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Abstract
As robotic systems transition from traditional setups to collaborative work spaces, the prevalence of physical Human Robot
Interaction has risen in both industrial and domestic environments. A popular representation for robot behavior is movement
primitives which learn, imitate, and generalize from expert demonstrations. While there are existing works in context-aware
movement primitives, they are usually limited to contact-free human robot interactions. This paper presents physical Human
Robot Interaction Primitives (pHRIP), which utilize only the interaction forces between the human user and robot to estimate
user intent and generate the appropriate robot response during physical human robot interactions. The efficacy of pHRIP is
evaluated through multiple experiments based on target-directed reaching and obstacle avoidance tasks using a real seven
degree of freedom robot arm. The results are validated against Interaction Primitives which use observations of robotic
trajectories, with discussions of future pHRI applications utilizing pHRIP.

Keywords Physical human–robot interaction · Learning from demonstration

1 Introduction

Traditional robots rely on their accuracy, reliability, and
strength to perform tasks. However, the variety of tasks per-
formed with a single robot is generally constrained due to
financial and time costs to adapt or replace its current pro-
gram. The same costs exist for control methods that achieve
safe Human Robot Interaction (HRI) using industrial robots
with fine parameter tuning and heavily pre-determined envi-
ronments (Djuric et al. 2016).

Recent advances in collaborative robots have paved
the way for current research in collaborative interactions
between humans and robots due to their inherent safety and
improvements in productivity (Bloss 2016). The increasing
adoption of collaborative robots has also boosted the preva-
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lence of HRI applications in both industrial and domestic
environments. Physical Human–Robot Interactions (pHRI)
is a sub-field of research which includes interactions with
direct physical contact or an exchange of forceswith a robotic
system. Applications with pHRI aim to augment the dexter-
ity of human operators with the precision and repeatability
of robotic systems to achieve various tasks, with common
applications in haptic feedback (Carmichael et al. 2017), dis-
turbance categorization (Haddadin et al. 2017), and system
stabilization (Ferraguti et al. 2019).

To improve the robustness of robots in collaborative work
spaces, the ability to learn, generalize, and adapt to differ-
ent tasks is crucial. Two umbrella terms for frameworks
which employ expert-learner techniques to generalize robotic
motions to different tasks are Programming by Demon-
stration (PbD) (Billard et al. 2008) and Learning from
Demonstration (LfD) (Argall et al. 2009). Task-oriented
measures are regularly used to tackle variability exhibited
by human users during pHRI applications (Carmichael et al.
2019; Lai et al. 2018; Hamaya et al. 2017). However, for
non-expert users, these measures may degrade the interac-
tions since the user may have no prior knowledge on the
dynamics of the system.

Intuitively, humans exert forces to indicate their inten-
tion during physical interactions in everyday situations such
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as target-reaching tasks. Thus, the integration of interaction
forces in Movement Primitives (MP) may improve the esti-
mation of user intent when generating the appropriate robotic
response. More importantly, a correct estimate of user intent
in pHRI applications contribute towards the efficacy of the
robotic response. Furthermore, probabilistic models of the
interaction artifacts can capture system noise and user vari-
ability simultaneously.

Prior works for HRI, such as Interaction Primitives (IP)
(Ben Amor et al. 2014), have utilized observations of the
human hand to infer intent and generate an appropriate
robotic trajectory in response. However, in a coupled human–
robot dyad, the position of the hand and the robot endpoint
are identical, precluding the use of this method. Thus, there
is a need for a method to integrate interaction forces during
pHRI.

This article introduces physical Human Robot Interaction
Primitives (pHRIP), extending upon IP, to integrate dense
interaction forces observed in a coupled human–robot dyad
during interactions. The parameters for robotic motion are
inferred without the robot endpoint position, conditioning
only upon partial observations of the interaction forces, rep-
resenting user intention. The proposed method is validated
through: (a) a user-directed reaching experiment; and (b) a
planar and a Cartesian target-reaching task.

This article is organized as follows: Sect. 2 consists of a
review of related works, followed by the methodology for
pHRIP in Sect. 3. Section 4 outlines the system setup for
all validations. The user-directed reaching experiment is out-
lined in Sect. 5, with the planar and Cartesian target-reaching
task presented in Sects. 6 and 7. Section 8 discusses the limi-
tations of the proposed method, the results, and future work,
before concluding the article in Sect. 9.

2 Review of related works

Movement Primitives (MP) are a family of elementary oper-
ations to represent robotic trajectories for motion planning.
Inspired by human locomotion (Hogan and Sternad 2013),
MPs are compact representations of complex locomotion in
multi-degree of freedom (DoF) systems, forming the basis
for various robotic capabilities: e.g. learning, imitation, and
generalization of trajectories.

One popular MP used in the robotics community is
DynamicMovementPrimitives (DMP),which capture accele-
ration-based dynamics using low dimensional basis func-
tions. DMP leverages expert demonstrations to model the
motion using a few parameters, with favorable properties
such as trajectory dilation, rotational invariance, and tempo-
ral scaling (Ijspeert 2008).

