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Abstract
This article studies how to dimension and control at the system level a fleet of autonomous aerial vehicles delivering goods
from depots to customers. Customer requests (jobs) arrive according to a space-time stochastic process. We compute a lower
bound for the infrastructure expenditure required to achieve a certain expected delivery time. It is shown that job assignment
policies can exhibit a tipping point behavior: One vehicle makes the difference between almost optimal delivery time and
instability. This phenomenon calls for careful dimensioning of the system.We thus demonstrate the trade-off between financial
costs and service quality. We propose a policy that assigns each incoming job to the vehicle that will do the job faster than
other ones, seeking to minimize the overall workload in the system in the long term. This policy is scalable with the number
of depots and vehicles, performs optimal in low load, and works well up to high loads. Simulations suggest that it stabilizes
the system for any load if the number of vehicles per depot is sufficient.

Keywords Unmanned aerial vehicles (UAVs) · Queuing theory · Task allocation · Decision making · System dimensioning ·
Level of service · Investment
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1 Introduction

Small drones, also called unmanned aerial vehicles (UAVs),
have successfully made their way to civil applications. They
fly routes in an autonomous manner, carry cameras for aerial
photography, and transport goods from one place to another.
The range of applications is broad, including aerial mon-
itoring of plants and agricultural fields as well as support
for first time responders in case of disasters (Andre et al.
2014; Kovacina et al. 2002; Lima et al. 2014; Quaritsch et al.
2008). Delivering goods with a fleet of drones (Grippa 2016;
Grippa et al. 2017) becomes an option if classical means
of transportation—such as trucks, trains, and planes—are
inappropriate. This comes about if roads, railway tracks, or
landing facilities do not exist, if weather conditions make
it impossible to use them, or if their use is too dangerous
or time consuming. A compelling service in this context is
the delivery of medicine, vaccinations, or laboratory samples
for patients in remote areas and crisis regions. Such a service
is also worthwhile in densely populated metropolitan areas
when congestion makes roads nearly impassable.

This article investigates drone-based delivery at a system
level. The entities of the system are goods, customers, vehi-
cles, and depots. Customers request goods that are stored
in depots and delivered by vehicles. Service requests, also
denoted as jobs or customer requests, are not known in
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advance and arrive over time at certain locations according
to a space-time stochastic process.We introduce an approach
to dimension the system (How many vehicles and depots are
needed for a certain area?) and propose and analyze poli-
cies for job assignment (How to assign customer requests to
vehicles to minimize the expected delivery time?).

If the vehicles are capable of consecutively serving sev-
eral customers before they return to a depot, e.g., if goods
are lightweight and total distances are small, the problem of
selecting customer requests to be served falls into the domain
of dynamic vehicle routing with stochastic demands, dating
back to Bertsimas and Ryzin (1991, 1993a, b). In contrast
to this, vehicles in our system serve no more than one cus-
tomer per trip for capacity reasons, and we use the term job
assignment to emphasize the difference to routing. Focusing
on depot-to-customer delivery, we complement research on
routing policies for wide-area surveillance (Bullo et al. 2011;
Enright et al. 2009; Frazzoli and Bullo 2004; Pavone et al.
2011; Savla et al. 2008).

We model the system as an M/G/K queue with K > 1.
Our performance measure is delivery time, i.e., the time it
takes for a customer from requesting to obtaining a good. The
stability of this service is linked to the queuing of jobs, i.e.,
customers may have to wait until other customers have been
served. The system becomes unstable if the average number
of waiting customers persistently increases over time.

Our contributions are as follows: First, we give a lower
bound for the expenditure needed to set up a stable system as
a function of the targeted average delivery time. Second, we
analyze two simple job assignment policies: Nearest job first
to random vehicle (NJR) and first job first to nearest vehicle
(FJN). These policies are suboptimal but their performance
yields insight on the system dynamics which helps us to
design advanced policies. Third, we analyze a policy known
fromqueuing theory, namedfirst job to vehiclewith the small-
est workload (FJWπ ) in this paper, and modify it according
to the lessons learned fromNJR andFJN.Wepropose the first
job first to vehicle with smallest additional workload (FJWδ)
policy. FJWπ is not optimal in light load and stabilizes the
system only for a fraction of the possible arrival rates. The
novel FJWδ is optimal in light load and stabilizes the system
for almost all arrival rates. Fourth, we show that FJN and
FJW exhibit a tipping point behavior: One vehicle makes the
difference between almost optimal performance and instabil-
ity. Therefore, careful dimensioning is required. In contrast
to this, FJWδ can stabilize the system for almost all arrival
rates, as long as the number of vehicles per depot is sufficient.
This finding yields a connection between dimensioning and
control of the system. Fifth, this last finding enables proper
dimensioning of the delivery system controlled with FJWδ.
In particular, the infrastructure of depots is subject of a long-
term decision, the number of vehicles can be modified in
short-term. The setup of the system (number of depots and

vehicles) shapes its financial costs and, in conjunction with
the job assignment policy, the service quality provided to the
customers for which they are willing to pay. Hence, which
minimum expenditure is required to provide a certain service
quality is an interesting question with respect to investing in
such a delivery system. The lower bound mentioned in the
first point provides the answer. We illustrate the application
of this service-possibility-frontier with parameters reported
by the company Matternet. Parts of this article related to
the first, the second, and the fifth points are published in
Grippa et al. (2017). The bound in the first point has been
improved. All results and discussions related to FJW policies
are novel.

