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Abstract
Haptic exploration is a process of using haptic feedback to interact and perceive an unknown object. It is an essential approach
to understand the physical and geometrical properties of the object. While numerous research has been carried out for haptic
exploration on static objects, haptic exploration on objects with dynamic movements has not been reported. It is due to
the significant challenges to achieve robust force and velocity control when the object is nonstationary. In this work, a novel
adaptive force and velocity control algorithmbased on intrinsic contact sensing (ICS) for haptic surface exploration of dynamic
objects is presented. A fuzzy-logic control framework making use of the information obtained from ICS has been developed.
To validate the proposed control algorithm, extensive surface exploration experiments have been carried out on objects with
different surface properties, geometries, stiffness, and concave or convex patterns. The validation results demonstrate the high
accuracy and robustness of the proposed algorithm using different experimental platforms.

Keywords Haptic · Autonomous control · Fuzzy logic

1 Introduction

Haptic exploration of the surface is a fundamental tool for
humans to understand the surface properties of unknown
objects with only tactile sensing (Lederman and Klatzky
1993, 2009), especially in reduced visibility scenarios like
underwater, smoky disaster environment and inside tissues
during surgery. It has many useful applications in areas like
robot surgery (Amirabdollahian et al. 2017), shape recov-
ery (Rosales et al. 2018), heritage recording (Jamil et al.
2018), dexterous robot hand (Kappassov et al. 2015). Unlike
computer visionwhich has been progressing tremendously in
recent years, haptic sensing and interaction remain as techni-
cally challenging due to the relatively limited development of
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contact sensing hardware and intelligent control algorithms
(Tegin and Wikander 2005).

Due to the direct interaction with the object, significant
hurdles in control and sensing are presented for haptic explo-
ration (Okamura andCutkosky 2001).With the emergence of
new force/tactile sensing hardware and data processingmeth-
ods, several new haptic exploration algorithms on unknown
objects and unstructured environment have been developed.
Lepora et al. have been working on the development of
the optical tactile sensors with bio-mimetic morphologies
(Ward-Cherrier et al. 2018), and they have used thus sen-
sors for robust contour following with deep learning method
(Lepora et al. 2019). Yin et al. (2018) developed a bio-
inspired tactile sensor skin for measuring dynamic shear
force and vibration. Fishel and Loeb (2012) and Xu et al.
(2013) proposed a Bayesian exploration method for iden-
tification of textures where they choose the exploratory
movements that would yield the most useful information.
Hellman et al. (2018) presented a reinforcement learning
method for contour followingwith haptic feedback.Yang and
Lepora (2017) tried to combine vision for object exploration
for edge estimation. Sommer and Billard (2016) presented a
Multi-contact haptic exploration method manly for grasping
tasks. Su et al. (2012) controlled the movement of the robot
arm in the contact normal direction with haptic feedback to
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characterize the compliance of the pressed object. Similarly,
Sornkarn and Nanayakkara (2017) used a soft robotic probe
to measure object stiffness with haptic control.

Konstantinova et al. (2014) presented that humans use
different force or velocity control strategies to detect abnor-
mality inside soft objects, and the performance of the
perception can be enhanced by controlling the exploration
speed. And Okamura (2000) showed that it is important to
maintain a proper normal force level during sliding explo-
ration procedures to guarantee the force sensing accuracy,
considering the practical limitation of the sensor hardware.
Furthermore, if the explore velocity can be controlled, more
information of the explored object such as surface viscosity
(Liu et al. 2012), break-away ratio (Song et al. 2014) can be
revealed. These all showed the paramount importance of the
good control of contact forces and scanning velocity during
haptic exploration.

However, to date, to achieve the force and explore velocity
control during haptic exploration is still an open challenge,
and an effective method for doing so has not been found
in literature. In most of the previous works, the exploration
procedure has been carried out by scanning over a relatively
flat surface of the object or by pressing. Some researchers
considered force control during 1 DoF compressing motion
(Su et al. 2012; Sornkarn and Nanayakkara 2017). A few
studies have been done on the sliding exploration but only
limited to static objects with simple geometry (like flat sur-
face), avoiding the problem of feedback force and velocity
control (Fishel and Loeb 2012; Hellman et al. 2018). Similar
to the work proposed in this study, Lepora et al. (2017) has
proposed an exploratory tactile servoing method where the
next exploration position was decided with a Bayesian per-
ceptual framework, but the force was not actively controlled
in their study and the objects were static. Li et al. (2013)
introduced a tactile servoing control framework adapting a
PID controller, which can be used to realize a specific tactile
interaction pattern. Yang et al. (2013) presented a learning
algorithm for simultaneous force control and haptic identifi-
cation, where they used complicated models instead of real
force sensor, and the algorithmwas only tested in simulation.
Okamura and Cutkosky (2001) used a 2 DoFs robot finger to
detect features with haptic exploration, where they presented
that the force was kept low; however, no detailed results were
shown. Therefore, to the best of the surveyed knowledge, the
robust and accurate normal force and explore velocity con-
trol when the object is dynamically moving during surface
exploration has not been reported.

To overcome the challenges, continuous study has been
carried out on enhancing haptic sensing capability to realise
adaptive contact force and velocity control. Adapting ICS
with 6-axis force-torque measurement (Bicchi et al. 1993),
a real-time contact sensing algorithm has been developed
to provide instantaneous contact location, normal force and

tangential force (Liu et al. 2012, 2015).With the precise con-
tact information, an efficient algorithm has been designed
based on normal force conditions to control the robot finger
to explore the surface while maintaining the contact normal
force (Back et al. 2015). However, there are three major lim-
itations in the previous algorithms to prevent it from being
applicable to dynamic objects. First, previous controlmethod
is prone to induce large force control error when the surface
has large curvature changes or uneven. Second, the controller
has a fixed set of parameters and cannot be adapted to differ-
ent objects to achieve similar good performance. Third, the
velocity of the finger sliding is not controllable.

In this study, the following contributions have been
made: (1) A robust and adaptive normal force and explore
(scanning) velocity control algorithm was developed based
on haptic information during surface exploration. It was
evaluated using a self-fabricated contact sensing finger on
non-stationary objects. Objects with variant surface physi-
cal and geometry properties were tested and results show
that the normal force control method can achieve an aver-
age mean square error (MSE) less than 0.006 and standard
deviation (SD) less than 0.07N. Also, the explore velocity
can be controlled with an average Δv of 0.48mm/s and SD
of 2.07mm/s. (2) A fuzzy-logic control framework was cre-
ated that can increase the flexibility of the control algorithm,
especially when the object is non-stationary and its proper-
ties are unstructured. The control rules of the fuzzy method
can be changed adaptively corresponding to different objects
being explored by shifting the membership boundaries. (3)
The control algorithmcan be applied to deviceswith different
kinematic configurations that have different workspace and
force ranges. The algorithm was validated successfully with
a 6 DoFs robot arm (with a contact sensing tip mounted)
using objects with different stiffness and geometries. (4)
Even though the type of contact was point contact in the
tests, it also works for surface contact (using tactile array
sensor) if contact locations can be obtained in real-time.

2 Experimental platform

Three platforms have been created to validate the proposed
algorithm, which are denoted as platform-a, b and c. The
designed experimental platform-a consists of twomain parts:
one is the self-fabricated contact sensing finger, and the other
is the Universal Robot (UR)-3 robot arm. The contact sens-
ing finger consists of two joints, one fingertip and the base
connecting the UR-3 robot arm, as shown in Fig. 1. Each
joint consists of a DC motor (Maxon DC motor RE10 with
encoder) and a bevel-gear box (reduction: 1:1). The Maxon
control panel (POS2 24/2) is used to control the position or
velocity of the motor. The maximal frequency of the position
or velocity control is 1kHz, and such high frequency enables
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Fig. 1 The contacting sensing finger (platform-a), which consists of 2
joints and a fingertip, is shown in the top pictures. The joints consist
of 3D printed links and metal connection parts, and each has a Maxon
motor and bevel gearbox inside. An ATI Nano17 6-axis force-torque
sensor is embedded inside the fingertip and coveredwith a polyurethane
rubber layer. It has a 3D printed base that can be mounted on the UR-3
robot arm (bottom picture) as platform-b. The robot arm can rotate to
any desired angle to allow the finger to explore more areas

the high-level (trajectory generation and decision making)
control to be accurate and rapid. For motor control, a multi-
threadmethod is used to eliminate the asynchronizationwhen
controlling multiple motors, which ensures the accuracy of
the position control and is beneficial for the control of more
joints or fingers. The high precision of the motor control
panel and the self-locking mechanism on the joint (the baf-
fles at 90 degrees) ensure the repeatability of the exploration,
making the online multi-time haptic exploration possible.
Experimental testswere also carried out to record the position
deviation of the joints after several explorations and input the
error into the control system as the compensation to reduce
the error caused bymechanical fault and friction between the
components.