Adaptation of the original formulation to overcome lim-
itations (Hoffmann et al. 2009) have made DMPs suitable

for many domestic and industrial applications: e.g. obstacle
avoidance (Ginesi et al. 2019), industrial assembly (Karlsson
et al. 2017), surface wiping (Gams et al. 2016), collaborative
object transfer (Sidiropoulos et al. 2019; Prada et al. 2013),
and co-operative sawing (Peternel et al. 2018). While there
are adaptations or new formulations of MP such as Kernel-
ized Movement Primitives (Huang et al. 2019b) (for further
compression of trajectory representation), Interactive DMPs
(Kulvicius et al. 2013) (for reaching equilibrium trajecto-
ries based on interaction forces), and Coupling Movement
Primitives (Gams et al. 2014) (for achieving equal interac-
tion forces), traditional DMPs remain popular due to their
versatility and track record.

Given that there is inherent variability in human locomo-
tion (Sternad 2018), applications for HRI and pHRI require
some form of generalization which capture system noise and
covariances across the different DoFs. This is especially cru-
cial in multi-DoF systems for both the human and the robot,
leading to applications with probabilistic models over DMP
parameters, e.g. generating movement in a musculoskeletal
system (Rückert and d’Avella 2013), table tennis swinging
(Matsubara et al. 2010), and stiffness sensitive tasks (Denisa
et al. 2016; Nemec et al. 2018).

Due to the robustness of probabilistic models, there is a
significant amount of interest in probabilistic approaches to
LfD and PbD, allowing for context-driven responses based
on MPs (Cui et al. 2016; Paraschos et al. 2018; Maeda et al.
2017b). These probabilistic models rely on a Bayesian con-
text to perform LfD and PbD (Fig. 1). Probabilistic modeling
also paved the way for multi-model and multi-modal appli-
cations with a single model such as dust sweeping (Pervez
and Lee 2018), teleoperation (Pervez et al. 2019; Yang et
al. 2018), domestic feeding (Calinon et al. 2010), industrial
assembly (Kyrarini et al. 2019), and ball throwing (Zhou et
al. 2020).

A probabilistic approach to trajectory generation and user
intent estimation are popular due to probabilistic properties of
the model, with notable applications for HRI utilizing Inter-
action Primitives (IP) and its extensions: e.g. human robot
gestures (Ben Amor et al. 2014), collaborative object cover-
ing (Cui et al. 2019), andhand shaking (Campbell et al. 2019).
The probabilistic model embeds the user intent in their out-
puts, making it suitable to utilize probabilistic operators to
adapt the model for goal and trajectory adaptation (Bajcsy
et al. 2017; Koert et al. 2019), sequential intent estimation
(Matsubara et al. 2015), and stiffness adaptation (Rozo et al.
2016).

While MP-based frameworks such as Coupled Cooper-
ative Primitives (Huang et al. 2019a) have been applied to
exoskeletons tominimize interaction forces between the user
and exoskeleton, tightly coupled systems remain a challenge
for MPs in pHRI applications. Rather than the robot system
initiating the task process, Compliant Parametric Dynamic
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Fig. 1 Overview of Learning
from Demonstration using
Movement Primitives in the
Bayesian context

Movement Primitives (Ugur and Girgin 2020) actively incor-
porate user input by adapting stiffness based on the variance
of the trajectory at that phase. However, such reliance on the
human user to take over control might not be suitable for
certain applications such as post-injury assistive robotics.

Applications of MPs in pHRI have generally relied on
the modification of DMP formulations to embed inter-
action forces when motion planning for the robot arm.
Despite the appeal for bespoke MP formulations, probabilis-
tic approaches for MPs (without any modifications) provide
robust solutions for a larger range of pHRI applications. Prob-
abilistic operators also provide flexibility for concatenation
and pruning of different objectives and observations. In the
context of this work, the integration of interaction forces
leverages probabilistic operators when building the model.

3 Methodology

3.1 Dynamic movement primitives

DynamicMovement Primitives (DMP) generate globally sta-
ble trajectories by treating the trajectory as a spring-damper
systemwith an attractor system to encode non-linear dynam-
ics (Schaal et al. 2005). The attractor landscape is represented
by a linear system of basis functions across time or phase.

While the original DMP formulation produced stable tra-
jectories, amodified formulation overcame several undesired
artifacts during edge case reproductions such as trajectory
“mirroring” and accelerations that are beyond the capabili-
ties of existing robots (Pastor et al. 2009). Each degree of
freedom in the system is modeled as

τ v̇ = K (g − x) − Dv − sK (g − x0) + K f ,

τ ẋ = v.
(1)

The phase of the trajectory, s, is modeled as a first-order
systemwith parameterα for temporal scaling τ ṡ = −αs. The
attractor landscape, represented by the forcing function, f , is
encoded using the weighted sum of Gaussian basis functions

with centers, c, and is spread evenly across the trajectory’s
temporal phase,

f (s) =
∑M

i=1 ψi (s)ωi s
∑M

i=1 ψi (s)
= φ(s)Tω,

ψi (s) = exp(−(s − ci )
2/h),

(2)

producing a M × 1 vector of weights, ω, for each DoF of the
trajectory.While theGaussian kernel has been used inDMPs,
any smooth functions ormollifiers could alternatively be used
Ginesi et al. (2021).

