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Abstract
Assistive robot arms enable people with disabilities to conduct everyday tasks on their own. These arms are dexterous and
high-dimensional; however, the interfaces people must use to control their robots are low-dimensional. Consider teleoperating
a 7-DoF robot arm with a 2-DoF joystick. The robot is helping you eat dinner, and currently you want to cut a piece of tofu.
Today’s robots assume a pre-defined mapping between joystick inputs and robot actions: in one mode the joystick controls
the robot’s motion in the x–y plane, in another mode the joystick controls the robot’s z–yaw motion, and so on. But this
mapping misses out on the task you are trying to perform! Ideally, one joystick axis should control how the robot stabs the
tofu, and the other axis should control different cutting motions. Our insight is that we can achieve intuitive, user-friendly
control of assistive robots by embedding the robot’s high-dimensional actions into low-dimensional and human-controllable
latent actions. We divide this process into three parts. First, we explore models for learning latent actions from offline task
demonstrations, and formalize the properties that latent actions should satisfy. Next, we combine learned latent actions with
autonomous robot assistance to help the user reach and maintain their high-level goals. Finally, we learn a personalized
alignment model between joystick inputs and latent actions. We evaluate our resulting approach in four user studies where
non-disabled participants reach marshmallows, cook apple pie, cut tofu, and assemble dessert. We then test our approach with
two disabled adults who leverage assistive devices on a daily basis.
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1 Introduction

For over one million American adults living with physi-
cal disabilities, performing everyday tasks like grabbing a
bite of food or pouring a glass of water presents a sig-
nificant challenge (Taylor 2018). Assistive devices—such
as wheelchair-mounted robot arms—have the potential to
improve these people’s independence and quality of life
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(Argall 2018; Jacobsson et al. 2000; Mitzner et al. 2018;
Carlson and Millan 2013). A key advantage of these robots
is their dexterity: assistive armsmove alongmultiple degrees-
of-freedom (DoFs), orchestrating complexmotions like stab-
bing a piece of tofu or pouring a glass ofwater.Unfortunately,
this very dexterity makes assistive arms hard to control.

Imagine that you are leveraging an assistive robot arm
to eat dinner (see Fig. 1). You want the robot to reach for
some tofu on the table in front of you, cut off a piece,
and then pick it up with its fork. Non-disabled persons can
use their own body to show the robot how to perform this
task: for instance, the human grabs the tofu with their own
arm, and the robot mimics the human’s motion (Rakita et al.
2017, 2019). But mimicking is not feasible for people living
with physical disabilities—instead, these users are limited
to low-dimensional controllers. Today’s assistive robot arms
leverage joysticks (Herlant et al. 2016), sip-and-puff devices
(Argall 2018), or brain-computer interfaces (Muelling et al.
2017). So to get a bite of tofu, you must carefully coordinate
the dexterous robot arm while only pressing up-down-left-
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Fig. 1 Our approachmakes it easier for users to control assistive robots.
(Left) assistive robot arms are dexterous and high-dimensional, but
humans must teleoperate these robots with low-dimensional interfaces,
such as 2-DoF joysticks. (Right) we focus on assistive eating tasks;
for example, trying to get a piece of tofu. (Top) existing work maps
joystick inputs to end-effector motion. Here the user must toggle back
and forth between multiple modes to control their desired end-effector

motion. (Bottom)we learn task specificmapping that embeds the robot’s
high-dimensional actions into low-dimensional latent actions z. Now
pressing up and down controls the robot along a reaching and stabbing
motion, while pressing right and left moves the robot arm through pre-
cise cutting and scooping motions. The user no longer needs to change
modes

right on a joystick. Put another way, users are challenged by
an inherent mismatch between low-dimensional interfaces
and high-dimensional robots.

Existing work on assistive robots tackles this problem
with pre-defined mappings between user inputs and robot
actions. These mappings incorporate modes, and the user
switches between modes to control different robot DoFs
(Herlant et al. 2016; Aronson et al. 2018; Newman et al.
2018). For instance, in one mode the user’s 2-DoF joystick
controls the x–y position of the end-effector, in a second
mode the joystick controls the z-yaw position of the end-
effector, and so on. Importantly, these pre-defined mappings
miss out on the human’s underlying task. Consider teleoper-
ating the robot to cut off a piece of tofu and then stab it with
its fork. First you must use the x–y mode to align the fork
above the tofu, then roll-pitch to orient the fork for cutting,
then z-yaw to move the fork down into the tofu, and then
back to roll-pitch to return the fork upright, and finally z–
yaw to stab the tofu—and this is assuming you never undo
a motion or make a correction!

Controlling assistive robots becomes easier when the joy-
stick inputs map directly to task-related motions. Within our
example, one joystick DoF could produce a spectrum of stab-
bing motions, while the other DoF teleoperates the robot
through different cutting motions. To address the fundamen-
tal mismatch between high-DoF robot arms and low-DoF
control interfaces, we learn a mapping between these spaces:

We make it easier to control high-dimensional robots by
embedding the robot’s actions into low- dimensional and
human-controllable latent actions.

Latent actions here refer to a low-DoF representation that
captures the most salient aspects of the robot’s motions. Intu-
itively, we can think of these latent actions as similar to the
eigenvectors of amatrix composedof high-dimensional robot

motions. Returning to our motivation, imagine that you have
eaten dinner with the assistive robot many times. Across all
of these meals there are some common motions: reaching
for food items, cutting, pouring, scooping, etc. At the heart
of our approach we learn an embedding that captures these
underlying motion patterns, and enables the human to con-
trol via these learned embeddings, which we refer to as latent
actions.

Overall, we make the following contributions:1

Learning latent actions Given a dataset of task-related
robot motions, we develop a framework for learning to map
the user’s low-dimensional inputs to high-dimensional robot
actions. For instance, imagine using a 2-DoF joystick to tele-
operate a 7-DoF assistive robot arm. To reach for a piece of
tofu, you need a mapping function—something that inter-
prets your joystick inputs into robot actions. Of course, not
just any mapping will do; you need something that is intu-
itive and meaningful, so that you can easily coordinate all
the robot’s joints to move towards your tofu. In Sect. 6 we
introduce a set of properties that user-friendly latent actions
must satisfy, and formulate learningmodels that capture these
properties.

Integrating shared autonomy But what happens once
you’ve guided the robot to reach the tofu (i.e., your high-
level goal)? Next, you need to precisely manipulate the robot
arm in order to cut off a piece and pick it up with your fork.
Here relying on latent actions alone is challenging, since
small changes in your joystick input may accidentally move
the robot away from your goal. To address this problem,

1 Parts of this work have been published at the International Conference
on Robotics and Automation (Losey et al. 2020), Robotics: Science
and Systems (Jeon et al. 2020), and the International Conference on
Intelligent Robots and Systems (Li et al. 2020).
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in Sect. 7 we incorporate shared autonomy, where both the
human and robot arbitrate control over the robot’s motion.
Here the robot autonomously helps the user reach and main-
tain their desired high-level goals, while the user leverages
latent actions to performprecisemanipulation tasks (e.g., cut-
ting, stabbing, and scooping). We show convergence bounds
on the robot’s distance to the most likely goal, and develop
a training procedure to ensure the human can still guide the
robot to different goals if they change their mind.

Personalizing alignment Throughout the assistive eating
task your joystick inputs have produced different robot
motions. To guide the robot towards the tofu, you pressed
the joystick up; to orient the fork for cutting, you pressed
the joystick right; and to stab your piece of tofu, you pressed
the joystick down. This alignment between joystick inputs
and robot outputs may make sense to you—but different
userswill inevitably have different preferences!Accordingly,
in Sect. 6 we leverage user expectations to personalize the
alignment between joystick directions and latent actions. Part
of this alignment process involves asking the human what
they prefer (e.g., what joystick direction should correspond
to scooping?). We minimize the number of queries by for-
malizing and leveraging the priors that humans expect when
controlling robotic systems.

Conducting user studies In order to compare our approach
to the state-of-the-art, we performed four user studies
inspired by assistive eating tasks. Non-disabled participants
teleoperated a 7-DoF robot arm using a 2-DoF joystick
to reach marshmallows, make a simplified apple pie, cut
tofu, and assemble dessert. We compared our latent action
approach to both pre-definedmappings and shared autonomy
baselines, including theHARMONICdataset (Newman et al.
2018).We found that latent actions help users complete high-
level reaching and precise manipulations with their preferred
alignment, resulting in improved objective and subjective
performance.

Evaluating with disabled users We applied our proposed
approach with two disabled adults who leverage assistive
devices when eating on a daily basis. These adults have a
combined five years of experience with assistive robot arms,
and typically control their arms with pre-defined mappings.
In our case study both participants cut tofu and assembled a
marshmallow dessert using either learned latent actions or a
pre-definedmapping. Similar to our resultswith non-disabled
users, here latent actions helped these disabled participants
more quickly and accurately perform eating tasks.

Unifying previous researchThis paper combines our earlier
work from (Losey et al. 2020; Jeon et al. 2020; Li et al. 2020).
We build on these preliminary results by integrating each
part into an overarching formalism (Sect. 7), demonstrating
how each component relates to the overall approach, and

evaluating the resulting approach with disabled members of
our target population (Sect. 10).

2 Related work

Our approach learns latent representations of dexterous
robot motions, and then combines those representations with
shared autonomy to facilitate both coarse reaching and pre-
cise manipulation tasks. We apply this approach to assistive
robot arms—specifically for assistive eating—so that users
intuitively teleoperate their robot through a spectrum of
eating-related tasks.

Assistive eating Making and eating dinner without the help
of a caretaker is particularly important to people living with
physical disabilities (Mitzner et al. 2018; Jacobsson et al.
2000). As a result, a variety of robotic devices and algo-
rithms have been developed for assistive eating (Brose et al.
2010;Naotunna et al. 2015).We emphasize that these devices
are high-dimensional in order to reach and manipulate food
items in 3D space (Argall 2018). When considering how to
control these devices, prior works break the assistive eating
task into three parts: (i) reaching for the human’s desired
food item, (ii) manipulating the food item to get a bite, and
then (iii) returning that bite back to the human’s mouth.
Recent research on assistive eating has explored automat-
ing this process: here the human indicates what type of food
they would like using a visual or audio interface, and then
the robot autonomously reaches, manipulates, and returns a
bite of the desired food to the user (Feng et al. 2019; Park
et al. 2020; Gallenberger et al. 2019; Gordon et al. 2020;
Canal et al. 2016). However, designing a fully autonomous
system to handle a task as variable and personalized as eat-
ing is exceedingly challenging: consider aspects like bite size
or motion timing. Indeed—when surveyed in Bhattacharjee
et al. (2020)—users with physical disabilities indicated that
they preferred partially autonomy during eating tasks, since
this better enables the user to convey their ownpreferences. In
line with these findings, we develop a partially autonomous
algorithm that assists the human while letting them maintain
control over the robot’s motion.

Latent representations Carefully orchestrating complex
movements of high-dimensional robots is difficult for humans,
especially when users are limited to a low-dimensional con-
trol interface (Bajcsy et al. 2018). Prior work has tried to
prune away unnecessary control axes in a data-driven fash-
ion through Principal Component Analysis (Ciocarlie and
Allen 2009; Artemiadis and Kyriakopoulos 2010; Matrone
et al. 2012). Here the robot records demonstrated motions,
identifies the first few eigenvectors, and leverages these
eigenvectors to map the human’s inputs to high-dimensional
motions. But PCA produces a linear embedding—and this

123



118 Autonomous Robots (2022) 46:115–147

embedding remains constant, regardless of where the robot
is or what the human is trying to accomplish. To capture
intricate non-linear embeddings, we turn to recent works
that learn latent representations from data (Jonschkowski
and Brock 2014). Robots can learn low-dimensional mod-
els of states (Pacelli and Majumdar 2020), dynamics (Watter
et al. 2015; Xie et al. 2020), movement primitives (Nosewor-
thy et al. 2020), trajectories (Co-Reyes et al. 2018), plans
(Lynch et al. 2019), policies (Edwards et al. 2019), skills
(Pertsch et al. 2020), and action representations for reinforce-
ment learning (Chandak et al. 2019). One common theme
across all of these works is that there are underlying patterns
in high-DoF data, and the robot can succinctly capture these
patterns with a low-DoF latent space. A second connection
is that these works typically leverage autoencoders (Kingma
and Welling 2014; Doersch 2016) to learn the latent space.
Inspired by these latent representation methods, we similarly
adapt an autoencoder model to extract the underlying pattern
in high-dimensional robotmotions.But unlike priormethods,
we give the human control over this embedding—putting a
human-in-the-loop for assistive teleoperation.

Shared autonomy Learning latent representations provides
a mapping from low-dimensional inputs to high-dimensional
actions. But how do we combine this learned mapping with
control theory to ensure that the human can accurately
complete their desired task? Prior work on assistive arms
leverages shared autonomy,where the robot’s action is a com-
bination of the human’s input and autonomous assistance
(Dragan and Srinivasa 2013; Javdani et al. 2018; Jain and
Argall 2019; Broad et al. 2020). Here the human controls the
robot with a low-DoF interface (typically a joystick), and the
robot leverages a pre-definedmappingwith toggledmodes to
convert the human’s inputs into end-effector motion (Aron-
son et al. 2018; Herlant et al. 2016; Newman et al. 2018). To
assist the human, the robot maintains a belief over a discrete
set of possible goal objects in the environment: the robot
continually updates this belief by leveraging the human’s
joystick inputs as evidence in a Bayesian framework (Dra-
gan and Srinivasa 2013; Javdani et al. 2018; Jain and Argall
2019; Gopinath et al. 2016; Nikolaidis et al. 2017). As the
robot becomes increasingly confident in the human’s goal, it
provides assistance to autonomously guide the end-effector
towards that target. We emphasize that so far the robot has
employed a pre-defined input mapping—but more related
to our approach are (Reddy et al. 2018; Broad et al. 2020;
Reddy et al. 2018), where the robot proposes or learns suit-
able dynamicsmodels to translate user inputs to robot actions.
For instance, in Reddy et al. (2018), Broad et al. (2020) the
robot leverages a reinforcement learning framework to iden-
tify how to interpret and assist human inputs. Importantly,
here the input space has the same number of dimensions as
the action space, and so no embedding is required. We build

Table 1 Key variables and their definition

s Robot’s state (or the world’s state)

b Robot’s belief over high-level goals g ∈ G
c Robot’s context: we consider c = s, c = (s, b)

u Human’s joystick input

z Latent action commanded by the human

f Alignment model z = f (u, c)

ah Human’s commanded high-DoF robot action

φ Learned decoder ah = φ(z, c)

ar Autonomous assistive action

a Robot’s action, where a = (1 − α) · ah + α · ar

upon this previous research in shared autonomy by helping
the user reach and maintain their high-level goals, but we do
so by leveraging latent representations to learn a mapping
from low-DoF human inputs to high-DoF robot outputs.