For fabricating the fingertip, the inner core was firstly 3D-
printed with plastic and then embedded into a layer of 2mm
rubber. The Poly 74-30 liquid rubber from PolytekTM was
used to construct the polyurethane rubber layer, its hardness
is 30A Shore, and young ’s Modulus is 100psi. The whole
fingertip (3D printed core and rubber layer) has very high
hardness and is close to rigid body; therefore there was no
deformation within the range of the forces used in exper-
iments, and no effect of hysteresis. The study of fingertip

Fig. 2 The haptic exploration platform-c involving a UR-3 robot arm
and a contact sensing tip. The tip has a Nano17 force-torque sensor
and a self-fabricated cap made of silicon. The tip is mounted to the
end-effector of the arm using a 3D printed connection

materials that are softer and more flexible will be future
work. Inside the fingertip, an ATI Nano17 force-torque sen-
sor (resolution: 1/160N) was installed. It is a six-axis sensor
providing force and torque data along its x, y, z-axis, and the
data can be updated at a frequency of 7200Hz with a DAQ
data acquisition box.

The software was developed with ROS (robot operating
system, www.ros.org) using an Ubuntu PC (CPU: i7-6700
@3.4GHz and 16G RAM). The PCIe-6320 data acquisition
card (up to 16kHz) is used to obtain sensor data, and then
ROS programs are used to communicate with the card to get
and process the data. In practical, the tactile sensing toolbox
(TST) proposed in Ciotti et al. (2019) was used for sensor
data processing and contact location estimation. Including
the other modules like the control and calculation, the loop
frequencyof theROS is 100Hz,meaning it updates the sensor
data and finish all the necessary computations every 1/100s.
The finger is installed on a 3D printed base, which can be
mounted on the UR-3 robot arm. This finger and robot arm
combined platform is denoted as the platform-b. The base can
be rotated to any angle through the robot arm to achieve the
exploration on more surfaces, as shown in Fig. 1 bottom. For
the next steps, more fingers will be mounted on the base to
realize the larger area’s exploration and achieve more actions
other than surface exploration. These together will help to lay
a solid hardware foundation for the active exploration and
dexterous manipulation system.

Moreover, to evaluate the proposed algorithm with larger
working space and force ranges, theUR-3 robot armwas used
for haptic surface exploration as platform-c. TheNano17 sen-
sor was covered with a silicone cover and fixed onto the robot
arm end-effector to provide real-time force-torque data for
the control algorithm, shown in Fig. 2. Since the workspace
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of the finger is limited and the force generated by it is rel-
atively small, the robot arm with more flexibilities helps to
validate the proposed algorithm in largerworkspace and force
control range. On the contrary, the contacting sensing finger
can realize finer force and velocity control due to the high
frequency and accuracy of the motors, which is a good tool
to verify the robustness of the control algorithm in the low
target range. More will be detailed in the experiment section.

3 Control algorithm

With the experimental platform, an adaptive real-time nor-
mal force and explore velocity control algorithm has been
developed. A fuzzy-logic framework using the haptic infor-
mation was designed for haptic exploration on objects with
dynamic movements. In this section, the overall control pro-
cess will be shown first, and then the detailed introduction of
the main components constituting the control algorithm will
be presented.

3.1 Overall control process

The overall control process of the proposed algorithm is
shown in Fig. 3 and Tables 1, 2 show the definition of the
variables. The control algorithm is a feedback control sys-
tem, and the input of it has two parts: force and torque values
from the Nano17 force-torque sensor, each with three com-
ponents ([ fx , fy, fz)]T and [mx ,my,mz]T ), and the position
information from the photoelectric encoders inside motors
(E1, E2). The control process starts when the fingertip is
contacting the object, and to determine that state, a threshold
function is used, i.e. it is determined that the finger is contact-
ing the object when the force obtained from the force sensor
is larger than a pre-decided value ϑn . With this method, at
the beginning, the finger is controlled to move close to the
surface of the object, and the contact state is confirmed when
sqrt( f 2x + f 2y + f 2z ) > ϑn . In practice, this action is similar

Fig. 3 The overall flow of the control algorithm, which is a closed-loop
control system. The output K is obtained after the inputs (εt , ε̇t ) have
been processed, and the inputs are updated with the motor movement.
The overall loop rate is 100Hz using ROS

Table 1 Parameter notation for control system

Name Definition

εt Force error between measured and target, N

ε̇t Change rate of error, N/s

‖FN‖d Desired normal force, abs value, N

‖FN‖m Measured normal force, abs value, N

K Fuzzy control output, a coefficient

Pnow Coordinates of current position in base frame

Pc Coordinates of contact point in fingertip frame

Pnext Coordinates of next position in base frame

Table 2 Parameter calculations

Notation Calculation

Frames Base frame {O}(XO , YO ),
fingertip frame {E}(YE , ZE )

Sum of joint angles θ12 = θ1 + θ2

Angle of contact point
in fingertip frame

θc = arctan2(ze, ye)

Angle of the normal
force in base frame

θN = θ12 − θc

Correcting force F′
N = abs(K (FN − Fd ))

Virtual tangential force F′
T = KPFT , (KP = −1)

Angle between
correcting and guiding
force

β ′ =
arctan2(−‖F′

T ‖, K‖F′
N‖/|K |)

Angle of guiding force
in base frame

α = θN + β ′

Next position to reach Pnext = Pnow + Sv · [cosα, sinα]T

to humans’ attempt to feel the object with only touch. With
the force and torque values obtained from the force-torque
sensor, the contact point position in fingertip frame Pc can be
obtained through methods presented in Liu et al. (2015) and
Ciotti et al. (2019). With (E1, E2) from motor encoders, the
contact location in the base frame Pnow is obtained through
forward kinematics.

With Pnow obtained, the next is to decide the new loca-
tion on the surface for the fingertip to reach while keeping
the normal force as desired. The resultant normal force and
tangential force are obtained simultaneously with the con-
tact position through the TST. The control target Fd is then
subtracted from the measured normal force to get the error
εt and εt is divided by the cycling time to get the changing
rate of the error: ε̇t = εt/dt . And (εt , ε̇t ) are the input of
the fuzzy control method. The output of the fuzzy control
method is a coefficient K , which is used to generate a cor-
recting force, helping the finger maintain the normal force.
In detail, each K is used to provide a correcting force vec-
tor that leads the finger to move either far away or closer to
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the object surface along the normal direction of the object.
Then a virtual tangential force F′

T is obtained by taking the
opposite direction of the measure friction force FT , to make
the finger to move forward along the surface of the object.
These two forces form a total force vector that can be used
to decide the next explore location. As shown in Table 2, K
is first used to decide the magnitude of the correction force
(F′

N ), and the angle α of the total force in frame {O} is calcu-
lated after getting the required angles (θN and β ′). After that,
a Sv parameter is used to determine the size of the increment
for the next location (Pnext ), whose unit is mm. It can be
obtained through experiments or controlled with closed-loop
control.

