
Autonomous Robots (2019) 43:1681–1693
https://doi.org/10.1007/s10514-019-09829-4

Reinforcement learning andmodel predictive control for robust
embedded quadrotor guidance and control

Colin Greatwood1,2 · Arthur G. Richards1,2

Received: 23 May 2017 / Accepted: 2 January 2019 / Published online: 12 January 2019
© The Author(s) 2019

Abstract
A new method for enabling a quadrotor micro air vehicle (MAV) to navigate unknown environments using reinforcement
learning (RL) and model predictive control (MPC) is developed. An efficient implementation of MPC provides vehicle
control and obstacle avoidance. RL is used to guide the MAV through complex environments where dead-end corridors may
be encountered and backtracking is necessary. All of the presented algorithms were deployed on embedded hardware using
automatic code generation from Simulink. Results are given for flight tests, demonstrating that the algorithms perform well
with modest computing requirements and robust navigation.

Keywords Model predictive control · Reinforcement learning · Exploration · Micro air vehicle

1 Introduction

This paper introduces a method for navigation and control of
quadrotors within a non-convex obstacle field. The method
uses online optimization within a model predictive control
(MPC) framework, taking advantage of Fast MPC (Wang
and Boyd 2010) with soft constraint modifications (Richards
2015) to provide a real-time controller on embedded hard-
ware. Furthermore, the use of reinforcement learning (RL)
enables autonomous navigation by providing high level path
planning decisions for navigation of previously unexplored
spaces. Flight test experiments demonstrate the methods
within a two dimensional control scenario. The experiments
use off-board localization bymotion capture and synthesized
sensing of obstacles: although these also include important
challenges, the focus here is on the decision-making.

Trajectory generation in the presence of obstacles is
NP-hard (Reif 1979) and has been the subject of con-
siderable algorithm development, including randomized

B Arthur G. Richards
arthur.richards@bristol.ac.uk

Colin Greatwood
colin.greatwood@bristol.ac.uk

1 Department of Aerospace Engineering, University of Bristol,
Queens Building, University Walk, Bristol BS8 1TR, United
Kingdom

2 Bristol Robotics Laboratory, Bristol, United Kingdom

methods (LaValle and Kuffner 1999; Garcia and How 2005),
integer programming (Richards and How 2002) and nonlin-
ear optimization (Milam et al. 2000; Borrelli et al. 2006;
Cowling et al. 2010). Another approach has been to separate
the problem into multiple planning layers, for example com-
bining the travelling salesman problem and potential field
methods (Nieuwenhuisen et al. 2014).

The MPC framework introduced in this paper adopts a
two stage process to avoid high computational requirements.
Like Augugliaro et al. (2012), Deits and Tedrake (2015)
and Sharma (2011), a local, convex optimization problem
is derived from the harder global problem. Other approaches
along these lines include following tunnels (Vitus et al. 2008),
receding horizon optimization (Bellingham et al. 2002) or
combiningpath generationwith dynamic optimization (Hoff-
mann et al. 2008) or feasibility testing (Hehn and D’Andrea
2011). The authors’ approach here is to decompose the prob-
lem geometrically to form a local convex problem and then
deploy a quadratic program (QP) optimization. This is sim-
ilar in spirit to the ellipsoidal tunneling method by Sharma
(2011) but without requiring quadratic constraints.

MPC provides a framework to unify control, includ-
ing stability and robustness analysis, with motion planning,
including dynamics and operating constraints (Maciejowski
2002). Liu and Chen (2013) illustrated its potential for UAV
control with obstacle avoidance constraints. Considerable
work has focussed on tailoring fast real-time optimizers for
MPC, ofwhich theworkbyWangandBoyd (2010) is adopted

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-019-09829-4&domain=pdf
http://orcid.org/0000-0001-9500-5514

1682 Autonomous Robots (2019) 43:1681–1693

here. Faster solvers can be implemented using FPGAs (Hart-
ley et al. 2014) but this is beyond the scope of this paper.

Quadrotors are popular test beds for autonomous vehicle
research. Instrumented flying facilities have been devel-
oped, including MIT’s Raven (How et al. 2008), Stanford’s
STARMAC (Hoffman et al. 2004), Pennsylvania’s GRASP
lab (Michael et al. 2010) and ETH’s Flying Machine
Arena (Hehn and D’Andrea 2011), all actively researching
autonomous capabilities for quadrotors and other vehicles.
Many suitable airframes are available and existing research
addresses how to stabilize them and follow a path to a desti-
nation. For this work, a key question is “where to go next?” if
no prior map of the world is provided and only local sensing
is available. Environments such as those depicted in Fig. 1
pose a difficult problem to the MAV, where dead ends in
the environment would make it easy for a local planner to
become stuck.

Planning within environments with uncertain maps also
poses challenges. For example, when using simultaneous
localisation and mapping (SLAM) the robot’s map of the
world can become distorted and relies on methods such as
loop closure (Williams et al. 2009) to re-align features in the
map. A key feature of the proposed method is that it does
not depend on an accurate global map for far-term planning,
unlike other MPC-based methods (Bellingham et al. 2002).
In principle, this makes the method robustly compatible with
different mapping and localization strategies.

Autonomous exploration has been demonstrated in the
past using frontier-based mapping (Yamauchi 1997), where
an evidence grid is formed in order to map locations that
are occupied by obstacles. This relies on maintaining a
global map of the obstacle locations, but has shown good
performance in complex and cluttered environments. Other
methods such as the subsumption architecture (Brooks 1986)

Start Position
Finish Position
Learning Nodes

(a) Obstacle field 1

Start Position
Finish Position
Learning Nodes

(b) Obstacle field 2

Fig. 1 Example scenarios

for boundary tracing and mapping (Mataric 1992) enable the
robot tomap an areawhilst avoiding peoplemovingwithin its
environment. For more variety of sparsity in the environment
Fraundorfer et al. (2012) use a combination of frontier-based
mapping and the bug algorithm (Choset et al. 2005). The
common theme between these methods is that they perform
exploration bymaintaining amap of the locations of the envi-
ronment’s obstacles.

Exploration of previously unmapped environments is
addressed here by developing a reinforcement learning (Sut-
ton andBarto 1998) (RL) algorithm.RL is amachine learning
technique that updates its knowledge about the world based
upon rewards following actions taken. A discrete set of node
locations in the world are given a weighting, or cost, and the
RL algorithm targets the lowest cost node visible. The obsta-
cle avoidance is handled separately by the MPC controller.
Should the MAV be unable to make progress, for example
by spending time stuck in a dead end, it will learn to turn
back and explore a different path. The full explanation of the
control architecture is given in Sect. 3.