3 Problem setting

We consider settings where a human user is teleoperating an
assistive robot arm. The human interacts with the robot using
a low-dimensional interface: this could be a joystick, sip-
and-puff device, or brain-computer interface.We specifically
focus on interfaces with a continuous control input (or an
input that could be treated as continuous). For clarity, we will
assume the teleoperation interface is a joystick throughout
the rest of the paper, and we will use a joystick input in all
our experiments. The assistive robot’s first objective is to
map these joystick inputs to meaningful high-dimensional
motions. But assistive robots can do more than just interpret
the human’s inputs—they can also act autonomously to help
the user reach and maintain their goals. Hence, the robot’s
second objective is to integrate the learned mapping with
shared autonomy. In practice, the mappings that the robot
learns for one user may be counter-intuitive for another. Our
final objective is to align the human’s joystick inputs with
the latent actions, so that users can intuitively convey their
desired motions through the control interface.

In this section we formalize our problem setting, and out-
line our proposed solutions to each objective. We emphasize
the main variables in Table 1.

Task The human operator has a task in mind that they want
the robot to accomplish. We formulate this task as a Markov
decision process: M = (S,A, T , R, γ, ρ0). Here s ∈ S ⊆
R
n is the state and a ∈ A ⊆ R

m is the robot’s high-DoF
action. Because we are focusing on the high-dimensional
robot arm, we refer to s as the robot’s state, but in practice
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the state s may contain both the robot’s arm position and the
location of other objects in the environment (e.g., the position
of the tofu).

The robot transitions between states according to T (s, a),
and receives reward R(s) at each timestep. We let γ ∈ [0, 1)
denote the discount factor, and ρ0 captures the initial state
distribution. During each interaction the robot is not sure
what the human wants to accomplish (i.e., the robot does not
know R). Returning to our running example, the robot does
not know whether the human wants a bite of tofu, a drink of
water, or something else entirely. The human communicates
their desired task through joystick inputs u ∈ R

d . Because
the human’s input is of lower dimension than the robot’s
action, we know that d < m.

Dataset Importantly, this is not the first time the user has
guided their robot through the process of eating dinner. We
assume access to a dataset of task demonstrations: these
demonstrations can be kinesthetically provided by a care-
giver or collected beforehand by the disabled user with a
baseline teleoperation scheme. For example, the disabled
user leverages their standard, pre-defined teleoperation map-
ping to guide the robot through the process of reaching for
objects on the table (e.g., the plate, a glass of water) and
manipulating these objects (e.g., scooping rice, picking up
the glass). We collect these demonstrations and employ them
to train our latent action approach. Formally, we have a
dataset D = {(c0, a0), (c1, a1), . . .} of context-action pairs
that demonstrate high-dimensional robot actions. Notice that
here we introduce the context c ∈ C: this context captures
the information available to the robot. For now we can think
of the context c as the same as the robot’s state (i.e., c = s),
but later we will explore how the robot can also incorporate
its understanding of the human’s goal into this context.

Latent actions Given this dataset, we first learn a latent
action space Z ⊂ R

d , as well as a decoder function φ :
Z × C → A. Here Z is a low-dimensional embedding of
D—we specify the dimensionality of Z to match the num-
ber of degrees-of-freedom of the joystick, so that the user can
directly input latent actions z ∈ Z . Based on the human’s
latent action z as well as the current context c ∈ C, the robot
leverages the decoder φ to reconstruct a high-dimensional
action (see Figure 2):

ah = φ(z, c) (1)

Notice that we use ah here: this is because this robot action
is commanded by the human’s input. Consider pressing the
joystick right to cause the robot arm to cut some tofu. The
joystick input is a low-DoF input u, we map this input to a
latent action z ∈ Z , and then leverage φ to decode z into a
high-DoF commanded action ah that cuts the tofu. We for-
malize properties of Z and models for learning φ in Sect. 6.

Shared autonomy The human provides joystick inputs u—
which we treat as latent actions z—and these latent actions
map to high-dimensional robot actions ah . But how can the
robot assist the human through its own autonomous behav-
ior?More formally, how should the robot choose autonomous
actions ar that help guide the user? Similar to recent work on
shared autonomy (Jain and Argall 2019; Dragan and Srini-
vasa 2013;Newman et al. 2018), we define the robot’s overall
action as the linear combination of ah (the human’s com-
manded action) and ar (the robot’s autonomous guidance):

a = (1 − α) · ah + α · ar (2)

In the above, α ∈ [0, 1] parameterizes the trade-off between
direct human teleoperation (α = 0) and complete robot
autonomy (α = 1). We specifically focus on autonomous
actions that help the user reach and maintain their high-level
goals. Let G be a discrete set of goal positions the human
might want to reach (e.g., their tofu, the rice, or a glass of
water), and let g∗ ∈ G be the human’s true goal (e.g., the
tofu). The robot assists the user towards goals it thinks are
likely:

ar =
∑

g∈G
b(g) · (g − s) (3)

Here ar is a change of state (i.e., a joint velocity) that moves
from s towards the mode of the inferred goal position, and
b denotes the robot’s belief. This belief is a probability dis-
tribution over the candidate goals, where b(g) = 1 indicates
that the robot is completely convinced that g is what the
human wants. We analyze dynamics of combining Eqs. (1–
3) in Sect. 7.

Alignment Recall that the human’s joystick input is u, and
that our approach treats this joystick input as a latent actions
z. A naive robot will simply set z = u. But this misses out on
how different users expect the robot to interpret their com-
mands. For example, let us say the assistive robot is directly
above some tofu. One user might expect pressing right to
cause a stabbing motion, while a second user expects press-
ing right to cut the tofu. To personalize our approach tomatch
individual user expectations, we learn an alignment function:

z = f (u, c) (4)

Unlike Equation (1), this is not an embedding, since both u
and z have d dimensions. But like Equation (1), the alignment
model does depend on the robot’s current context. A user
might expect pressing right to stab the tofu when they are
directly above it—but when they are interacting with a glass
of water, that same user expects pressing right to tilt and pour
the glass. We learn f across different contexts in Sect. 6.
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Fig. 2 Model for learning and leveraging latent actions. (Left) given a
dataset of context-action pairs, we embed the robot’s high-dimensional
behavior (c, a) into a low-dimensional latent space z ∈ Z. The encoder
and decoder are trained to ensure user-friendly properties while min-
imizing the error between the commanded human action ah and the
demonstrated action a. As a result, the decoder φ(z, c) provides an intu-

itive mapping from low-dimensional latent actions to high-dimensional
robot actions. (Right) at run time the human controls the robot via
these low-dimensional latent actions. For now we simplify the align-
ment model so that z = u, meaning that the human’s joystick inputs
directly map to latent actions

Fig. 3 Controlling an assistive robot with learned latent actions. The
robot has been trained on demonstrations of pouring tasks, and learns a
2-DoF latent space.One axis of the latent spacemoves the cup across the
table, and the other latent dimension pours the cup. This latent space sat-
isfies our conditioning property because the decoded action ah depends

on the current context c. This latent space also satisfies controllabil-
ity because the human can leverage the two learned latent dimensions
to complete the demonstrated pouring tasks (e.g., pour water into the
bowl)

4 Learning latent actions

In this section we focus on learning latent actions (see Figs.
2, 3). We define latent actions as a low-dimensional embed-
ding of high-dimensional robot actions, and we learn this
embedding from the dataset D of offline demonstrations.
Overall, we will search for two things: i) a latent action
space Z ⊂ R

d that is of lower dimension than the robot’s
action space A ⊆ R

m , and ii) a decoder function φ that
maps from latent actions to robot actions. In practice, latent
actions provide users a non-linear mapping for robot con-
trol: e.g., pressing right on the joystick causes the robot to
perform a stabbing motion. We emphasize that these latent
actions do not always have semantic meanings—they are
not always “stabbing” or “cutting”—but generally embed
the robot’s high-dimensional motion into a low-dimensional
space.

Recall our motivating example, where the human is trying
to teleoperate their assistive robot using a joystick to reach
andmanipulate food items.When controlling the robot, there
are several properties that the human expects: e.g., smooth
changes in the joystick input should not cause abrupt changes
in robot motion, and when the human holds the joystick
in a constant direction, the robot’s motion should not sud-
denly switch direction. In what follows, we first formalize
the properties necessary for latent actions to be intuitive.
These properties will guide our approach, and provide a prin-
cipled way of assessing the usefulness of latent actions with
humans-in-the-loop. Next, we will explore different models
for learning latent actions that capture our intuitive proper-
ties.
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4.1 Latent action properties

We identified four properties that user-friendly latent actions
should have: conditioning, controllability, consistency, and
scalability.
Conditioning Because φ maps from latent actions to robot
actions, at first glance it may seem intuitive for φ to only
depend on z, i.e., ah = φ(z). But this quickly breaks down
in practice. Imagine that you are controlling the robot arm
to get some tofu: at the start of the task, you press right and
left on the joystick to move the robot towards your target.
But as the robot approaches the tofu, you no longer need to
keep moving towards a goal; instead, you need to use those
same joystick inputs to carefully align the orientation of the
fork, so that you can cut off a piece. Hence, latent actions
must convey different meanings in different contexts. This
is especially true because the latent action space is smaller
than the robot action space, and so there are more actions
to convey than we can capture with z alone. We therefore
introduce c ∈ C, the robot’s current context, and condition
the decoder on c, so that ah = φ(z, c). In the rest of this
section we will treat the robot’s state s as its context, so that
c = s.
Controllability For latent actions to be useful, human oper-
ators must be able to leverage these actions to control the
robot through their desired task. Recall that the dataset D
includes relevant task demonstrations, such as picking up a
glass, reaching for the kitchen shelf, and scooping rice. We
want the user to be able to control the robot through these
same tasks when leveraging latent actions. Let si , s j ∈ D
be two states from the dataset of demonstrations, and let
s1, s2, ..., sK be the sequence of states that the robot vis-
its when starting in state s0 = si and taking latent actions
z1, ..., zK . The robot transitions between the visited states
using its transition function T and the learned decoder φ:
sk = T (sk−1, φ(zk−1, sk−1)). Formally, we say that a latent
action spaceZ is controllable if for everypair of states (si , s j )
there exists a sequence of latent actions {zk}Kk=1, zk ∈ Z such
that s j = sK . In other words, a latent action space is control-
lable if it can move the robot between pairs of start and goal
states from the demonstrated tasks.
Consistency Let us say you are using a one-DoF joystick
to guide the robot arm along a line. When you hold the joy-
stick to the right, you expect the robot to immediately move
right—but more than that, you expect the robot to move right
at every point along the line! For example, the robot should
not move right for a while, then suddenly go left, and switch
back to going right again. To capture this, we define a latent
action space Z as consistent if the same latent action z ∈ Z
has a similar effect on how the robot behaves in nearby states.
We formulate this similarity via a task-dependent metric dM :
e.g., in pouring tasks dM could measure the orientation of the
robot’s end-effector, and in reaching tasks dM could measure

the position of the end-effector. Applying this metric, con-
sistent latent actions should satisfy:

dM (T (s1, φ(z, s1)), T (s2, φ(z, s2))) < ε (5)

when ‖s1−s2‖ < δ for some ε, δ > 0.We emphasize that we
do not need to know dM for our approach; we only introduce
this metric as a way of quantifying similarity.
Scalability Our last property is complementary to consis-
tency. Thinking again about the example of teleoperating a
robot along a line, when you press the joystick slightly to the
right, you expect the robot tomove slowly; andwhenyouhold
the joystick all the way to the right, you anticipate that the
robot will move quickly. Smaller inputs should cause smaller
motions, and larger inputs should cause larger motions. For-
mally, we say that a latent action space Z is scalable if
‖s − s′‖ → ∞ as ‖z‖ → ∞, where s′ = T (s, φ(z, s)).
When put together, our consistency and scalability properties
ensure that the decoder function φ is Lipschitz continuous.