WithPnext been determined, the control signals formotors
are generated through inverse kinematics of the platform.The
motors are then controlled by motor controllers to rotate to
desired positions. The force changes induced by the move-
ment of the object or local geometric changes will increase
the force error, and the control algorithm will make adjust-
ments accordingly as quickly as possiblewithin its capability.
This control loop keeps cycling until the finger is not contact-
ing the object or any one of the finger joints has reached the
predefined limit. After that, the haptic surface exploration on
an area of the contacting object is completed subsequently.

3.2 Contact location estimation

In the control algorithm, there are two main coordinate
frames, the base {O} and ellipsoid fingertip frame {E}, and
the control method is based in the base frame. The control
goal is to determine the next exploration location and main-
tain the magnitude of the normal force simultaneously. To
realize this goal, the current contact point in the base frame
Pnow needs to be calculated firstly. Let the coordinates of
the contact point to be PE

c = [xe, ye, ze]T in frame {E}, and
Pnow = [xo, yo, zo]T in frame {O}.

It should be noted that the fingertip material used in the
experimental platform is very stiff and the effect of hysteresis
can be ignored. And to verify this, experiments were carried
to evaluate the force-deformation relationship when loading
and releasing forces on the fingertip. As a result, the force
reached5Nwhen thedeformationwas less than0.5mm; thus,
it was reasonable to ignore the deformation of the fingertip
in this study. Therefore, the equilibrium equation in Liu et al.
(2015) has been simplified to (1),wherea = b = 15, c = 9.5
are the dimensions of the ellipsoid fingertip, S is the func-
tion for the ellipsoid, and k is a scaling factor. As future
work, softer fingertips will be fabricated to estimate the sur-
face haptic exploration on objects with different stiffness,
which will be of great help in the research of flexible and
soft manipulators.

g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

k ∂S
∂xe

− fy ze + fz ye − mx

k ∂S
∂ ye

− fz xe + fx ze − my

k ∂S
∂ze

− fy ze + fy xe − mz

x2e
a2

+ y2e
b2

+ z2e
c2

− 1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (1)

The contact information x = [PE
c , k]T can be obtained by

identifying the roots of g(x) = 0. The Levenberg–Marquardt
(LM) method, which is a gradient-based iterative method for
non-linear parameter estimation, was used to get the solution
iteratively. After PE

c has been acquired, with joint angles
measured by motor encoders, Pnow can be obtained through
forward kinematics:

Pnow = PE
c · [T1T2T3] · R1 (2)

T1 =

⎡
⎢⎢⎣
cosθ1 −sinθ1 0 cosθ1l1
sinθ1 cosθ1 0 sinθ1l1 + l0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (3)

T2 =

⎡
⎢⎢⎣
cosθ2 −sinθ2 0 cosθ2l2
sinθ2 cosθ2 0 sinθ2l2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (4)

T3 =

⎡
⎢⎢⎣
1 0 0 ye
0 1 0 −(l3 + ze)
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (5)

R1 = [0, 0, 0, 1]T (6)

3.3 Next position determination

With the obtained current contact position in the base frame,
the next position was derived considering the contact normal
force. The parameters required for the next position deci-
sion were calculated geometrically, and for easier view, a
schematic diagram shown in Fig. 4 was drew. Table 2 shows
the calculation of the relevant variables. Two key points have
been considered when deciding the next position to explore:
the first one is to maintain the magnitude of the normal force
within the desired range, the other one is to control the fin-
ger to move forward following the surface of the object. For
the first point, a virtual normal force was generated based on
(εt , ε̇t ), which can guide the finger to move closer or away
from the normal direction of the object, and the normal force
will increase if closer to, and vice versa. This virtual normal
force is called the “correcting force”, and denoted as F′

N . K
was obtained through the fuzzy controlmethod,whichwill be
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Fig. 4 A schematic diagram showing the calculation of related angles
when deciding the next explore location. The definition of the notations
can be found in Table 2. The black curve contacting the contact sensing
finger is a sketch of the object outline. The right-hand side is amagnified
view of the contact area details. This figure only shows the situation
where the correcting force F′

N has the same direction with the real
normal force, which means the real force is smaller than the target
force, and the finger needs the push towards the object to increase the
force

detailed in the next section. In practice, this decision-making
strategy is similar to the rule human beings use when they
explore the surface of the object. Humans normally push fur-
ther when they want to increase the pressure and leave away
to reduce it.

For the second point, a virtual tangential force F′
T was

introduced proportional to the tangential force on the finger-
tip, but in the opposite direction. This force can ensure that the
finger moves forward along the surface of the object. Com-
bined with F′

N , a total force FG was obtained. The force FG

can guide the finger to move along the surface of the object
and maintain the normal force, which is called the “guid-
ing force”. And based on this guiding force, the direction of
the next position Pnext in base frame was calculated. Table
2 shows the detailed calculation of related angles. First, the
angle θN of the normal force in frame {O} was calculated
based on the angle of contact point in frame {E}, then the
angleβ ′ betweenF′

N andFG was obtained after obtaining the
forces, finally the angle α ofFG in frame {O}was calculated.

Next, Sv was introduced to determine the incremental
size of the next exploration position compared to the cur-
rent position. As mentioned above, it can determine not only
the velocity of exploration but also the control accuracy
and sensitivity to external disturbances induced by geome-
try changes, surface roughness and the movement of objects.
Practically, when the object moves, the force error with the
target force changes accordingly, the control method makes
adjustments to eliminate the error as quickly as possible,

which means the response time is affected by Sv . For exam-
ple, if the object moves away from the finger, the error
will become larger and Pnext will be closer to the object
to increase the force.

After Pnext has been obtained, the motor control signals
were obtained through inverse kinematics. By rotating the
motors to the required positions, the finger will move to
explore the next location. Repeating this action until the
finger finished contacting the object surface, the surface
exploration was completed while maintaining the local nor-
mal force in the whole exploration process. As shown above,
providing the geometric configuration of the tip, forward and
inverse kinematics of the platform, the control variables can
be obtained, regardless of the number of DoF of the platform.
Which indicates that the control algorithm is not limited to
this two joints finger, it can also be applied to more com-
plicated device like robotic arm or soft robots. However, the
parameters for the fuzzy control method and rotation matrix
for different devices are slightly different due to their specific
moving resolution, exploration direction and force ranges.
Therefore, for different devices, re-calibration is necessary
to achieve the best performance, which in theory needs to
be done only once. Practically, the calibration of the fuzzy
control method can be done automatically with optimized
methods by miniaturizing the error between the requested
and real haptic exploration data, which could be explored
more in future work.

3.4 Fuzzy control method

Fuzzy control method has been studied extensively in robot
systems recently (Aviles et al. 2016). da Fonseca et al.
(2017a) and da Fonseca et al. (2017b) used the fuzzy control
method to realize grasp and exploration tasks with a three-
fingered robotic hand and have achieved good results. It is a
method that mimics the intuitive decision-making process of
humans. Humans can solve complex problems using impre-
cise information such as common sense, expert knowledge,
or prior experience which does not require precise models
(Takagi and Sugeno 1993). Such information can be repre-
sented by linguistic rules, like in If-Then format (Tanaka and
Wang 2004). And fuzzy logic is the theory of fuzzy sets that
can represent mathematically the human spirit for approx-
imation reasoning based on imprecise information, which
is also a major advantage over other classic control meth-
ods that usually require very precise modelling or parameter
fine-tuning. When the external environment is complex, or
the current state is unknown, it will be difficult to obtain an
accurate model due to the unclear state and influence fac-
tors. In such scenarios, the fuzzy control method can better
satisfy the control requirements (de Silva 1995). For exam-
ple, when a person touches a soft or brittle object, they will
choose to use less pressure to avoid breaking the object, and
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when they encounter a bump or obstacle, they will leave the
surface of the object for further exploration correspondingly.
These decisions are not precisely made but intuited by learnt
knowledge or former experience.