Representing the forcing function (from T observations)
as a linear system allows the weights to be obtained using
linear least squares regression

f =
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⎣
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...

ωM
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⎥
⎥
⎥
⎦

, (3)

ω = (φTφ)−1φT f . (4)

3.2 Interaction primitives for HRI

For HRI tasks with non-physical interactions, Interaction
Primitives (IP) (Ben Amor et al. 2014) used demonstrations
to: (1) build a parameter distribution, p(θ); and (2) use par-
tial observations of phase-aligned trajectories to obtain the
predictive distribution over DMP parameters.

IP models a distribution, p(θ), over the parameters of a
DMP,ω, along with the goal of the trajectory, g. Givenmulti-
ple demonstrations, an estimated Gaussian distribution over
the parameters, θ , is generated. The predictive distribution is
then obtained by using partial observations, τo of a trajectory
to obtain the conditional distribution, p(θ |τo), by applying
Bayes rule.

The likelihood, p(τo|θ), is obtained by computing the
forcing function of the observed trajectory, τo, and the
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weighting matrix, Ω . The conditional distribution is then
obtained by applying Gaussian conditioning on the joint dis-
tribution, p(τo, θ), and the IP parameters generate the robotic
response using DMP.

IP couples multiple DoF systems by extending the param-
eter set, θ , to incorporate the weights and goals for each DoF,
enabling multi-agent interactions. We note that IP requires
the observations of the partial trajectories of either agent to
predict the most likely set of parameters.

For de-coupled HRI systems, this spatial and temporal
correlation allows for seamless interactions. However, in a
coupled human–robot system, the endpoint of the robot and
human are identical since they are located the the point of
contact. A naïve approach to integrate the interaction forces
in IP is to apply DMPs to the observed forces.

However, since DMPs are acceleration-based dynamical
systems, the resultant parameters from interaction forces
would be very noisy. Furthermore, the need for a goal in IP
makes the use of interaction forces counter-intuitive. Thus,
this limits the application of IP to physical interactions during
pHRI.

3.3 Physical human robot interaction primitives

Physical Human Robot Interaction Primitives (pHRIP) aims
to predict user intent by using interaction artifacts available
in coupled human–robot dyads during pHRI. pHRIP extend
upon IP to: (1) integrate observed interaction forces during
demonstrations into the parameter distribution, p(θ); and (2)
use partial observations of phase-aligned interactions, χ , to
obtain the predictive distribution over the pHRIP parameter
set, p(θ |χ), and generate a robotic response matching the
user’s intent.

3.3.1 Building the pHRIP parameter distribution

As discussed in Sect. 3.1, a DMP encodes a single trajectory
using a set of weights, ω, represented by M Gaussian basis
functions equally spaced across the phase of the trajectory. In
each trajectory, the observed interaction forces (T samples)
are re-sampled into z samples, giving a (z × 1) vector, F .
This phase-aligns the interaction forces to the trajectory.

For a n-DoF robotic systemwith d-DoF of observed inter-
action forces, the pHRIP parameters for a single trajectory is
a ((nM + dz) × 1) vector:

θ = [F1T , . . . , Fd
T , ω1

T , . . . , ωn
T ]T . (5)

We note that, in contrast to IP, the goal for each demonstrated
trajectory is not included in θ . Thus, given K demonstrated
trajectories, the distribution over the pHRIP parameters,

p(θ), follows as:

p(θ) = N (θ |μθ ,Σθ ), (6)

μθ =
∑K

j=1 θ j

K
, (7)

Σθ =
∑K

j=1(θ j − μθ )
T (θ j − μθ )

K
. (8)

3.3.2 Phase estimation for partial observations

Once the pHRIP distribution is built, partial observations are
then used to predict the user’s intent. The observed interac-
tion forces, F∗, are re-sampled to the same frequency as the
robotic system.

To understand the context of the partial observations, the
current phase of the interaction is needed. This is performed
using a multi-dimensional Dynamic Time Warping (DTW)
algorithm (Shokoohi-Yekta et al. 2017), comparing a (r ×
n) reference trajectory, R, against the (v × n) sub-sequence
observed, ν.

During the DTW process, the matrix used to compare R
and ν provides a (v ×r)warping map,W , indicating the dis-
tance from one observation from R to another in ν. Using this
warping map, a (v×1) index vector ρ is obtained which out-
lines the phase alignment for eachobservation in the observed
sub-sequence ν:

ρ =
[
col(min(ν1, R))

r
, . . . ,

col(min(νv, R))

r

]T

, (9)

where col(.) is a function to obtain the column number of
the vector/matrix.