4.2 Models for learning latent actions

Now that we have formally introduced the properties that
a user-friendly latent space should satisfy, we will explore
low-DoF embeddings that capture these properties; specif-
ically, models which learn φ : Z × C → A from offline
demonstrations D. We are interested in models that bal-
ance expressiveness with intuition: the embedding must
reconstruct high-DoF actions while remaining controllable,
consistent, and scalable. We assert that only models which
reason over the robot’s context when decoding the human’s
inputs can accurately and intuitively interpret the latent
action. Our overall model structure is outlined in Fig. 2.
Reconstructing Actions Let us return to our assistive eating
example: when the person applies a low-dimensional joy-
stick input, the robot completes a high-dimensional action.
We use autoencoders to move between these low- and high-
DoF action spaces. Define ψ : C × A → Z as an encoder
that embeds the robot’s behavior into a latent space, and
define φ : Z → A as a decoder that reconstructs a high-
DoF robot action ah from this latent space. Intuitively, the
reconstructed robot action ah shouldmatch the demonstrated
action a. To encourage models to learn latent actions that
accurately reconstruct high-DoF robot behavior, we incor-
porate the reconstruction error ‖a − ah‖2 into the model’s
loss function. Let L denote the loss function our model is
trying to minimize; when we only focus on reconstructing
actions, our loss function is:

L = ‖a − φ(ψ(c, a))‖2 (6)

Both principal component analysis (PCA) and autoencoder
(AE) models minimize this loss function.
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Regularizing Latent Actions When the user slightly tilts
the joystick, the robot should not suddenly cut the entire
block of tofu. To better ensure this consistency and scalabil-
ity, we incorporate a normalization term into the model’s
loss function. Let us define ψ : C × A → R

d × R
d+

as an encoder that outputs the mean μ and covariance σ

over the latent action space. We penalize the divergence
between this latent action space and a normal distribution:
K L(N (μ, σ ) ‖N (0, 1)). When we incorporate this normal-
izer, our loss function becomes:

L = ‖a − φ(z)‖2 + λ · K L
[
N (μ, σ ) ‖ N (0, 1)

]
(7)

Variational autoencoder (VAE) models Kingma andWelling
(2014); Doersch (2016) minimize this loss function by
trading-off between reconstruction error and normalization.
Conditioning on State Importantly, we recognize that the
meaning of the human’s joystick input often depends onwhat
part of the task the robot is performing. When the robot is
above a block of tofu, pressing down on the joystick indicates
that the robot should stab the food; but—when the robot is
far away from the tofu—it does not make sense for the robot
to stab! So that robots can associate meanings with latent
actions, we condition the interpretation of the latent action
on the robot’s current context. Define φ : Z × C → A as
a decoder that now makes decisions based on both z and c.
Leveraging this conditioned decoder, our final loss function
is:

L = ‖a − φ(z, c)‖2 + λ · K L
[
N (μ, σ ) ‖ N (0, 1)

]
(8)

We expect that conditional autoencoders (cAE) and con-
ditional variational autoencoders (cVAE) which use φ will
learnmore expressive and controllable actions than their non-
context conditioned counterparts. Note that cVAEsminimize
Eq. (8), while cAEs do not include the normalization term
(i.e., λ = 0).
Relation to PropertiesModels trained tominimize the listed
loss functions are encouraged to satisfy our user-friendly
properties. For example, in Eq. (8) the decoder is conditioned
on the current context, while minimizing the reconstruction
loss ‖a − φ(z, c)‖2 ensures that the robot can reproduce the
demonstrations, and is therefore controllable. Enforcing con-
sistency and scalability are more challenging—particularly
when we do not know the similarity metric dM—but includ-
ing the normalization term prevents the latent space from
assigning arbitrary and irregular values to z. To better under-
stand how these models enforce our desired properties, we
conduct a set of controlled simulations in Sect. 8.1.

5 Combining latent actions with shared
autonomy

The latent actions learned in Sect. 4 provide an expressive
mapping between low-dimensional user inputs and high-
dimensional robot actions. But controlling an assistive robot
with latent actions alone still presents a challenge: any impre-
cision or noise in either the user’s inputs or latent space is
reflected in the decoded actions. Recall our eating exam-
ple: at the start of the task, the human uses latent actions
to guide the robot towards their high-level goal (i.e., reach-
ing the tofu). Once the robot is close to the tofu, however, the
humanno longer needs to control reachingmotions—instead,
the human leverages latent actions to precisely manipulate
the tofu, performing low-level cutting and stabbing tasks.
Here the human’s inputs should not unintentionally cause
the robot arm to drift away from the tofu or suddenly jerk
into the table. Instead, the robot shouldmaintain the human’s
high-level goal. In this section we incorporate shared auton-
omy alongside latent actions: this approach assists the human
towards their high-level goals, and thenmaintains these goals
as the human focuses on low-level manipulation. We visual-
ize shared autonomy with learned latent actions in Fig. 4.

5.1 Latent actions with shared autonomy

We first explain how to combine latent actions with shared
autonomy. Remember that the human’s joystick input is u
and the latent action is z. For now we assume some pre-
defined mapping from u to z (i.e., z = u) so that the human’s
joystick inputs are treated as latent actions. In the last section
we learned a decoder ah = φ(z, c), where the output of this
decoder is a high-dimensional robot action commanded by
the human. Here we combine this commanded action with
ar , an autonomous assistive action that helps the user reach
and maintain their high-level goals.
Belief over Goals Similar to Dragan and Srinivasa (2013);
Javdani et al. (2018); Gopinath et al. (2016), we assume
access to a discrete set of high-level goals G that the human
may want to reach. Within our eating scenario these goals
are food items (e.g., the tofu, rice, a plate, marshmallows).
Although the robot knowswhich goals are possible, the robot
does not know the human’s current goal g∗ ∈ G. We let
b = P(g | s0:t , u0:t ) denote the robots belief over this space
of candidate goals, where b(g) = 1 indicates that the robot is
convinced that g is the humans desired goal. Here s0:t is the
history of states and u0:t is the history of human inputs: we
use Bayesian inference to update the robot’s belief b given
the human’s past decisions:

bt+1(g) ∝ P(ut | st , g) · bt (g) (9)
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Fig. 4 Shared autonomywith learned latent actions. (Left) as the human
teleoperates the robot towards their desired goal, the robot’s belief in
that goal increases, and the robot selects assistive actions ar to help the
human autonomously reach and maintain their high-level goal. (Right)
the meaning of the latent actions changes as a function of the robot’s

belief. At the start of the task—when the robot is not sure about any
goal—the latent actions z produce high-level reaching motions (shown
in blue). As the robot becomes confident in the human’s goal the mean-
ing of the latent actions becomes more refined, and z increasingly
controls fine-grained manipulation (shown in green)

This Bayesian inference approach for updating b is explored
by prior work on shared autonomy Jain and Argall (2019).

Importantly, the meaning of the human’s joystick inputs
changes as a function of the robot’s belief. Imagine that you
are using a 1-DoF joystick to get the tofu in our eating exam-
ple. At the start of the task—when the robot is unsure of
your goal—you press left and right on the joystick to move
towards your high-level goal.Once you’ve reached the tofu—
and the robot is confident in your goal—you need to use those
same joystick inputs to carefully align the orientation of the
fork. In order to learn latent action spaces that can contin-
uously alternate along a spectrum of high-level goals and
fine-grained preferences, we now condition φ on the robot’s
current state as well as its belief. Hence, instead of c = s,
we now have c = (s, b). Conditioning on belief enables the
meaning of latent actions to change based on the robot’s con-
fidence. As a result of this proposed structure, latent actions
purely indicate the desired goal when the robot is unsure;
and once the robot is confident about the human’s goal, latent
actions gradually change to convey the precise manipulation.
We note that b is available when collecting demonstrations
D, since the robot can compute its belief using the Bayesian
update above based on the demonstrated trajectory. Take a
demonstration that moves the robot to the tofu: initially the
robot has a uniform belief over goals, but as the demon-
stration moves towards the tofu, the robot applies Eq. (9) to
increase its belief b over the tofu goal.
Shared Autonomy Recall that the robot applies assistance
via action ar in Eq. (2). In order to assist the human, the
robot needs to understand the human’s intent—i.e., which
goal they want to reach. The robot’s understanding of the

human’s intended goal is captured by belief b, and we lever-
age this belief to select an assistive action ar . As shown in
Eq. (3), the robot selects ar to guide the robot towards each
discrete goal g ∈ G in proportion to the robot’s confidence
in that goal2. Combining these equations with our learned
latent actions, we find the robot’s overall action a:

a = (1 − α) · φ(z, c) + α ·
∑

g∈G
b(g) · (g − s) (10)

Recall that α ∈ [0, 1] arbitrates between human control
(α = 0) and assistive guidance (α = 1). In practice, if the
robot has a uniform prior over which morsel of food the
human wants to eat, ar guides the robot to the center of these
morsels. And—when the human indicates a desiredmorsel—
ar moves the robot towards that target before maintaining the
target position.

5.2 Reaching and changing goals

In Eq. (10) we incorporated shared autonomy with latent
actions to tackle assistive eating tasks that require high-
level reaching and precise manipulation. Both latent actions
and shared autonomy have an independent role within this
method: but how can we be sure that the combination of
these tools will remain effective? Returning to our eating
example—if the human inputs latent actions, will shared
autonomy correctly guide the robot to the desired morsel
of food? And what if the human has multiple goals in mind

2 Our approach is not tied to this particular instantiation of shared auton-
omy. Other instances of shared autonomy can similarly be used.
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(e.g., getting a chip and then dipping it in salsa)—can the
human leverage latent actions to change goals even when
shared autonomy is confident in the original goal?
Converging to the Desired Goal We first explore how our
approach ensures that the human reaches their desired goal.
Consider the Lyapunov function:

V (t) = 1

2
‖e(t)‖2, e(t) = g∗ − s(t) (11)

where e denotes the error between the robot’s current state s
and the human’s goal g∗.Wewant the robot to choose actions
that minimize Eq. (11) across a spectrum of user skill levels
and teleoperation strategies. Let us focus on the common
setting inwhich s is the robot’s joint position and a is the joint
velocity, so that ṡ(t) = a(t). Taking the derivative of Eq. (11)
and substituting in this transition function, we reach3:

V̇ (t) = −1

2
e�[

φ(z, c) +
∑

g∈G
b(g) · (g − s)

]
(12)

We want Eq. (12) to be negative, so that V (and thus the error
e) decrease over time. A sufficient condition for V̇ < 0 is:

b(g∗) · ‖e‖ > ‖φ(z, c)‖ +
∑

g∈G′
b(g) · ‖g − s‖ (13)

where G′ is the set of all goals except g∗. As a final step,
we bound the magnitude of the decoded action, such that
‖φ(·)‖ < σh , and we define σr as the distance between s
and the furthest goal: σr = maxg∈G′ ‖g − s‖. Now we have
V̇ < 0 if:

b(g∗) · ‖e‖ > σh + (
1 − b(g∗)

) · σr (14)

We define δ := σh + (
1−b(g∗)

) ·σr . We therefore conclude
that our approach in Eq. (10) yields uniformly ultimately
bounded stability about the human’s goal, where δ affects
the radius of this bound Spong et al. (2006). As the robot’s
confidence in g∗ increases, δ → σh , and the robot’s error e
decreases so long as ‖e(t)‖ > σh . Intuitively, this guarantees
that the robot will move to some ball around the human’s
goal g∗ (even if we treat the human input as a disturbance),
and the radius of that ball decreases as the robot becomes
more confident.
Changing Goals Our analysis so far suggests that the robot
becomes constrained to a region about the most likely goal.
This works well when the human correctly conveys their
intentions to the robot—but what if the human makes a mis-
take, or changes their mind? How do we ensure that the robot

3 For notational simplicity we choose α = 0.5, so that both human and
robot inputs are equally weighted. Our results generalize to other α.

is not trapped at an undesired goal? Re-examining Eq. (14),
it is key that—in every context c—the human can convey suf-
ficiently large actions ‖φ(z, c)‖ towards their preferred goal,
ensuring that σh does not decrease to zero. Put another way,
the humanmust be able to increase the radius of the bounding
ball, reducing the constraint imposed by shared autonomy.

To encourage the robot to learn latent actions that increase
this radius, we introduce an additional term into our model’s
loss function L. We reward the robot for learning latent
actions that have high entropy with respect to the goals; i.e.,
in a given context c there exist latent actions z that cause the
robot to move towards each of the goals g ∈ G. Define pc(g)
as proportional to the total score η accumulated for goal g:

pc(g) ∝
∑

z∈Z
η(g, c, z) (15)

where the score function η indicates how well action z taken
from context c conveys the intent of moving to goal g,
and the distribution pc over G captures the proportion of
latent actions z at context c that move the robot toward each
goal. Intuitively, pc captures the comparative ease of moving
toward each goal: when pc(g) → 1, the human can easily
move towards goal g since all latent actions at c inducemove-
ment towards goal g and consequently,no latent actions guide
the robot towards any other goals. We seek to avoid learning
latent actions where pc(g) → 1, because in these scenar-
ios the teleoperator cannot correct their mistakes or move
towards a different goal. Recall from Sect. 4 that the model
should minimize the reconstruction error while regularizing
the latent space. We now argue that the model should addi-
tionally maximize the Shannon entropy of p, so that the loss
function becomes:

L = ‖a − φ(z, c)‖2 + λ1 · K L
[
N (μ, σ ) ‖ N (0, 1)

]

+ λ2 ·
∑

g∈G
p(g) log p(g) (16)

Here the hyperparameter λ2 > 0 determines how much
importance is assigned tomaximizing the entropy over goals.
When combining shared autonomy with latent actions, we
employ this loss function to train the decoder φ from dataset
D.

6 Aligning latent actions with user
preferences

In Sect. 6 we learned latent actions, and in Sect. 7 we com-
bined these latent actions with shared autonomy to handle
precise manipulation tasks. Throughout these sections we
treated the human’s joystick inputs as the latent actions (i.e.,
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z = u) since both the joystick inputs and the latent actions
are the same dimensionality. However, different users have
different expectations for how the robot will interpret their
inputs! Imagine that the shared autonomy has assisted us to
the tofu, and now we want to control the robot through a
cutting motion. One user expects u = down to cause the
robot to cut, but another person thinks u = down should
cause a stabbing motion. Accordingly, in this section we
learn a personalized alignment z = f (u, c) that converts
the human’s joystick inputs u to their preferred latent action
z (see Fig. 5). Our goal is to make the robotic system easier
to control: instead of forcing the human to adapt to φ, we
want the robot to adapt to the user’s preferences (without
fundamentally changing the latent action space or decoder
φ).

To learn the human’s preference we will query the user,
showing them example robot motions and then asking them
for the corresponding joystick input. But training our align-
mentmodel f may require a large number ofmotion-joystick
pairs, particularly in complex taskswhere the usermust lever-
age the same joystick input to accomplish several things.
It is impractical to ask the human to provide all of these
labels. Accordingly, to address the challenge of insufficient
training data, we employ a semi-supervised learning method
(Chapelle et al. 2006). In this section we first outline our
approach, and then formulate a set of intuitive priors that
facilitate semi-supervised learning from limited human feed-
back.