Conventional control techniques such as PID control,
nonlinear feedback control, etc. can provide good stability,
robustness to uncertainties and disturbances when the under-
lying assumptions are satisfied and values of the controller
parameters are known. However, these control algorithms
are inflexible and cannot generally handle vague or chang-
ing situations. Fuzzy control method is a particular type of
intelligent control, which has a knowledge-base within the
controller, and the control actions are generated through an
inference mechanism. It can handle vague or incomplete
information and the knowledge itself can evolve through
learning (de Silva 1995). Experiments using classic control
method—PID control have been carried out, and the results
show that for a fixed object and a certain area on the object,
the normal force can be controlled at a relatively fine level
during exploration with fixed P, I and D values. However, for
another object or a different area on the surface, the P, I and
D values needed to be fine-tuned before they can be used to
get similar performance. As in this study, the finger was con-
trolled to explore objects with dynamic movement at random
areas, the fuzzy controlmethodwhich hasmoreflexibilities is
more suitable. Figure 5 shows the normal force result of using
the fuzzy method and PID method for the rough plate (no.
25, shown in Sect. 4). The parameters were obtained for both
methods using the light bulb as the learning object, and the
rough platewas used for the testing object. As a result, the SD
andMSE of the resultant normal force (target normal force is
0.6N)when using the fuzzymethod are 0.08N and 0.0067N,
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Fig. 5 The figure shows the normal force result during the exploration
of the rough plate (no. 25) using the fuzzy and PIDmethod. The param-
eters were obtained for both methods using the light bulb as the training
object, and the rough plate was used as the testing object. It can be seen
that the vibration of the normal force when using the PID method is
much larger than that when using the fuzzy method. The SD and MSE
of the normal force are 0.08N and 0.0067N when using the fuzzy con-
trol method, and 0.11N and 0.013N when using the PID method. The
results indicate the better flexibility of the fuzzy method

while for the PID method, they are 0.11N and 0.013N. The
results indicate the better flexibility of the fuzzymethodwhen
dealing with dynamic and unknown object. Also, by chang-
ing the boundary of thememberships, the control method can
be adapted to different objects. Therefore, in this study, the
fuzzy control method was selected.

A fuzzy control system mainly consists of 4 compo-
nents: Fuzzifiers: It maps the real-valued input into fuzzy
sets characterized by membership functions. Rule Base: It
is a knowledge base consisting of linguistic rules in If-Then
format. It can be obtained through experiments or experi-
ences. Fuzzy Inference Engine: Using the If-Then rules in
the knowledge base, it performs reasoning by producing a
fuzzy output according to the fuzzy input given by the fuzzi-
fier. De-fuzzifiers: It converts the fuzzy output given by the
fuzzy inference engine to produce a real-valued output. To
create the fuzzy control framework of the control algorithm,
these four components were designed.

The inputs of the system are the force error between the
measured and target value and its changing rate: (εt , ε̇t ). The
input will be converted into fuzzy sets represented by mem-
bership functions, and the continuous fuzzy set was used in
this work, which is denoted as:

Fs =
∫

μF (x)

x
(7)

where x is indicating the input data. The boundaries are
defined as the region of the universe of which 0 < μF (x) <

1. There are commonmembership functions such as Triangu-
lar function, Gaussian function, Bell function, etc. Different
types of membership functions were tested, and the Gaussian
function has been selected, which showed the best perfor-
mance. The fuzzy output is also an inferred membership
function, and by moving the boundaries of output member-
ship functions, the coverage of different memberships can
be changed, and the final control inclination following pre-
defined logic rules is modified adaptively. For example, after
one exploration, if the average normal force error is too large,
the boundaries can be shifted rightward to decrease the cover-
age of the closing action. In thisway, if the controller attempts
to increase the normal force, the magnitude will be smaller.
Figures 6, 7 and 8 show the fuzzy control frame of using the
Gaussian function for the input and outputmemberships. The
number of output memberships is decided by the knowledge
base, and they are shown in different line types.

For creating the knowledge base, a 9-rule IF-THEN (IF
premise THEN conclusion) rule base was formed shown in
Table 3. In which “Leave” means controlling the finger to
leave away from the surface of the object, “Close” means
moving closer to the object and “Stay”meansmaintaining the
distance from the object in the contact normal direction. And
“small”, “medium” and “large” mean the level of the actions.
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Fig. 6 The figure is showing the Gaussian distributions of the fuzzy
input (εt ). The line types present the different memberships. εt has the
range of (−0.5, 0.5)N, and it has three components: the negative, zero
and positive with mean value of −0.5, 0, and 0.5 respectively

-10 -8 -6 -4 -2 0 2 4 6 8 10

de (N/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
ie

s

Fuzzy input distribution - de
Negative
Zero
Positive

Fig. 7 The figure is showing the Gaussian distributions of the fuzzy
input (ε̇t ). The line types present the different memberships. ε̇t has the
range of (−10, 10)N, and it has three components: the negative, zero
and positive with mean value of −10, 0, and 10 respectively

Both (εt , ε̇t ) have values of positive, zero and negative, the
combination of these situations forms 9 (3x3) rules. The rules
can be adjusted based on the experiment results, for example,

when εt is positive and ε̇t is zero, the conclusion can either
be “leave medium” if εt has larger effect or “leave small” if
the effect of εt is not significant. As mentioned before, fuzzy
logic represents mathematically the experienced knowledge
for approximation reasoning; it requires the learnt knowl-
edge or experience to decide the rules. The bulb object was
chosen to get the fuzzy rules and decide the range of output
membership functions. For the fuzzy inference engine, the
Mamdani (max-min) inference method was selected, which
can present a fuzzy output inmembership function according
to the fuzzy input. The centroid method was selected (also
known as the centre of gravity (CoG)), which provided us
with satisfied output values. The CoG for continuous form
can be calculated using:

K = z∗ =
∫

μF (z)zdz∫
μF (z)dz

(8)

where μF (z) is the membership function for the output and
K = z∗ is the output value.

With the input being mapped into membership functions,
the output K used for deciding the next explore location
was obtained with the de-fuzzifier, following the rules in the
knowledge base. Thus, the fuzzy control method has been
finalized. For the software implementation of the fuzzy con-
trol method, the fuzzylite library (https://fuzzylite.com/) has
been used.

3.5 Explore velocity control

It has been found out that the Sv is the parameter that affects
the explore velocity and study on how Sv can be used to
control the explore velocity has been carried out. For each
exploration, Sv can either be fixed or controlled with closed-
loop control. In the test, when Sv was fixed, the average

Fig. 8 The figure is showing the
Gaussian distributions of the
fuzzy output K . The line types
present the different
memberships. As shown in the
figure, K has the range of
(−1,1), and it is following 9
rules involving 7 actions: leave
large, leave medium, leave
small, stay, close small, close
medium and close large, with
μK of −1, −0.7, −0.3, 0, 0.25,
0.6 and 1 respectively
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Table 3 Fuzzy knowledge base IF-THEN Linguistic rules

εt Positive (0 to 0.5) Zero (−0.2 to 0.2) Negative (−0.5 to 0)

ε̇t

Positive (0 to 10) Leave large Leave medium Close small

Zero (−10 to 10) Leave medium Stay Close medium

Negative (−10 to 0) Leave small Close medium Close large

explore velocity turned out to be similar for different objects,
but the standard deviation was relatively high. In this work, a
PID controller for the velocity control was created. And for
creating the controller, the real-time velocity was calculated
with vm = lm/dt , where lm is the length the finger moved in
the base frame in one loop and dt is the time used for one
loop. After filtering the vm with a moving average filter (the
filter takes 10 points as the input), the error with the desired
vd was fed into the PID controller to generate the Sv value for
the next position decision. A new Sv will change the explore
velocity in the next movement. Algorithm 1 shows the detail
of the control process.