Other works have explored different combinations of
MPC, machine learning, and UAVs. Zhang et al. (2016) used
MPC as the supervisor for their learning algorithm, result-
ing in a deep neural network policy for obstacle avoidance,
while Aswani et al. (2013) used a learning ‘oracle’ to refine
the prediction model for a general MPC. Sharma and Tay-
lor (2012) used RL for waypoint generation to improve the
performance of their avoidance algorithm based on local
ellipsoid constraints (Sharma 2011). Learning for explo-
ration has been used in previous work with random neural
Q-learning (Yang et al. 2016) to navigate and avoid obstacles
in unknown environments. This approach to use learning for
exploration has similarities to the work here, one of which
is that it provides continuous control whilst discrete action
choices about where to go next must be made. In (Yang et al.
2016) a continuous action space is built from the learning.

The distinctions of the present paper are that MPC is used
online, not purely as part of the training. RL is used solely
for waypoint selection, hence for a discrete choice rather
than continuous, and compensates for the susceptibility of the
locally convexMPC to explore local minima. The benefits of
using RL for exploration to perform autonomous exploration
is that an accurate globalmapdoes not need to be constructed,
stored and maintained. An evidence grid, for example, could
grow quickly if exploring large areas, especially if over three
dimensions. It would also be necessary to produce a grid
of fine enough a resolution such that the MAV could pass
through narrow openings. Perhaps an even greater concern
is one of robustness; it is well known (Lu and Milios 1997)
that maintaining good alignment of a map is challenging and
so any exploration technique that relies on a well maintained
global map could fail.

123

Autonomous Robots (2019) 43:1681–1693 1683

Fig. 2 AR.Drone quadrotor

2 Experimental setup andmodelling

Experiments were performed using the Parrot AR.Drone
(Fig. 2)within theBristol Robotics Laboratory’s flying arena.
The flying arena is instrumented with ten Vicon motion cap-
ture system cameras, providing vehicle position information
at 100Hz. The example obstacle fields (Fig. 1) were laid
out over a six by eight metre area within the arena. The
obstacle locations were defined numerically and detection
is simulated through the knowledge of the vehicle’s position
within the Vicon coordinate system. All of the algorithms
presented were programmed in MATLAB Simulink, com-
piled using automated code generation and executed on a
dSpace MicroAutoBox. The MicroAutoBox has a 900Mhz
PowerPC processor and enables rapid prototyping of soft-
ware for execution on embedded hardware.

All of the development and results presented use an
AR.Drone 2.0, which is shown in Fig. 2. ThisMAV is a popu-
lar off-the-shelf hobbyist platform, designed to be controlled
via smart phones. Despite the low price and target market,
the platform is well engineered and performs well for high
level control algorithm development. The AR.Drone SDK
was used to develop a bespoke controller application that
converts UDP network commands from the MicroAutoBox
into control signals for the AR.Drone, sent via WiFi.

In the scenario of exploration, speed is limited by the
rate of decision-making, and the full agility of the quadrotor
is not exploited and it remains close to hover configuration
throughout. Therefore, we adopt the approach of Fraundorfer
et al. (2012) and use a linear dynamics model determined by
system identification techniques. The work uses level flight
without rotation in yaw, controlled by downward-looking
ultrasound, rate gyro and magnetometer, so only the lateral
movement dynamics are considered. Feedback lineariza-
tion (Helwa andSchoellig 2016) provides an alternative route
to a linear model that would exploit more of the flight enve-
lope, but this has not been pursued in the scope of this work.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2

0

2

4

6

8

10

12

Time (s)

P
itc

h
an

gl
e

(d
eg

re
es

)

Model response
u=0.1
u=0.2
u=0.3

Fig. 3 Comparison of AR.Drone pitch flight data withmodel responses

The quadrotor was flown automatically in a hover under
closed loop position control using Vicon for feedback. After
settling in its starting position the AR.Drone’s “trimmed”
control inputs were frozen at their last given input but with a
small step input superimposed on the pitch control axis. This
caused the AR.Drone to pitch and move forward due to a
known step input.A second order transfer functionwith delay
was subsequently fitted to the measured pitch angle response
using a Nelder–Mead optimisation (Nelder and Mead 1965).
The pitch angle wasmeasured using theVicon system, which
tracks all six degrees of freedom of the drone. The optimisa-
tion minimised the square of the difference between the first
half a second of the pitch response in radians and the transfer
function Gθ (s), finding

Gθ (s) = e−0.06s 0.51

0.017s2 + 0.14s + 1
(1)

The fit of the transfer function Gθ (s) to the measured pitch
response is shown in Fig. 3, demonstrating a good match for
the different control input values. It was found that the input
was saturated by the AR.Drone at 0.37. There are no units
for this quantity: this command is a digital signal sent from
the MicroAutoBox to the AR.Drone controller application.

The acceleration of the quadrotor may be approximated
as being acceleration due to gravity multiplied by the pitch
angle, which is appropriate for small angles and low speeds
before drag becomes a dominant force. The transfer functions
describing the position and velocity dynamics may therefore
be written as

Gpos(s) = g

s2
Gθ (s) (2)

Gvel(s) = g

s
Gθ (s) (3)

123

1684 Autonomous Robots (2019) 43:1681–1693

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
P

os
iti

on
 (m

)

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
el

oc
ity

 (m
/s

)

Time (s)

Model response
u=0.1
u=0.2
u=0.3

Model response
u=0.1
u=0.2
u=0.3

Fig. 4 Comparison of position and velocity flight data with model
responses

respectively. A comparison of the above transfer functions
and the measured responses is shown in Fig. 4 for different
control inputs.

As will be introduced in Sect. 5, the MPC formulation
requires a discretized linear state space representation of the
vehicle, where the discrete state progression is written as

x(k + 1) = Ax(k) + BΔu(k) + w(k) (4)

y(k) = Cx(k) (5)

where x(k) is the state at time step k, u(k) is the control input,
w(k) is an unknown disturbance and y(k) is the output. From
Eq. 1, for a single axis (pitch or roll) operating at 10Hz the
system matrices A1 and B1 are

A1 =

⎡
⎢⎢⎢⎢⎣

1.0000 0.1000 0.0048 0.0001 0.0010
0 1.0000 0.0921 0.0037 0.0397
0 0 0.7815 0.0614 1.0980
0 0 −3.6435 0.2692 18.3076
0 0 0 0 1.0000

⎤
⎥⎥⎥⎥⎦

(6)

B1 = [0, 0.0029, 0.2095, 9.9251, 1.0000]T (7)

and for the complete model of the drone moving in 2D

A =
[
A1 0
0 A1

]
(8)

B =
[
B1 0
0 B1

]
(9)

C =
[
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

]
(10)

with the state vector is defined as

x = (
px vx θ θ̇ ux py vy φ φ̇ uy

)T
. (11)

The output is the position y = (px , py)while the other states
include the velocity (vx , vy), pitch θ , roll φ and their deriva-
tives, and the stored controls (ux (k), uy(k)).

