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Abstract
We develop a conditional generative model to represent dexterous grasp postures of a robotic hand and use it to generate
in-hand regrasp trajectories. Our model learns to encode the robotic grasp postures into a low-dimensional space, called
Synergy Space, while taking into account additional information about the object such as its size and its shape category.
We then generate regrasp trajectories through linear interpolation in this low-dimensional space. The result is that the hand
configuration moves from one grasp type to another while keeping the object stable in the hand. We show that our model
achieves higher success rate on in-hand regrasping compared to previous methods used for synergy extraction, by taking
advantage of the grasp size conditional variable.

Keywords Robotics · Dexterous robotic grasping · In-hand manipulation · Regrasping

1 Introduction

The control of dexterous artificial hands with a high num-
ber of degrees of freedom has been a long-standing research
problem in robotics. Researchers have tried mimicking the
way humans control their hands in order to facilitate the con-
trol of robotic hands (Santello et al., 2016). Studies from the
field of neuroscience have shown that the human brain lever-
ages a synergistic framework that relies on coupled neural
signals, muscles and kinematic constraints to perform dex-
terousmanipulation skills like grasping (Santello et al., 1998,
2016). This type of organization allows a small number of
parameters (synergies) to control a large number of degrees
of freedom (hand joints, muscles etc.).

Roboticists have taken advantage of this concept in neuro-
science by modelling the control of dexterous hands in lower
dimensional spaces. This way they can effectively reduce
the computational burden of dexterous control (Ciocarlie et
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al., 2007a), as control algorithms can operate directly on the
low dimensional space, thus reducing the number of control
parameters. The problem is formulated as finding a mapping
from the high-dimensional configuration space (e.g. joint
angle values) of an artificial hand to a lower-dimensional
embedding, commonly referred to as Synergy Space (Salvi-
etti, 2018).

The first studies (Ciocarlie et al., 2007a, b) to apply this
principle, closely following the nominal neuroscience study
(Santello et al., 1998) that established this concept, used the
classical dimensionality reduction linear method, Principal
Component Analysis (PCA), to extract a low-dimensional
representation froma set of recorded grasp postures, and used
this representation to search for grasp postures. This model
though cannot be conditioned on additional information such
as the object’s properties.

Following works (Romero et al., 2013; Xu et al., 2016),
have improved the reconstruction error of the grasp pos-
tures, when compared with PCA, by using a non-linear latent
variable model based on Gaussian processes (GPLVM).
Auto-Encoder (AE) models, which is a non-linear, deter-
ministic dimensionality reduction method, based on neural
networks, have also been shown to improve the performance
in terms of reconstruction and are able to encode additional
information such as the object size (Starke et al., 2018, 2020).
However, these models produce irregular latent spaces that
can be hard to generate trajectories in.
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Fig. 1 Example regrasp trajectory generated by our method and executed using the iCub robot. The grasp posture changes from a lateral pinch to
a tip pinch

In our previous work (Dimou et al., 2021), we used a
Conditional Variational Auto-Encoder to learn a conditional
low-dimensional latent space from a set of grasp postures
executed on a robotic hand. This latent space was condi-
tioned on the size of the object and its shape category. The
smoothness of the latent space was introduced as a metric to
evaluate its effectiveness.We showed that this model learns a
smoother latent space, and we used it to generate successful
trajectories for in-hand regrasping tasks in a simulated envi-
ronment, using the Shadow Hand that resembles the human
adult in size and degrees of freedom.

This work evaluates further the methods proposed in
Dimou et al. (2021), applying the same learning architecture
to the real world iCub hand, which resembles a child human
size and has less degrees of freedom than the Shadow Hand
(i.e. less dexterity). We use data collected for the iCub Robot
hand to learn a grasp posture generation model and use it to
generate trajectories for in-hand regrasping.We found that in
the realworld setting the generated trajectories becameunsta-
ble due to unaccounted object properties such as the material
and mass. To overcome this we reduce the conditional size
variable of the model during testing and we improve the suc-
cess rate in the regrasping tasks. An example of a regrasp
trajectory executed with our model can be seen in Fig. 1. In
our experiments we also present the results from Dimou et
al. (2021) for the Shadow Robot Hand and we show that our
results for the iCub Robot hand exhibit the same patterns.