6.1 Alignment model

Recall from Eq. (4) that we seek to learn a function approxi-
mator f : U × C → Z . Importantly, this alignment model is
conditioned on the current context c ∈ C. Consider the person
in our motivating example, who is using a 2-axis joystick to
control a high-DoF assistive robot arm to reach and cut tofu.
The user’s preferred way to control the robot is unclear: what
does the user mean if they push the joystick right? When the
robot is left of the tofu, the user might intend to move the
robot towards the tofu—but when the robot is directly above
the tofu, pressing right now indicates that the robot should
rotate and start a cutting motion! This mapping from the user
input to intended action is not only person dependent, but
it is also context dependent. In practice, this context depen-
dency prevents us from learning a single transformation to
uniformly apply across the robot’s workspace; instead, we
need an intelligent strategy for understanding the human’s
preferences in different contexts.

Model To capture this interdependence we employ a general
Multi-Layer Perceptron (MLP). TheMLP f takes in the cur-
rent user input ut and context ct , and outputs a latent action
zt . Combining f with our latent action model, we now have

a two-step mapping between the human’s low-dimensional
input and the human’s high-dimensional command:

ath = φ(zt , ct ) = φ( f (ut , ct ), ct ) (17)

When using our alignment model online, we get the human’s
commanded action using Eq. (17), and then combine this
with shared autonomy to provide the overall robot action
a. But offline—when we are learning f—we set a = ah ,
so that the robot directly executes the human’s commanded
action. This disentangles the effects of shared autonomy and
latent actions, and lets us focus on learning the preferred
mapping from joystick inputs u to robot actions a. Given that
the robot takes action at at the current timestep t , the state
st+1 at the next timestep follows our transitionmodel: st+1 =
T (st , at ). Letting a = ah , and plugging in Equation (17), we
get the following relationship between joystick inputs and
robot motion:

st+1 = T (st , φ( f (ut , ct ), ct )) = T (st , ut ) (18)

Our objective is to learn f so that st+1 = T (st , ut ) matches
the human’s expectations. The overall training process is
visualized in Fig. 6.

Loss function We train f to minimize the loss function
Lalign. We emphasize that this loss function (used for train-
ing the alignment model f ) is different than the loss function
described in Sects. 6 and 7 (which was used for training the

Fig. 5 Overview of alignment model. The human has in mind a pre-
ferred mapping between their joystick inputs u and their commanded
actions ah . We break this into a two step process: aligning the joystick
inputs with latent actions z, and then decoding z into a high-DoF action
ah . In previous sections we focused on the decoder φ; now we learn a
personalized alignment model f . The robot learns f offline in a semi-
supervised manner by combining labeled queries with intuitive priors
that capture the human’s underlying expectations of how the control
mapping should behave
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Fig. 6 Training our alignment model z = f (u, c). Here the context c is
equal to the robot’s state s. (Left) the example task is tomove the robot’s
end-effector in a 2D plane, and the current user prefers for the robot’s
end-effector motion to align with their joystick axes, so that u1 moves
the robot in the x-axis and u2 moves the robot in the y-axis. (Right) we
take snapshots at three different points during training, and plot how

the robot actually moves when the human presses up, down, left, and
right. Note that this alignment is context dependent. As training pro-
gresses, the robot learns the alignment f , and the robot’s motions are
gradually and consistently pushed tomatch with the human’s individual
preferences

decoder φ). Importantly, Lalign must capture the individual
user’s expected joystick mapping—and to understand what
the user expects, we start by asking a set of questions. In each
separate query, the robot starts in a state st andmoves to some
state s∗. We then ask the user to label this motion with their
preferred joystick input u, resulting in the labeled data tuple
(st , ut , s∗). For instance, the robot arm starts above the tofu,
and then stabs down to break off a piece: you might label this
motion by holding down on the joystick (i.e., u = down).

Given a start state st and input ut from the user’s labeled
data, the robot learns f to minimize the distance between
T (st , ut ) and s∗. Letting N denote the number of queries
that the human has answered, and letting d be the distance
metric, our alignment function should minimize:

Lsup = 1

N

N∑

i=1

d(s∗,i , T (si , ui )) (19)

If we could ask the human as many questions as necessary,
then Lalign = Lsup, and our alignment function only needs
to minimize the supervised loss. But collecting this large
dataset is impractical. Accordingly, to minimize the number
of questions the humanmust answer, we introduce additional
loss terms in Lalign that capture underlying priors in human
expectations.

6.2 Reducing human data with intuitive priors

Our insight here is that humans share some underlying
expectations of how the control mapping should behave
(Jonschkowski and Brock 2014). We will formulate these
common expectations—i.e., priors—as loss terms that f
minimizes within semi-supervised learning.

When introducing these priors, it helps to refine our
notation. Recall that s is the system state: here we use s

to specifically refer to the robot’s joint position, and we
denote the forward kinematics of the robot arm as x =
Ψ (s). End-effector pose x is particularly important, since
humans often focus on the robot’s gripper during eating
tasks. When the human applies joystick input u at state s,
the corresponding change in end-effector pose x is: Δx =
Ψ (T (u, s))−Ψ (s). With these definitions in mind, we argue
an intuitive controller should satisfy the properties listed
below. We emphasize that—although these properties share
some common themes with the latent action properties from
Sect. 6—the purpose of these properties is different. When
formalizing the properties for latent actions we focused on
enabling the human to complete tasks using these latent
actions. By contrast, here we focus on intuitive and task-
agnostic expectations for controller mappings.

Proportionality The amount of change in the position and
orientation of the robot’s end-effector should be proportional
to the scale of the human’s input. In other words, for scalar
α, we expect:

α · |Ψ (T (u, s)) − Ψ (s)| = |Ψ (T (α · u, s)) − Ψ (s)|

We accordingly define the proportionality loss Lprop as:

Lprop = ∥∥Ψ (T (α · u, s)) − Ψ (s) − α · Δx
∥∥2 (20)

where α is sampled from our range of joystick inputs.

Reversability If a joystick input u makes the robot move for-
ward from s1 to s2, then the opposite input (−u) shouldmove
the robot back from s2 to its original end-effector position.
In other words, we expect:

Ψ (s1) = Ψ
(
T

( − u, T (u, s1)
))
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This property ensures users can recover from their mistakes.
We define the reversability loss Lreverse as:

Lreverse = ∥∥Ψ (s) − Ψ
(
T (−u, T (u, s))

)∥∥2 (21)

Here Ψ (s) is the current position and orientation of the
robot’s end-effector, and the right term is the pose of the
end-effector after executing human input u followed by the
opposite input (−u).

Consistency The same input taken at nearby states should
lead to similar changes in robot pose. We previously dis-
cussed a similar property in Sect. 6 when formalizing latent
actions. Here we specifically focus on the input-output rela-
tionship between joystick input u and end-effector position
x = Ψ (s):

Δx1 = ‖Ψ (T (u, s1)) − Ψ (s1)‖2
Δx2 = ‖Ψ (T (u, s2)) − Ψ (s2)‖2

We expect ‖Δx1 − Δx2‖ → 0 as ‖s1 − s2‖ → 0. Consis-
tency prevents sudden changes in the alignment mapping.
We define the consistency loss Lcon as:

Lcon = ‖Δx(s1) − Δx(s2)‖ · exp { − γ ‖s1 − s2‖
}

(22)

When the hyperparameter γ → 0, the robot only enforces
consistency at local states, and when γ → ∞, the robot tries
to enforce consistency at all states.

Semi-supervised learning When learning our alignment
model f , we first collect a batch of robot motions (s, s∗).
The human labels N of these (start-state, end-state) pairs
with their preferred joystick input u, so that we have labeled
data (s, u, s∗). We then train the alignment model to min-
imize the supervised loss for the labeled data, as well as
the semi-supervised loss for the unlabeled data. Hence, the
cumulative loss function is:

Lalign = Lsup + λ1Lprop + λ2Lreverse + λ3Lcon (23)

Importantly, incorporating these different loss terms—which
are inspired by human priors over controllable spaces (Jon-
schkowski and Brock 2014)—enables the robot to generalize
the labeled human data (which it performs supervised learn-
ing on) to unlabeled states (which it can now perform
semi-supervised learning on).

7 Algorithm

Sections 4, 5, and 6 developed parts of our approach. Herewe
put these pieces together to present our general algorithm for
controlling assistive eating robots with learned latent actions.

Algorithm 1 Latent Control of Assistive Robots
Offline:

1: Select a discrete set of goals G
2: Collect a datasetD = {(c0, a0), (c1, a1), . . .} from kines-

thetic demonstrations
3: Train latent action model φ to minimize L on D
4: Query the user to label example motions {(s, s∗)} with

their preferred joystick direction u
5: Train alignment model f to minimize loss Lalign using

labeled and unlabeled motions {(s, s∗)}
Online, at each timestep t:

6: zt ← f (ut , ct )  Align latent action with user input
7: ath ← φ(zt , ct )  Decode zt to high-DoF action
8: atr ← ∑

g∈G bt (g) · (g − st )  get robot assistance
9: at ← (1 − α) · ath + α · atr  blend both ah and ar
10: bt+1 ∝ P(ut | ct , g)P(g)  update belief over goals
11: st+1 ∼ T (st , at )  take action

Our approach is summarized in Algorithm 1 and explained
below.

Given an assistive eating scenario, we start by identify-
ing the food items and other potential goals that the human
maywant to reach (Line 1).We then collect high-dimensional
kinesthetic demonstrations, where a caretaker backdrives the
robot through task-related motions that interact with these
potential goals (Line 2). Leveraging the properties and mod-
els from Sect. 6, we then train our latent action space and
learn decoder φ (Line 3). Next, we show the user example
robot motions—e.g., by sampling values of z—and ask the
user to label these motions with their preferred joystick input
(Line 4). Applying the priors developed in Sect. 6, we gen-
eralize from a small number of human labels to learn the
alignment f between joystick inputs and latent actions (Line
5).

Once we have learned φ and f , we are ready for the
human-in-the-loop. At each timestep the human presses their
low-DoF joystick to provide input u.We find the latent action
z that is aligned with the human’s input (Line 6), and then
decode that low-DoF latent action to get a high-DoF robot
action ah (Line 7). In order to help the human reach and
maintain their high-level goals, we incorporate the shared
autonomy approach from Sect. 7. Shared autonomy selects
an assistive action ar based on the current belief over the
human’s goal (Line 8), and the robot blends ar and ah to take
overall action a (Line 9). Finally, the robot applies Bayesian
inference to update its understanding of the human’s desired
goal based on their joystick input (Line 10). We repeat this
process until the human has finished eating.

How Practical is Our Approach? One concern is the
amount of data required to learn latent actions. In all of the
studies reported below—where the assistive robot makes a
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mock-up apple pie, assembles dessert, and cuts tofu—the
robot was trained with a maximum of twenty minutes of
kinesthetic demonstrations, and all training was done on-
board the robot computer. We recognize that this short
training time is likely due to the structure of the cVAEmodel
used in these tasks and may not hold true in general; how-
ever, this easy implementation holds promise for future use.
In the following sections, we demonstrate the objective and
subjective benefits of Algorithm 1, as well as highlighting
some of its shortcomings.

Where Do theGoals Come From?Another question is how
the robot detects the discrete set of goals G that the human
may want to reach. Here we turn to perception, where recent
assistive eating work shows how robot arms can estimate the
pose of various objects of interest (Feng et al. 2019; Park
et al. 2020). Determining which objects are potential goals is
simplified in eating settings, since the target items are largely
consistent (e.g., food items, cups, plates, and bowls). The
location of these goals is included in the state s and the robot
uses this information when decoding the human’s joystick
inputs. Although not covered in this paper, it is also possible
to condition latent actions directly on the robot’s perception,
so that s becomes the visual inputs (Karamcheti et al. 2021).

8 Simulations

We performed three separate simulations, one for each key
aspect of our proposed method. First we leverage different
autoencoder models to learn latent actions, and determine
which types of models best capture the user-friendly prop-
erties formalized in Sect. 6. Our second simulation then
compares learned latent actions alone to latent actions with
shared autonomy (Sect. 7), and focuses on how shared auton-
omy helps users reach, maintain, and change their high-level
goals. Finally, we learn the alignment model from Sect. 6
between joystick inputs and latent actions. We compare ver-
sions of our semi-supervised approach with intuitive priors,
and see how these priors improve the alignmentwhenweonly
have access to limited and imperfect human feedback. All
three simulations were performed in controlled conditions
with simulated humans and simulated or real robot arms.
These simulated humans chose joystick inputs according to
mathematical models of human decision making, as detailed
below.

8.1 Do learned latent actions capture our
user-friendly properties?

Here we explore how well our proposed models for learning
latent actions capture the user-friendly properties formalized

in Sect. 6. These properties include controllability, consis-
tency, and scalability.

Setup We simulate one-arm and two-arm planar robots,
where each arm has n = 5 degrees-of-freedom. The state
s ∈ R

n is the robot’s joint position, and the action a ∈ R
n

is the robot’s joint velocity. Hence, the robot transitions
according to: st+1 = st + at · dt , where dt is the step size.
Demonstrations consist of trajectories of state-action pairs:
in each of different simulated tasks, the robot trains with a
total of 10,000 state-action pairs.

Tasks The simulated robots perform four different tasks.

1. Sine: one 5-DoF robot arm moves its end-effector along
a sine wave with a 1-DoF latent action

2. Rotate: two 5-DoF robot arms are holding a box, and
rotate that box about a fixed point using a 1-DoF latent
action

3. Circle: one 5-DoF robot moves back and forth along cir-
cles of different radii with a 2-DoF latent action

4. Reach: one 5-DoF robot arm reaches from a start location
to a goal region with a 1-DoF latent action

Model detailsWe test latent action models which minimize
the different loss function described in Sect. 6. Specifically,
we test:

– Principal Component Analysis (PCA)
– Autoencoders (AE)
– Variational autoencoders (AE)
– Conditioned autoencoders (cAE)
– Conditioned variational autoencoders (cVAE)

The encoders and decoders contain between two and four
linear layers (depending on the task). The loss function is
optimized using Adam with a learning rate of 1e−2. Within
the VAE and cVAE, we set the normalization weight < 1 to
avoid posterior collapse.