3 Exploration architecture

The outline of the MAV control scheme used in this work
is shown in Fig. 5. Directly controlling the movement of
the MAV is an MPC controller, which will be introduced in
Sect. 5. The MPC controller commands the MAV to move
to setpoints provided. The state x(k) of the vehicle is esti-
mated by the state estimation block, using a Luenberger
observer driven by the position measurements (5). To avoid
the complexity of a Kalman filter with an augmented state,
disturbance estimation is performed by low-pass filtering the
measured prediction error (Tatjewski 2014):

w̃(k) = x̂(k) − Ax̂(k − 1) − BΔu(k − 1) (12)

where x̂ is the estimated state. Both of these estimations are
used by the MPC block in order to compute optimal con-
trol inputs. The “Convexification” block determines a convex
obstacle-free operating region forming the constraints for the

MPC. A target position yS(k) =
(
pSx (k), pSy (k)

)T
is also

provided to theMPCcontroller. The calculation of the convex
operating region and provision of the setpoint are described
in Sect. 4. This paper assumes fixed altitude and hence 2-D
motion.

The reinforcement learning block uses temporal differ-
ence learning to determine a favourable local target or “node”
to aim for, rather than simply aiming for a final global goal
location. By doing so, the controller may guide the MAV
through a non-convex space without getting stuck in dead
ends. The learning algorithm block is described in Sect. 6.

The MAV position is measured externally via a Vicon
motion capture system, which is passed into a virtual sensor
block. The virtual sensor block uses the measured position
and returns obstacle face information based upon hard-coded
obstacle fields such as those described in Fig. 1. In future
work, this block could be swapped for a real sensor so that
obstacles would not have to be pre-defined in code. Also,
goal locations would be based on recognition, not location.
However, herewe focus on control aspects, so simplifications
are adopted in sensing.

123

Autonomous Robots (2019) 43:1681–1693 1685

Reinforcement
Learning Convexifica�on Fast MPC AR.Drone

State Es�ma�on

Virtual Sensor

Posi�on
Measurement

Visible Obstacles

Learning
Node

State Es�mate

Target

Opera�ng
Region

Disturbance
Es�ma�on

Predic�on

Fig. 5 Controller overview

4 Operating region calculation

The MPC method used employs quadratic programming
(QP), which requires a convex solution space to be described
in terms of linear constraints. The non-convex obstacle field
must therefore also be decomposed into a convex solution
space, or rather a convex ‘operating region’ within which the
MAV is allowed to fly.

Vitus et al. (2008) propose two methods for decom-
posing a non-convex solution space into a sequence of
convex polytopes in their paper on tunnel mixed inte-
ger linear programming (MILP). These are trapezoidal
decomposition and Delaunay triangulation. This reduces the
complexity of the online optimization but it still requires
MILP. Augugliaro et al. (2012) went further and reduced
the local problem to a local quadratic optimization by
linearizing multi-vehicle separation constraints. Similarly,
Sharma (2011) reformulated the region determination as a
QP by adopting ellipsoidal regions. Deits and Tedrake (2015)
present an iterative semidefinite programming method for
finding convex regions that might also be suitable for
defining the operating region within which the quadrotor
may fly.

Two methods for computing convex operating regions
from the non-convex obstacle fields are presented here. The
first method provides rectangular operating regions with lim-
its aligned with the global x and y axes, which for the
purposes of the presented experiments will also always align
with the vehicle x and y axes. The second method provides
operating regions that also have four faces, but the faces are
orientated in an effort to increase freedom in the direction of
travel. Both methods provide operating regions that impose
a fixed number of position constraints upon the MAV’s
movement, which is desirable to avoid having to rebuild
the MPC.

4.1 Rectangular operating regions

The rectangular convexification method presented here com-
putes operating regions with orthogonal faces. The method
therefore assumes all obstacles are rectangular or expanded
to become rectangular. By aligning the obstacle and hence
operating region faces with the x and y axes, it is possible
to pose the MPC as two separate MPCs with one for each
axis. Decoupling the MPCs is possible due to the symmetry
of the MAV. It is anticipated that two small MPCs will be
less computationally expensive than a single large one. The
computational savings are identified in Sect. 7.

First, define the operating region R as a rectangle

R = {(px , py) ∈ [xmin, xmax] × [ymin, ymax]} (13)

where the position limits (xmin, xmax, ymin, ymax) are found
using Algorithm 1.

The algorithm for finding the operating region starts by
defining the distance d that denotes the distance the MAV
could travel if it were travelling at the maximum permissible
velocity (vlim) for all T time steps. The operating region
limits are then defined by the MAV position p plus or minus
the distance d. The newly defined operating regionR is then
inspected to see if any of the obstacle faces F intersect, i.e.
the operating region is not free of obstacles. Should any of
the obstacle faces intersect the operating region, the operating
region is shrunk until it is free of obstacles.

4.2 Quadrilateral operating regions

The rectangular convexificationmethodpresented inSect. 4.1
assumed the x and y axes are decoupled, which is reasonable
for the dynamics of the MAVs used. This assumption will,
however, restrict the complexity of operating region shapes

123

1686 Autonomous Robots (2019) 43:1681–1693

Algorithm 1 Rectangular Convexification
1: d ← vlim · TΔt
2: xmin ← px − d
3: xmax ← px + d
4: ymin ← py − d
5: ymax ← py + d
6: while R ∩ F �= ∅ do
7: if Obstacle corner [Cx ,Cy] is inside R then
8: if |px − Cx | < |py − Cy | then
9: Shrink R in y
10: else
11: Shrink R in x
12: end if
13: end if
14: if Obstacle face is inside R then
15: if Obstacle face is aligned with y then
16: Shrink R in x
17: else if Obstacle face is aligned with x then
18: Shrink R in y
19: else
20: Shrink R in x and y
21: end if
22: end if
23: end while

that can be used. The second method as described here lifts
this requirement, which could provide more freedom for the
MAV’s movement when operating close to obstacles that are
not aligned with the vehicle’s axes.