In summary our contributions are:

• We apply the conditional model for the generation of
grasp postures presented in Dimou et al. (2021), to a
real-world in-hand regrasping task using the iCub robot.

• We propose a method for generating regrasp trajectories
in the latent space of the model.

• We show the practical impact of the object size variable,
in the regrasping performance of our model. By adapt-
ing the object size, our model avoids slippage in grasp
execution.

• We perform real world experiments with the iCub robot
demonstrating that this method greatly improves the per-
formance of previous approaches, showing the versatility
of ourmodel thatwas applied to twodexterous handswith
different dexterity and size.

2 Related work

Synergy extraction. In neuroscience, the study (Santello et
al., 1998) established the concept of synergies as the method
used by the human brain to ease the control of the human
hand. By analyzing grasp postures of human subjects who
where asked to grasp imaginary objects, they showed that
the first two principal components, that were extracted using
the PCA method, were responsible for 80% of the variation
in the data, suggesting that using only two components they
could represent the acquired data to a high degree.

In robotics, the data collected in Santello et al. (1998)
were used to transfer the grasp postures of the human sub-
jects to 4 robotics hands by Ciocarlie et al. (2007a). Then
the PCA method was used to find a low-dimensional basis
to express the recorded grasp postures. The recovered basis
components were called eigengrasps, and were combined to
generate new grasp postures. They showed that control algo-
rithms that search in that space for stable grasps were more
efficient. But PCA is a linear model that cannot model com-
plex high dimensional data and also cannot be conditioned
on additional variables.

Precision graspswere analysed inBernardino et al. (2013),
where the PCAmethodwas used to extract the principal com-
ponents fromdataset of grasps, achieved by a human operator
controlling two dexterous robotic hands. In our experiments
we use the dataset collected in this work for the iCub robot
to learn the conditional latent space for precision grasps.

Since the purpose of synergies is to find a low-dimensional
space to represent the grasp postures, most classical dimen-
sionality reduction methods can be applied to the problem.
In Jenkins (2006); Tsoli Odest & Jenkins (2007) several of
them were compared for encoding the control of a robotic
hand in 2D subspaces. Themethodswere applied on recorded
hand movements and evaluated based on the inconsistency
and continuity of the representations, while a method for
denoising graphs consisted of embedded grasp postures was
proposed. In this work, we use the smoothness of the latent
space to evaluate its effectiveness which is similar to the con-
tinuity presented in Tsoli Odest & Jenkins (2007).

AnAuto-Encoder (AE)model (Kramer, 1991)was used in
Starke et al. (2018, 2020) to extract postural synergies from
human data. The relative object size compared to the palm,

123



Autonomous Robots (2023) 47:453–464 455

was alsoused as an additional input variable in the decoder for
the grasp generation. The model was trained with a modified
loss in order to disentangle the grasp types in the latent space.
It achieved better reconstruction results when compared to
the PCA, and was able to generate grasp postures for objects
of different sizes. However, Auto-Encoder models tend to
learn non smooth latent spaces that can result in unstable
trajectories in manipulation tasks (Dimou et al., 2021).

The methods presented until now in this section were
deterministic. In Romero et al. (2013); Xu et al. (2016),
the Gaussian Process Latent Variable Model (GPLVM)
(Lawrence, 2003), which is a non linear probabilistic model,
was used to learn a graspmanifold from a dataset of recorded
grasp postures. They showed that thismodel has lower recon-
struction error when compared with the PCA.

