted by how
well the beacons represent the desired velocity field. This can
be clearly seen in Fig. 1. Most swarm members are indeed
moving back and forth from S to T , but do so spreading
between the rows of beacons closer to the minimum length
path.

In Tables 2 and 3 we present the navigation delay for three
different sizes of the swarm, N = 49, N = 81 and N = 157.
These numbers were picked as follows. First, N = 49 is
a 7 × 7 group of robots. With the selected δ = 0.4m, we
can expect it will take between 30 and 40 beacons to cover
the entire area (assuming every robot covers ≈ π0.42

2 m2 of
area). This leaves a group of 10–20 robots for foraging tasks,
which can be considered the minimum to obtain significant
results. Second, N = 81 is a 9 × 9 group of robots, which

Fig. 1 Webots swarm state with obstacle

Table 2 Navigation delay for [thi t , T] without obstacle
Swarm size Foragers Random

Mean Std Mean Std

49 17.45 5.46 294.84 12.53

81 16.45 0.92 322.90 41.38

157 103.3 63.44 1152.03 709.4

Bold values indicate the mean of the results

Table 3 Navigation delay for [thi t , T] with symmetric obstacle

Swarm size Foragers Random

Mean Std Mean Std

49 30.18 7.42 375.74 27.85

81 23.55 1.53 433.93 66.30

157 97.54 22.25 1250.24 706.13

Bold values indicate the mean of the results

was observed in the first experiments to perform very effi-
ciently for the selected environment. At last, N = 157 is
the maximum robots Webots could run simultaneously (in
our equipment), and is enough to produce the overcrowding
effect.

123

912 Autonomous Robots (2023) 47:905–920

Each value includes results from 12 independent test runs.
The navigation delay is presented for 2 different scenarios:

1. Random Agents moving at random.
2. Foragers Only forager agents N − B(T).

Computing the navigation delay for the Foragers case is
equivalent to using d(thit, T) = 1

|N−B(T)|
∑

i∈A
T−t0
#tripsi

, such
that the number of trips is averaged among the number of
foragers. We also include an absolute lower bound, corre-
sponding to the absolute minimum possible travel time in
the considered scenario. We can now extract several conclu-
sions with respect to the swarm sizes. For a size of N = 49
or smaller too many agents are needed as beacons, hence the
performance (specially when considering the full swarm) is
significantly worse than for bigger swarms.When increasing
the size of the swarm to N = 81 the performance increases
and the variance in the results is reduced, but this tendency
reverses for too large swarms due to the overcrowding effect,
as it can be seen in the results for N = 157. Another point
worth noting is that the lower bound of navigation delay
where robots know and follow the optimal trajectory to the
target is ≈ 8s without obstacles and ≈ 9s with obstacle.
These conclusions with respect to the swarm size are subject
to mainly two factors: The size of the environment and the
radius of influence δ. For larger environments and lower δ

we can expect a scaling of the problem, such that we need
more robots to solve the foraging task and it will also take
more robots to reach the overcrowding point.

5.2 Swarm adaptability

The ultimate goal of the system proposed in this work is
to obtain swarms as efficiently as possible, without requiring
complex single systems, with high flexibility and robustness.
In this line of thought, we want to analyse the adaptability of
the swarm with respect to three points:

1. Removing beacons and allowing them to move.
2. Moving obstacles (non-stationary environments).
3. Agent failure and measurement errors.

For all the scenarios, we simulate a baseline swarm with
N = 101 agents and the parameters as in Table 2, and every
numerical result includes a sample of 50 simulations.

5.2.1 Movable beacons

To increase overall efficiency of the system we implement
controllers in the beacons to allow them to turn back to for-
agers when their weights have not been updated for a long
time and to move to more transited areas of the environ-
ment. This ensures only the necessary amount of beacons

Fig. 2 Swarm with movable beacons

are employed as the system evolves, and increases the gran-
ularity (or the definition) of the paths that are being used
more often, possibly enabling more optimal configurations.

We implemented such method allowing beacons to turn to
foragers when their weights are lower than a specific thresh-
old for too long, and adding a P controller to the velocity of
the beacons (set to 0 in previous experiments):

vb(k) =
{
0 if Db(k) ∩ S ∩ T �= ∅,

vb,0〈∑s u
s
b(k)〉 else

(16)

with vb,0 ∈ R+, vb,0 << v0 the beacons speed. This con-
troller allows the beacons to slowly move towards the mid
direction between their two guiding velocity vectors usb(k).
The logic between this controllers is straight-forward: If the
most optimal trajectory is a straight line, the most optimal
configuration for the beacons would be to sit along the line,
with the guiding vectors on 180o.