The virtual sensor block allows the MAV to see obstacles
at a distance of up to 2 metres. The process of defining the
operating region consists of many stages, whereby an initial
region that fits within the 2 metre radius is reduced in size
until it no long intersects detected obstacles.

In order to maximize manoeuvrability in the direction of
travel, the basic shape of the operating region would be a
cone, expanding from the current position. This is shown in
Fig. 6a.

To allow somemargin for error in the position of theMAV,
the region is then expanded rearwards, as shown in Fig. 6b.
Finally, two faces are added to the front of the operating
region, as shown in Fig. 6c. This forms the basic shape of the
operating region; this is subsequently reduced in size until
no obstacles are enclosed within the region. Algorithm 2
describes how the operating region is reduced in size in the
presence of obstacle faces. Each step in the algorithm pro-
duces a subset (or identical copy) of the previous operating
region and so never undoes earlier work.

5 Application of model predictive control

Model predictive control (Maciejowski 2002) is used to drive
the quadrotor to setpoints determined by the planner while
respecting operating constraints on velocity and control. The
operating constraints also include the position constraints

MAV Position
Visible radius
Initial operating region

(a) Core shape of operating
region

MAV Position
Visible radius
Extended operating region

(b) Core shape expanded
rearwards

P

A

B

C

D

MAV Position
Visible radius
Convex operation region

(c) Front two faces added

Fig. 6 Basic shape of operating region

imposed by the convexification scheme presented in the pre-
vious section. The algorithm implemented uses the “Fast
MPC” formulation of Wang and Boyd (2010) to achieve fast
solution times.

In theory, it is possible to treat this scenario as a regula-
tion problem, taking the setpoint position as the origin and
converting all states to a setpoint-relative frame before pass-
ing to the MPC. However, this was found to give significant
problems when the setpoint changed, often leading to loss of
feasibility of the interior point optimizer. Instead, the method
of Limon et al. (2008) has been adopted, treating the prob-
lem as one of tracking a piecewise-constant setpoint, using
the modifications of Maeder et al. (2009) to give offset-free
tracking in the presence of disturbance. The linear state space
model from Sect. 2 is employed. The input change is subject
to a hard constraint which must always be respected

Fx x(k) + FuΔu(k) ≤ f (14)

123

Autonomous Robots (2019) 43:1681–1693 1687

Algorithm 2 Quadrilateral Convexification
1: Construct the basic operation region, as shown in Fig. 6(c)

2: if
−→
AP intersects a face then

3: Move A along
−→
AP until there is no intersection

4: if
−→
AB intersects a face then

5: Move B along
−→
BP until there is no intersection

6: end if
7: if

−→
AD intersects a face then

8: Move D along
−→
DP until there is no intersection

9: end if
10: end if
11: if

−→
BP intersects a face then

12: Move B along
−→
BP until there is no intersection

13: end if
14: if

−→
CP intersects a face then

15: Move C along
−→
CP until there is no intersection

16: end if
17: if

−→
DP intersects a face then

18: Move D along
−→
DP until there is no intersection

19: end if
20: if

−→
AB intersects a face then

21: Move B to point of intersection
22: end if
23: if

−→
AD intersects a face then

24: Move D to point of intersection
25: end if
26: if

−→
BC intersects a face then

27: Move C along
−→
CP until there is no intersection

28: end if
29: if

−→
CD intersects a face then

30: Move C along
−→
CP until there is no intersection

31: end if

Where, Fx =

⎡
⎢⎢⎣
0 0
0 · · · 0
0 · · · 0
0 0

⎤
⎥⎥⎦ (15)

Fu =

⎡
⎢⎢⎣

1 0
−1 0
0 1
0 −1

⎤
⎥⎥⎦ (16)

f =

⎡
⎢⎢⎣
0.2
0.2
0.2
0.2

⎤
⎥⎥⎦ (17)

Soft constraints (Kerrigan and Maciejowski 2000) are also
incorporated, which must be respected if possible but can be
violated if no alternative exists

FSx x(k) + FSuΔu(k) ≤ fS (18)

These soft constraints limit the quadrotor’s position (to stay
in the operating region for obstacle avoidance), maximum
speed and absolute control input. The soft constraintmatrices
are therefore

FSx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0 0 0 0 0 0 0 0
−100 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0 0 0
0 −100 0 0 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0
0 0 0 0 −100 0 0 0 0 0
0 0 0 0 0 100 0 0 0 0
0 0 0 0 0 −100 0 0 0 0
0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 −100 0 0 0
0 0 0 0 0 0 0 0 0 100
0 0 0 0 0 0 0 0 0 −100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

FSu = [
0
]

(20)

fS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

500
500
50
50
35
35
500
500
50
50
35
35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The MPC optimizer solves a quadratic program (QP),
at each time step, to find the input sequence U (k) =
(Δu(k), . . . , Δu(k + T)) that minimizes a cost defined as

J =
T∑
j=0

(x(k + j) − xS(k))
T Q(x(k + j) − xS(k))

+ Δu(k + j)T RΔu(k + j) (22)

where the state and input cost matrices Q and R are defined
as

Q1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0.4 0 0 0
0 0 0.02 0 0
0 0 0 0.02 0
0 0 0 0 0.02

⎤
⎥⎥⎥⎥⎦

(23)

R1 =
[
0.1 0
0 0.1

]
(24)

Q =
[
Q1 0
0 Q1

]
(25)

R =
[
R1 0
0 R1

]
(26)

123

1688 Autonomous Robots (2019) 43:1681–1693

The current target state xS(k) is found by solving the follow-
ing equations (Maeder et al. 2009) for a disturbance-invariant
state at the target position yS(k):

[
I − A
C

]
xS(k) =

(
ŵ(k)

yS(k)

)
(27)

where ŵ(k) is a disturbance estimate found from the pre-
diction error. The tracking cost (22) can be rewritten in the
equivalent form

J =
T∑
j=0

x(k + j)T Qx(k + j) + Δu(k + j)T RΔu(k + j)

− 2xS(k)
T Qx(k + j) (28)

where the constant term has been omitted, since it makes no
difference to the optimization. Setting the final linear cost
weight −2xS(k)T Q = qT puts the problem in the same
form as for Fast MPC (Wang and Boyd 2010) and the reader
is directed to that paper for details on how the QP is solved,
including fast computation of the Newton step. The soft con-
straints are implemented using a penalty function and the
complete solver is described in Richards (2015).