Dependent measures To determine accuracy, we measure
the mean-squared error between the intended actions a and
reconstructed actions â on a test set of state-action pairs (s, a)

drawn from the same distribution as the training set.
To test model controllability, we select pairs of start and

goal states (si , s j ) from the test set, and solve for the latent
actions z that minimize the error between the robot’s current
state and s j . We then report this minimum state error.

We jointly measure consistency and scalability: to do this,
we select 25 states along the task, and apply a fixed grid of
latent actions zi from [−1,+1] at each state. For every (s, z)
pair we record the distance and direction that the end-effector
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A B

C D

Fig. 7 Results for the Sine task. (A) Mean-squared error between
intended and reconstructed actions normalized by PCA test loss. (B)
Effect of the latent action z at three states along the sine wave for the
cVAE model. Darker colors correspond to z > 0 and lighter colors
signify z < 0. Above we plot the distance that the end effector moves
along the sine wave as a function of z at each state. (C) Rollout of robot
behavior when applying a constant latent input z = +1, where both
VAE and cVAE start at the same state. (D) End-effector trajectories for
multiple rollouts of VAE and cVAE

travels (e.g., the direction is +1 if the end-effector moves
right). We then find the best-fit line relating z to distance
times direction, and report its R2 error.

Our results are averaged across 10 trained models of the
same type, and are listed in the form mean ± SD.

Hypotheses We have the following two hypotheses:

H1. Only latent action models conditioned on the con-
text will accurately reconstruct actions from low-DoF
inputs.

H2. Conditioned autoencoders and conditioned variational
autoencoders will learn a latent space that is control-
lable, consistent, and scalable.

Sine task This task and our results are shown in Fig. 7. We
find that conditioning the decoder on the current context, i.e.,
φ(z, c), greatly improves accuracy when compared to the
PCAbaseline, i.e.,φ(z). HereAE andVAE incur 98.0±0.6%
and 100±0.8% of the PCA loss, while cAE and cVAE obtain
1.37± 1.2% and 3.74± 0.4% of the PCA loss, respectively.

We likewise observe that cAE and cVAE aremore control-
lable than their alternatives. When using the learned latent
actions to move between 1000 randomly selected start and
end states along the sine wave, cAE and cVAE have an aver-
age end-effector error of 0.05±0.01 and 0.10±0.01.Models

A B

Fig. 8 Results for the Rotate task. (A) The robot uses two arms to hold
a light blue box, and learns to rotate this box around the fixed point
shown in teal. Each state corresponds to a different fixed point, and
positive z causes counterclockwise rotation. On right we show how z
affects the rotation of the box at each state. (B) rollout of the robot’s
trajectory when the user applies z = +1 for VAE and cVAE models,
where both models start in the same state. Unlike the VAE, the cVAE
model coordinates its two arms

without state conditioning—PCA,AE, andVAE—have aver-
age errors 0.90, 0.94 ± 0.01, and 0.95 ± 0.01.

When evaluating consistency and scalability, every tested
model has a roughly linear relationship between latent actions
and robot behavior: PCA has the highest R2 = 0.99, while
cAE and cVAE have the lowest R2 = 0.94± 0.04 and R2 =
0.95 ± 0.01.

Rotate task We summarize the results for this two-arm task
in Fig. 8. Like in the Sine task, the models conditioned on the
current context are more accurate than their non-conditioned
counterparts: AE andVAEhave 28.7±4.8%and 38.0±5.8%
of the PCA baseline loss, while cAE and cVAE reduce this
to 0.65±0.05% and 0.84±0.07%. The context conditioned
models are also more controllable: when using the learned z
to rotate the box, AE andVAE have 56.8±9% and 71.5±8%
asmuch end-effector error as the PCAbaseline, whereas cAE
and cVAE achieve 5.4 ± 0.1% and 5.9 ± 0.1% error.

When testing for consistency and scalability, we measure
the relationship between the latent action z and the change
in orientation for the end-effectors of both arms (i.e., ignor-
ing their location). Each model exhibits a linear relationship
between z and orientation: R2 = 0.995 ± 0.004 for cVAE
and R2 = 0.996±0.002 for cVAE. In other words, there is an
approximately linear mapping between z and the orientation
of the box that the two arms are holding.

Circle task Next, consider the one-arm task in Fig. 9 where
the robot has a 2-DoF latent action space. We here focus
on the learned latent dimensions z = [z1, z2], and examine
how these latent dimensions correspond to the underlying
task. Recall that the training data consists of state-action pairs
which translate the robot’s end-effector along (and between)
circles of different radii. Ideally, the learned latent dimen-
sions correspond to these axes, e.g., z1 controls tangential
motion while z2 controls orthogonal motion. Interestingly,
we found that this intuitive mapping is only captured by
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A B

Fig. 9 Results for the Circle task. (A) mean-squared error between
desired and reconstructed actions normalized by the PCA test loss. (B)
2-DoF latent action space z = [z1, z2] for VAE and cVAE models.
The current end-effector position is shown in black, and the colored
grippers depict how changing z1 or z2 affects the robot’s state. Under
the cVAEmodel, these latent dimensions move the end-effector tangent
or orthogonal to the circle

A B

Fig. 10 Results for the Reach task. In both plots, we show the end-
effector trajectory when applying constant inputs z ∈ [−1,+1]. The
lightest color corresponds to z = −1 and the darkest color is z = +1.
The goal region is highlighted, and the initial end-effector position is
black. (a) trajectories with the VAE model. (b) trajectories with the
cVAE model. The latent action z controls which part of the goal region
the trajectory moves towards

the state conditioned models. The average angle between
the directions that the end-effector moves for z1 and z2 is
27 ± 20◦ and 34 ± 15◦ for AE and VAE models, but this
angle increases to 72 ± 9◦ and 74 ± 12◦ for the cAE and
cVAE (ideally 90◦). The state conditioned models better dis-
entangle their low-dimensional embeddings, supporting our
hypotheses and demonstrating how these models produce
user-friendly latent spaces.

Reach task In the final task, a one-arm robot trains on tra-
jectories that move towards a goal region (see Fig. 10). The
robot learns a 1-DoF latent space, where z controls the direc-
tion that the trajectory moves (i.e., to the left or right of the
goal region). We focus on controllability: can robots utilize
latent actions to reach their desired goal? In order to test
controllability, we sample 100 goals randomly from the goal
region, and compare robots that attempt to reach these goals
with either VAE or cVAE latent spaces. The cVAE robot
more accurately reaches its goal: the L2 distance between the
goal and the robot’s final end-effector position is 0.57±0.38
under VAE and 0.48 ± 0.5 with cVAE. Importantly, using
conditioning also improves the movement quality. The aver-

age start-to-goal trajectory is 5.1± 2.8 units when using the
VAE, and this length drops to 3.1±0.5with the cVAEmodel.

Summary The results of our Sine, Rotate, Circle, and Reach
tasks support hypotheses H1 and H2. Latent action models
that are conditioned on the context more accurately recon-
struct high-DoF actions from low-DoF embeddings (H1).
Moreover, conditioned autoencoders and conditioned varia-
tional autoencoders learn latent action spaces which capture
our desired properties: controllability, consistency, and scal-
ability (H2).

8.2 Do latent actions with shared autonomy help
users reach and change goals?

Now that we have tested our method for learning latent
actions, the next step is to combine these latent actions
with shared autonomy (see Sect. 7). Here we explore how
this approach works with a spectrum of different simulated
users. We simulate human teleoperators with various lev-
els of expertise and adaptability, and measure whether these
users can interact with our algorithm to reach and change
high-level goals.

Incorporating shared autonomy In the previous simula-
tions we used latent actions by themselves to control the
robot. Now we compare this approach with and without
shared autonomy:

– Latent actions with no assistance (LA)
– Latent actions with shared autonomy (LA+SA)
– Latent actions trained to maximize entropy with shared
autonomy (LA+SA+Entropy)

For both LA and LA+SA we learn the latent space with a
conditioned autoencoder (i.e., cAE in the previous section).
However, here the context includes both state and belief. In
other words, c = (s, b). We also test LA+SA+Entropy,
where the model uses Equation (16) to reward entropy in the
learned latent space.

Environments We implement these models on both a sim-
ulated and a real robot. The simulated robot is a 5-DoF
planar arm, and the real robot is a 7-DoF Franka Emika.
For both robots, the state s captures the current joint posi-
tion, and the action a is a change in joint position, so that:
st+1 = st + at · dt .

Task We consider a manipulation task where there are two
coffee cups in front of a robot arm (see Fig. 12). The human
may want to reach and grasp either cup (i.e., these cups are
the potential goals). We embed the robot’s high-DoF actions
into a 1-DoF input space: the simulated users had to convey
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both their goal and preference only by pressing left and right
on the joystick.

Simulated humans The users attempting to complete this
task are approximately optimal, and make decisions that
guide the robot accordingly to their goal g∗. Remember
that x is the position of the robot’s end-effector and Ψ is
the forward kinematics. The humans have reward function
R = −‖g∗ − x‖2, and choose latent actions z to move the
robot towards g∗:

p(z) ∝ exp
{

− β(t) · ‖g∗ − Ψ (s + φ(z, c) · dt)‖2
}

(24)

Here β ≥ 0 is a temperature constant that affects the user’s
rationality. When β → 0, the human selects increasingly
random z, and when β → ∞, the human always chooses the
z that moves towards g∗. We simulate different types of users
by varying β(t).

Users with fixed expertise We first simulate humans that
have fixed levels of expertise. Here expertise is captured
by β from Eq. (24): users with high β are proficient, and
rarelymakemistakes with noisy inputs.We anticipate that all
algorithms will perform similarly when humans are always
perfect or completely random—but we are particularly inter-
ested in the spectrum of users between these extremes, who
frequently mis-control the robot.

Our results relatingβ to performance are shown in Fig. 11.
In accordance with our convergence result from Sect. 7,
we find that introducing shared autonomy helps humans
reach their desired grasp more quickly, and with less final
state error. The performance difference between LA and
LA+SA decreases as the human’s expertise increases—
looking specifically at the real robot simulations, LA takes
45%more time to complete the task than LA+SA at β = 75,
but only 30% more time when β = 1000. We conclude that
shared autonomy improves performance across all levels of
expertise, both when latent actions are trained with and with-
out entropy.

Users that change their mind One downside of shared
autonomy is over-assistance: the robot may become con-
strained at likely (but incorrect) goals. To examine this
adverse scenario we simulate humans that changewhich cof-
fee cup theywant to grasp after N timesteps. These simulated
users intentionallymove towards thewrong cupwhile t ≤ N ,
and then try to reach the correct cup for the rest of the task.We
model humans as near-optimal immediately after changing
their mind about the goal.

We visualize our results in Fig. 12. When the latent action
space is trained only to minimize reconstruction loss (LA
+ SA), users cannot escape the shared autonomy constraint
around the wrong goal as N increases. Intuitively, this occurs

Fig. 11 Simulated humans for different levels of rationality. As
β → ∞, the human’s choices approach optimal inputs. Final State
Error (in all plots) is normalized by the distance between goals.
Introducing shared autonomy (SA) improves the convergence of latent
actions (LA), particularly when the human teleoperator is noisy and
imperfect

because the latent space controls the intended goal when the
belief b is roughly uniform, and then switches to controlling
the preferred trajectory once the robot is confident. So if
users change their goal after first convincing the robot, the
latent space no longer contains actions thatmove towards this
correct goal! We find that our proposed entropy loss function
addresses this shortcoming: LA + SA + Entropy users are
able to input actions z that alter the robot’s goal. Our results
suggest that encouraging entropy at training time improves
the robustness of the latent space.

Users that learn within the task We not only expect real
users to change their mindwhen collaboratingwith the robot,
but we also anticipate that these teleoperators will learn and
improve as they gain experience during the task. For instance,
the user might learn that holding left on the joystick causes
the robot to grasp the cup from the side, while holding right
guides the robot towards a top grasp. To simulate this in-task
learning, we set β(t) = m · t , where the slope m deter-
mines howquickly theuser learns.All users startwith random
actions (β = 0), and either learn quickly (high m) or slowly
(low m). We point out that slow learners may effectively
“change their mind” multiple times, since they are unsure of
how to control the robot.

Our findings are plotted in Fig. 13. We see that—for both
fast and slow learners—LA+SA+Entropy improves in-task
performance. We attribute this improvement to the inherent
versatility of latent spaces that maximize entropy: as humans
gain expertise, they can use these latent actions to quickly
undo their mistakes and correct the robot’s behavior.

SummaryOverall, these simulations show that users are not
able to precisely reach and maintain goals when controlling
robots with only latent actions. Including shared autonomy
improves convergence, while training latent actions to maxi-
mize entropy ensures that this convergence does not become
a burden. When using our proposed combination of shared
autonomy and learned latent actions, naïve and experenced
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Fig. 12 Simulated humans that change their intended goal part-way
through the task. Change is the timestep where this change occurs, and
Confidence refers to the robot’s belief in the human’s true goal. Because
of the constraints imposed by shared autonomy, users need latent actions

that can overcome misguided assistance and move towards a less likely
(but correct) goal. Encouraging entropy in the learned latent space (LA
+ SA + Entropy) enables users to switch goals

Fig. 13 Simulated humans that learn how to teleoperate the robot. The
human’s rationalityβ(t) is linear in time, and either increaseswith a high
slope (Fast Learner) or low slope (Slow Learner). As the human learns,
they get better at choosing inputs that best guide the robot towards their

true goal. We find that latent actions learned with the entropy reward
(LA+SA+Entropy) are more versatile, so that the human can quickly
undo mistakes made while learning

users are able to reach their preferred goal and change their
mind.

