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                    Abstract
Scalable robot learning from human-robot interaction is critical if robots are to solve a multitude of tasks in the real world. Current approaches to imitation learning suffer from one of two drawbacks. On the one hand, they rely solely on off-policy human demonstration, which in some cases leads to a mismatch in train-test distribution. On the other, they burden the human to label every state the learner visits, rendering it impractical in many applications. We argue that learning interactively from expert interventions enjoys the best of both worlds. Our key insight is that any amount of expert feedback, whether by intervention or non-intervention, provides information about the quality of the current state, the quality of the action, or both. We formalize this as a constraint on the learner’s value function, which we can efficiently learn using no regret, online learning techniques. We call our approach Expert Intervention Learning (EIL), and evaluate it on a real and simulated driving task with a human expert, where it learns collision avoidance from scratch with just a few hundred samples (about one minute) of expert control.



                    
    


                    
                        
                            
                                
                                    
                                        
                                    
                                    
                                        This is a preview of subscription content, log in via an institution
                                    
                                    
                                        
                                     to check access.
                                

                            

                        

                        
                            
                                
                                    Access this article

                                    
                                        
                                            
                                                
                                                    Log in via an institution
                                                    
                                                        
                                                    
                                                
                                            

                                        
                                    
                                    
                                        
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                    

                                    
                                        Institutional subscriptions
                                            
                                                
                                            
                                        

                                    

                                

                            
                        

                        
                            Fig. 1[image: ]


Fig. 2[image: ]


Fig. 3[image: ]


Fig. 4[image: ]


Fig. 5[image: ]


Fig. 6[image: ]


Fig. 7[image: ]


Fig. 8[image: ]



                        

                    

                    
                        
                    


                    
                        
                            
                                
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Human-in-the-loop machine learning: a state of the art
                                        
                                    

                                    
                                        Article
                                         Open access
                                         17 August 2022
                                    

                                

                                Eduardo Mosqueira-Rey, Elena Hernández-Pereira, … Ángel Fernández-Leal

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Multi-agent deep reinforcement learning: a survey
                                        
                                    

                                    
                                        Article
                                         Open access
                                         15 April 2021
                                    

                                

                                Sven Gronauer & Klaus Diepold

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        A practical guide to multi-objective reinforcement learning and planning
                                        
                                    

                                    
                                        Article
                                         Open access
                                         13 April 2022
                                    

                                

                                Conor F. Hayes, Roxana Rădulescu, … Diederik M. Roijers

                            
                        

                    
                

            
        
            
        
    
                            
                        
                    

                    

                    

                    Notes
	While we assume \(Q_\theta (\cdot )\) is convex to prove regret guarantees, the update can be applied to non-convex function classes like neural networks as done in similar works (Sun et al. 2017)


	Fréchet distance is a distance metric commonly used to compare trajectories of potentially uneven length. Informally, given a person walking along one trajectory and a dog following the other without either backtracking, the Fréchet distance is the length of the shortest possible leash for both to make it from start to finish.


	We modify the action space to have a low constant acceleration and no braking so that the action space was just a discrete set of possible steering angles \([-1,0,1]\) to more closely match that of the original DAgger experiment. We pre-process the 96x96 rgb pixel observation space to LAB color values, using the A,B channels to form a single channel binary thresholded image with all relevant features. We downscale that image to an 8x8 float image, and reshape that into the final state vector \(s\in {\mathbb {R}}^{64}\). The expert network is a DQN of dims 64,  (8),  3 with tanh activation at the hidden layer. We use the 8 hidden layer outputs as our feature vector. The learner function class \(\scriptstyle \varvec{q}(s,a)\) is the set of 27 weights and biases for the output layer.
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Appendices
Proofs
1.1 Reduction to no-regret, online learning
The general non i.i.d optimization we wish to solve is
$$\begin{aligned}&\min _{\pi } {\mathbb {E}}_{(s,a) \sim d^I_\pi (s,a)} \ell _C(s,a,\theta ) \nonumber \\&\quad + \lambda {\mathbb {E}}_{(s,a) \sim d_\pi (s,a)} \ell _B(s,a,\theta ). \end{aligned}$$

                    (18)
                

We’ll directly prove the general setting here rather than proving individually for \(\ell _C\) and \(\ell _B\).
We reduce this optimization problem to a sequence of convex losses \(\ell _i(\theta )\) where the i-th loss is a function of the distribution at that iteration, \(\ell _i(\theta )={\mathbb {E}}_{(s,a) \sim d^I_i} \ell _C(s,a,\theta ) + \lambda {\mathbb {E}}_{(s,a) \sim d_i} \ell _B(s,a,\theta )\) In our algorithm, the learner at iteration i applies Follow-the-Leader (FTL)
$$\begin{aligned} \begin{aligned} \theta _{i+1}&= \arg \min _\theta \sum _{t=1}^i&\ell _t(\theta ) \\&= \arg \min _\theta \sum _{t=1}^i&{\mathbb {E}}_{(s,a) \sim d^I_t} \ell _C(s,a,\theta ) \\&+\lambda {\mathbb {E}}_{(s,a) \sim d_ts} \ell _B(s,a,\theta ) \end{aligned} \end{aligned}$$

                    (19)
                

Since FTL is a no-regret algorithm, we have the average regret
$$\begin{aligned} \frac{1}{N} \sum _{i=1}^N \ell _i(\theta _i) - \min _\theta \frac{1}{N} \sum _{i=1}^N \ell _i(\theta ) \le \gamma _N \end{aligned}$$

                    (20)
                

go to 0 as \(N\rightarrow \infty \), with \({\tilde{O}}(\tfrac{1}{N})\) for strongly convex \(\ell _i\), (See Theorem 2.4 and Corollary 2.2 in Shalev-Shwartz (2012))
In this framework, we restate and prove Thm. 1.