In this work we use a Conditional Variational Auto-
Encoder (CVAE) (Sohn et al., 2015), which is conditional
probabilistic model based on the VAE framework (Kingma
&Welling, 2013). This model learns to represent and gen-
erate grasp postures given additional input signals such as
the object size and type (Dimou et al., 2021). In addition, it
has been shown to learn smoother latent spaces that previ-
ous approaches which is instrumental in planning for in-hand
regrasping.

Regrasping. Postural synergies have also been used to
facilitate in-hand manipulation. In Palli et al. (2014), they
used the PCA method to compute a Synergy Space from
grasp postures achieved by human subjects. Then they cre-
ated regrasp trajectories by linearly interpolating between
the boundary configurations in the Synergy Space. They also
computed an additional Synergy Space from demonstrations
of manipulation tasks and showed that combining these two
spaces improves the quality of the manipulations. In Kat-
yara et al. (2021), they used the PCA to compute a Synergy
Space from a set of demonstrations of in-handmanipulations.
Then they parameterized the demonstrations in the Syn-
ergy Space using Kernelized movement primitives. Using
this parameterization they were able to achieve four in-hand
manipulation tasks.

In this work, we generate the trajectories in the Synergy
Space by linearly interpolating between the initial and target
grasp postures, similarly to Palli et al. (2014), but we do not
use any demonstration data. Instead to improve the success
rate of the generated trajectories we adjust the conditional
variables of the model in order to perform firmer grips. We
show that our method outperforms previous approaches in
in-hand regrasping tasks in a real world setting.

3 Background

In the context of robotics, postural synergies are modeled
with dimensionality reduction techniques. Given a hand pos-

ture x ∈ R
dx , usually represented by a vector containing the

joint angle values of the hand, we want to find a mapping
e(x) that encodes the grasp into a low-dimensional point
z ∈ R

dz , where dz << dx . We also need a mapping d(z)
that decodes the low-dimensional point back into the origi-
nal space. Thesemappings are parameterized by vectors θ, φ.
Given a dataset of observations X, we want to compute the
parameter vectors (θ, φ) that minimize an optimization crite-
rion. The low-dimensional embeddings zi are the synergistic
components and the space is called a latent space.

PCA parameterizes this mapping as a linear function
which can be written as e(x) = xW, where W ∈ R

dx×dz

are the parameters to be found. Auto-encoders models, use
neural networks to represent the encoding and decodingmap-
pings. So the input has a non-linear relationship with the
latent embedding. In both cases the optimization criterion
used to find the optimal parameters is the mean squared error
between the input and the reconstruction of the model. In the
case of PCA, an analytic solution can be found, while for
Auto-encoders gradient based optimization is usually per-
formed.

Probabilistic approaches assume that the data are gener-
ated by unobserved latent variables following a probability
distribution p(x, z; θ), where x are the observed data, i.e.
the grasp postures, z are the latent variables, i.e. the syn-
ergistic components, and θ are the parameters of the model.
The GPLVM approach uses Gaussian Processes to model the
probability distribution p. In Xu et al. (2016); Romero et al.
(2013), a variant of the GPLVMwith back constraints (BCG-
PLVM) (Lawrence et al., 2006) is used for synergy extraction.
This model enforces a constraint on the latent variables that
ensures that points that are close in the original space remain
close in the latent space.

In this work, we use a Conditional Variational Auto-
Encoder to model the representation learning process. The
CVAE consists of an encoder and a decoder network. The
encoder takes as input a data point x and a corresponding
conditional variable c and produces a latent point z. The
decoder takes as input a latent point z and a conditional vari-
able c and generate a new data point x. The encoder models
the probability distribution q(z | x, c), while the decoder
the probability distribution p(x | z, c). During training we
maximize the evidence lower bound (ELBO):

Lθ ,φ(x) = Eqφ(z|x,c)
[
log pθ (x | c, z)]

− DKL
(
qφ(z | x, c)‖p(z)) (1)

The first term corresponds to themean squared error between
the reconstruction and the input, while the second minimizes
the Kullback–Leibler divergence between the true posterior
distribution p(z | x) and a variational distribution q(z | x),
which works as a regularization criterion for the latent space.
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Fig. 2 Schematic representation of CVAE model

The loss is minimized using standard gradient descent meth-
ods like (Kingma &Ba, 2014).