One significant modification is made to the MPC for-
mulation from Wang and Boyd (2010) in order to enforce
terminal equality constraints. For the quadrotor, it is con-
venient and effective to require the terminal velocity to be
zero, in accordance with the idea of “safe” receding horizon
control (Schouwenaars et al. 2004).

[
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

]
x(k + T + 1) =

(
0

0

)
(29)

Fortunately, the addition of terminal equality constraints does
not change the sparsity patterns exploited for fast computa-
tion by Wang and Boyd (2010). Note that it is only required
that the terminal state of the plan be stationary, and since the
plan is re-optimized before it is fully executed, the quadrotor
rarely stops in practice until it reaches its current target yS(k).
This will be seen in the results. The details of the modifi-
cation are given in Appendix A. The MPC optimizer was
programmed in a Simulink “embedded MATLAB function”
for use with automatic code generation.

Since the hard constraints (14) only apply to the inputs,
feasibility is guaranteed, without necessarily satisfying the
state constraints. However, since the method inherits the
properties from Maeder et al. (2009) and Limon et al.
(2008), stability and satisfaction of all constraints is guar-
anteed provided that the soft constraints are sufficiently
weighted (Kerrigan and Maciejowski 2000), the disturbance
is constant and the constraints do not change. The dynamic
convexification invalidates this last condition, althoughmore

recent methods (Bali and Richards 2017) provide a con-
strained convexification to promote recursive feasibility.

6 Reinforcement learning for navigation

Reinforcement learning (RL) is a machine learning tech-
nique that is employedhere to help the exploration algorithms
become ‘unstuck’ from dead ends and even unforeseen prob-
lems such as failures of the QP to converge. RL updates its
knowledge about the world based upon rewards following
actions taken. TheMAVmay therefore learn from time spent
trying to progress via a dead end that it needs to turn back
and explore a different path. The previous sections described
the MPC and operating region calculation methods required
to guide the MAV to a target position. By itself, however,
the MPC is unable to guide the MAV throughout environ-
ments such as the example scenarios without leaving the
MAV stuck down a dead end. To fix this problem, the RL
algorithmdynamically chooses the target position yS(k). The
convexification andMPC algorithms then provide the control
inputs for transition to the latest target.

Reinforcement learninghas beenused in thepast (Richards
and Boyle 2010) to learn the cost-to-go for a receding hori-
zon planner over successive repetitive UAV missions. The
work in this paper, however, aims to use RL to enable the
MAV to robustly navigate previously unexplored environ-
ments. Specifically, temporal difference learning (Sutton and
Barto 1998) is employed.

TheRL algorithm initializes by defining a grid of nodesN
where eachnode i ∈ N is associatedwith aposition (pix , p

i
y).

Each node is then given a dynamic cost J i (k), representing
the time to reach the goal from its position, as estimated at
time step k. The initial cost of each node is estimated using
the distance from the final goal position (pGx , pGy) divided
by the expected mean speed v̄:

J i (0) =
√

(pGx − pix)
2 + (pGy − piy)

2

v̄
. (30)

During flight, the RL algorithm determines the target
node N (k) ∈ N for the MAV to fly towards. The setpoint
is selected greedily by considering all nodes that the MAV
is currently able to see. A cost-to-go V i is associated with
flying to node i . This is computed from the cost held by the
node and the estimated time required to reach the node.

V i (k) = J i (k) + di (k) (31)

di (k) =
√

(px (k) − pix)
2 + (py(k) − piy)

2

v̄
(32)

123

Autonomous Robots (2019) 43:1681–1693 1689

where di (k) represents the straight line estimated flight time
to node i . The node with the lowest cost-to-go is selected
as N (k) and passed to the MPC algorithm to guide the MAV.

Throughout the flight, the RL algorithm also needs to
update the cost estimated for each node. This is the necessary
step to learning information about the environment that the
MAV is exploring. Every time the MAV is instructed to fly
towards a new node, the time spent attempting to reach it is
recorded. This time taken is used to update the cost for the
target node in what is called temporal difference learning.
The node costs are updated at discrete time steps. The cost
of the node from the previous time step (J N (k−1)) is updated
as follows

J N (k−1)(k) = J N (k−1)(k − 1)

+ α

(
Δt + dN (k)(k) − dN (k−1)(k − 1)

v̄

+ J N (k)(k − 1) − J N (k−1)(k − 1)

)
(33)

where each time step is Δt seconds long. The constant α is
a weighting that is used to tune the rate of learning; a value
of 0.8 was found to work well. It is possible for nodes N (k)
and N (k − 1) to point at the same node, which will indeed
be the case for most time steps, and hence the updated cost
of the node is based upon time spent aiming for it. It follows
from (33) that the cost will be unchanged if the MAV gets
closer to the same node at the estimated speed v̄. However,
if the MAV becomes stuck at a node, that nodes cost will
increase. Subsequently, when a node is reached at a dead end
location, the MAV will loiter for a few seconds whilst the
cost builds up and it becomes ‘cheaper’ for it to turn around
and backtrack.

7 Results

Section 7.1 provides simulation results for the Fast MPC
algorithm, demonstrating the performance in both constraint
satisfaction and computation time. Details of particular parts
of the optimiser construction are discussed along with their
impact on the results. Section 7.2 presents results for flight
tests performed using all of the developed algorithms.

7.1 MPC performance

First, simulation results are presented in order to describe
key features of the optimiser’s construction. Section 7.1.1
presents the best case results for a one dimensional mov-
ing setpoint demonstration using a numerical model of the
AR.Drone. These results are then used for comparison in
Sect. 7.1.2 where the computation cost of two separate MPC

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Position
Velocity

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

R
es

id
ua

l

Time / s

Fig. 7 Single axis Fast MPC simulation results

optimisations is compared to one larger MPC optimisation.
Section 7.1.3 then presents flight test results using the MPC
for control of the AR.Drone with the learning disabled.

7.1.1 Simulation results for 1D

Initial results for the Fast MPC algorithm are presented in
Fig. 7, where a simulated experiment was carried out on just
the x-axis of the AR.Drone. The simulated plant used the
dynamics identified in Sect. 2. The position target was alter-
nated between +1m and -1m every 10s. A soft constraint
on the velocity of 0.5ms−1 was imposed and all position
constraints were relaxed.

Figure 7 demonstrates that the MPC controller performed
well, driving the simulated vehicle to the setpoints whilst
adhering to the velocity constraints. The time taken to execute
a single control update, or rather the turnaround time, had a
mean value of 7.2ms. Note that this figure was achieved by
exploiting sparsity in thematrix structure, such as the patterns
apparent in (8), (9) and (10) due to the decoupling of the axes
dynamics. The version of code generator used did not exploit
sparsity natively, so these were implemented in custom mul-
tiplier utilities. Without exploiting sparsity, turnaround time
increased to 13.6ms, almost doubled, highlighting the impor-
tance of exploiting structure in the solver.