3.3.3 pHRIP parameter set inference

To infer a set of pHRIP parameters which represents the
user’s intent, the predictive distribution is obtained using
partial observations, χ , between the user and the robot
during pHRI. Applying Bayes rule, we obtain: p(θ |χ) ∝
p(χ |θ)p(θ).

The pHRIP distribution consists of the interaction forces
and robotic trajectory encoded using a (dz × 1) vector rep-
resenting the phase alignment of the interaction forces, and
the (nM × 1) Gaussian basis function weights from DMPs.
Thus, the likelihood distribution, p(χ |θ), is modeled using
a Gaussian distribution:

p(χ |θ) ∼ N (χ |Ωθ, Iσ 2), (10)

where σ 2 is the observation variance, andΩ is a (v(d+n)×
(dz + nM)) weight matrix for the observations using only
the interaction forces:
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Ωθ =
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⎢
⎢
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⎣
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⎥
⎥
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Fd
ω1
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ωn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

The weight matrix for each DoF of the phase-aligned inter-
action forces, λ, is a (v × z) matrix, starting off as a zero
matrix and filled based on the index vector ρ. For each row
of λ, corresponding with each sample v of ν, the value of the
column numbered closest to integer-rounded zρv is filled:

λx,y =
{
1 f or y = zρx

0 f or y �= zρx
, where

x ∈ (1, 2, . . . , v),

y ∈ (1, 2, . . . , z).

(12)

If the trajectory of the robot is available from partial obser-
vations, pHRIP can utilize both interaction forces along with
robotic trajectory, where the weight matrix,ΩI+T , is defined
as:

ΩI+T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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...

0 . . . λd

⎤

⎥
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0(vn×dz)

⎡

⎢
⎣

φ1 . . . 0
...

. . .
...

0 . . . φn

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (13)

where φ is a (ν × M) matrix representing the Gaussian basis
functions for each dimension of the robot.

Given the likelihood, p(χ |θ), is modeled with the robotic
trajectory, the unavailable trajectories are set to 0, giving
χ = [F∗

1
T , . . . , F∗

d
T , 0(1×vn)]T where F∗ are the interaction

forces observed. The joint distribution is then defined as:

p(χ, θ) = N
([

χ

θ

] ∣
∣
∣
∣

[
ωθ

μθ

]

,

[
A ΣθΩ

T

ΩΣθ Σθ

])

, (14)

where A = σ 2 I + ΩΣθΩ
T , and the mean and variance of

conditional distribution, p(θ |χ) is derived as

μθ |χ = μθ + ΣθΩ
T A−1(χ − Ωμθ ),

Σθ |χ = Σθ − ΣθΩ
T A−1ΩΣθ .

(15)

A new set of pHRIP parameters, θn , is then sampled from
this conditional distribution. The robot then generates a new
trajectoryusing the subsetDMPparameters and the estimated
phase of the final observation, ρv , continuing on from its last

Fig. 2 The experimental setup with a Sawyer robot arm, an ATI Axia80
force-torque (F/T) sensor, and a bespoke handle

position. The endpoint of the reference trajectory is used as
the goal position of the new trajectory.

4 System setup

A coupled human–robot dyad is used to validate pHRIP
since this is an arrangement commonly seen in pHRI appli-
cations. The robotic system in the coupled dyad, shown
in Fig. 2, consists of a 7 DoF Sawyer robotic manipulator
(HAHN Robotics, Germany) with a 6-axis Axia80 force-
torque sensor (ATI Industrial Automation, USA) affixed
between the endpoint and a bespoke handle. Robotic data
from the Sawyer robotic manipulator are recorded at 100 Hz
while wrench data from the force-torque sensor is recorded
at 125 Hz.

The robotic arm utilizes Rethink Robotics’ proprietary
software, Intera SDK, and an endpoint velocity threshold
of 2.5 cm s−1 is used to determine the start and end of
the demonstration. In all trials, generated trajectories were
sent to the robot’s native motion controller interface to be
performed in an open-loop fashion. While it is possible to
integrate low-level robotic feedback controllers with pHRIP,
this article focuses on the integration of interaction forces
for high-level trajectory generation which reflects the user’s
intention.

5 User-directed reaching experiment

An experiment based on user-directed reaching movements
was conducted to validate pHRIP across different users. Four
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Fig. 3 The trajectories from
user-directed reaching
experiment. a Reference
trajectories from participants.
Trajectories generated from
partial observations of: b
trajectories (IP); and interaction
forces - c pHRIP, d pHRIP-q

participants (3 male and 1 female) took part in the exper-
iment. Additional analysis was conducted to compare the
results when applied to Cartesian space (pHRIP) and joint
state space (pHRIP-q). During user interactions, the robotic
arm was set up to enter an orientation-locked gravity com-
pensation mode.