4 Methods

Graspposture representation.Given a set of recordedgrasp
postures, the goal of this work is to learn a low-dimensional
Synergy Space that can be used to generate regrasping trajec-
tories. By regrasping we mean changing the grasp type from
an initial type of grasp to a target one, while holding the
object in the hand. In previous works, the goal was to learn
a model that accurately reproduces the recorded grasps. In
Dimou et al. (2021) we showed that this criterion is not suffi-
cient to evaluate the effectiveness of the learned latent space
in regrasping tasks. Instead, we used the smoothness of the
latent space as an alternative evaluation metric. Smoothness
is defined using the distance between grasps decoded from
latent points on a grid, similar to Chen et al. (2016). The
distance is computed as the average difference of their joint
angles. More precisely, given two latent points z1 and z2 and
a decodingmapping d(z) to the grasp posture spacewe define
smoothness as:

S(z1, z2) = ‖d(z1) − d(z2)‖2
This gives us the average change in the joint angles of the
robotic hand ifwemove fromone point on the grid to another.
The use of smoothness as a metric for evaluating the learned
latent space for manipulation tasks, agrees with our intuition
that if we are planning finger movements we want to avoid
sudden changes in finger joints that might make our grasp
of the object unstable. Instead, we want to perform smooth
transitions between hand states that keep the object stable
and balanced.

Following the work in Dimou et al. (2021) we train a Con-
ditional Variational Auto-Encoder to generate grasp postures
given as additional signals the size of the side of the object
to be grasped and the type of the object. A schematic repre-
sentation of our model can be seen in Fig. 2. We use a dataset

of recorded grasps originally presented in (Bernardino et al.,
2013). Thedataset consists of536graspsperformedusing the
iCub robot by a human operator teleoperating the robot with
a data glove. Each grasp, following the grasp taxonomy (Feix
et al., 2009), belongs in one of the eight following precision-
grasp categories: tripod, palmar pinch, lateral, writing tripod,
parallel extension, adduction grip, tip pinch, lateral tripod.
The objects that were grasped were three balls of different
radius, three cylinders of different radius and height, and a
box with three different sizes in each side. So for each grasp
posture there is a corresponding label denoting the size of
the side of the object that was grasped, i.e. if it was the large,
the medium or the small side, and the shape category of the
object. i.e. if it is a ball, a cylinder or a box. The size label
is represented with a scalar value in (0.0, 1.0), where 0 cor-
responded to a grasp on the small side of the object, 0.5 to
a grasp on the medium side of the object, and 1.0 to a grasp
on the large side of the object. The shape category label is
represented using one-hot encoding.

The model is trained by feeding the grasp postures xi and
the corresponding labels ci, which denote the size and the
shape category of the object, into the encoder, which mod-
els a sampler of the probability distribution q(z | x, c). So
given a grasp posture xi from the dataset and a label ci, we
sample a latent point zi. The decoder models a sampler of
the distribution p(x | z, c), so given a latent point zi and
a label ci it generates a grasp posture x̂i that has the prop-
erties of the given label. The parameters of the model are
then optimized in order to minimize the mean squared error
between the input xi and the output x̂i , and the KL diver-
gence between the prior p(z), which is a standard normal
distribution, and the posterior q(z | x, c). The minimization
of the mean squared error forces the model to learn to recon-
struct the input grasp postures, while the minimization of the
KL divergence forces the latent space to follow the standard
normal distribution.