8.3 Can we efficiently align latent actions with
joystick inputs?

By combining shared autonomy with latent actions, we have
a way for humans to precisely control high-DoF robots. But
currently the mapping between joystick inputs and latent
actions is arbitrary—and this makes it challenging for users
to know how to leverage latent actions. Here we test our

proposed alignment method from Sect. 6. We explore how
efficiently we can learn a simulated human’s preferred align-
ment by using semi-supervised learning and underlying
priors.

Setup Simulated users control the FrankaEmika arm from
the previous section. The latent action space and decoder
φ(z, c) were trained using conditional autoencoders. This
decoder φ maps from a 2-DoF latent action z to a 7-DoF
robot arm motion. We now leave the decoder φ fixed, and
focus on learning the alignment model f . This alignment
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model z = f (u, c), takes 2-DoF inputs from the simulated
human and converts them to latent actions for the robot to
execute.

TasksWe considered three tasks of increasing complexity. In
each task the simulated user interactedwith a 2-DoF joystick.

1. Plane: The robot moves its end-effector in the x-y plane.
The human prefers for one joystick DoF to move the
robot along the x-axis, and the other should move the
robot along the y axis.

2. Pour: The robot moves and rotates its end-effector along
z axis. The human expects one dimension of the joystick
to move the robot up and down, and the other to control
a pouring motion.

3. Reach & Pour: The robot reaches for a bottle, carries
it to a bowl, and then pours the contents. The human’s
preference is divided into twoparts:when reaching for the
bottle in the x-y plane, the human’s preference matches
Plane, and when pouring, the human’s preference is the
same as in Pour.

Learning the alignment Before each of these tasks we pro-
vided the simulated humanwith 10 differentmotions to label.
The human indicated which joystick input u they would
expect to use to command the demonstrated motion (s, s∗).
In addition to these 10 labeled datapoints, the robot also col-
lected 1000 unlabeled motions for self-supervised learning.
Given this data, we compared our approach to different base-
lines. To better understand which priors are useful, we also
included an ablation study where the robot learned with only
one prior at a time. Overall, the conditions were:

– No Align: baseline where z = u
– Manual Align: the affine transformation that best matches
the labeled data

– No Priors: trained with the supervised loss Lsup from
Equation (19)

– Proportional: trained withLsup +Lprop, the proportional
prior from Equation (20)

– Reversable: trained with Lsup + Lreverse, the reversable
prior from Equation (21)

– Consistent: trainedwithLsup+Lcon , the consistency prior
from Equation (22)

– All Priors: trained with all of the proposed priors
– Ideal Align: supervised loss where the simulated human
answers 1000 queries (instead of 10).

Besides the type of alignment model, we also varied how
imperfectly the simulated human answered our queries. We
set the coefficient of variance as 0, 0.1, and 0.5 for the sim-
ulated human when they answered queries.

DependentmeasuresTo determine the quality of each align-
mentmodel,wemeasured the error betweenwhere the human
intended to go and where the robot actually went. Specif-
ically, we measured the relative end-effector position and
orientation. Let x∗ = Ψ (s∗) be the intended end-effector
pose, let xt be the start pose, and let xt+1 be where the robot
actually ended up: we computed ‖x∗ − xt−1‖2/‖x∗ − xt‖2.
For each experiment setting, we reported mean and standard
deviation of this metric over 10 total runs.

Hypotheses We expected three things during our alignment
simulations:

H1. With abundant labeled data, the alignment model will
learn the human’s preferences.

H2. Compared to the fully-supervised baseline, our semi-
supervised alignment models that leverage intuitive
priors will achieve similar performance with far less
human data.

H3. Semi-supervised training with proportional, reversible,
and consistent priors will outperform models trained
with only one of these priors.

Results We highlight results for the Plane and Reach +
Pour tasks in Fig. 14. For models that do not leverage
data or personalization—i.e., No Align and Manual Align—
the error is significantly higher than learning alternatives.
With abundant data and noise-free human annotations, Ideal
Align provided the gold-standard performance. The suc-
cess of Ideal Align indicates that our parametrization of the
alignment model f is capable of capturing the human’s pref-
erences.

In practice, the amount of human feedback will always
be limited. We found that our proposed priors were critical
when looking at models that only had access to 10 queries
during training. The three semi-supervised models with just
one intuitive prior (Proportional, Reversable, andConsistent)
performed twice aswell asNoPriors, the supervisedbaseline.
Putting all of these priors together resulted in even better
performance: across different user noise levels, All Priors
consistently demonstrated the lowestmean error and standard
deviation. This was particularly noticeable when the human
oracle is noisy, suggesting that the three priors are indeed
complementary, and including each of them together brings
a performance boost!

Comparing the easier Plane task to the more complex
Reach&Pour task in Figure 14, we also saw that using priors
became increasingly important as the task got harder. This
suggests that—in complex scenarios—simply relying on a
few labeled examples during supervised learning may lead
to severe overfitting. Our intuitive priors for semi-supervised
learning effectively mitigate this problem.
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Fig. 14 Learning the joystick alignment from simulated and imper-
fect human feedback. We tested three different tasks with increasing
complexity, and here we display the results of the easiest (Plane) and
the hardest (Reach + Pour). Alignment Error refers to a the difference
between where the simulated human expected the robot to move, and

where the robot actuallymoved. To explore the robustness of ourmethod
we varied how noisy the human was when providing their preferences.
Across different tasks and levels of human noise, All Priors (our semi-
supervised approach) consistently outperformed the other methods, and
almost matched an ideal alignment learned from abundant data

Summary Viewed together, the results of our simulations
strongly support the hypotheses H1, H2, and H3. Our pro-
posed alignment model successfully learned the mapping
between the joystick inputs and latent actions (H1). In set-
tings with limited labels, our proposed alignment model with
intuitive control priors reached results that almost match
supervised trainingwith abundant data (H2). Finally, in abla-
tion studies, we showed how combining all three proposed
priors leads to superior performance and greater training sta-
bility than training with a single prior (H3).

9 User studies with non-disabled
participants

To evaluate whether actual humans can use learned latent
actions to teleoperate robots and perform assistive eating
tasks, we conducted four user studies. The participants in
these studies are all non-disabled adults (we apply our
approach with disabled adults in Sect. 10). Importantly, we
designed these user studies to mimic assistive teleoperation
settings. In each study the human user interacts with a 2-
DoF joystick, and uses this joystick to control a 7-DoF robot
arm.

The order of the studies roughly parallels Sects. 6, 7, and 6.
We start by comparing latent actions to an existing dataset for
assistive eating tasks, and then compare latent actions to the
end-effector teleoperation method commonly used on assis-
tive robot arms. Next, we introduce shared autonomy, and
perform an ablation study to understand how shared auton-
omy and latent actions contribute to high-level reaching and
precise manipulation tasks. Finally, we learn the alignment
between joystick inputs and latent actions by considering
intuitive priors, and evaluate how this alignment improves
human-robot co-adaptation.

Fig. 15 Experimental setup for our user study from Sect. 9.1. (Left)
in this eating task, the participant uses a two-DoF joystick to guide the
robot to reach their desiredmarshmallow. (Right) we compare our latent
action approach to shared autonomy baselines from the HARMONIC
dataset

9.1 Comparing latent actions to the HARMONIC
baselines

In our first user study users teleoperate an assistive robot
arm using only learned latent actions. We baseline their
performance against current state-of-the-art approaches for
controlling high-DoF assistive robot arms. Specifically, we
implement the same assistive eating task as in the HAR-
MONIC dataset (Newman et al. 2018). This task is shown
in Fig. 15: users guide the robot arm to stab a marshmal-
low of their choice. There are three different marshmallows
on the plate—i.e., three possible high-level goals—and only
the human knows which of these discrete goals they want to
reach. The HARMONIC dataset reports the performance of
24 people who completed this task with different levels of
shared autonomy. Within the HARMONIC baseline, how-
ever, the mapping from low-DoF user inputs to high-DoF
robot actions is predefined, with separate modes to control
the end-effector’s x-y position, z-yaw position, and roll-
pitch orientation. We compare the learned latent mapping
from Sect. 6 to this set of baselines.

Independent variables We manipulated the robot’s tele-
operation strategy with five levels: the four conditions
from the HARMONIC dataset plus our proposed learned
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latent actions. For the first four conditions, the robot uses
optimization-based shared autonomy (Javdani et al. 2018)
to select assistive actions. The robot either provides no
assistance (No Assist) or linearly interpolates between the
human’s input and the assistive action (Low Assist, High
Assist, and Full Assist). High Assist was the most effec-
tive strategy from this group: when interpolating, here the
assistive action is given twice theweight of the human’s com-
manded action. Within our learned latent actions condition,
we applied a conditional variational autoencoder (cVAE) to
learn the decoder φ(z, c) from the demonstrations in the
HARMONIC dataset. For now we treat the joystick inputs
as the latent actions, so that z = u.

Dependent measures Before each trial users indicated
which marshmallow they want to reach. We measured the
fraction of trials in which the robot picks up the correct
marshmallow (Success Rate), the amount of time needed to
complete the task (Completion Time), the total magnitude of
the human’s input (Joystick Input), and the distance traveled
by the robot’s end-effector (Trajectory Length).

Hypothesis We hypothesized that:

H1. Compared the the baselines, latent actions will improve
task success while reducing the completion time, joy-
stick inputs, and trajectory length.

Experimental setup Participants interacted with a joystick
while watching the robotic arm (see Fig. 15). The robot held
a fork; during the task, users teleoperated the robot to posi-
tion this fork directly above their desired marshmallow. We
selected the robot’s start state, goal locations, and movement
speed to be consistent with the HARMONIC dataset.

Participants and procedure Our participant pool consisted
of ten Stanford University affiliates who provided informed
consent (3 female, average participant age 23.9± 2.8years).
Following the same protocol as the HARMONIC dataset,
each participant was given up to five minutes to familiarize
themselves with the task and joystick, and then completed
five recorded trials using our cVAE approach. At the start of
each trial the participant indicates which marshmallow they
want the robot to reach; the trial ends after the user indicates
that the fork is above their intended marshmallow. We point
out that participants only completed the task with the cVAE
condition; other teleoperation strategies are benchmarked in
Newman et al. (2018).

ResultsWe display example robot trajectories in Fig. 16 and
report our dependent measures in Figs. 15 and 17. Inspecting
these example trajectories, we observe that the cVAE model

Fig. 16 End-effector trajectories from High Assist and cVAE condi-
tions. The robot starts at the black dot, and moves to position itself over
the plate

Fig. 17 Comparing our objective results to the HARMONIC baseline.
We found that cVAE led to faster task completion with less user input
and end-effector motion. The Full Assist condition performed worse
thanHigh Assist across the board (omitted for clarity). Error bars show
the 10 and 90 percentiles, and ∗ denotes statistical significance (p <

.05)

learned latent actions that constrain the robot’s end-effector
into a region above the plate. Users controlling the robot with
cVAE reached their desired morsel in 44 of the 50 total trials,
yielding a higher Success Rate than the assistance baselines.
To better compare cVAE to the High Assist condition, we
performed independent t-tests. Participants with the cVAE
model had significantly lower Completion Time (t(158) =
2.95, p < .05), Joystick Input (t(158) = 2.49, p < .05), and
Trajectory Length (t(158) = 9.39, p < .001), supporting
hypothesis H1.

SummaryWe baselined our learnedmapping from low-DoF
to high-DoF actions against state-of-the-art shared autonomy
approaches with predefined mappings. Users teleoperating
an assistive robot with learned latent actions reached their
high-level goals more accurately, while requiring less time,
effort, and movement.

9.2 Comparing latent actions to end-effector
teleoperation

Real-world assistive eating tasks involve more than just
reaching for discrete goals (i.e., stabbing a food morsel).
Often objects lie in continuous regions (i.e., anywhere on
a shelf), and users must make continuous decisions (i.e.,
how much water to pour). In our second user study we
therefore apply learned latent actions to continuous tasks.
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Fig. 18 Experimental setup for our user study in Sect. 9.2. (Top row)
the participant is teleoperating an assistive robot to make their “apple
pie” recipe. This recipe is broken down into three sub-tasks. On left the
robot picks up eggs, pours them into the bowl, then drops the container
into the recycling. In middle the robot picks up flour, pours it into the
bowl, then returns the container to the shelf. On right the robot grasps

an apple, places it in the bowl, then stirs the mixture. (Middle row)
example robot trajectories when the person directly controls the robot’s
End-Effector. (Bottom row) example trajectories when using cVAE to
learn latent actions. Comparing the example trajectories, we observe
that cVAE resulted in robot motions that more smoothly and directly
accomplished the task

Consider cooking the “apple pie” in Fig. 18. Assembling
this recipe requires picking up ingredients from the shelf,
pouring them into a bowl, recycling empty containers—or
returning half-filled containers to the shelf—and then stir-
ring the mixture. Shared autonomy approaches like (Dragan
and Srinivasa 2013; Newman et al. 2018; Javdani et al. 2018)
are not suitable within this setting because: (i) the goals lie
in continuous regions and (ii) the user needs to control both
the high-level goal that the robot reaches for and the trajec-
tory the robot follows to reach that goal (e.g., keeping a cup
upright until pouring). Hence, we compare our latent action
method against end-effector teleoperation. End-effector tele-
operation is commonly used by assistive robots (Herlant et al.
2016), where the human presses a button to switchmodes and
control different aspects of the end-effector’s motion. For
example, in one mode the 2-DoF joystick moves the robot’s
end-effector in the x-y plane. See videos of this user study
here: https://youtu.be/wjnhrzugBj4.