At the bottom of the Fig. 7 the residuals for the optimi-
sation are plotted. It can be seen that every ten seconds the
residuals spike, demonstrating that the optimisation has not
converged to the optimal. This spiking occurs as the setpoints
change and is due to the low iteration count used within
Fast MPC. The initial solutions used are from the previous
iteration due to the warm start procedure, which will be far
from the optimal solution when the setpoint changes signif-
icantly. This can be seen to have minimal, if any, impact on

123

1690 Autonomous Robots (2019) 43:1681–1693

Start Position
Finish Position
Flight Path

(a) Obstacle field 1 without learning

Start Position
Finish Position
Flight Path

(b) Obstacle field 1

Start Position
Finish Position
Flight Path

(c) Obstacle field 2

Fig. 8 Paths taken by MAV in example scenarios

performance as the residual falls back down very quickly—
usually after just one further iteration.

7.1.2 Decoupling the control axes

In order for the quadrotor to navigate environments such as
the examples depicted in Fig. 1, it is necessary for the MPC
to operate on both the x and y axes. Due to the symmetry in
the vehicle’s dynamics it is possible to decouple the x and y
control into two separateMPCcontrollers. By decoupling the
control axes it should be possible to reduce the computational
complexity of the problem, although the representation of the
operating region (for obstacle avoidance) must be simplified
as demonstrated in Sect. 4.1.

First the single axisMPC controller used abovewas dupli-
cated within the controller, such that the x and y axes were
being optimized for separately. It was found that solutions did
not change, as would be expected, but the turn around time
did increase. The turnaround time increased from 7.2ms for
the single axis to 17.9ms for the dual axis control. It is inter-
esting that the turnaround time increased by a factor larger
than two, as the number of operations required by the dual
MPC algorithms is exactly double.

By solving for both axes within a single MPC optimizer,
the turnaround time could be expected to take longer than
double due to non-linear scaling of the matrix operations.
Themean turnaround timewas 43.9ms in the combined case,
showing that it is considerably more expensive. The compu-
tational cost may be worth it, however, as constraints may

be posed in terms of both the x and y axes, allowing non-
orthogonal operating regions to be represented. Crucially,
this value indicates that real time operation at 10Hz is feasi-
ble.

7.1.3 Initial flight test results

A flight test result is shown in Fig. 8a where the MPC con-
troller was used to control the quadrotor, but the learning
algorithm was disabled. In this example the setpoint pre-
sented to the MPC is the closest point within the operating
region to the goal. It can be seen that the quadrotor hugs
the walls as it is attracted to the goal and finally ends up
getting stuck down a dead end. The walls are artificially
enlarged when sent to the function that computes the operat-
ing region, taking into account the size of the vehicle as well
as some buffer for violation of the position soft constraints.
The resulting path is therefore not seen to directly touch the
walls. Given the orthogonal nature of the obstacles, the first
convexification method of Sect. 4.1 was used to determine
the operating regions

7.2 Results usingMPC and learning

The same scenario from the previous section was flown, but
this time with the addition of the reinforcement learning
exploration algorithm presented in Sect. 6. Figure 8 shows
four separate flight paths taken for each of the presented
scenarios, demonstrating good repeatability. In Fig. 8b the

123

Autonomous Robots (2019) 43:1681–1693 1691

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20
C

os
t

0 10 20 30 40 50 60 70 80
Time (s)

0

5

10

15

N
od

e
in

de
x

0 10 20 30 40 50 60 70 80
Time (s)

-10

-5

0

5

P
os

iti
on

 (m
)

x
y

0 10 20 30 40 50 60 70 80
Time (s)

-0.5

0

0.5

V
el

oc
ity

 (m
/s

)

x
y

Fig. 9 Node costs, aim index, position and velocity histories for obsta-
cle field 1

obstacles are all aligned with the axes and the rectangu-
lar convexification technique from Sect. 4.1 was employed,
together with decoupled control for each of the two axes of
motion. Figure 8c shows the flight path taken for the sec-
ond scenario in which obstacles are not orthogonally aligned
and the secondmethod for computing operating regions from
Sect. 4.2was required. In this case the slower combinedMPC
for both axes was employed, but still running in real time.
A video of the experiments seen in Fig. 8b can be found at
https://youtu.be/Vym7QEdG7OM.

The effect of the reinforcement learning can particularly
be seen in Fig. 8b where the MAV takes a seemingly direct
route past the obstacles towards the goal, but gets stuck in
a dead end, requiring it to turn around. After hovering for a
few seconds, the reinforcement learning drives up the cost
of the learning node and finds it to be more favourable to
return to the previous node. After backtracking, the MAV
then takes an alternate route around the walls in the centre of
the obstacle field and makes its way to the finish position.

Figure 9 shows how the cost of the nodes varied over
the duration of one of the flights, whilst learning to navi-
gate the first obstacle field. For brevity the node indices and
where they map to in physical space are not shown; rather
the plot illustrates how the cost of nodes increase one at a
time depending on which is being aimed for. The figure also

shows the time history of the node index being aimed for and
the resulting position traversed by the MAV on its way to the
goal. One interesting observation here is the occasional rapid
switching between two node indices, here the cost of the pair
of nodes plus the estimated cost to reach them (Eq. 31) is very
similar. During this period of switching rapidly between tar-
get nodes the costs of both nodes increase until a distinct new
node is selected.

The velocity history in Fig. 9 shows that the MAV navi-
gates almost continually through the environment, close to its
upper velocity magnitude of 0.5m/s. As discussed in Sect. 5,
despite the constraint for each plan to terminate in a station-
ary condition, the MAV itself rarely stops. An exception to
this can be seen around 30s into the flight: at this point, the
MAV has reached a node that continues to have the lowest
cost, which is the aforementioned dead end of obstacle field
1. This dead end node with cost coloured green (Fig. 9) must
increase until the node in black (backtracking) becomes the
best next choice. The rate at which nodes increase in cost can
be tuned, as previously mentioned, through the weighting α

in Eq. 33.