In-hand regrasping. In the in-hand regrasping task we
want to execute a regrasp trajectory that changes the grasp
type executed on the object without changing the side of the
grasp that the object is grasped from and without breaking
contact with the object. To generate regrasp trajectories we
encode the initial and the target grasp postures into the latent
space, so we obtain two latent points zini tial and ztarget .
We then linearly interpolate between these two points in
the Euclidean space and sample N points, where N equals
the number of steps in the trajectory. Finally we decode the
new sampled points to obtain a trajectory in the configura-
tion space. The complete trajectory generation procedure is
outlined in Algorithm 1. A schematic representation of the
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trajectory generation process can be seen in Fig. 3. In essence,
instead of employing a complex planning algorithm to find a
path of states that can perform the required regrasp we rely
on the structure of the latent space of the model. If the latent
space is smooth we can generate successful trajectories by a
simple procedure such as linear interpolation.

Algorithm 1 Trajectory generation in latent space
Initial xini tial and target xtarget grasp postures
zini tial = encoder(xini tial )
ztarget = encoder(xtarget )
N : number of steps in trajectory
Initialize trajectory T = []
for i=0 to N do

znew = zini tial ∗ (1 − i
N ) + ztarget ∗ i

N
xnew = decoder(znew)

T.append(xnew)
end for

Although this method has worked in simulation (Dimou et
al., 2021),we found that in realworld experiments themethod
was not outperforming the other approaches, due to issues
during contact. More specifically, small objects with smooth
surface and high mass were slipping. In order to overcome
these problems, during testing we adjusted the conditional
size variable used by the decoder to generate the regrasp
trajectory. The initial model was trained with size values in
(0.0, 1.0), while when testing the size values were reduced
by 0.5. This way the model produced firmer grips which

were more stable. We show in the experimental results that
this process was crucial to increasing the performance of the
model.

5 Experimental results

Dataset description. The dataset used to train our models
was originally presented in (Bernardino et al., 2013). It was
acquired by teleoperating two robotic hands: the Shadow
Dexterous Hand, and the iCub robot hand. In this work we
use the dataset recorded for the iCub robot.

For the teleoperation of the robot, a mapping was used
that transformed the joint angles of the human operator’s
hand to the joint angles of the iCub hand. The mapping, was
fixed for each user and it was generated by the acquisition
software. So each recorded grasp is represented by the angle
values in degrees of the 9 joints of the iCub robot hand.
This way our model is trained directly on the robot angles
and we do not need the human to robot mapping after the
data collection process. Twelve objects were grasped, from
five distinct categories: ball (three sizes), box (three sizes),
cylinder (three sizes), pen and cube. Theobjectswere grasped
from different sides adding up to a total of 20 different object
configurations.

The models were trained on a subset of this dataset,
more specifically on the grasps performed on the balls, the
cylinders and the box with three different size sides. We rep-

Fig. 3 Schematic representation of generating trajectory in latent space.
In the encoding phase both the initial and the target grasp are encoded
into the latent space. The different colors of the points in the latent space

denote different grasp types. During the decoding phase, N points along
the line connecting the initial and target grasps are decoded and a regrasp
trajectory is produced
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Table 1 Size value label for each object configuration

Object configuration Size label

Medium green cylinder, top 0.0

Medium green cylinder, side

Small wooden cylinder, side

Small white ball

Box, small side

Box, medium side

Medium yellow ball 0.5

Small wooden cylinder, top

Big red cylinder, side

Box, large side

Big blue ball 1.0

Big red cylinder, top

resented the shape category of the object, meaning if it was
a ball, a box or a cylinder using one-hot encoding. For the
size we used a continuous scalar variable in (0.0, 1.0). In
the original dataset grasps were labeled as: large, medium,
and small, according to the size of the object. In our dataset,
we labeled the grasps for each object configuration with the
values 0.0, 0.5, 1.0. The object configurations were selected
such that the size of the grasps were similar. In Table 1, you
can see each object configuration and the corresponding size
label. In our dataset we mapped these labels to the (0.0, 1.0)
range. Large size grasps were represented by the value 1.0,
medium size grasps by the value 0.5, and small size grasps
by the value 0.0. But the value was given as a continuous
variable and can take any real value, in contrast the shape
variable that is discrete and it was one-hot encoded. We con-
catenated the shape and the size into a vector and used it as
the conditional variable ci in the CVAE model.