Independent variables We tested two teleoperation strate-
gies: End-Effector and cVAE. Under End-Effector the user

inputs apply a 6-DoF twist to the robot’s end-effector, con-
trolling its linear and angular velocity. Participants interact
with two 2-DoF joysticks, and are given a button to toggle
between linear and angularmotion (Herlant et al. 2016; New-
man et al. 2018; Javdani et al. 2018). By contrast, in cVAE
the participants only interact with one 2-DoF joystick, i.e.,
the latent action is z = [z1, z2] ∈ R

2. We emphasize that
this cVAE latent action model has the same structure as the
one used in our previous user study (Sect. 9.1), and does
not yet include either shared autonomy or alignment models.
We trained cVAE using state-action pairs from kinesthetic
demonstrations,whereweguided the robot along related sub-
tasks such as reaching for the shelf, pouring objects into the
bowl, and stirring. Overall, the cVAE was trained with less
than 7 minutes of demonstration data.

Dependent measures—objective We measured the total
amount of time it took for participants to complete the entire
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cooking task (Completion Time), as well as the magnitude of
their inputs (Joystick Input).

Dependent measures—subjective We administered a 7-
pointLikert scale survey after each condition.Questionswere
separated into six scales, such as ease of performing the task
(Ease) and consistency of the controller (Consistent). Once
users had completed the task with both strategies, we asked
comparative questions about which they preferred (Prefer),
which was Easier, and which was more Natural.

Hypotheses We had the following hypotheses:

H1. Users controlling the robot arm with low-DoF latent
actions will complete the cooking task more quickly
and with less overall effort.

H2. Participants will perceive the robot as easier to work
with in the cVAE condition, and will prefer the cVAE
over End-Effector teleoperation.

Experimental setup We developed a cooking task where
the person is making a simplified “apple pie.” As shown in
Fig. 18, the assistive robot must sequentially pour eggs, flour,
and an apple into the bowl, dispose of their containers, and stir
the mixture. The user sat next to the robot and controlled its
behavior with a handheld joystick. During the experiment we
introduced variance by intermittently changing the location
of the shelf, bowl, and recycling bin.

Participants and procedure Eleven members of the Stan-
ford University community (4 female, age range 27.4±11.8
years) provided informed consent to participate in this study.
Similar to the other user studies described in this paper, we
used a within-subjects design, and counterbalanced the order
of our two conditions. Four of our subjects had prior experi-
ence interacting with the robot used in our experiment.

Before starting the study, participants were shown a video
of the cooking task. Participants then separately completed
the three parts of the task as visualized in Fig. 18; we reset the
robot to its home position between each of these sub-tasks.
After the user completed these sub-tasks, we re-arranged the
placement of the recycling and bowl, and users performed the
entire cooking task without breaks. Participants were told
about the joystick interface for each condition, and could
refer to a sheet that labelled the joystick inputs.

Results—objective Our objective results are summarized in
Fig. 19. When using cVAE to complete the entire recipe,
participants finished the task in less time (t(10) = −6.9, p <

.001), and used the joystick less frequently (t(10) = −5.1,
p < .001) as compared to direct End-Effector teleoporation.

Results—subjective We display the results of our 7-point
Likert scale surveys in Fig. 20. Before reporting these results,

Fig. 19 Objective results from assembling an “apple pie.” These results
were collected across the entire cooking task (combining each sub-task
fromFig. 18).We compare using just latent actions to direct end-effector
teleoperation

Fig. 20 Subjective results from assembling an “apple pie.” Higher rat-
ings indicate participant agreement. Participants thought our approach
required less effort (Ease), made it easier to complete the task (Eas-
ier), and produced more natural robot motion (Natural) as compared to
End-Effector control

we first confirmed the reliability of our scales. We then lever-
aged paired t-tests to compare user ratings for End-Effector
and cVAE conditions. We found that participants perceived
cVAE as requiring less user effort (t(10) = 2.7, p < .05)
than End-Effector. Participants also indicated that it was eas-
ier to complete the task with cVAE (t(10) = 2.5, p < .05),
and that cVAE caused the robot to move more naturally
(t(10) = 3.8, p < .01). The other scales were not signif-
icantly different.

Summary We focused on a cooking task with continuous
high-level goals, and compared latent actions to end-effector
teleoperation.When controlling the robot with latent actions,
users completed the cooking task more quickly and with less
effort (H1). Participants believed that the cVAE approach led
to more natural robot motion, and indicated that it was easier
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to perform the task with latent actions. However, participants
did not indicate a clear preference for either strategy (H2).
We will explore ways to improve user satisfaction in our
next user study, where we combine latent actions with shared
autonomy to assist the human.

9.3 Combining learned latent actions with shared
autonomy

In our first two user studies we tested latent actions by them-
selves, without any robotic assistance. Our results indicate
that latent actions objectively outperform both the HAR-
MONIC baselines and end-effector control; however, the
participant’s subjective responses are mixed. Plus, so far we
have only dealt with high-level reaching goals—but assis-
tive eating also involves fine-grained manipulation, where
the user must cut, stab, and scoop their food. Here we tackle
both issues by performing a user study with eating tasks (see
Fig. 21). Participants must control the robot towards their
goal plate, and then carefully adjusted the robot’s motion to
cut, stab, and scoop different foods. We explore how users
leverage learned latent actionswith shared autonomy to com-
plete this task. Specifically, we conduct an ablation study
across latent actions and shared autonomy, and determine
whether latent actions alone, shared autonomy alone, or their
combination best results in high-level reaching and precise
manipulation. See videos of this user study here: https://
youtu.be/7BouKojzVyk.

Experimental setup Each participant attempted to complete
two dishes: an Entree task and a Dessert task. In Entree,
users had to perform multiple precise motions at the same
goal. Here participants (i) guided the robot towards a bowl
with tofu, (ii) cut off a slice of tofu, and (iii) stabbed and
scooped the slice onto their plate. InDessert the participants
had to convey their preferences at multiple goals: they (i)
stabbed a marshmallow in the middle plate, (ii) scooped it
through icing at the right plate, and then (iii) dipped it in rice
at the left plate before (iv) setting the marshmallow on their
plate. In both tasks subjects sat next to the robot, mimicking
a wheelchair-mounted arm.

Independent variablesWeconducted a 2×2 factorial design
that separately varied Control Interface and Robot Assis-
tance.

For the control interface, we tested a state-of-the-art direct
teleoperation scheme (Retargetting), where the user’s joy-
stick inputs map to the 6-DoF end-effector twist of the robot
(Rakita et al. 2017). We compared this direct teleoperation
baseline to our learned latent actions: here the robot inter-
prets the meaning of the human’s inputs based on the current
context.

For robot assistance, we tested with and without shared
autonomy. We implemented the shared autonomy algorithm
from (Javdani et al. 2018), which assists the robot towards
likely human goals.

Crossing these two separate factors, we totaled four dif-
ferent conditions:

– R: Retargeting with no shared autonomy
– R+SA: Retargetting with shared Autonomy
– LA: Latent actions with no shared autonomy
– LA+SA: Latent actions with shared autonomy

Note that the LA+SA condition is our proposed approach
(Algorithm 1). However, we still omit the alignment model
f , so for now the latent action z is set equal to the joystick
input u.

Model training We provided kinesthetic demonstrations D
that guided the robot towards each plate, and then performed
cutting, stabbing, and scooping motions at these goals. The
robot learned the latent action space froma total of 20minutes
of kinesthetic demonstrations. Because we are combining
latent actions with shared autonomy, we also recorded the
belief b during these demonstrations. In the LA+SA con-
dition, the robot used context c = (s, b) to decode human
inputs.

Dependent measures—objective We recorded the amount
of time users took to complete each task (Total Time), as
well as the amount of time spent without providing joystick
inputs (Idle Time). We also computed proxy measures of the
high-level goal accuracy and low-level preference precision.
For goals, we measured the robot’s total distance to the clos-
est plate throughout the task (Goal Error). For preferences,
we recorded the dot product between the robot’s actual end-
effector direction and the true end-effector directions needed
to precisely cut, stab, and scoop (Preference Alignment).

Dependent measures—subjective We administered a 7-
pointLikert scale survey after each condition.Questionswere
organized along five scales: how Easy it was to complete the
tasks, how Helpful the robot was, how Precise their motions
were, how Intuitive the robot was to control, and whether
they would use this condition again (Prefer).

Participants and procedure We recruited 10 subjects from
the Stanford University student body to participate in our
study (4 female, average age 23.5±2.15 years). All subjects
provided informed written consent prior to the experiment.
We used a within-subjects design: each participant com-
pleted both tasks with all four conditions (the order of the
conditions was counterbalanced). Before every trial, users
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Fig. 21 Experimental setup for our user study in Sect. 9.3. (Left) The
Dessert task consists of 3 phases: stabbing the marshmallow, scooping
it in icing, and dipping it in rice. We identified the end-effector direc-
tions needed to complete these fine-grained preferences, and plotted the
average dot product between the desired and actual directions (Prefer-
ence Alignment). In the R+SA condition, users executed the entire task

in a stabbing/dipping orientation. By contrast, with LA+SA users cor-
rectly adjusted the scooping preference in the second phase of the task.
(Right) We plot the results of our 7-point Likert scale surveys. Color to
method mappings are consistent with Fig. 22, and ∗ indicate statistical
significance (p < 0.05)
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Fig. 22 Error between the end-effector and nearest goal during the
eating tasks. Adding shared autonomy (SA) decreased this error across
both mapping strategies (R and LA)

practiced teleoperating the robot with the current condition
for up to 5 minutes.

Hypotheses We tested three main hypotheses:

H1. Users controlling the robot with shared autonomy will
more accurately maintain their goals.

H2. Latent actions will help users more precisely perform
manipulation tasks.

H3. Participants will complete the taskmost efficiently with
combined LA+SA.

Results—objective To explore H1, we analyzed the Goal
Error for methods with and without shared autonomy (see
Figure 22). Across both tasks, users interacting with shared
autonomy reached their intended goals significantly more
accurately (F(1, 18) = 29.9, p < .001). Breaking this down
by condition, users incurred less error with LA+SA thanwith
LA (p < .001), and—similarly—users were more accurate
with R+SA than with R (p < .05). Building on our prior
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Fig. 23 Time taken to complete the eating task (solid) and time spent
idle (light). Users completed both eating tasks most efficiently with our
proposed combination of shared autonomy and latent actions (LA+SA)

user study results, this indicates that adding shared autonomy
improves the performance of our latent action approach.

So shared autonomy helped users more accurately main-
tain their goals—but were participants able to complete the
precise manipulation tasks at those goals? We visualize the
Preference Alignment for Dessert in Figure 21, specifically
comparing R+SA to LA+SA. We notice that—when using
direct teleoperation—participants remained in a stabbing
preference throughout the task. By contrast, users with latent
actions adjusted between diffrent manipulation tasks: stab-
bing the marshmallow, scooping it in icing, and dipping it in
rice. These results support H2, suggesting that latent actions
enable users to precisely manipulate the robot.

Now that we know the benefits of shared autonomy and
latent actions individually, what happens when we focus
on their combination? Inspecting Fig. 23, participants using
LA+SA were able to complete both tasks more efficiently.
Summing times across both tasks, and then performing pair-
wise comparisons between each condition, we found that
LA+SA outperformed the alternatives for both Total Time
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Fig. 24 Experimental setup for the user study in Section 9.4. We visu-
alize a single user’s end-effector trajectories for the Avoid, Pour and
Reach + Pour tasks. Participants teleoperated the 7-DoF Panda robot
armwithout any alignment model (No Align), with an alignment model
trained only on their supervised feedback (No Priors), and with our pro-

posed method, where the robot generalizes the human’s feedback using
intuitive priors (All Priors). For both No Align and No Priors base-
lines, we can see moments where the human gets confused, counteracts
themselves, or fails to complete the task

(p < .05) and Idle Time (p < .05). Overall, we found that
LA+SAusers completed the task the fastest andwith the least
error.

Results—subjective We find further support for H3 in the
user’s feedback. The results of t-tests comparing LA+SA
to the other conditions are reported in Fig. 21 (where an ∗
denotes p < .05). Responses suggest that users were most
“comfortable” when performing precise manipulation with
LA+SA. We emphasize the improvement in these subjective
results as compared to Fig. 20, where users ranked latent
actions similarly to direct end-effector control. We conclude
that incorporating shared autonomy improves the human’s
experience when leveraging latent actions.

SummaryWe conducted two eating tasks where participants
needed to (i) reach for high-level goals and (ii) precisely
manipulate food items at those goals. We found that both
shared autonomy and latent actions improved performance:
including shared autonomy decreased end-effector error,
while using latent actions helped users quickly transition
between different fine-grained manipulations. These results
compliment Sect. 9.1 (where we compare latent actions to
shared autonomy) and Sect. 9.2 (where we compare latent
actions to end-effector control). But now we also have that
the combination of shared autonomy and latent actions out-
performs either of these approaches alone.

9.4 Learning the alignment between joystick inputs
and latent actions

Now that we have shown the benefits of latent actions—and
how latent actions can incorporate shared autonomy—we
finally turn our attention to aligning the human’s joystick
inputs with the learned latent space. This final user study
builds on Sect. 6. Prior to the study, we learn a latent action
space that maps from 2-DoF inputs to 7-DoF robot actions.

During the study, we ask participants to label a few sample
robot motions with their preferred joystick input. The robot
uses intuitive priors to generalize from these labels and learn a
personalizedmapping from joystick inputs u to latent actions
z. In the previous studies we have simply set z = u, and we
leverage this as one of the baselines in this user study. We
also evaluate the effects of our intuitive priors, and compare
learning the alignment model with and without these priors.
See videos of this user study here: https://youtu.be/rKHka0_
48\discretionary-Q.

Tasks Similar to our simulation experiments from Sect. 8.3,
we considered three different tasks. These tasks are visual-
ized in Fig. 24.

1. Avoid: The robot arm moves its end-effector in a hori-
zontal plane. Users are asked to guide the robot around
an obstacle without colliding with it.

2. Pour: The robot arm is holding a cup, and users want to
pour this cup into two bowls. Users are asked to first pour
into the farther bowl, before moving the cup back to the
start and pouring into the closer bowl.