Participants were instructed to move the handle from a
defined starting position to one of two target surfaces (Fig. 2)
in a “natural manner”. Since DTW is used to phase-align the
observed interaction forces, a reference trajectory is recorded
for each trial to facilitate this function and obtain the end
pose. No other part of the reference trajectory is utilized
once the phase estimate of the interaction forces are obtained.
Each trial consists of a reference and a test trajectory, with
participants instructed to perform both trajectories “consis-
tently”

A total of 90 training demonstrations were recorded (45
for each target surface) using kinesthetic teaching via the
bespoke handle for participants. During the test trajectory,
participants were instructed to release the handle after 0.5–
1.0 s while the new trajectory is generated and performed by
the robot arm.

Partial observations for IP consist of Cartesian trajectory
while pHRIP utilized Cartesian interaction forces only. Par-
tial observations of both interaction forces and trajectory
were used to perform further comparisons. Prior to the start
of the experiment, participants were given a 5-min window
to interact with the robotic manipulator to familiarize them-
selves with the setup.

5.1 Results

A total of 28 trials were conducted in the experiment. For
each trial, participants demonstrated a reference trajectory as
shown in Fig. 3a. Partial observations from the test trajectory
were then used to generate new robotic trajectories. Trajec-
tories were generated post hoc using IP and pHRIP. Partial
observations of trajectories were used for IP and the resultant
output shown in Fig. 3b. For pHRIP, partial observations of
interaction forces were used with the resultant outputs shown
in Fig. 3c.

Visual inspection of the trajectories between IP andpHRIP
indicates the advantage of pHRIP over IP despite no infor-
mation on the robot trajectory. Using only interaction forces,
the trajectories generated from pHRIP followed the shape
of those in the reference trajectories. This is evident in the
DTW scores in Table 1 of the generated trajectories indicat-
ing a better match in shape to the reference trajectory.

The trajectories generated by IP are quite ill-formed, with
completely erroneous trajectory shapes despite empirical evi-
dence on its efficacy (Ben Amor et al. 2014). We posit the
variance in the training demonstrations towards the end of
the trajectory contributed towards the sensitivity of the dis-
tribution. Figure 4c highlights the large variances of the basis
function weights in all three axis at different sections of the
trajectory. The effect of this variance can be seen in the gen-
erated conditional distribution shown in Fig. 4a, noting that
weights which are completely erroneous occur during the
sections of trajectories with high variance.

123



Autonomous Robots (2022) 46:421–436 427

Table 1 A comparison of the RMSE and DTW distance between trajectories generated from IP, pHRIP, and pHRIP-q

IP pHRIP pHRIP-q

Force Only Force & Trajectory Force Only Force & Trajectory

μ σ 2 μ σ 2 μ σ 2 μ σ 2 μ σ 2

RMSE (m) 0.2657 0.0031 0.1597 0.0030 0.1737 0.0024 0.119123 0.004877 0.119118 0.004874

DTW 4.2664 0.9732 1.6874 0.3056 1.8682 0.3800 1.627105 0.572789 1.627127 0.572535

The same reference trajectory was used for each trial during the analysis. The mean, μ and variance, σ 2 of the two metrics are tabulated here
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Fig. 4 The conditional weights obtained conditioned upon partial
observations of: a trajectory; and b interaction forces. These corre-
late with the generated trajectories seen in Fig. 3b, c, respectively. c

Shows the variance in the training weights, noting the large variance
towards the end of the trajectory contributing to conflicting IP condi-
tional weights

In contrast, the interaction forces overcome this sensitiv-
ity, generating a better conditional distribution as highlighted
in Fig. 4b despite the high variance. Therefore, looking at the
results for pHRIP in Table 1, the use of force and trajectory
observations account for the degradation in performance.

5.2 Cartesian versus joint trajectories

While pHRIP has been shown to generate trajectories that
reflect the user’s intention inCartesian space, formost robotic
arm control systems, action policies generally operate in joint
space. Further analysiswas conducted using the data from the
user-directed reaching experiment to investigate the applica-
tion of pHRIP in joint state space (pHRIP-q). The joint states
of the robot and the Cartesian interaction forces at the end-
point were used to build the weight distribution.

When assessing the performance of the pHRIP-q variant,
the robotic response (joint states) are re-mapped to Cartesian
space (endpoint) using forward kinematics. Comparisons and
analysis of the pHRIP-q are all based off the robot endpoint
rather than the joint states.

For both the original human target reaching experiment
and this analysis, identical parameters were used with 20
basis functions, K = 80 N/m, D = 20 Ns/m, τ = 0.35, h =
0.0008, and α = 1. Forward kinematics was performed for
the pHRIP-q trajectories to obtain theirCartesian trajectories,
showing similar trajectory shapes to the reference trajectories

Fig. 5 A visualization of the discrepancy between the endpoint in the
reference trajectories and those generated from IP, pHRIP, andpHRIP-q.
Ellipsoid fitting indicating the spread is performed usingLi andGriffiths
(2004)

(see Fig. 3d). This is supported by themeanRMSE andDTW
distances as tabulated in Table 1.