8 Conclusions and further work

A new method for exploring unknown environments with
a quadrotor was introduced. It was shown that reinforce-
ment learning could be used to navigate non-convex obstacle
fields without maintaining a global map of the world. Fast
model predictive control was executed in real-time on mod-
est hardware for control, providing the necessary obstacle
avoidance. Aspects of the MPC construction that affected
solve time and obstacle representation were highlighted.
Automatic code generation was used for construction of the
controllers, which reduced development time, although spe-
cial attention to matrix structure was necessary to maintain
the speed of theMPCalgorithm.The immediate extension for
this work is to integrate with real sensing, such as an RGBD
camera or LIDAR, and real localization such as SLAM. A
more fundamental challenge is to make the placement of the
learning nodes automatic within the environment, attaching
them to recognized features rather than fixed locations. By
attaching nodes to recognised features with a minimum level
of detail (e.g. not blank walls) confidence in localisation can
be maintained, much like the ideas presented in Bose and
Richards (2013).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

https://youtu.be/Vym7QEdG7OM
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1692 Autonomous Robots (2019) 43:1681–1693

A Terminal equality constraints in fast MPC

This appendix describes how to add a set of �F terminal
equality constraints EFx(k + T) = eF to the Fast MPC
formulation of Wang and Boyd (2010). Adopting the same
notation as in that paper, starting from their (6), the problem
is converted to a nonlinear optimization in the form

minimize zT Hz + gT z + κφ(z) (34)

subject toCz = b (35)

where z is an amalgamation of all the decision variables z =
(Δu(k)T , x(k)T , . . . Δu(k+T −1)T x(T)T)T and κφ(z) is a
barrier function representing the inequalities.With the added
inequalities, this means that the matrices C and b now have
the structures

C =

⎡
⎢⎢⎢⎢⎢⎣

−B I · · · 0 0 0
0 −A · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · −A −B I
0 0 · · · 0 0 EF

⎤
⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎣

Ax(k) + ŵ(k)
ŵ(k)

...

ŵ(k)
eF

⎤
⎥⎥⎥⎥⎥⎦

Note that the extra �F equality constraints in the problem
will require a corresponding extra �F elements in the dual
variable ν. The modified Schur complement Y = CΦ−1CT

used to solve for the step in ν is given by

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y11 Y12 · · · 0 0 0
Y21 Y22 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · YT−1,T−1 YT−1,T 0
0 0 · · · YT ,T−1 YTT YFC
0 0 · · · 0 Y T

FC YFF

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where YFC = Q̃T ET
F and YFF = EFYFC and all other

submatrices are calculated as inWang andBoyd (2010). Note
that this retains the same sparsity pattern as the original Y so
the same solution approach is followed: the Cholesky factor
of Y is

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L11 0 · · · 0 0 0
L21 L22 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · LT−1,T−1 0 0
0 0 · · · LT ,T−1 LTT 0
0 0 · · · 0 LFC LFF

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where LFC is found by solving LTT LFC = YFC and
then LFF is found by the Cholesky factorization

LFF LT
FF = YFF − LFC LT

FC . Then the solution of the
equation YΔν = β can then proceed as in Wang and Boyd
(2010) making use of the Cholesky factorization L of Y . The
modifications to include the equality constraints are simply
and extra step on the end of each stage in the process of
solving for Δν.

References

Aswani, A., Gonzalez, H., Sastry, S. S., & Tomlin, C. (2013). Provably
safe and robust learning-based model predictive control. Automat-
ica, 49(5), 1216–1226.

Augugliaro, F., Schoellig, A., & D’Andrea, R. (2012). Generation of
collision-free trajectories for a quadrocopter fleet: A sequential
convex programming approach. In 2012 IEEE/RSJ international
conference on intelligent robots and systems (IROS) (pp. 1917–
1922).

Bali, C., & Richards, A. (2017). Robot navigation using convex model
predictive control and approximate operating region optimization.
In 2017 IEEE/RSJ international conference on intelligent robots
and systems (IROS) (pp. 2171–2176).

Bellingham, J. S., Richards, A. G., & How, J. P. (2002). Receding
horizon control of autonomous vehicles. In Proceedings of the
American control conference.

Borrelli, F., Subramanian, D., Raghunathan, A. U., & Biegler, L. T.
(2006). MILP and NLP techniques for centralized trajectory
planning of multiple unmanned vehicles. In Proceedings of the
American control conference.

Bose, L. N., & Richards, A. G. (2013). Mav belief space planning in 3d
environments with visual bearing observations. In International
micro air vehicle conference and flight competition (IMAV2013).

Brooks, R. (1986). A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1), 14–23.

Choset,H., Lynch,K.,Hutchinson, S.,Kantor,G.,Burgard,W.,Kavraki,
L., et al. (2005). Principles of robot motion: Theory, algorithms,
and implementations. Cambridge: MIT Press.

Cowling, I., Yakimenko, O., Whidborne, J., & Cooke, A. (2010). Direct
method based control system for an autonomous quadrotor. Jour-
nal of Intelligent & Robotic Systems, 60, 285–316.

Deits, R., & Tedrake, R. (2015). Computing large convex regions of
obstacle-free space through semidefinite programming. In H. Lev-
ent Akin Nancy, M. Amato Volkan Isler & A. Frank van der
Stappen (Eds.), Algorithmic foundations of robotics XI (pp. 109–
124). Berlin: Springer.

Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier, L., Tan-
skanen, P., & Pollefeys, M. (2012). Vision-based autonomous
mapping and exploration using a quadrotormav. In 2012 IEEE/RSJ
international conference on intelligent robots and systems (IROS)
(pp. 4557–4564). IEEE.

Garcia, I., & How, J. (2005). Trajectory optimization for satellite recon-
figuration maneuvers with position and attitude constraints. In
Proceedings of the 2005 American control conference, 2005 (pp.
889–894). IEEE.

Hartley, E. N., Jerez, J. L., Suardi, A., Maciejowski, J. M., Kerrigan,
E. C., & Constantinides, G. A. (2014). Predictive control using
an fpga with application to aircraft control. IEEE Transactions on
Control Systems Technology, 22(3), 1006–1017.

Hehn, M., & D’Andrea, R. (2011). Quadrocopter trajectory generation
and control. In Proceedings of the IFAC world congress.

Helwa,M.K.,&Schoellig,A. P. (2016).On the construction of safe con-
trollable regions for affine systems with applications to robotics.
In 2016 IEEE 55th conference on decision and control (CDC), (pp.
3000–3005).

123

Autonomous Robots (2019) 43:1681–1693 1693

Hoffman, G., Rajnarayan, D. G., Waslander, S. L., Dostla, D., Jang,
J. S., & Tomlin, C. J. (2004). The stanford testbed of autonomous
rotorcraft for multi-agent control (starmac). In Proceedings of the
23rd digital avionics systems conference.