From Figs. 2 and 3 one can see how this controller in-
creases the efficiency of the system. Here, the black lines
indicate the paths traveled by 10 randomly selected foraging
agents for the last 5 time steps.While the swarm is exploring,
it uses ≈ 35 beacons before starting to re-configure. After
around 100s, beacons disappear from large unvisited areas

123

Autonomous Robots (2023) 47:905–920 913

Fig. 3 Foraging in a dynamical environment

of the domain and the rest get closer to the optimal trajectory,
allowing more accurate trajectories by the agents. When the
system converges, the swarm is using ≈ 18 beacons, half of
those in the static beacon scenario.

We compare in Table 4 the navigation delay for the same
scenario with and without moving beacons. The distributed
approach for adapting the beacon positions results in a signif-
icant reduction of navigation delay, indicating amore optimal
trajectory set but specially a direct improvement in the total
amount of trips for a similar size of the swarm, given that a
number of beacons return to foraging functions. Reecall as

Table 4 Navigation delay measured for all agents for [thi t , T] for mov-
able beacons

Mean Std

Static beacons 12.51 5.12

Movable beacons 10.86 3.47

Bold values indicate the mean of the results

well that the absolute optimal travel time between nest and
food source would in this case be≈ 9s, and the re-configured
swarm achieves 10.86

5.2.2 Non-stationary environments

The updating of information stored in the beacon grid forced
by the evaporation factors, and the dynamical beacon grid
generated by allowing beacons to move, should in theory
allow our method to adapt to changing environments. Here,
we present the experimental results regarding the adaptability
of the system with respect to non-stationary environments.
We considered a similar environment as in Ducatelle et al.
(2011a) with two obstacles forcing a curved path between
the targets. From Fig. 3 one can see that the system is able
to create a sub-optimal trajectory with an efficient beacon
infrastructure. After 201 seconds the obstacles are removed.
From Fig. 3 one can conclude that 600 seconds after the envi-
ronment changes, the system is able to create a new efficient
beacon structure around the new optimal trajectory.

5.2.3 Agent failures andmeasurement errors

We now present the experiment results regarding the adapt-
ability of the system with respect to agent failures and noisy
measurements. First, to account for possible disturbances in
sensor measurements, we consider the disturbed weight and
velocity values for a random variable μk ∼ N (1, σ 2),

ω̃s
b(k, σ) :=|μk |ωs

b(k),

ṽ f (k, σ) :=D(μk, μk)v f (k).
(17)

That is, every measurement of weights transmitted by the
beacons and every velocity measurement computed by the
agents are perturbed proportionally with a random noise sig-
nal with variance σ 2. In this case we simulate the swarm
without obstacles.

The results are presented in Table 5. One can see how as
we increase the variance of the noise, the navigation delay
worsens progressively. However, even for relatively “wide”
normal distributions with σ 2 = 1, the swarm shows rela-
tive success at solving the foraging problem (recall that the
absolutely optimal navigation delay is ≈ 8 s).

123

914 Autonomous Robots (2023) 47:905–920

Table 5 Navigation delay for
[thi t , T] for swarm with
perturbed communication

σ 2 Mean Std

0.01 13.37 2.62

0.1 13.63 3.04

0.5 14.30 1.02

1.0 20.24 0.76

2.5 327.80 67.29

Bold values indicate the mean of
the results

Table 6 Navigation delay for
[thi t , T] for swarm with
temporal agent failure

nof f (%) Mean Std

1 15.59 7.44

5 17.98 10.58

10 20.01 12.94

20 21.28 11.31

50 32.43 6.36

Bold values indicate the mean of
the results

Now we set to analyse a scenario where agents fail
randomly in the swarm (both foragers and beacons). We
implement this by considering the following failure scheme.
Every Tof f = 20s, a random fraction nof f of the agents
“fails” during a total of Tof f seconds. When an agent fails,
it is unable to move, send or receive messages. After Tof f
seconds, the agents return to normal operation, and a new
subset of agents is drawn at random and experiences fail-
ure. We repeat this for the entire 400s of the simulation, and
measure the navigation delay of the swarm.