Algorithm 1 Velocity control algorithm
1: Initialise variables, lm = 0, count = 1, I = 0, Sv = 0.45mm,

decide kp, ki , kd , input target velocity vd , εv = vd
2: while joint angles θ1, θ2 < θlimit do
3: if count == 1 then
4: Get current time t and contact position Pt
5: Action: Haptic exploration with initial Sv

6: count ← count + 1
7: Get new contact position P′

t and time t ′
8: Compute the distance the finger travelled: lm ← dis(Pt ,P′

t )

9: Compute the velocity vm ← lm/(t ′ − t)
10: Smooth vm with moving average filter
11: New error ε′

v ← vd − vm , I ← I + ε′
v ∗ dt

12: Compute the new S′
v with PID controller:

13: S′
v ← kp ∗ ε′

v + ki ∗ I + kd ∗ (ε′
v − εv)/dt

14: Store current error: εv ← ε′
v , time t ← t ′

15: Store current position Pt ← P′
t

16: Action: Haptic exploration with S′
v

17: return 0 � Return 0 if finished successfully

When Sv was changed with the PID controller, the stan-
dard deviation of the velocity became smaller, thus, the
velocity control for surface exploration has been achieved.
Thevelocity control canhelp to get velocity relatedproperties
such as viscous friction coefficient fv which can be obtained
by measuring the viscous friction Fv and the coefficient is
calculated using fv = Fv/v. With the explore velocity been
controlled, the instantaneous power generated by the friction
during the contact and sliding is also controllable, which
is helpful in manufacturing procedures like grinding. More-
over, it can be beneficial to the control of explore efficiency
during haptic perception, facilitating the development of an

Fig. 9 The objects used in the haptic exploration experiments. From top
to bottom, left to right is: bulb, mouse, 3D printed statue, cup, human
finger, soft box, sponge (softer), black sponge,metal spring, glass bottle;
and plates made with different materials and patterns: mirror stainless,
satin stainless, BA stainless (canvas), BA stainless (squares), BA stain-
less (13SD), BA stainless (cambridge), BA stainless (11PS), bronze
stainless (pippin), green stainless (poppy), BA stainless (5WL), BA
stainless (2WL), BA stainless (7GM), BA stainless (6WL), BA stain-
less (9EH), red stainless (pearl)

active exploration algorithm where velocity is important for
deciding the time cost.

4 Haptic surface exploration experiments

With different platforms, various haptic surface exploration
experiments were carried out to evaluate the performance
of the developed control algorithm. In this section, the one-
time exploration with the contact sensing finger (platform-a)
will be introduced first, followed by the adaptive parameter
tuning for the multi-time explorations using platform-b, then
the haptic exploration with the robot arm (platform-c) will
be presented, and the velocity control experiments using the
platform-a will be shown at last.
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Table 4 Force control results of haptic exploration

Resultant normal force standard deviation (N) and MSE

No. Fd -0.2N Fd -0.4N Fd -0.5N Fd -0.6N Fd -0.7N

1 0.047 0.0038 0.045 0.035 0.075 0.0077 0.09 0.0083 0.091 0.0085

2 0.054 0.0036 0.056 0.037 0.059 0.006 0.076 0.0067 0.083 0.008

3 0.052 0.0033 0.07 0.006 0.076 0.0074 0.083 0.0084 0.12 0.013

4 0.048 0.0026 0.05 0.0033 0.065 0.0067 0.075 0.0063 0.09 0.0083

5 0.063 0.0048 0.07 0.0055 0.086 0.008 0.1 0.01 0.13 0.012

6 0.051 0.003 0.062 0.006 0.072 0.0065 0.076 0.0066 0.09 0.01

7 0.04 0.0033 0.052 0.005 0.064 0.0059 0.085 0.0082 0.09 0.0085

8 0.04 0.003 0.045 0.004 0.075 0.0065 0.078 0.0075 0.093 0.0094

9 0.047 0.0032 0.053 0.003 0.077 0.007 0.086 0.0088 0.1 0.01

10 0.045 0.0031 0.053 0.003 0.064 0.0079 0.089 0.0085 0.095 0.009

11 0.039 0.0027 0.05 0.0039 0.068 0.0052 0.071 0.006 0.076 0.0076

12 0.04 0.0027 0.05 0.004 0.066 0.0052 0.069 0.0077 0.079 0.0073

13 0.04 0.003 0.049 0.0032 0.066 0.0062 0.069 0.0066 0.09 0.0082

14 0.053 0.0037 0.057 0.0036 0.066 0.0047 0.071 0.0048 0.08 0.0078

15 0.043 0.003 0.056 0.0039 0.07 0.0059 0.072 0.007 0.093 0.0083

16 0.038 0.0031 0.056 0.0039 0.073 0.006 0.079 0.0067 0.095 0.0085

17 0.042 0.0038 0.052 0.0035 0.079 0.0066 0.068 0.0071 0.09 0.0082

18 0.029 0.0032 0.052 0.0033 0.067 0.006 0.073 0.0063 0.086 0.0086

19 0.038 0.0033 0.048 0.0038 0.067 0.0052 0.076 0.007 0.09 0.0085

20 0.035 0.003 0.055 0.0046 0.079 0.0076 0.081 0.0075 0.09 0.009

21 0.037 0.0027 0.054 0.0035 0.071 0.0057 0.075 0.007 0.09 0.0084

22 0.054 0.0034 0.057 0.0042 0.068 0.008 0.078 0.0088 0.1 0.0093

23 0.056 0.0037 0.059 0.003 0.07 0.006 0.073 0.0085 0.093 0.01

24 0.049 0.0038 0.058 0.0046 0.082 0.008 0.089 0.0096 0.1 0.0096

25 0.055 0.0036 0.062 0.0045 0.085 0.008 0.095 0.0085 0.12 0.0099

Avg. 0.045 0.0036 0.055 0.0039 0.072 0.0064 0.076 0.0072 0.093 0.0089

4.1 Single time haptic surface exploration

For carrying out the experiments with the contact sensing fin-
ger (platform-a), 10 objects with different surface properties
(friction, roughness), geometry and stiffness, and 15 plates
made of different materials with different surface patterns
were selected, shown in Fig. 9. It should be noted that, due
to the limited power of the motor, the maximum force the
finger can generate is less than 1.1N, thus, the controllable
force was constrained to 0.2–0.7N in the tests. The target
forces used in the experiments were shown in Table 4. For
each object, the haptic exploration started after the contact
was confirmed and ended until the finger finished contacting
the object. The Sv was chosen from 0.35, 0.45, and 0.55mm
randomly for each exploration. During each exploration, the
normal force and velocity at each contact point were stored
in vectors. And after the exploration, the mean value μ f and
SD σ f of the force vector were calculated, and the MSE was
obtained by comparing the resultant normal force with the

target force. The μv and σv of the velocity vector were also
calculated.Algorithm2 summarizes the experiment protocol.

To provide the object with dynamic movement, two ways
have been used, the first was to use hand to hold the object
which would induce slight movement during the haptic
exploration, and the other was to move the object with ran-
dom displacement through a created device. For the second
approach, the object was mounted on the linear guide shown
in Fig. 10, which can generate a random displacement of
2–4mm during the exploration. Please refer to the video
of “dynamic_object_exploration (MOESM1).mp4” formore
details.

The normal force control results of one-time exploration
on the light bulb, black sponge, rough plate (no. 25), smooth
plate (no. 12) and 3D printed statue hold by hand are shown
in Fig. 11. It can be seen that, ignoring the rising period
of the normal force, the performance of the control is sat-
isfied for the bulb, black sponge and smooth plate, which
in total achieved an average standard deviation of 0.044N.
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Algorithm 2 Object haptic surface exploration
1: Initialise vectorVf ,Vv,Vd to store the resultant normal force, veloc-

ity and target force
2: Initialise variables, pointer = 1, sum = 0, input target force Fd

and put it into the vector Vd ← Fd
3: Initialise the parameters for fuzzy control method (FCM)
4: if contact normal force FN > ϑ f then
5: while joint angles θ1, θ2 < θlimit do
6: Get current contact normal force and store it in vector

Vf (pointer) ← Fn
7: Compute next moving position Pnext with FCM
8: Get the new angles to move next: θ1, θ2 ← I K (Pnext )

9: Action: The Motors rotate to the new positions
10: Record the time used dt and compute the distance L travelled
11: Compute the explore velocity v ← L/dt
12: Store the velocity in vector Vv(pointer) ← v

13: Update pointer ← pointer + 1
14: Smooth the data with filter, (Vf ,Vv) ← f ilter(Vf ,Vv), to get

rid of the erroneous data
15: Compute μ f ← Mean(Vf ), σ f ← SD(Vf )

16: Compute μv ← Mean(Vv), σv ← SD(Vv)

17: for each element i in Vf and Vd do
18: sum ← sum + (Vf (i) − Vd(i))2

19: MSE ← sum/pointer

20: return 0 � Return 0 if finished successfully

However, for the statue and rough plate, the vibrations of
the control are larger (SD=0.075N) due to the complex
geometry and large concave areas on the surface. In this
work, for getting the final results of the haptic exploration
experiments, only the data when the force became stable
were used, which means that the force data in the rising
period were omitted. In practical, the object was held by
hand and not fixed during the haptic exploration, which
added dynamic movement to the object. There are two
notable facts during the experiments. First, the initial contact
position was random and different for each test, and sec-
ond, as the hand was shaking when holding the object, the
object was moving slightly (1–3mm) during the exploration.
These all increased the difficulties for the control algorithm
and in return can show the robustness of the algorithm.
Please refer to videos of “Force_control_01 (MOESM4),
Force_control_02 (MOESM5), surface_exploration_statue
(MOESM6).mp4” for more details.