                    Theorem 2

                    Let \(\ell _i(\theta ) = {\mathbb {E}}_{(s,a)\sim d_{\pi _{\theta _i}}} \ell (s,a,\theta )\). Also let \(\epsilon _N = \min _{\theta }\frac{1}{N} \sum _{i=1}^N \ell _i(\theta )\) be the loss of the best parameter in hindsight after N iterations. Let \(\gamma _N\) be the average regret of \(\theta _{1:N}\). There exists a \(\theta \in \theta _{1:N}\) s.t.
$$\begin{aligned} {\mathbb {E}}_{(s,a) \sim d_{\pi _{\theta }}} [\ell (s,a,\theta )] \le \epsilon _N + \gamma _N \end{aligned}$$

                    (21)
                


                  
                    Proof

                    The performance of the best learner in the sequence \(\theta _1,\cdots ,\theta _N\) must be smaller than the average loss of each learner on its own induced distribution (min smaller than average)
$$\begin{aligned}&\min _{\theta \in \theta _{1:N}} {\mathbb {E}}_{(s,a)\sim d_{\pi _\theta }} [\ell (s,a,\theta )]\nonumber \\&\quad \le \frac{1}{N} \sum _{i=1}^N {\mathbb {E}}_{(s,a)\sim d_{\pi _{\theta _i}}} [\ell (s,a,\theta _i)] \end{aligned}$$

                    (22)
                

Using (20) we have
$$\begin{aligned} \begin{aligned}&\frac{1}{N} \sum _{i=1}^N {\mathbb {E}}_{(s,a)\sim d_{\pi _{\theta _i}}} [\ell (s,a,\theta _i)] \\&\quad \le \gamma _N + \min _\theta \frac{1}{N} \sum _{i=1}^N {\mathbb {E}}_{(s,a)\sim d_{\pi _{\theta _i}}} [\ell (s,a,\theta )] \\&\quad \le \gamma _N + \epsilon _N \end{aligned} \end{aligned}$$

                    (23)
                

\(\square \)

                  This proof can be extended for finite sample cases following the original DAgger proofs. This theorem applies to each portion of the objective individually, yielding regret terms \(\gamma _N^B\) and \(\gamma _N^I\) which each individually go to zero as \(N\rightarrow \infty \), thus we are guaranteed that the combined objective as well as each individual objective is zero regret.
HG-DAgger counter example
We construct a counter-example for HG-DAgger approaches (Kelly et al. 2019; Goecks et al. 2019; Bi et al. 2018) in Fig. 9. Recall that in HG-DAgger, we only use the intervention loss \(\ell _C(.)\).
The MDP is such that the learner can choose between two actions - Left (L) and Right (R) only at states \(s_0\) and \(s_1\). Unknown to the learner, but known to the expert, some of the edges are associated with costs. The expert deems a “good enough” state as having value of \(-9\). Hence whenver the learner enters \(s_1\), the expert takes over to intervene and demonstrates \((s_1, L)\).
Fig. 9[image: figure 9]
Counter example for HG-Dagger. Edges without costs are assumed to have \(c=0\), and a single edge leaving a node corresponds to taking any action


Full size image

HG-DAgger only keeps this intervention data and uses it as classification loss. Let’s say it is using a tabular policy. If it learns the policy \((s_0,L)\) and \((s_1,L)\) - it will indeed achieve \(\ell _c(s,a,\theta )=0\). However, the expert will continue to intervene as this policy always exits the good enough state
Let’s look at all policies and their implicit bounds and intervention losses. Assume we get a penalty of 1 for every bad state or misclassified action. We have: 
	
                    1.
                    
                      Policy \((s_0, L), (s_1,L)\): Loss \(\ell _B = 2\), \(\ell _C=0\)

                    
                  
	
                    2.
                    
                      Policy \((s_0, L), (s_1,R)\): Loss \(\ell _B = 2\), \(\ell _C=1\)

                    
                  
	
                    3.
                    
                      Policy \((s_0, R), (s_1,L)\): Loss \(\ell _B = 0\), \(\ell _C=0\)

                    
                  
	
                    4.
                    
                      Policy \((s_0, R), (s_1,R)\): Loss \(\ell _B = 0\), \(\ell _C=0\)

                    
                  

The last two policies have the same intervention loss because the induced distribution is such that these policies never result in interventions (even though one learns an incorrect intervention action).
HG-DAgger looks at only the last column and hence may not end up learning \((s_0, R)\). EIL on the other hand will.
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