The results for the random agent failure scenario are
presented in Table 6. The algorithm proposed presents signif-
icant robustness versus random agent failures. Observe that,
even in the scenario where 50% of agents fail every 20s,
the performance of the swarm does not collapse, and in fact
yields a navigation delay of only 2× the baseline scenario.
This would mean that, on average, the agents that are online
solve the foraging problem almost with the same delay as
the baseline scenario: the navigation delay is a measure of
seconds per trip and agent, therefore having half the agents
failing through the entire simulation would already yield a
navigation delay at least twice as the baseline.

5.3 Robotic swarm

At last we implemented the work on real Elisa3-robots, in
order to qualitatively confirm results of the work. Since the
Elisa-3 robot is also used for the Webots experiments, the
robot characteristics and behaviour are the same for both the
real swarm and the simulated swarm. Note that the Elisa3-
robots matches the restrictions of Assumption 1, except the
capacity to measure its angular orientation. To overcome this

shortcoming, a global tracking system is employed which
equips the robots with a virtual compass. Since our tracking
system is only able to measure the orientations of the robots
when all robots are notmoving, the robots run synchronously.

In the test set-up, a swarm of 35 robots is deployed around
a starting region and needs to look for a target in an arena of
size 2.4 m× 1.15mwithout obstacles (see Electronic Suple-
mentary Material 1). Figure4a and b shows snapshots of this
experiment. The red and blue pillars are the centers of the
nest region and target region, respectively. Green coloured
robots are beacons, red coloured are searching for the nest
region, blue coloured are searching for the target region. The
black arrows indicate the heading direction, the blue and red
arrows the guiding velocities u(k) at each beacon.

The resulting behaviour aligns with the predicted design
dynamics. The swarm creates a covering beacon network.
Thefirst robots reaching the target region attracts other robots
to this region and after 30 steps all non-beacon robots travel
back and forth between the target regions, clustered around
the shortest path. We point out that during all tests there were
robot failures. This did not affected the swarm’s behaviour
noticeably, showing its robustness. We leave for future work
the realisation of extensive tests withmore powerful robots to
confirm all results in other scenarios of swarm deployment.

6 Discussion

We have presented a foraging swarm design where robots
are able to guide each-other to successfully forage with-
out the need of position measurements, infrastructure or
global knowledge, and using minimal amounts of knowl-
edge about each-other or the environment. The system has
been implemented on a swarm of Elisa-3 robots, and an
extensive experimental study has been performed using the
Webots simulator.We have shown how amiddle sized swarm
(N ≈ 100) is able to find an unknown target and exploit
trajectories close to the minimum length path. The system
does require agents to know their orientation, and we have
seen how it can be affected by overcrowding effects when
agents need to avoid colliding with each-other. Additionally,
we have observed how the optimality of the trajectories is
affected by the resulting distribution of the beacons, which
gives room for futurework regarding the possibility of having
beacons re-configure to more optimal positions. In Sect. 5.1
we show how the swarm is able to solve the foraging problem
for an environment with and without obstacles, for different
numbers of agents. Then, in Sect. 5.2we demonstrate how the
proposed system is able to adapt to dynamic environments,
and the robustness it presents versus measurement noise and
system faults. We expect in the future to add ultra-wide band
communication modules to the Elisa-3 robots with magne-
tometers, that would allow us to run the system on a much

123

Autonomous Robots (2023) 47:905–920 915

Fig. 4 Robotic swarm with Elisa3 robots

larger swarm and on more complex environments, and to
apply it to other navigation-based problems like surveillance,
target interception or flocking. We leave for future work as
well the formal analysis of the resulting beacon graphs, and
the evolution of the variables ω(k) and u(k).