4.2 Adaptive parameter tuning

After the one-time exploration experiments were carried out,
the finger (platform-a) was mounted onto the end-effector of
the robot arm, forming the platform-b. The robot arm end-
effector can rotate to any degree after each exploration to help
the finger explore more areas on the surface of the object. In
the experiments, the arm was controlled to rotate every 30
degrees after one exploration, and the explorationwas carried
out again, in total, the arm rotated 60 degrees and returned to
the starting position. The resultant haptic information of all
the exploration procedures were recorded.

Fig. 10 The device used to generate a random displacement for the
objects. It consists of a linear guide and a 3D printed gripper. The linear
guide is controlled with a gear that can be rotated manually. The linear
guide moves 1mm after rotating the gear by one circle. The 3D printed
gripper can be adjusted on the metal rails for different objects
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Fig. 11 Normal force results of the one-time haptic exploration on the
surface of the light bulb, black sponge, rough plate, smooth plate and
3D-printed statue. The force control target was 0.6N and the Sv value
was kept at 0.45mm. As can be seen, the rough plate and 3D-printed
statue have the largest vibrations. This is because the 3D-printed statue
has the most complex geometries and the rough plate has large concave
patterns, both of them make it difficult to adjust the force during the
exploration. And for the light bulb, black sponge and smooth plate,
regardless of their complex geometry, texture, and stiffness, the force
control results are satisfied, showing the robustness of the algorithm.
However, as can be seen, the rising time of the algorithm is sluggish,
which could be improved with a faster control loop

The adaptive parameter tuning method was developed for
multi-time explorations. After each exploration, if the aver-
age force value μ f was too much smaller than the target
and the MSE was large, the control algorithm will shift the
boundaries of the output fuzzy memberships to the right to
make the “close” action to have more coverage of the whole
output distribution. This can be done by increasing the mean
values (μclose) of the Gaussian distribution of the “close”
membership functions shown in Fig. 8. Through this way,
the finger will push more during the next exploration for the
error correction. Meanwhile, it is required to guarantee that
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the changing of the control parameters will not induce too
much noise to the haptic exploration by monitoring the stan-
dard deviation σ f . Similarly, if μ f was too much larger than
Fd and MSE was large, the boundaries will be shifted left-
wards to make the “leave” action to play a more important
role during the exploration. Also, it has been learnt that the K
value is a notable parameter for the adjustment of the normal
force during the exploration, because a larger K will increase
the movement of the finger, which permits the force control
to become more dramatic. Thus, a variable for the K has
been introduced: K = αk ∗K , to change its scale. For differ-
ent devices, the αk needs to be calibrated to achieve the best
performance. For instance, for objects with larger curvature
changes, a larger αk can help to adjust the normal force more
quickly. In this study, for the validation experiments, αk was
set to 1 for all the objects, the adaptive selection of αk will
be developed in future work. Algorithm 3 summarizes the
adaptive control algorithm.

Algorithm 3 Adaptive control algorithm
1: Define Δ f as the magnitude of changing of the membership func-

tions, Δ f = 0.1
2: After one exploration, get μ f ← mean(Vf ), σ f ← SD(Vf ) and

MSE
3: while abs(Fd − μ f ) > ϑ1 and MSE > ϑe and σ f < ϑσ do
4: Increase the μclose of “Close” membership functions, which

means the output distributions of “Close” move rightwards:
μclose ← μclose + Δ f

5: Action: Haptic exploration again with new FCM
6: Get new μ f , σ f and MSE

7: while abs(Fd − μ f ) < ϑ2 and MSE > ϑe and σ f < ϑσ do
8: Decrease the μclose of “Close” membership functions, which

means the output distributions of “Close” move leftwards:μclose ←
μclose − Δ f

9: Action: Haptic exploration again with new FCM
10: Get new μ f , σ f and MSE

11: return 0 � Return 0 if finished successfully

For each experimental setup, 9 times of exploration were
carried out on random areas (3 times with the arm at 0, 30,
and 60 degrees) of the objects with random Sv values cho-
sen from 0.35mm, 0.45mm, and 0.55mm. 5 target forces
have been set, and the total number of surface explorations
was 1125 in the force control experiments. After each explo-
ration, the mean value μ f and σ f of the force vector were
calculated, and the MSE was obtained. Also, the algorithm
adjusted its fuzzy control method parameters to achieve an
overall optimised performance. After 9 times of exploration,
the average of the σ f and MSE were obtained.

4.3 Contact finger exploration results and discussion

After all the haptic surface exploration experiments have
been carried out, the overall results of the force control were

obtained. The detailed results can be found in Table 4, and
from the results, the following points were concluded.

1. When the target force is increasing, the MSE and σ f

become larger. It could be due to the reason that larger
errors require more correcting force to adjust, and there
are chances that the finger is unable to correct such errors
quickly enough with constrained power.

2. Objects with more complex geometries tend to have
larger MSE and σ f , such as the statue and the bulb.
Objects with changing stiffness also have relatively
higher MSE and σ f , like the human finger. The rea-
son could be that the complex geometries and changing
stiffness of the object surface will induce dramatic force
changes during the haptic exploration, and the force
errors can not be eliminated completely and quickly with
the control algorithm, as a consequence, the error accu-
mulates and the MSE and SD become larger than the
situation when exploring the smoother objects

3. When the target force is getting larger, the hand holding
the objects is more unstable. The stronger handshaking
induces more instabilities to the system, especially when
the force is 0.6N or larger, making the noise (σ f ) larger.
Also, for objects with complex geometries, this effect is
greater, while for flat plates, this effect is smaller.

4. In Fig. 9, the order of the plates was made by looking
at the surface texture and patterns rather than the real
roughness and surface pattern complexity level. For plate
1, even though it has the smoothest surface by vision, due
to the material property of the fingertip, during the explo-
ration, the contact of the fingertip and surface of the plate
can generate viscous friction that makes the control of
the force harder, especially when the force is greater than
0.4N. The 15th plate (no. 25) has large and deep concave
areas, and plate13 (no. 23) has large and high convex
areas, these patterns will induce sudden force changes
during the exploration, making the MSE and σ f larger.

5. For soft objects that can deformwith force applied, when
the force is large, the deformation of the object makes the
contact location estimation algorithmbecome inaccurate,
thus, forces larger than 0.7N were not used in the exper-
iments, especially for the yellow soft sponge and soft
black box. The metal spring has gaps between threads
that can generate frequent drops of force values during
the exploration, making the control harder.