Hoffmann, G., Waslander, S., & Tomlin, C. (2008). Quadrotor heli-
copter trajectory tracking control. In AIAA guidance, navigation
and control conference and exhibit, Honolulu, Hawaii (pp. 1–14).
Citeseer.

How, J., Bethke, B., Frank, A., Dale, D., & Vian, J. (2008). Real-time
indoor autonomous vehicle test environment. Control Systems,
IEEE, 28(2), 51–64.

Kerrigan, E., & Maciejowski, J. (2000). Soft constraints and exact
penalty functions in model predictive control. In Control 2000
conference, Cambridge.

LaValle, S. M., & Kuffner, J. J. (1999). Randomized kinodynamic plan-
ning. In Proceedings of international conference on robotics and
automation.

Limon, D., Alvarado, I., Alamo, T., & Camacho, E. (2008). MPC for
tracking piecewise constant references for constrained linear sys-
tems. Automatica, 44(9), 2382–2387.

Liu, C., & Chen, W.-H. (2013). Hierarchical path planning and flight
control of small autonomous helicopters using mpc techniques.
In Intelligent vehicles symposium (IV), 2013 IEEE (pp. 417–422).
IEEE.

Lu, F., & Milios, E. (1997). Globally consistent range scan alignment
for environment mapping. Autonomous Robots, 4(4), 333–349.

Maciejowski, J. M. (2002). Predictive control with constraints. Engle-
wood Cliffs: Prentice Hall.

Maeder, U., Borrelli, F., & Morari, M. (2009). Linear offset-free model
predictive control. Automatica, 45(10), 2214–2222.

Mataric, M. J. (1992). Integration of representation into goal-driven
behavior-based robots. IEEE Transactions on Robotics and
Automation, 8(3), 304–312.

Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). The grasp
multiple micro-uav testbed. Robotics & Automation Magazine,
IEEE, 17(3), 56–65.

Milam,M. B.,Mushambi, K., &Murray, R.M. (2000). A new computa-
tional approach to real-time trajectory generation for constrained
mechanical systems. In Proceedings of the IEEE conference on
decision and control (pp. 845–851).

Nelder, J. A., & Mead, R. (1965). A simplex method for function min-
imization. The Computer Journal, 7(4), 308–313.

Nieuwenhuisen, M., Droeschel, D., Beul, M., & Behnke, S. (2014).
Obstacle detection and navigation planning for autonomous micro
aerial vehicles. In 2014 international conference on unmanned
aircraft systems (ICUAS) (pp. 1040–1047). IEEE.

Reif, J. H. (1979). Complexity of the movers problem and generaliza-
tions. In 20th IEEE symposium on the foundations of computer
science (pp. 421–427).

Richards, A. (2015). Fast model predictive control with soft constraints.
European Journal of Control, 25, 51–59.

Richards, A., & Boyle, P. (2010). Combining planning and learning
for autonomous vehicle navigation. In AIAA guidance, navigation,
and control conference.

Richards, A. G., & How, J. P. (2002). Aircraft trajectory planning with
collision avoidance using mixed integer linear programming. In
Proceedings of American control conference.

Schouwenaars, T., How, J. P., & Feron, E. (2004). Receding horizon
path planning with implicit safety guarantees. In Proceedings of
the American control conference.

Sharma, S. (2011). Qcqp-tunneling: Ellipsoidal constrained agent nav-
igation. In IASTED international conference on robotics.

Sharma, S., & Taylor, M. E. (2012). Autonomous waypoint generation
strategy for on-line navigation in unknown environments. environ-
ment, 2:3D.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An intro-
duction (Vol. 1). Cambridge: Cambridge University Press.

Tatjewski, P. (2014). Disturbance modeling and state estimation for
offset-free predictive control with state-space process models.
International Journal of Applied Mathematics and Computer Sci-
ence, 24(2), 313–323.

Vitus, M., Pradeep, V., Hoffmann, G., Waslander, S., & Tomlin, C.
(2008). Tunnel-milp: Path planning with sequential convex poly-
topes. In AIAA guidance, navigation, and control conference.

Wang, Y., &Boyd, S. (2010). Fast model predictive control using online
optimization. IEEE Transactions on Control Systems Technology,
18(2), 267–278.

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., & Tardós,
J. (2009). A comparison of loop closing techniques in monocular
slam. Robotics and Autonomous Systems, 57(12), 1188–1197.

Yamauchi, B. (1997). A frontier-based approach for autonomous explo-
ration. In 1997 IEEE international symposium on computational
intelligence in robotics and automation, 1997. CIRA’97., Proceed-
ings (pp. 146–151). IEEE.

Yang, J., Shi, Y., & Rong, H.-J. (2016). Random neural q-learning for
obstacle avoidance of a mobile robot in unknown environments.
Advances in Mechanical Engineering, 8(7), 1687814016656591.

Zhang, T., Kahn, G., Levine, S., & Abbeel, P. (2016). Learning deep
control policies for autonomous aerial vehicles with mpc-guided
policy search. In 2016 IEEE international conference on robotics
and automation (ICRA) (pp. 528–535). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Colin Greatwood is a postdoc-
toral researcher at the University
of Bristol. He gained a MEng
in Aerospace Engineering from
the University of Bristol in 2008.
He stayed at Bristol to obtain his
Ph.D. in 2013 on nonlinear tra-
jectory optimization. Now work-
ing with small unmanned air vehi-
cles Dr Greatwood is interested
in developing embedded control
algorithms and machine learning
techniques.

Arthur G. Richards received the
M.Eng. degree from Cambridge
University in 2000 and the SM
and Ph.D. degrees from MIT in
2002 and 2004, respectively. Since
2004, he has been with the Depart-
ment of Aerospace Engineering,
University of Bristol, Bristol, U.K.,
where he is currently a Reader.
His research interests include tra-
jectory optimization, model pre-
dictive control, robotics, and their
combination to develop high-
performance guidance for autono-
mous vehicles.

123

	Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control
	Abstract
	1 Introduction
	2 Experimental setup and modelling
	3 Exploration architecture
	4 Operating region calculation
	4.1 Rectangular operating regions
	4.2 Quadrilateral operating regions

	5 Application of model predictive control
	6 Reinforcement learning for navigation
	7 Results
	7.1 MPC performance
	7.1.1 Simulation results for 1D
	7.1.2 Decoupling the control axes
	7.1.3 Initial flight test results

	7.2 Results using MPC and learning

	8 Conclusions and further work
	A Terminal equality constraints in fast MPC
	References