6.1 Advantages and shortcomings

We aim now to summarize the advantages this method
presents with respect to existing literature, as well as short-
comings that emerge from the design. First, we would like to
emphasize the fact that the proposed system does not require
line-of-sight communication, as done in e.g., Sperati et al.
(2011); Hoff et al. (2013); Ducatelle et al. (2011a); Hrolenok
et al. (2010); Lemmens and Tuyls (2009); Russell et al.
(2015); Payton et al. (2001). This would enable the swarm
to be deployed in much more diverse environments (clut-
tered, uneven terrain…), and we believe is behind the strong
robustness results obtained in the experiments. Additionally,
it does not require relative position measurements (Hrolenok
et al., 2010; Payton et al., 2001; Ducatelle et al., 2011a; Lem-
mens and Tuyls, 2009; Hoff et al., 2013; Ducatelle et al.,
2011b), which also adds significant flexibility when consid-
ering specific environments or robot types, and it does this
while keeping foraging metrics in the line of the existing lit-
erature (in the best case, ≈ 1.5 × −2× the absolute optimal
travel time). Additionally, we demonstrated experimentally
how this simplicity of the swarm requirements results in a
swarm that is significantly robust towards robot faults or
dynamic environments. At last, the proposed structure for
the foragers to become beacons (and beacons to go back
to foragers) should lead to much lower amount of beacons
required (in comparison to e.g.(Hrolenok et al., 2010; Hoff
et al., 2013)), since we do not require the beacon network to
be in range of each other, and we require an amount of mes-
sages per step of orderO(N) that are asynchronous between
robots.

However, we do still retain the assumption of a global
reference frame, that may not be able to be implemented
with a compass in inside spaces. Additionally, the nature
of the algorithm causes the robotic swarm’s performance to
decrease significantly when the environment becomes too
cluttered with robots. At last, we still need to demonstrate
the capacity of a real swarm of robots to operate in a large
environment, since the Elisa3 robots proved difficult to be
applicable to large swarms and arenas. Testing the algorithm
inmore complex robots (e.g., e-Puck robots) would probably
result in much more relevant experiments.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10102-
y.

Acknowledgements The authors D. Jarne Ornia and M. Mazo Jr. want
to acknowledge their work was partially funded by ERC Starting Grant
SENTIENT 755953.

Declarations

Conflict of interest No other conflict of interest apply.

123

https://doi.org/10.1007/s10514-023-10102-y
https://doi.org/10.1007/s10514-023-10102-y

916 Autonomous Robots (2023) 47:905–920

Fig. 5 Results for combinations of ρ values

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Parameter selection

The swarm design presented has a set of parameters that
affect the behaviour and performance of the swarm. We set
out now to address the choice of these parameters used for
the simulations in this work. The final parameters used for
all swarms are presented in Table 1.

A.1 Evaporation rate�

The evaporation rate ρ can be interpreted as the speed at
which the system forgets about “past” information. It intro-
duces a trade-off between how important “new” actions are
versus how important old knowledge is. Therefore, wewould
want higher values of ρ when there is unknown information
beingdiscovered, and lower values to prevent de-stabilization
of the swarm due to single agent errors. We fixed the rest of
the parameters to the values of Table 1 for the considered
environment with obstacle and run 50 particle simulation
runs for different combinations of evaporation rates, comput-
ing the resulting navigation delay. We allowed for different
evaporation rates in the weights (ρw) and the velocities (ρv),
and the results are presented in Fig. 5. Therefore, a single
value of ρ = 0.01 was chosen as relevant for the current
experiments.

A.2 Diffusion rate �

Thediffusion rate influences how fast the information spreads
through the network of beacons. It can be analogous to a dis-
count rate in a reinforcement learning problem; larger values
generate smoother gradients of theweight and velocity fields,
and lower values generate sharper gradients. Intuitively, only
a small subset of beacons receive a reward of r (they need to
be close to S, T). Then, the foragers propagate this informa-
tion through the network as they explore, and the information
is diffused at a rate of λL(T ,b), where L(T , b) the minimum
number of beacons that a forager needs to encounter from
the food source S to beacon b. We are then interested on not
losing too much information for large environments, there-
fore we can pick a λ close to 1 to ensure this, but strictly
smaller than 1. In fact, in Ornia et al. (2022), authors show
how for an ideal ant inspired swarm with number of agents
N → ∞, the influence of diffusion parameters vanishes as
long as 0 > λ > 1, and they show that for λ > 1 the weight
values explode and grow unbounded as k → ∞.

A.3 Reward r

The reward parameter mainly controls the scale of the weight
values. Since the agents only reward those beacons in range
of the target region with r , and the rest with 0, it serves
as a scaling factor for the weight field. Very small values
would create weight gradients through the network that are
not strong enough to properly guide agents, where too large
values could attract agents too fast towards wrong areas of
the environment. A baseline value of r = 1 was tested
and showed good results for the considered scenario. When
having larger swarms and larger environments, it would be
recommended to use larger r values to make sure the gradi-
ents are constructed on larger networks.