3. Reach & Pour: Users start by guiding the robot towards
a cup and then pick it up. Once the users reach and grasp
the cup, they are asked to take the cup to a target bowl,
and finally pour into it.

Independent variables For each of the tasks described
above, we compared three different alignment models. No
Align corresponds to what we have done in the previous user
studies: setting z = u, so that all users must adapt to the same
latent action alignment.We compare this to two personalized
approaches. First isNo Priors, where we train the alignment
model f just using the supervised loss (i.e., the robot only
learns from the human’s labeled data).We contrast this toAll
Priors, where the robot leverages semi-supervised learning
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Fig. 25 Objective results from our alignment user study. (Left) Average
time taken to complete each task. (Middle) Average trajectory length
as measured in end-effector space. (Right) Percentage of the time peo-
ple spend undoing their actions. Error bars show the standard deviation

across the 10 participants, and colors match Fig. 24. Asterisks denote
statistically significant pairwise comparisons between the two marked
strategies (p < .05)

(i.e., the robot also considers the proportional, reversible,
and consistent priors we anticipate that the user will expect).
Each condition learns from the same human feedback; we
emphasize that All Priors uses the same number of human
labels as No Priors.

Dependent measures To evaluate the effectiveness of these
different alignment strategies, we recorded Task Time and
Trajectory Length. We also calculated the percentage of the
time that users Undo their actions by significantly changing
the joystick direction—undoing suggests that the alignment
is not quite right, and the human is still adapting to the robot’s
control strategy. Besides these objective measures, we also
collected subjective feedback from the participants through
7-point Likert scale surveys.

Participants and procedureWe recruited 10 volunteers that
provided informed written consent (3 female, ages 23.7 ±
1.5). Participants used a 2-axis joystick to teleoperate the
7-DoF robot arm, and completed three manipulation tasks
inspired by assistive settings. At the start of each task, we
showed the user a set of robot movements and ask them to
provide their preferred input on the joystick—i.e., “if you
wanted the robot to perform the movement you just saw,
what joystick input would you provide?” Users answered
7 queries for task Avoid, 10 queries for task Pour and 30
queries for task Reach & Pour. After the queries finished,
the users started performing tasks sequentially using each of
the alignment strategies. The order of alignment strategies
was counterbalanced.

Hypothesis We hypothesize that:

H1. An alignment model learned from user-specific feed-
back and generalized through intuitive priors will make
it easier for humans to control the robot and perform
assistive manipulation tasks.

Results The objective results of our user study are summa-
rized in Fig. 25. Across tasks and metrics, our model with
All Priors outperforms the two baselines. In addition, our

model not only has the best average performance, but it also
demonstrates the least variance. Similar to our simulation
results from Sect. 8.3, when the task is difficult (i.e.,Reach&
Pour), the performance of No Priors drops significantly com-
pared to simpler tasks, reinforcing the importance of priors
when in learning complex alignment models (Fig. 26).

We also illustrate our survey responses in Fig. 27. Across
the board, we found that users exhibited a clear preference
for our proposedmethod. Specifically, they perceivedAll Pri-
ors as resulting in better alignment, more natural, accurate,
and effortless control, and would elect to use it again. These
subjective results highlight the importance of personaliza-
tion when controlling high-DoF systems—we contrast these
results to Fig. 20, where participants perceived the unaligned
controller as somewhat unintuitive.

To better visualize the user experiences, we also display
example robot end-effector trajectories from one of the par-
ticipants in Fig. 24. Here we observe that the trajectories of
our model (in orange) are smooth and do not detour during
the tasks, while the trajectories for No Align (in grey) and
No Priors (in black) have many movements that counteract
themselves, indicating that this user was struggling to under-
stand and align with the control strategy. In the worst case,
participants were unable to complete the task with the No
Priors model (see the Avoid task in Fig. 24) because no joy-
stick inputs mapped to their intended direction, effectively
causing them to get stuck at undesirable states.

To further validate that our model is learning the human’s
preferences, we illustrate heatmaps over user inputs for the
Avoid task in Fig. 26. Recall that this task requires moving
the robot around an obstacle. Without the correct alignment,
users default to the four cardinal directions (No Align), or
warped circle-like motions (No Priors). By contrast, under
All Priors the users smoothly moved the joystick around
an even distribution, taking full advantage of the joystick’s
[−1,+1] workspace along both axes.

Summary In this user studyweexploreddifferent approaches
for learning the alignmentmodel between joystick inputs and
latent actions. We compared learning the alignment model
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Fig. 26 Heatmaps of the participants’ joystick inputs during the Avoid
task. For No Align in the upper right, people primarily used the cardinal
directions. For No Priors in the bottom left, the joystick inputs were not
clearly separated, and no clear pattern was established. For our All
Priors model on the bottom right, however, we observed that the human
inputs were evenly distributed. This indicates that the users smoothly
completed the task by continuously manipulating the joystick in the
range [−1,+1] along both axes

with and without intuitive priors, and found that including
these priors improved user performance, particularly in chal-
lenging tasks (H1).

10 Case study with disabled users

Our previous user studies involved non-disabled participants.
Overall, these studies demonstrate the potential advantages
of learned latent actions and support our proposed algorithm.
But we still need to determine whether these results transfer

Fig. 27 Results from our 7-point Likert-scale survey after the align-
ment user study. The legend is the same as in Fig. 25. Higher ratings
indicate agreement. Users thought that our learned model with intuitive
priors aligned with their preferences, was easy to control, and improved
efficiency—plus they would choose to use it again. Pairwise compar-
isons between our approach and the baselines are statistically significant
across the board

to our target population; accordingly, here we test whether
disabled persons can leverage latent actions to teleoperate
assistive robots during eating tasks. This case study explores
conditions and tasks similar to the user study from Sect. 9.3,
but now with the added dimension of two disabled users that
are familiar with assistive robot arms.

Participants We recruited two adult males with disabilities
(ages 28 and42)who require assistancewhen eating. Thefirst
participant has three years of experience with assistive robot
arms, and the second participant has 2years of experience
with these robots.

Experimental setup In order to ensure safety during the
COVID-19 pandemic, we developed a remote control inter-
face where participants teleoperated an on-campus robot
in real-time from their own homes (see Fig. 28). Partic-
ipants interacted with a virtual joystick while watching
live-streamed video of the robot arm. Video showed the robot
and task from two angles: a front-view and a side-view. Just
like the previous in-person studies, we used the participant’s
joystick inputs to control the 7-DoF motion of the robot arm.
We worked with both participants to minimize communica-

Fig. 28 Experimental setup for our case study with disabled persons
(Sect. 10). Two adult males who employ assistive devices when eating
volunteered to participate in the study. Due to safety restrictions, this
study was conducted remotely: participants used an online joystick to
teleoperate our robot in real-time while watching live-streamed video.

Here we show examples of the participants’ views during Entree and
Dessert tasks. Camera (1) is a front-view of the robot and the high-level
goals, and camera (2) is a side view of the same. Enlarged images of
the participants are shown in the top right of each frame
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Fig. 29 Comparison between the End-Effector condition on a Kinova
assistive robot arm (Kinova Software Development Kit User Guide
2021) (left) and our End-Effector implementation (right). We intro-
duced a grid so that this virtual joystick was as close as possible to the
continuous joysticks we previously used during our studies with non-
disabled persons. We also consulted with our users while creating this
interface to ensure that it matched their expectations

tion latency and position the cameras effectively; however,
we recognize that delays and depth-perceptionmay affect the
results of these experiments.

As in Sect. 9.3, participants attempted to assemble two
dishes: an Entree task and a Dessert task. The Entree task
involved reaching for a block of tofu and then precisely cut-
ting off a slice. TheDessert task had three steps: (i) reaching
for and stabbing a marshmallow, (ii) carefully scooping that
marshmallow in icing, and then (iii) dipping the marshmal-
low in sprinkles.

Independent variables We compared two different control
schemes: End-Effector and LA+SA. With End-Effector the
user directly controls the position and orientation of the fork
attached to the end of the assistive robot arm (Herlant et al.
2016; Newman et al. 2018; Javdani et al. 2018). Participants
here interact with two separate sets of joysticks, one for linear
motion and a second for angular motion. We collaborated
with both participants to ensure that this End-Effector setup
closely resembled the control interface they typically use on
their assistive robot arms (see Fig. 29). TheLA+SAcondition
is our proposed approach (Algorithm 1), which combines
latent actions with shared autonomy. We omit the alignment
model f because of the time constraints of our voluntary
participants; thus, the latent action z is set equal to the joystick
input u.

Dependent measures To understand the effects of learned
latent actions, we measured the total time taken to complete
each task (Total Time) and the amount of time during the
task where users were not providing joystick inputs (Idle
Time). We also recorded the distance between the robot’s
fork and the closest goal—i.e., the tofu, marshmallow, icing,
or sprinkles. ThisGoal Error serves as a proxy metric for the
accuracy of the robot’s high-level reaching.After participants
completed the entire experiment we administered a short,
open-ended survey to elicit their free-response feedback.

Fig. 30 The trajectories the robot’s fork follows with End-Effector
and LA+SA conditions in the Dessert task. The fork starts above the
goals and moves to stab a marshmallow, scoop it in icing, and then dip
it in a cup of sprinkles. We overlay the trajectories for both disabled
participants

ProcedureWe applied a within-subjects design, where both
participants completed the Dessert and Entree tasks using
End-Effector and LA+SA conditions. User 1 started with the
End-Effector condition andUser 2 startedwith LA+SA.Both
users completed the Dessert task first before doing the Entree
task. So that the users could familiarize themselves with the
controller and environment, participants were allotted up to
5 minutes of practice time with each condition.

Hypotheses We tested two main hypotheses:

H1. Disabled users will complete the eating tasks more
quickly and accurately with our combination of latent
actions and shared autonomy.

H2. Disabled users will subjectively prefer LA+SA to their
current control approach (End-Effector).

Results The objective results of our case study are visualized
in Figs. 30, 31, and 32. In Fig. 30we display themotion of the
robot’s end-effector for the Dessert task: comparing the tra-
jectories, we observe that End-Effector resulted in disjointed
motions where users constantly switched between control-
ling the x , y, or z position of the robot’s fork. By contrast,
LA+SA helped users smoothly and directly move between
goals.

To explore H1 we specifically analyzed the Goal Error
and Total Time for both tasks and participants (Figs. 31
and 32). Across disabled users we noticed a clear trend:
our proposed LA+SA helped participants accurately reach
their high-level goals while reducing the Total Time and Idle
Time required to complete the tasks. These trends match our
results with non-disabled users (see Sect. 9.3), and suggest
that combining latent actionswith shared autonomy improves
objective performance during eating tasks.

We also asked for free-form feedback after the experiment
to better understand the perspective of disabled users. The
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Fig. 31 Error between the robot’s fork and the closest goal during
both Entree and Dessert tasks. We separately show the results for each
disabled user

Fig. 32 Total time taken to complete the task (solid) and the idle time
where users were trying to select their joystick input (light). Time is
measured in seconds. As before, we separately show the results for
each disabled user. Notice that the Dessert task took both users over 5
minutes with End-Effector, but less than 2 minutes with LA+SA

participants’ responses generally supportedH2. User 1 stated
that4:

Comparing End-Effector to LA+SA, the former was
a lot harder, and LA+SA was way easier in probably
every aspect. LA+SA was a little bit confusing in the
sense that I wasn’t sure right off the bat what the joy-
stick directions meant, but after using it for a minute or
two it was really, really intuitive. Overall, LA+SA was
great and I would definitely use it.

User 2 similarly mentioned that:

With LA+SA it was much easier to get those broad
strokes of where I wanted to go, and more intuitive in
how the robot moved, together with a simpler interface.

Summary This small-scale case study with two disabled
users compared their typical end-effector control interface to
our proposed latent action approach. Both participants per-
formed better with learned latent actions (H1): they moved
the robot closer to their high-level goals and completed the
task in less total time. Users also perceived latent actions as
a better approach for the two assistive eating tasks (H2).

4 We have added the condition names for clarity in these quotes. Par-
ticipants did not know what the conditions were during the user study,
and referred to them as “the first one” or “the second one.”

11 Conclusion

Our user and case studies separately and collectively test
the key parts of our approach from Algorithm 1. We learn
latent actions from kinesthetic demonstrations, and then
enable users to control assistive robots with these learned
actions. Our results demonstrate that controlling robots with
learned latent actions outperforms the baseline shared auton-
omy dataset as well as direct end-effector teleoperation.
Incorporating shared autonomy with latent actions further
increases performance: shared autonomy helps the user reach
and maintain high-level goals, while latent actions focus
on low-level, precise manipulation. We also leveraged our
semi-supervised approach to learn the human’s personalized
alignment between joystick inputs and latent actions—in
practice, this reduced the number of queries the human
needed to answer, and resulted in more efficient task com-
pletion than one-size-fits-all alternatives. Overall, our latent
action approach is a step towards intuitive, user-friendly con-
trol of assistive feeding robots. Our case study with two
disabled users suggests that, in practice, controlling robots
with learned latent actions makes assistive eating easier.

Limitations One key limitation of our approach occurs
when the user encounters a new task never seenwhen training
the latent actions. Here we cannot rely on latent actions—
but we can revert to a baseline teleoperations scheme (e.g.,
end-effector control), and let the user complete the task
using this default teleoperation mapping. We then include
the demonstrated behavior within D, retrain, and lever-
age learned latent actions the next time we encounter this
new task. We emphasize that disabled persons can always
provide new demonstrations by reverting to the standard,
pre-defined teleoperation scheme to control the robot. How-
ever, directly retraining our learned latent actions on this
updated dataset presents some new challenges: (i) determin-
ing if we have seen enough data so that the learned latent
actions will perform robustly and (ii) ensuring that learning
new latent actions does not interfere with or override previ-
ously learned latent actions. Our future work focuses on this
challenge—we envision assistive robots that continuously
alternate between learned latent actions and end-effector con-
trol to balance between compact, intuitive embeddings and
full, high-dimensional control over the robot.
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