Initial observations of the overall results suggest that
pHRIP-q is the better variant. However, mapping out the
vectors showing the difference between the reference and
resultant endpoint, as seen in Fig. 5, suggest that the appropri-
ate pHRIP variant will depend on the priority of the task. For
example, pick and place operations of heavy objects will pri-
oritize the precise endpoint of the trajectory, making pHRIP
more appropriate. Conversely, if the task is to conform to the
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Fig. 6 The relationship between observation lengths and DTW dis-
tances when generating trajectories using IP, pHRIP, and pHRIP-q

shape of a trajectory performed by an expert, as is commonly
seen during physical rehabilitation, it may be more suitable
to use the joint variant of pHRIP.

In this experiment, the trajectory of the endpoint is rel-
atively small when considering the total work space of the
robotic arm. In joint space, this may result in certain joints
which have a small range across the demonstrations, a phe-
nomenon exacerbated by the redundancy introduced with the
7-DoF robot and orientation-locked endpoint trajectories (4
redundant joints). This can account for the similarity in the
resultant RMSE and DTW distances in pHRIP-q when con-
sidering the inclusion of observing joint trajectories when
obtaining a conditional set of pHRIP parameters. For a lower
DoF robotic system, the necessity for all joints to move when
moving in Cartesian space may mitigate this effect.

While the results show that appropriate consideration is
required when choosing which variant to use, they show
promising indications for the integration of haptic informa-
tion during motor skill learning in pHRI applications. One
potential for pHRI application is in training and develop-
ment systems, where expert demonstrationsmay be collected
remotely via a haptic interface, providing intuitivemotor skill
learning remotely. Learning from the interaction forces on
the haptic interface is transferable across various platforms
provided kinesthetic teaching of the robotic response is per-
formed.

5.2.1 Influence of observation length

The influence of the observation length between trajectories
generated using IP and pHRIP can be seen in Fig. 6, indi-
cating the DTW distances for trajectories generated using
pHRIP are much lower than those of IP. As observation
lengths increase, errors from the generated trajectories would
approach zero, giving diminishing returns for pHRIP or IP.
While a longer observation can improve the performance of

Fig. 7 A top-down view of the planar validation setup

HRI applications using movement primitives, this is unde-
sirable in pHRI applications since the goal of the robot is
to contribute meaningfully as soon as possible. Trajectories
from pHRIP consistently produce better trajectories when
compared against IP, reinforcing our hypothesis that using
interaction forces during pHRI can help reduce uncertainty.

We note that the exponential fit used to model the DTW
distance and the observation length phase produces a profile
for pHRIP-q which is vastly different to pHRIP. As men-
tioned above, it may be possible that this particular task is
well-suited for the joint state variant for pHRIP. One other
possible explanation is that the model is over-fitted, with
not enough samples to accurately determine the correct pro-
file for pHRIP-q. However, the results from pHRIP-q still
improve upon IP, supporting the motivation for pHRIP.

6 Planar target-reaching task

A planar target-reaching task was conducted to validate
pHRIP, comparing against IP, with the setup shown in Fig. 7.
An object was place in between the start and the end of the
trajectory, creating two distinct paths for the robot to reach
the end position. A total of 30 training trajectories and 20
testing trajectories were recorded with, an even split for each
path, while the robotic arm is setup to enter an orientation-
locked zero-g mode constrained to the XY plane.

The analysis and trajectory generation for the planar
obstacle avoidance experiment were conducted post-hoc.
Thus, all recorded trajectories and interaction forces were
re-sampled to 400 and 500 samples respectively (matching
the 100 Hz and 125 Hz data collection frequency). A com-
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Fig. 8 The results from the planar obstacle avoidance task. a The box
plot and spread for each observation length highlights the RMSE spread
between IP and pHRIP for the 20 testing trajectories across varying

observation lengths; b displays the training trajectories recorded to
avoid the obstacle; and c shows the trajectories generated by pHRIP
and IP when 30% of the trajectory is observed

parison between IP and pHRIP is performed using partial
observations of: (a) trajectory only (IP); and (b) interaction
force only (pHRIP).

6.1 Results

For the 20 test trials conducted in the planar validation, the
RMSEbetween the generated trajectories and their respective
reference trajectories was calculated. The pHRIP and DMP
tests were conducted post-hoc against observation lengths
(as a % of the total trajectory) varying from 10 to 50%.

Results shown in Fig. 8a highlight the ability for pHRIP
to address ambiguities in the trajectories, utilizing only inter-
action forces to generate the intended path. The critical
advantage of pHRIP over DMPs is shown when there are
less observations such as those when only 10% of the trajec-
tory is observed.

While the results may indicate that the advantage of
pHRIP diminishes as more observations are obtained, the
generated trajectories highlight an aspect ofmotor skill learn-
ing which is not inherited through DMPs. The task to avoid
the static obstacle is redundant, meaning there are multiple
ways to complete the task. During the recording of training
trajectories, two distinct paths were taught kinesthetically
by the demonstrator, showing this phenomenon as seen in
Fig. 8b. From Fig. 8c, trajectories generated by DMP (in
red) all collide with the obstacle severely while the same
only occur to 25% of pHRIP trajectories. Observations of
the pHRIP trajectories also show decreased severity during
collisions, with only two trajectories (10%) clearly going
through the obstacle.