A.4 Exploration rate "

The exploration rate controls the probability of choosing a
random direction of movement for the foragers at every step
k. Larger probabilities yield stronger exploration and worse
foraging, but too low probabilities yield a risk of trapping
agents in local minima or not solving the foraging problem
correctly. A batch of simulations were performed to decide
on the values of ε, and values between ε ∈ [0.03, 0.1] showed
the best navigation delay for swarms between N = 47 and
N = 101.

A.5 Sampling period �

The sampling period affects both the communication rate
and the rate of re-computation of velocities for the foraging
robots. Intuitively, shorter periods are necessary for faster

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots (2023) 47:905–920 917

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

Time [s]

S
(A

)

•× N = 49
•× N = 81
•× N = 157

Fig. 6 Social entropy with and without (×) obstacles

robots and smaller environments, and longer periods are suit-
able for slower robots or very large environments. A value of
τ=1s was chosen to be representative of most system’s capa-
bilities (1Hz communication frequencies) and reasonable for
the velocities of the agents (they would communicate 4 times
per meter of trajectory).

A.6 Instrument range ı

In practice, the instrument range is determined by the robotic
platform used (However, this can be “virtually” limited if
the robots are able to measure signal power). Larger values
would require less beacons to cover the space, but the detail
of the coverage would be much more coarse. We limited the
range of signals to δ = 0.4m to consider a representative case
where the robots can use other short range communication if
necessary (e.g., Bluetooth), and to allow for a more general
scenario where we need several robots to cover the entire
environment.

B Entropy results

Accumulation of agents around trajectories (or path cre-
ation) is an example of emergent self-organizedbehaviour. To
measure this, entropy has been used to quantize forms of clus-
tering in robots, and to investigate if stable self-organization
arises. We use the hierarchic social entropy as defined by
Balch (2000) using single linkage clustering. Two robots are
in the same cluster if the relative position between them is
smaller than h. Then, with C(t, h) being the set of clusters
at time t with minimum distance h, ci ∈ C(t, h) and Aci
being the subset of agents in cluster ci , entropy for a group

of robots is

H(A, h) = −
∑

ci∈C(t,h)

|Aci |
N

log2

(|Aci |
N

)

. (18)

Hierarchic social entropy is then defined as integrating
H(A, h) over all values of h, S(A) = ∫ ∞

δ0
H(A, h)dh.

To allow for zero entropy, we take the lower limit of the
integral to be the diameter of the robots (δ0 = 4 cm). The
entropy results of the experiments in Sect. 5.1 are presented
in Fig. 6. In this case, we only compute the entropy of the
forager agents, and we normalise against a practical “max-
imum” entropy computed by randomizing agents over the
entire space. At t = 0 all agents start at the nest, hence
the low entropy values, and from there the entropy increases
while the swarm explores and tries to find the target. After the
exploration phase, the entropy begins to settle to lower values
as the robots accumulate over fewer trajectories. Entropy is
higher for the symmetrical obstacle due to first, the split of
agents among the two possible paths, and second, the mini-
mum length path being longer.

C Extended concept

C.1 Beacon-forager switching

To introduce switching from the beacon state to a forager
state, we first define the last foraging state of a beacon agent
as s−

a (k). Then, the logic rules for state switching in (3) are
updated as:

sa(k + 1) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

“B ′′

“F ′′
1

“F ′′
2

sa(k)

if � b ∈ B(k) : xb(k) ∈ Da(k)∧
a /∈ B(k − 2),
if sa(k) = F2 ∧ xa(k) ∈ S or
a ∈ B(k) ∧ ∑

s ωs
a(k) < ηω ∧

� f ∈ A : x f (k) ∈ Da(k) ∧ s−(k) = F1,
if sa(k) = F1 ∧ xa(k) ∈ T or
a ∈ B(k) ∧ ∑

s ωs
a(k) < ηω ∧

� f ∈ A : x f (k) ∈ Da(k) ∧ s−(k) = F2
else

(19)

with ηw ∈ R+. Compared to the old switching rules, two
conditions for the foraging states are added, these work as
follows: A beacon agent can only switch to a foraging state
if there are no foraging agents within its region of influence
and its summed stored weight values are smaller than some
threshold value ηw.