6. When the target force is small (like 0.2N and 0.4N), the
MSE and σ f of different objects are similar for the same
target force, however, when the force is larger, the differ-
ences of the MSE and σ f of different objects get larger.
Results of the black rubber, plate1 (no. 11), statue, plate15
(no. 25), human finger and yellow soft sponge represent-
ing different types of objects were used to plot figures
(shown in Figs. 12, 13).
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Fig. 12 The SD results for different objects with different target forces.
The black sponge and plate1 are objects with flat and fine surface that
are easier for the force control, and their SDs are smaller than other
objects. The 3D printed statue is the object with the most complex
geometry, and plate15 has large concave areas, these features all hinder
the control performance, and the SDs for these two objects are larger.
The human finger has different stiffness and changing geometry in dif-
ferent locations, thereby the SD of which is the largest. The SD of the
yellow soft sponge is small at the beginning but gets larger when the
force is increasing due to the fact that when the force increases, the
finger penetrates the soft layer of the sponge and touches the plastic
surface underneath (Color figure online)
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Fig. 13 The MSE results for different objects with different target
forces. The black sponge and plate1 have smaller MSE. The 3D printed
statue and plate15 with more complex geometries and patterns have
largerMSE. The human finger has the largestMSEbecause of its chang-
ing stiffness and geometry. MSE of the yellow soft sponge is changing
due to the same reason explained in Fig. 12 (Color figure online)

From the results, the limitations of the platform-a and con-
trol system have been learnt. First, the force it can generate
is limited, making it difficult to correct the error quickly
enough, especially when the target force is more massive.
This can be improved by using more powerful motors, but
at the same time, the size of the platform will vary since
powerful motors usually require more space. Second, the
high-level control is working at 100Hz currently, which may
not be fast enough to adapt to quick force changes induced
by complex geometry or stiffness changes. The relative low
working frequency is due to the time consumption of the soft-
waremodules like the angle calculation and the fuzzy control
method. This can be improved by using higher spec PCs or

Fig. 14 The points in the figure are generated with the SD value, MSE
value and the object number as the x, y and z coordinate. It can be
seen that the resultant control performance of the haptic exploration on
different objects are similar within a small range shown by a transparent
cylinder, which reveals the robustness of the proposed algorithm

simplifying the software implementation. Despite these lim-
itations, it can be seen that the average MSE is 0.006 and σ f

is 0.07N. Also, from Fig. 14, it can be seen that the MSE and
σ f for all objects are constrained within a controllable range,
which can show the robustness of the control algorithm for
different objects with various properties and dynamic move-
ment. Moreover, videos of the real-time experiments show
that the platform-a works well with subtle motions following
the surface of the dynamically moving object with complex
outline, when the target force is small.

4.4 Haptic exploration with robot arm UR-3

Since the workspace of the finger is limited with an average
travelling length of 60mm, the robot arm UR-3 was used to
verify the control method with larger workspace and force
ranges. A contacting sensing tip was mounted onto the robot
arm end-effector, forming the platform-c. The study of con-
trolling the robot arm and finger simultaneously to realize
a synergic control is also envisioned, which can be useful
for more complex haptic exploration. The robot arm can
reach the object at almost any point on the surface, and the
exploration is not constrained in any specific plane, but for
one-time exploration, the controlled movement is within two
axes. The robot arm can also realize a sequence of move-
ments, covering more surfaces of the object. Figure 15 (left)
shows the designed experimental setup. The Nano 17 sensor
was mounted on the robot arm with a 3D printed connection
part and covered with a hemisphere cap made of silicone
rubber (Ecoflex-50, Shore A 50). The stiffness of the rubber
cap is large enough that there is no hysteresis effect during
the experiments. A device that can generate a random dis-
placement within 5–12mm in the vertical direction was used
to add movement to the holding object. The corresponding
kinematic and fuzzy control parameters of the control algo-
rithm were modified for controlling the robot arm platform
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Fig. 15 Left: The haptic exploration platform-c using the UR3 robot
arm and a contact sensing tip. The object is mounted on a moveable
device that can move 5–12mm vertically. Right: The schematic draw-
ing of how the necessary angles have been calculated for deciding the
next moving location of the tip. Same with Fig. 4, this only shows the
situation where the correcting force F′

N has the same direction of the
real normal force

(platform-c). Similarly, the required angles can be calculated
with the equations below:

θE = 2 ∗ π − θ j2 − θ j3 + 1.5π − θ j4 + 2π − θ j5 (9)

θC = atan2(ye, ze) (10)

θN = θE + θC (11)

β ′ = atan2(‖F′
T ‖, ‖F′

N‖) (12)

α = β ′ + θN (13)

And the next position to reach is:

Pnext = Pnow + Sv · [cosα, sinα]T (14)

where θ j2, θ j3, θ j4, θ j5 are the current joint angles of the
robot, which can be obtained through the driver in ROS.

With the proposed control algorithm, the robot arm was
controlled to explore the surface of the object while keeping
the normal force as desired. Since the robot arm has more
DoFs and can work in larger target force range (more power-
ful), it can explore the object in amuchwider workspacewith
feedbacks from the contact sensing tip, which helps to realize
larger area’s haptic exploration and make more exploratory
procedures (EPs) available (Lederman and Klatzky 1993).
More EPs will allow the haptic perception system to obtain
more information about the object, which will be beneficial
in future research on the active haptic control and perception.
Here, the haptic surface exploration is the main focus, and
more EPs will be implemented in the next study.

However, the control of the robot arm has limitations due
to the slow frequency of the software. The control loop is
limited to 10Hz in this study, which may hinder the response
speed when adjusting the force or velocity. Moreover, com-
pared to the contact sensing finger, the smallest Sv it can

Fig. 16 The objects used in haptic exploration experiments with the
robot arm platform-c. From left to right: (1) metal bowl, (2) sphere like
hat made by silicon, (3) plastic bottle filled with water (4) flat sponge,
(5) sponge with curved shape, the explore trajectory is drew with green
colour (Color figure online)

achieve accurately is no smaller than 0.8mm, and the force it
generates ismuch larger than the finger permovement. These
all present that the robot arm is suitable for larger force con-
trol scenarios.

5 objects shown inFig. 16were used to evaluate the perfor-
mance of the control algorithm. There are four soft objects,
all can deform when force applied, and 3 of them have com-
plex outlines. There is one metal object with a curved shape.
For different objects, different target forces were set, this is
because with too much force applied, the deformation of the
soft object will cause inaccurate sensor readings, while for
the solid object, the force changed by the smallest displace-
ment is more than 1N. Thus, the target forces were set to 1N,
1.25N and 1.5N for the soft objects, and 1.5N, 2N, 2.5N
for the metal object. The Sv size was chosen from 0.8mm,
1mm and 1.5mm. For each object, 10 times of exploration
with the adaptive control method were carried out. The video
of “surface_exploration_ur3-1 (MOESM7).mp4” shows the
haptic surface exploration on the sponge with curved shape.
The objects were mounted on the moveable platform with
5–12mm random vertical displacement.

Table 5 shows the results of the haptic exploration exper-
iments using the platform-c. From the results, it can be seen
that the average MSE and σ f are larger than those obtained
with the contact sensing finger (platform-a) due to larger
target forces. As mentioned before, when the target force
gets larger, the MSE and σ f also increase. It has been learnt
that, in some situations, even though the algorithm output
the largest correcting movement, it was still not enough to
correct the force in time. Thus, it becomes necessary for the
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Table 5 Force control results
with robot arm

Resultant normal force standard deviation (N) and MSE

Object no. Target normal
force-1N/1.5N

Target normal
force-1.25N/2N

Target normal
force-1.5N/2.5N

1 0.21 0.03 0.31 0.035 0.38 0.042

2 0.15 0.013 0.17 0.019 0.19 0.024

3 0.14 0.016 0.18 0.02 0.21 0.027

4 0.13 0.02 0.15 0.02 0.16 0.03

5 0.12 0.013 0.1 0.015 0.18 0.025

Avg. 0.15 0.0184 0.182 0.0218 0.224 0.0296

Table 6 Velocity control results

Open loop resultant explore velocity mean and SD PID control resultant explore velocity mean and SD