The results in Fig. 8c highlight the limitation of IPs in
multi-modal distributions which is overcome by using the
interaction forces in pHRIP. We observe that IPs, built only
upon trajectories, create an “averaging” effect. By adding
additional DoF from interaction forces, pHRIP requires less

Fig. 9 The training trajectories for the Cartesian target-reaching task

observations to achieve the correct trajectory, reinforcing our
belief that integrating interaction artifacts into conventional
frameworks improve motor skill learning for pHRI systems.

7 Cartesian target-reaching application

Further experiments were conducted to reinforce the appli-
cability of pHRIP to estimate user intention during pHRI.
The user is tasked with moving the endpoint from the same
starting position to various end regions. In total, 4 configu-
rations were setup using a number of blocks which simulate
changing task parameters and environments, as is common
in pHRI applications. For each configuration, 10 training tra-
jectories were recorded and are shown in Fig. 9, while the 4
configuration setups are seen in Fig. 10. The pHRIP parame-
ters from all 40 trajectories are built into a single distribution,
p(θ).

To validate pHRIP in this Cartesian target-reaching task,
a total of 12 trials were conducted in Cartesian space. Simi-
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Table 2 Measures of similarity against the user’s reference trajectory
indicating their intention

DTW Distance (unitless) RMSE (m)

μ σ 2 μ

Successful 2.3482 0.2704 0.1697

Unsuccessful 3.3793 0.8941 0.2202

lar to the user-directed target reaching task, the user releases
the handle after 0.5–1.0 s, allowing the robot to perform the
trajectory generated by pHRIP. Successful trials are defined
as generated trajectories that reach their intended end zone
and follow the shape of the reference trajectory. For all trials,
identical sets of parameters were used with 30 basis func-
tions, K = 80N/m, D = 20Ns/m, h = 0.0008, andα = 0.8.

One issue which arises when the number of samples for
each trajectory are different in DMP is the sum of activa-
tion from the basis functions. A static value of τ will affect
the quality of the reproduced trajectory based on the sample
length. An exponential model is used to determine the rela-
tionship between the trajectory length (number of samples γ )
and a τ value. Assuming that the other DMP parameters are
constant, this ensures that the sum of Gaussian basis function
activation, across all samples, is above 0.5. For all trials in
the Cartesian obstacle avoidance experiment, the model and
its coefficients used are

τ = a · exp (b ∗ γ ) + c · exp (d ∗ γ )

a = 2.22 b = −0.01292
c = 0.4684 d = −0.001595

(16)

For each of the 12 trials, an estimate of τ parameter is
performed using the reference trajectory length.

7.1 Results

Of the 12 trials, there were 4 unsuccessful trajectories, which
all veered away from the intended end zone towards the endof
the trajectory, as seen in Fig. 11a. Visual observations of the
trajectories show that unsuccessful trajectories were caused
by inaccurate estimates of the τ parameter. This phenomenon
is evident in Fig. 11b where the forcing function value for
the unsuccessful trajectories drops to 0, causing the trajecto-
ries to deviate significantly. For the successful trials, pHRIP
was able to correctly infer the user’s intent when generating
trajectories to avoid the obstacles. This is supported by the
measures of similarity as shown in Table 2, and the image
sequences taken from the experiments highlight successful
and unsuccessful trials (Fig. 12).

8 Discussion

The motivation of pHRIP is to build upon IPs by integrating
physical interaction forces in a coupled system during pHRI.
As IPs utilize observed trajectories, the identical location of
the user endpoint and the robot endpoint precludes its use in
pHRI applications. Both methods encode trajectories using
DMP parameters.

A similar method for encoding trajectories is Probabilis-
tic Movement Primitives (ProMP) (Paraschos et al. 2013).
Rather than encoding the attractor landscape (also known as
the “forcing function”) and generating accelerations in DMP,
ProMP encodes the raw position and velocity separately
using Gaussian basis functions equally spaced across the
phase of the trajectory. Removing the reliance on a dynam-
ical system enables primitive blending and co-activation of
multiple primitives during the execution and generation of
a new trajectory (Paraschos et al. 2018). This independence
also better facilitates themodeling of a sequence of primitives
for multi-MP based frameworks.

Between ProMP, IP, and pHRIP, all three methods uti-
lize probabilistic operators to couple multiple DoFs of data
together. However, the reliance on the DMP framework pro-
vides properties which are associated with the dynamical
system. This facilitates a representative comparison between
IP and pHRIP to demonstrate pHRIP’s ability to extend upon
IP and integrate interaction forces during trajectory genera-
tion. A similar method to integrate interaction forces into
ProMPs can be seen in prior works (Dermy et al. 2017).