After a beacon agent switches to a foraging state, it will
always perform a random step, as by construction there is
no other beacon within the agents range. Whether or not the
agent will end up in the region of influence of another beacon

123

918 Autonomous Robots (2023) 47:905–920

after the first step, is related to the number of former neigh-
bouring beacons. If the former beacon was fully surrounded
by beacons, the agent will always end up in the region of
influence of a beacon after one step. Else, there is a chance
of ending up in a region not covered by a beacon after the
first step. To prevent an agent from switching directly back to
the beacon state in such case, we restrict the switching from
forager state to beacon state such that a forager agent needs
to be for at least 2 time steps in a foraging state before it can
switch back to the beacon state.

Last, we force an agent to ‘forget’ the weight and guiding
velocity values after switching from the beacon state to a for-
ager state, i.e.ωs

a and u
s
a are set to zero after a state transition.

Since the information stored at a beacon is location depended,
preserving the former beacon information will only disturb
the system if a former beacon agent transforms to a beacon
again at another location.

D Experiment details

We use the Webots (Michel, 2004) simulator to perform
the extensive statistical analysis presented in Sect. 5.1. The
Webots simulator can simulate realistic robots in physical
environments, including the Elisa-3 robot (GCTronic) (see
Fig. 7) we used for the real implementation of the work.

The Elisa-3 robots are equipped with 8 IR proximity sen-
sors (see Fig. 7) that are used for collision avoidance. Let us
denote the event of detection of an obstacle by sensor # as
Trigger_Prox_#. The collision avoidance algorithm used for
both the Webots simulations and the robotic implementation
of the work is then given by Algorithm 3. The algorithm
ensures that the maximum distance traveled per time step is
never greater than τv0, i.e., ‖x− x1‖2 ≤ τv0. Consequently,
the formal guarantees presented in Sect. 4 still hold for a
swarm that performs collision avoidance.

Algorithm 3 Collision avoidance Elisa-3 robot
if Trigger_Prox_1 then

Turn 10◦ left
else if Trigger_Prox_7 then

Turn 10◦ right
else if Trigger_Prox_0 then

Turn 180◦
else if Trigger_Prox_5 then

Turn 10◦ left
else if Trigger_Prox_3 then

Turn 10◦ right
else if Trigger_Prox_4 then

Turn 180◦
end if

Fig. 7 Elisa-3 robot

References

Alers, S., Tuyls, K., Ranjbar-Sahraei, B., et al. (2014). Insect-inspired
robot coordination: foraging and coverage. Artificial life, 14, 761–
768.

Balch, T. (2000). Hierarchic social entropy: An information theoretic
measure of robot group diversity. Autonomous robots, 8(3), 209–
238.

Beni, G., Wang, J. (1993). Swarm intelligence in cellular robotic sys-
tems. In Robots and biological systems: Towards a new bionics?
Springer, pp. 703–712

Blum, C., Merkle, D. (2008). Swarm intelligence. In Blum, C., Merkle,
D. (Eds.) Swarm Intelligence in Optimization, pp 43–85

Campo, A., Gutiérrez, Á., Nouyan, S., et al. (2010). Artificial
pheromone for path selection by a foraging swarm of robots. Bio-
logical cybernetics, 103(5), 339–352.

Dorigo, M., Birattari, M., et al. (2007). Scholarpedia. Swarm intelli-
gence, 2(9), 1462.

Drogoul, A., Ferber. J. (1993). Some experiments with foraging robots.
In FromAnimals to Animats 2: Proceedings of the Second Interna-
tional Conference on Simulation ofAdaptive Behavior,MIT Press,
p. 451

Ducatelle, F., Di Caro, GA., Pinciroli, C., et al. (2011b). Communica-
tion assisted navigation in robotic swarms: Self-organization and
cooperation. In 2011 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IEEE, pp. 4981–4988

Ducatelle, F., Di Caro, G. A., Pinciroli, C., et al. (2011). Self-organized
cooperation between robotic swarms. Swarm Intelligence, 5(2),
73–96.

123

Autonomous Robots (2023) 47:905–920 919

Ducatelle, F., Förster, A., Di Caro, G. A., et al. (2009). Supporting
navigation in multi-robot systems through delay tolerant network
communication. IFAC Proceedings Volumes, 42(22), 25–30.