Models. We trained seven models on the iCub dataset. A
PCA model, a standard AE architecture model, a standard
VAE, the CVAE model described in Sect. 4 and three BCG-
PLVMmodels with the following back projection mappings:
(1) a linear mapping, (2) a multi layer perceptron (MLP) and
(3) a radial basis function (RBF). The choice of mapping has
an effect on the models reconstruction error and the smooth-
ness of its latent space.

Latent space analysis. Following (Dimou et al., 2021),
we performed the same analysis of the latent space for each
model. More specifically, for each model we computed its
reconstruction error on the dataset, seen in the left Fig. 4. The
BCGPLVMmodelwith theRBFkernel as the back constraint
has the lowest reconstruction error among all models. As we
increase the latent dimensions to the number of degrees of
freedom of the hand, the reconstruction error in most models
goes to zero. That is not the case for the VAE and the CVAE

Fig. 4 Plot of the mean squared error of each model for latent dimen-
sions from one to the number of degrees of freedom of the iCub hand

Table 2 Smoothness results for iCub Robot: The mean and standard
deviation calculated from the latent space gradients of each model for
three grid resolutions. Lower values suggest a smoother latent space

(μ, σ )

N=5 N=15 N=25

PCA (26.0, 5.0) (7.4, 1.4) (4.3, 0.8)

AE (33.9, 8.9) (10.8, 2.9) (6.4, 1.7)

VAE (29.1, 10.2) (8.7, 3.2) (5.1, 1.9)

CVAE (21.9, 6.7) (6.3, 2.0) (3.7, 1.2)

BCGPLVM (Linear) (28.2, 8.8) (12.1, 6.0) (7.3, 3.7)

BCGPLVM (MLP) (27.1, 8.3) (8.9, 3.5) (5.3, 2.1)

BCGPLVM (RBF) (46.2, 17.5) (26.6, 14.5) (17.1, 10.1)

The lowest mean values are highlighted in bold

models because in their loss function there is the additional
termof theKLdivergence between the prior and the posterior.

Following the nominal neuroscience study (Santello et al.,
1998), that showed that 2 synergies are enough to repre-
sent most human grasps, and previous robotics works that
also used 2 synergistic components, the dimensionality of
the latent space for the following experiments was chosen
to be 2, to be directly comparable with the other works. We
then calculated the smoothness of each model’s latent space
as proposed in Dimou et al. (2021) for three grid resolutions
N = 5, 15, 25, seen in Table 2. TheCVAEmodel exhibits the
lowest average change in joint angle values between neigh-
boring grasps, indicating thatmovements between near states
in the latent spacewill results in smooth transitions in the con-
figuration space. On the other hand, the BCGPLVM model
with the RBF kernel that had the lowest reconstruction error
exhibits high variation in the latent space which results in
sudden changes in the configuration space.

Finally, Fig. 5 shows the latent space traversals for the
PCA, the VAE and the BCGPLVM with a linear kernel. We
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Fig. 5 Latent space traversals in the spaces learned by the PCA, the VAE, and the BCGPLVM with a linear kernel model

used the iCub simulator to decode the grasps from a square
grid of size 5 in each model’s latent space. We can notice
that the latent space of the PCA and the VAE exhibit more
variability but also smoother transitions between neighboring
grasps. On the other hand, in the latent space of the BCG-
PLVM we see a lot of grasps that are not valid, and sudden
changes between neighboring grasps. The smoothness of the
latent space is a result of the KL divergence regularization in
the loss function of the VAE and cVAEmodels as mentioned
in Asperti &Trentin (2020); Oring et al. (2021). This term
forces the prior distribution of the model to match the nor-
mal distribution. It brings the latent points towards the origin
of the axes making the latent space more dense and evenly
distributed, compared for example with the AE model that
uses the same loss function without the regularization.