Sv value (mm) Fd -0.2N Fd -0.4N Fd -0.6N vd (mm/s) Fd -0.2N Fd -0.4N Fd -0.6N Δv

0.15 1.92 2.11 1.86 2.31 1.78 2.18 2 1.78 1.41 1.75 1.54 1.81 1.45 0.22

0.25 3.16 2.59 3.16 2.68 2.95 2.5 3 2.69 1.73 2.65 1.78 2.72 1.67 0.31

0.35 3.72 2.68 3.8 2.8 3.68 2.64 4 3.62 1.78 3.58 1.86 3.65 1.76 0.38

0.45 4.69 2.86 4.55 2.85 4.67 2.84 5 4.56 1.91 4.51 1.9 4.59 1.89 0.45

0.55 5.52 3.02 5.55 3.12 5.3 2.9 6 5.51 2.01 5.46 2.08 5.54 1.93 0.50

0.65 6.99 3.15 6.89 3.2 6.43 2.96 7 6.48 2.1 6.42 2.13 6.4 2.1 0.57

0.75 7.53 3.24 7.22 3.34 7.19 2.9 8 7.43 2.22 7.37 2.43 7.46 2.23 0.58

0.85 8.38 3.32 8.02 3.54 8.23 3.09 9 8.35 2.41 8.41 2.56 8.41 2.56 0.61

0.95 9.03 3.5 9.04 3.66 8.95 3.41 10 9.26 2.8 9.27 2.84 9.34 2.75 0.71

algorithm to know the relationship of the indentation and
force changes for different objects, through which way, the
more accurate Sv can be decided for adjusting the force error.
As the next step, the robot arm can be controlled to push the
object first to characterize the indentation and force changing
relation of the object, and then the best Sv can be derived.
However, the overall result of this experimental validation is
stratified, confirming the robustness of the control algorithm.
Moreover, as can be seen from videos of the real experiment
(refer to videos of ”dynamic_object_exploration_ur3
(MOESM2), dynamic_object_exploration_ur3-with_back
ground (MOESM3).mp4”), the arm can adjust the position
quickly following the movement of the object.

4.5 Velocity control results

To verify the performance of the velocity control method,
haptic exploration experiments with changing Sv values
using the contact sensing finger (platform-a) were carried
out. The target force was set to 0.2N, 0.4N and 0.6N in
experiments, and the resultant mean value μv and σv were
obtained with different Sv values. Three objects: the black
sponge, the light bulb, and plate-15 (no. 25) were selected.
First, a fixed Sv value was used during each haptic explo-
ration to check velocity changes and compute the σv , then

the PID control method was applied to adjust the Sv value
during the exploration to check the change of σv . The target
velocity for the PID control was set from 2 to 10mm/s. The
mean velocity was calculated by vm = Le/Te, where Le is
the total explored distance and Te is the overall time used
for the exploration process. For each object, 3 times explo-
ration were carried out for each fixed Sv value and 3 times
exploration for each target velocity using the PID control.

Table 6 shows the results, and the values are averages of
the three objects. It can be seen from the results, when Sv is
fixed, the mean explore velocities are similar regardless of
the target force. In addition, for different objects, the veloc-
ity results are also similar. For example, when Sv is 0.45mm
and Fd is 0.4N, the mean velocities for the three objects
are 4.63mm/s, 4.59mm/s and 4.43mm/s respectively. There-
fore, with different Sv values, the overall exploration velocity
can be controlled during each haptic exploration on various
objects, as shown in Fig. 17. This is because when Sv is used
for deciding the next moving location, the increment along
the tangential direction of the contact surface on the object
decides the moving velocity when the used time for every
loop is the same (almost). The videos of “velocity_control-01
(MOESM8), velocity_control-02 (MOESM9).mp4” show
the examples of the open-loop velocity control. However,
the σv is relatively high with an average value of 2.94mm/s
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Fig. 17 The figure is showing the changing of the mean velocity of one
exploration with relation to the Sv changes using the open-loop control.
The velocity is obtained by getting the average of all sample data. It can
be seen that as Sv increases, the velocity increases and the relation of
these two values is close to a linear correlation regardless of the control
target force. These curves show that Sv can be used to control the overall
velocity of the exploration procedure

Fig. 18 The points in this figure are generated with the σv , Δv and
vd as the x, y and z coordinate. Δv is obtained by abs(vd − vm). The
curves on the left side are representing the relation between SD and vd
at different Fd , and curves on the right side are representing the relation
between Δv and vd at different Fd . It can be seen from the figure, the
points are constrained in a cylinder with a larger radius compared to
the force control results, showing the relative larger SD of the velocity
control result. However, it also shows that the control method can be
used to control the explore velocity with low absolute errors

when Sv is fixed.When using the PID controller, the σv of the
velocity is around 2/3 of thatwhen Sv is fixed.And an average
absolute error Δv of 0.48mm/s has been achieved, showing
the good performance of the feedback velocity control.

With the feedback control, the performance of explore
velocity control is not excellent as the σv is still not low
enough with an average value of 2.07mm/s. As shown in
Fig. 18, the σv and Δv for each vd are constrained in a trans-
parent cylinder that is larger than the one in Fig. 14. It could
be caused by two main reasons. The first is the unstructured
surface of the object, which adds many difficulties to the
control process, and the other is the limited frequency and
relative long response time of the control software. Consid-
ering the limitations, the velocity control can be improved

in two ways: (1) Increase the frequency of the overall con-
trol loop, which can help to update the error more rapidly
and the platform can be controlled to take correction actions
more quickly to eliminate the error. In this way, the overall
control quality could be improved, especially when there are
sudden surface curvature changes on the object. (2) Modify
the mechanical design of the finger joints to allow smaller
Sv value for deciding the next location. As shown in Table
6, a smaller Sv enables the system to respond to larger and
quicker changes more smoothly. This works when the fin-
ger is controlled with very slow velocities and small target
force. However, in this study, the position control of the joints
becomes inaccurate when Sv is less than 0.1mm due to the
mechanical limitation of the motors and joints.

5 Conclusion

As the conclusion, with the proposed control method, the
contact normal force and explore velocity during haptic sur-
face exploration on objects with dynamic movement can be
controlled adaptively, regardless of their surface and geom-
etry properties. There are three points worthy of further
research to improve the performance of the control method.
First, during the exploration, if the force change generated
by the movement of the device in the normal force direc-
tion is not enough to correct the error, the adjustment will be
delayed; and if the force change is too large, it will generate
overshoots, inducing more fluctuations to the system. Thus,
understanding the indentation and force changes relation is
essential to make the control more precise. For unknown
objects, this relation can be obtainedfirst as a pre-information
and fed back to the system to adjust the related parameters.
Also, this can help us understand the stiffness of the object,
presenting more information about the contacting object.
Second, it is important to understand the best control force
range of each device, since the force ranges generated by dif-
ferent devices are varied. By selecting or designing different
devices or platforms, different forces can be controlled pre-
cisely. Third, because the Sv ranges, what each device can
achieve are different, the control resolution (force change per
movement) is also varied for each device. To understand the
resolution of the force control for each specific device is also
important to achieve more robust and precise control.

As the extensions of this work, we will focus on the active
haptic exploration, perception and soft contact. This pro-
posed control method can be applied to any situations where
contact happens, and the contact force is critical to the con-
tacting object. Also, if the normal force and velocity can
be controlled, it is helpful to implement different manipu-
lation tasks that require different contact forces and explore
velocities. This will lead to an active exploration method that
can change exploration strategies (different force or velocity)
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actively depending on the utility function for more efficient
object recognition or manipulation tasks. In addition, we will
test fingertips made of softer material that can deform during
contact, which will be helpful when contacting soft objects
like tissues inside the organs or fragile daily objects. More-
over, more fingers will be created to form a manipulator,
combing the robot arm, the whole platform can be used to
carry out dexterous manipulations with controllable force
and velocity. As reported in Okamura and Cutkosky (2001),
with controllable haptic explorations, dexterous manipula-
tion can be realised with grasping, holding and other hand
controls. Finally, by combing the haptic feedback with the
surgery devices, it will be beneficial in robotic surgery to
help the surgeon to monitor and control the amount of force
applied to minimise the risk of tissue damage (Amirabdol-
lahian et al. 2017).
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