Font Llenas, A., Talamali, MS., Xu, X., et al. (2018). Quality-sensitive
foraging by a robot swarm through virtual pheromone trails. In
Swarm Intelligence. Springer International Publishing, pp. 135–
149

Fujisawa, R., Imamura, H., Hashimoto, T., et al. (2008). Communica-
tion using pheromone field for multiple robots. In 2008 IEEE/RSJ
InternationalConference on IntelligentRobots andSystems, IEEE,
pp. 1391–1396

Fujisawa, R., Dobata, S., Sugawara, K., et al. (2014). Designing
pheromone communication in swarm robotics: Group foraging
behavior mediated by chemical substance. Swarm Intelligence,
8(3), 227–246. https://doi.org/10.1007/s11721-014-0097-z

Garnier, S., Tache, F., Combe, M., et al. (2007). Alice in pheromone
land: An experimental setup for the study of ant-like robots. In
2007 IEEE Swarm Intelligence Symposium, pp. 37–44, https://
doi.org/10.1109/SIS.2007.368024

Hoff, N., Wood, R., Nagpal, R. (2013). Distributed colony-level
algorithm switching for robot swarm foraging. In Distributed
autonomous robotic systems. Springer, pp. 417–430

Hrolenok,B., Luke, S., Sullivan,K., et al. (2010).Collaborative foraging
using beacons. In AAMAS, pp. 1197–1204

Ishii, S., Yoshida, W., & Yoshimoto, J. (2002). Control of exploitation-
exploration meta-parameter in reinforcement learning. Neural
networks, 15(4–6), 665–687.

Jarne Ornia, D., Mazo, M. (2020). Convergence of ant colony multi-
agent swarms. In Proceedings of the 23rd International Conference
on Hybrid Systems: Computation and Control. Association for
Computing Machinery, New York, NY, USA, HSCC ’20, https://
doi.org/10.1145/3365365.3382199

Johansson, R., Saffiotti, A. (2009). Navigating by stigmergy: A real-
ization on an RFID floor for minimalistic robots. In 2009 IEEE
International Conference on Robotics and Automation, IEEE, pp.
245–252

Kennedy, J. (2006). Swarm intelligence. InHandbookof nature-inspired
and innovative computing. Springer, pp. 187–219

Kuffner, J. J., LaValle, S. M. (2000). Rrt-connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA.Millen-
niumConference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat.No. 00CH37065), IEEE,
pp. 995–1001

Lemmens, N., de Jong, S., Tuyls, K., et al. (2007). Bee systemwith inhi-
bition pheromones. In European conference on complex systems,
Citeseer

Lemmens, N., Tuyls, K. (2009). Stigmergic landmark foraging. In
Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems-Vol. 1, pp. 497–504

Mayet, R., Roberz, J., Schmickl, T., et al. (2010). Antbots: A feasi-
ble visual emulation of pheromone trails for swarm robots. In M.
Dorigo, M. Birattari, G. A. Di Caro, et al. (Eds.), Swarm Intelli-
gence (pp. 84–94). Springer.

Michel, O. (2004). Cyberbotics ltd. webotsTM: professional mobile
robot simulation. International Journal of Advanced Robotic Sys-
tems, 1(1), 5

Nair, A., McGrew, B., Andrychowicz, M., et al. (2018). Overcom-
ing exploration in reinforcement learning with demonstrations. In
2018 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, pp. 6292–6299

Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot
swarm. Swarm Intelligence, 2(1), 1–23.

Ornia, DJ., Zufiria, PJ., Mazo Jr., M. (2022). Mean field behavior of
collaborative multiagent foragers. IEEE Transactions on Robotics

Payton, D., Daily, M., Estowski, R., et al. (2001). Pheromone robotics.
Autonomous Robots, 11(3), 319–324.

Reina, A., Cope, A. J., Nikolaidis, E., et al. (2017). ARK: Augmented
reality for Kilobots. IEEE Robotics and Automation Letters, 2(3),
1755–1761.

Russell, RA. (1997). Heat trails as short-lived navigational markers
for mobile robots. In Proceedings of International Conference on
Robotics and Automation, IEEE, pp. 3534–3539

Russell, K., Schader, M., Andrea, K., et al. (2015). Swarm robot for-
aging with wireless sensor motes. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent
Systems, Citeseer, pp. 287–295

Sperati,V., Trianni,V.,&Nolfi, S. (2011). Self-organisedpath formation
in a swarm of robots. Swarm Intelligence, 5(2), 97–119.

Sugawara, K., Kazama, T., Watanabe, T. (2004). Foraging behavior
of interacting robots with virtual pheromone. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), IEEE, pp. 3074–3079

Svennebring, J., & Koenig, S. (2004). Building terrain-covering ant
robots: A feasibility study. Autonomous Robots, 16(3), 313–332.