Other DMP-based probabilistic methods for capturing
user intent include stylistic DMPs (Matsubara et al. 2010)
and Associative Skill Memories (ASM) (Pastor et al. 2012).
While both use similar probabilistic operators to capture vari-
ances across multiple demonstrations, their integration of
user intent and input differ greatly from pHRIP.

Stylistic DMP embeds a weighting factor in the Gaus-
sian kernelswhen encoding the attractor landscape to provide
parametric distinction of different intent. The discrete nature
of the parameters precludes its use in coupled human–robot
systems since there are many factors which influence the
observed interaction forces. While the interaction forces
could be parameterized, such as using the maximum or RMS
value, these metrics are time-dependent and are influenced
by the observation window, making it unsuitable.

ASM constrains user intent by attaching a Dynamic
Bayesian Network (DBN) to probabilistic infer the next state
of the human–robot system. Integrating observed interac-
tion forces in this DBN can infer user intent, however, a
similar issue exist for parameterizing the interaction forces.
Furthermore, the DBN would be more akin to hierarchical
frameworks which utilize individual DMP systems such as
seen inMei et al. (2017), where an arbitration occurs to deter-
mine the appropriate DMP.
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Fig. 10 The four work space
configurations used for training
in the Cartesian target-reaching
experiment
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Fig. 11 a The trajectories from the experiment; and b the forcing function values for the experiment trials. Trials that reached the intended target
and did not hit any obstacles are shown in blue while unsuccessful paths are shown in red (Color figure online)

8.1 Limitations and future work

One limitation on pHRIP is the inheritance of DMP param-
eters. While they provide various functionalities, such as
temporal invariance and amplitude control, the parameters
(K , D, τ , and α) are still empirically obtained, with various
factors that influence which set of parameters is best suited
for any particular application. The original DMP framework
was designed for one-shot LfD, tracking the start and goal

positions while encoding the non-linear “forcing function”.
However, for multiple trajectories, each with their own start
and goal positions, generalizing the DMP weights is non-
trivial.

Probabilistic methods are popular since a distribution of
DMP weights can be generated, allowing probabilistic oper-
ators to infer a new set of DMP weights. A contemporary
non-probabilistic method in Ginesi et al. (2021) aligns the
DMP-based weights from each trajectory into the same start
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Fig. 12 The behavior of pHRIP for known setups. *Indicates an unsuccessful trial with the red ellipse showing the collisions. All collisions occurred
at the end of their trajectory due to inaccurate estimates of the τ parameter as discussed in Sect. 7.1 (Color figure online)

and end points, and calculates a generalized set of DMP
weights using linear regression. Temporal scaling of the
aligned DMPs enable trajectories of various lengths to be
captured in the generalized set of DMP weights.

A constraint for pHRIP is the reliance on DTW to phase
align the partial observations, requiring a reference trajectory.
For a multi-modal task, it is possible to bypass this constraint
by using a single reference trajectory for each trajectory
mode. However, the performance of DTW degrades if there
are any adaptations to the task at hand.Acommonapproach is
to use Bayesian statistics to embed the phase of the trajectory
into the built distribution, such that observations can perform
phase estimation and user intent simultaneously. This has
been realized using Interactive ProMPs (Maeda et al. 2017a)
and Bayesian IPs (Campbell and Ben Amor 2017).

Future work for pHRIP will look to address these limita-
tions, finding ways to handle DMP parameters and phase
estimation without the need for additional reference tra-
jectories. Furthermore, more complex scenarios need to be
considered in future work, focusing on the robustness of
pHRIP during challenging circumstances which are present
in pHRI. These include sparse physical interactions which
is limited by the need for phase estimation using DTW. In
the context of human biomechanics, the interaction forces
during pHRI can also be derived from external systems
decoupled from the robotic platform such as biomechani-
cal models (Rückert and d’Avella 2013) and physiological
measures (Peternel et al. 2018). Thus, future work will also
explore context-dependent observations for pHRIP, lever-
aging knowledge on the non-linear behavior of human
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locomotion and force generation (D’Avella et al. 2003;
Hogan 1985).

9 Conclusion

This article introduces physical Human Robot Interaction
Primitives (pHRIP), a framework that infers the intent of
the user to generate the appropriate robotic response during
physical human robot interactions using only the interaction
forces. pHRIP extends upon IPs by embedding interaction
forces in the distribution over the robotic response to allow
for user intent inferencewhen generating robotic trajectories.

A series of experiments based on target reaching tasks
were conducted to validate the efficacy of pHRIP, show-
ing accurate inference of user intent with a small number
of observations. Comparisons of a planar task demonstrated
the advantage of utilizing interaction forces in pHRIP, instead
of the robot trajectory in IPs, during multi-modal tasks for
pHRI. The adaptation of pHRIP to novel situations also
demonstrates its adaptability.

While the experiments to validate pHRIP are approached
through the lenses of motion planning to reflect user intent,
developing a control system which derives from pHRIP out-
puts will create opportunities to improve user assistance
during pHRI.
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