Real robot experiments. In Dimou et al. (2021), regrasp
experiments were conducted in simulation and using only
one of the objects of the dataset, the box. In this work, we
performed real world experiments with the iCub robot, using
all the objects that were used to execute the grasps from the
training dataset, seen in Fig. 6.

For each object configuration, i.e. each side an object can
be grasped from (e.g. a sphere has one object configuration,
a cylinder two: top and side, a box with three different sized
sides has three), 5 pairs of grasps, where each grasp had an
associated grasp type,were chosen randomly from the dataset
and for each pair a regrasp trajectory was generated by each
model using Algorithm 1, totaling 60 regrasp trajectories.
The number of steps in each trajectory was set to 10. Each
trajectory was performed three times to account for variabil-
ity in initial conditions. In Fig. 7, we see a chord diagram
representing the connections of grasp types in the regrasp
trajectories executed. The robot was restricted to perform the
regrasp trajectory on the same side of the object. This was
done using the object size conditional variable, that forced

Fig. 6 Objects used to execute regrasp trajectories

the model to produce tight grasps and the fingertips to always
be in contact with the object. So since there was no breaking
and creating contacts the object was always grasped from the
initial side.

During preliminary experiments we noticed that the
regrasp trajectories generated by the CVAE model, when
executed on the real robot, were not outperforming the other
models as suggested in Dimou et al. (2021). The reason was
that although the transitions between states were smooth, the
unaccounted properties of the objects, such as their material
and mass, were causing some grasp postures to be unstable
mainly due to slippage. This phenomenon was most appar-
ent in objects with small size and smooth surface. In order to
overcome this,we took advantage of the conditional variables
that the CVAEmodel encodes, i.e. the object size.When gen-
erating trajectories using the CVAE model we adjusted the
size label to be lower than the corresponding original label.
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Fig. 7 Chord diagram representing connections of grasp types in exe-
cuted regrasp trajectories. The arcs represent each grasp type in the
dataset. The size of each arc is analogous to the number of occurrence
of each grasp type in the trajectories. A connection (chord) between two
arcs means that a regrasp from one grasp type to another was executed.
The chords are colored according to the initial grasp type. Regrasps
between grasps of the same type are represented as half-ellipses on
arcs. These regrasps occur because the initial grasps in the dataset were
recorded by multiple human operators, and since the robotic has a lot
of DoFs some operators performed the same grasp type differently

More specifically, when decoding the latent points of each
trajectory we reduced each point’s size label by the value
of 0.5. This way the model produced firmer grips that were
more stable during execution. This adjustment is not possible
to be applied to the other models as they cannot be condi-
tioned on additional variables. The results of the execution of
the trajectories can be seen in Fig. 8 in a box plot format. On
the vertical axis is the percentage of successful regrasp tra-
jectories generated by each model. Each box represents the
interquartile range between the three runs of each trajectory,
while the line in the middle of the box the median. We see
that most models follow the same pattern with the results in
Dimou et al. (2021), but the CVAE model using the original
labels for the size of the object does not surpass the perfor-
mance of the other models. On the other hand the trajectories
generated with the CVAE model but with the adjusted size
labels generates twice as many successful regrasp trajecto-
ries. In Fig. 9, we can see some of the regrasp trajectories
generated by the CVAE model with the adjusted size labels.