Talamali, M. S., Bose, T., Haire, M., et al. (2020). Sophisticated col-
lective foraging with minimalist agents: A swarm robotics test.
Swarm Intelligence, 14(1), 25–56.

Thrun, S. B. (1992). Efficient exploration in reinforcement learning.
Technical Report, USA

Ziparo, VA., Kleiner, A., Nebel, B., et al. (2007). RFID-based explo-
ration for large robot teams. In Proceedings 2007 IEEE Interna-
tional Conference on Robotics and Automation, pp. 4606–4613,
https://doi.org/10.1109/ROBOT.2007.364189

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Steven Adams is a Ph.D. Candi-
date at the Delft Center for Sys-
tems and Control, Delft Univer-
sity of Technology (The Nether-
lands). He received a BSc in
Mechanical Engineering at Delft
University of Technology in 2016,
a MSc in Econometrics and Oper-
ations Research from the Vrije
Universiteit Amsterdam in 2020
and a MSc in Systems and Con-
trol from Delft University of Tech-
nology in 2021. His main research
interests are multi-agent learning,
multi-robot systems and bayesian
deep learning models.

Daniel Jarne Ornia is a Ph.D. Can-
didate at the Delft Center for Sys-
tems and Control, Delft Univer-
sity of Technology (The Nether-
lands). He received a BSc in
Aerospace Engineering at Univer-
sitat Politecnica de Catalunya in
Barcelona in 2015, and his MSc
in Aerospace Engineering from
the Royal Institute of Technol-
ogy (KTH) in Stockholm in 2017.
Prior to joining TU Delft as a
PhD student he worked as a data
scientist on AI industry applica-
tions. His main research interests
are learning multi-agent systems, and the study of efficient communi-
cation and information sharing in collaborative systems.

123

https://doi.org/10.1007/s11721-014-0097-z
https://doi.org/10.1109/SIS.2007.368024
https://doi.org/10.1109/SIS.2007.368024
https://doi.org/10.1145/3365365.3382199
https://doi.org/10.1145/3365365.3382199
https://doi.org/10.1109/ROBOT.2007.364189

920 Autonomous Robots (2023) 47:905–920

Manuel Mazo is an associate pro-
fessor at the Delft Center for Sys-
tems and Control, Delft Univer-
sity of Technology (The Nether-
lands). He received the Ph.D. and
M.Sc. degrees in Electrical Engi-
neering from the University of
California, Los Angeles, in 2010
and 2007 respectively. He also
holds a Telecommunications Engi-
neering “Ingeniero” degree from
the Polytechnic University of Madrid
(Spain), and a “Civilingenjor” degree
in Electrical Engineering from the
Royal Institute of Technology (Swe-
den), both awarded in 2003. Between 2010 and 2012 he held a joint
post-doctoral position at the University of Groningen and the inno-

vation centre INCAS3 (The Netherlands). His main research interest
is the formal study of problems emerging in modern control sys-
tem implementations, and in particular the study of networked con-
trol systems and the application of formal verification and synthesis
techniques to control. He has been the recipient of a University of
Newcastle Research Fellowship (2005), the Spanish Ministry of Edu-
cation/UCLA Fellowship (2005–2009), the Henry Samueli Scholar-
ship from the UCLA School of Engineering and Applied Sciences
(2007/2008) and an ERCStarting Grant (2017).

123

	A self-guided approach for navigation in a minimalistic foraging robotic swarm
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Main proposal
	1.3 Preliminaries

	2 Problem description
	3 Proposal: self guided swarm
	3.1 States and transitions
	3.2 Dynamics
	3.3 Implementation

	4 Results and guarantees
	4.1 Domain exploration
	4.2 Foraging

	5 Experiments
	5.1 Foraging results
	5.2 Swarm adaptability
	5.2.1 Movable beacons
	5.2.2 Non-stationary environments
	5.2.3 Agent failures and measurement errors

	5.3 Robotic swarm

	6 Discussion
	6.1 Advantages and shortcomings

	Acknowledgements
	A Parameter selection
	A.1 Evaporation rate ρ
	A.2 Diffusion rate λ
	A.3 Reward r
	A.4 Exploration rate ε
	A.5 Sampling period τ
	A.6 Instrument range δ

	B Entropy results
	C Extended concept
	C.1 Beacon-forager switching

	D Experiment details
	References