Finally, we investigated the size interpolation and extrap-
olation capabilities of the proposed CVAE model. More
specifically, as the size label during training is a scalar value
in (0.0, 1.0), we wanted to see if the model is able to produce
grasps for other values in that range, as well as values outside
that range.To test this,wegenerated 100different grasps, ran-
domly choosing a latent point and anobject type, andusing 20
evenly spaced grasp size values in the range (−1.0, 2.0). We
executed each grasp on the simulatedmodel of the iCub hand
and computed the Euclidean distance between the fingertip

Fig. 8 Percentage of successful regrasp trajectories generated from each model
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Fig. 9 Example regrasp trajectories executed on the iCub robot using four different objects. Each trajectory has ten steps. The pictures are taken
every two steps. The first trajectory moves from a tripod grasp type to a lateral, the second from a tip pinch to a lateral, and the third from a tip
pinch to a lateral

Fig. 10 Examples of size extrapolations. All grasps generated from the same latent point with conditional size values = {−2.0, −1.0, 0.0, 0.5, 1.0}

of the thumb and the index for each grasp. In Fig. 11, on the
x axis we plot the value of the conditional size variable given
to the network and on the y axis the distance between the fin-
gertips of the generated grasp. The graph demonstrates that
as the grasp size variable increases the distances between the
fingertips also increases in an almost linear fashion.That indi-
cates that the network learns to encode the relation between
the grasp size variable and the fingertip distance. In Fig. 12,
we show the average fingertip distance for each size value and
the standard deviation. The variance present in the distances
is a result of the differences between grasp types, for example
in the tripod grasp the object is stabilised in the opposition
created between the tips of the thumb and the index, while
in the parallel extension grasps the object is stabilised in the
opposition between the tip of the thumb and the distal link of
the index. In addition, we tested this on a real-world exper-
iment, where we chose a tip pinch grasp executed on a ball
from the dataset, we encoded it into the latent space, and then
decoded the produced latent point by varying the size label
from −2.0 to 1.0. In Fig. 10, we can see that the model is

Fig. 11 Grasp size as a function of the conditional size variable

able to generate grasps for very small objects without having
seen this object size during training.
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Fig. 12 Average grasp size as a function of the conditional size variable

6 Conclusions

In summary, we presented a conditional model based on the
VAE framework for grasp generation and used it to generate
trajectories directly in its latent space for in-hand regrasping.
We also show that reducing the size labels during testing can
avoid slippage during execution of the generated trajectories.
We presented experiments that validate this approach as we
were able to double the success rate of regrasp trajectories in
a real world setting. Finally, we investigated the capabilities
of the model to extrapolate on the size of the grasps that it
generates.

Another line of research has explored the use reinforce-
ment learning in in-hand manipulation tasks. In Chen et al.
(2021) they train a policy using deep reinforcement learn-
ing to reorient objects to arbitrary orientations. They find
that their system can perform the reorientation task and deal
with novel objects without any visual information about the
object’s shape. In our work the problem is framed differently,
as we want to regrasp the object using a specific grasp type
but not explicitly reorient it or create new contacts with it, so
it is not possible to directly compare both works because the
objectives of each are different. In order for our model to be
able to perform a similar behavior, we would need to acquire
more data that have intermediate steps from the finger tra-
jectories while reorienting the object and the object states at
each step. In future work we plan to explore smarter ways to
generate the trajectories in latent space, for example by tak-
ing advantage of the smoothness of the neighborhood of the
latent space we can avoid regions that result in large changes
in the hand configuration, and test the model on arbitrary
objectswithmore complex shapes. In addition,wewould like
to explore generating trajectories that regrasp the object from
different sides. This could be achieved by adding a continu-

ous conditional variable that represents the side of the object
that is being grasped from. This way we could smoothly
interpolate from one side of the object to the other. It would
also require a lot more training data points for the interme-
diate steps of the transition from one side to the other, with
the finger gaits in each step. Finally another future research
direction would be to add force feedback to the conditional
model which could be used to automatically adjust the grasp
size and generate hand configurations based on it.
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