2 Related work

2.1 Types of vehicle routing problems (VRPs)

The framework of the used model dates back to Dantzig
and Ramser (1959), who introduced their formulation of
the vehicle routing problem (VRP) as a generalization of
the traveling salesman problem (Flood 1956). Since then,
the operations research community has intensively studied
how a central planner determines optimal sets of routes for
fleets of homogeneous vehicles, supplying given sets of geo-
graphically dispersed customers with goods (Golden and
Assad 1998). In the context of a “classical VRP”, such an
optimal set of routes accomplishes that (i) all customers
are supplied with the requested products, (ii) none of the
vehicles exceeds its capacity traveling along its route, (iii)
no customer is visited more than once, (iv) all routes start
and end at one central depot, and (v) the overall routing
cost is minimized. In practical applications, VRPs have a
broad diversity of additional requirements and operational
constraints affecting the construction of the optimal set of
routes. Among these are periodic VRPs (Angelelli and Sper-
anza 2002), VRP with pickup and delivery (Desaulniers
et al. 2002), VRP with split deliveries (Dror et al. 1994),
and VRP with time windows to serve customers within
(Cordeau et al. 2002). For reviews of exact and approx-
imate methods for solving the classical VRP, we refer to
Baldacci et al. (2007), Cordeau et al. (2007), Laporte (1992,
2007, 2009), Toth and Vigo (2002a, b) and, for an exhaus-
tive bibliography on vehicle routing, to Laporte and Osman
(1995).

VRPs are classified according to the nature of system input
information. If all system input is known before the vehicles
leave the depot(s) and does not change during mission exe-
cution, the matter of concern is described in the paragraph
above, and said to be both static and deterministic. For many
real-world applications at least some input information like
customer arrivals behaves according to a probability distribu-
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tion rather than is known a priori. These VRPs are denoted as
stochastic. If some input information appears or changes dur-
ing mission execution and has to be integrated immediately
into decision-making, the VRP is called dynamic (Psaraftis
1998, 1995, or, for a recent review, Pillac et al. 2013). Then,
designing sets of routes has to be replaced by designing rout-
ing policies which describe the evolution of motion paths as
a function of newly arriving input.

2.2 Stochastic and dynamic vehicle routing in
robotics and aeronautics

Bertsimas and Ryzin (1991, 1993a, b) were the first to
comprehensively analyze a stochastic and dynamic VRP.
The problem is also named dynamic traveling repair-person
problem (DTRP): Requests are distributed according to a
space-temporal stochastic process. Every request is associ-
atedwith one location.Vehicles travel from request to request
and spend time in each location providing on-site service.
This problem received considerable attention for applications
in robotics and aeronautics. Particular attention was devoted
to the motion coordination of mobile robots, which includes
spatially-distributed surveillance policies for UAVs that are
adaptive to network changes (Bullo et al. 2011; Enright et al.
2009; Frazzoli and Bullo 2004; Pavone et al. 2011; Savla
et al. 2008). In some of these policies, named partitioning
policies, the service area is partitioned in sub-areas, one for
each vehicle, and every vehicle serves only the requests in
its sub-area according to certain rules (Pavone et al. 2011).
Strategies were developed to ensure that a certain fraction
of requests is served before the jobs expire (Pavone et al.
2009), that account for service priorities (Smith et al. 2010)
and translating requests (Bopardikar et al. 2010), and that
accomplish an effective systemmanagement without explicit
communication (Arsie et al. 2009).

Considerably less work was dedicated to another vehicle
routing problem called dynamic pickup and delivery prob-
lem (DPDP) (Swihart and Papastavrou 1999; Waisanen et al.
2008). In this problem, every request is associated with two
locations (pickup and delivery) and, at each service, a vehi-
cle transports a good from pickup to delivery location. This
problem is different from theDTRPbecause the service of the
request requires the vehicle to change location. Both pickup
and delivery locations are drawn according to a continuous
spatial distribution, i.e., goods are not stored in fixed depots.

In our problem, goods are available in depots with fixed
locations. This problem can be seen either as a DTRP with
a non-euclidean distance, or as a DPDP with pickup loca-
tions chosen from the depot locations. For these reasons, the
approaches developed in related work are not directly appli-
cable to this problem. Furthermore, we explicitly take battery
charging into account.

3 Systemmodel

3.1 Entities of a delivery system

The system is composed of K ∈ N vehicles moving in a
bounded and convex service area A ⊂ R

2 of size A:=‖A‖,
where ‖ · ‖ is the Euclidean norm. A vehicle is denoted by
vk with identifier k ∈ {1, . . . , K }. The current position of
vk at time t is vk(t) ∈ A with t ≥ 0. All vehicles travel at
the same constant velocity ν ∈ R

+ and are equipped with
a battery, whose charging level at time t is represented by
bk(t) ∈ [ 0, 1]. The fact that batteries have to be recharged or
exchanged is quantified by the parameter α ∈ (0, 1], which is
the air-time ratio, i.e.,α = air time/(air time + charge time).

The arrival of delivery requests for goods withinA is gen-
erated by a Poisson process with finite intensity λ ∈ R

+,
where λ is the arrival rate. The requests, also called jobs, are
indexed by the job identifier n ∈ N, which indicates the order
of request arrivals. The corresponding customer is called cn ;
his or her position is denoted by cn ∈ A and assumed to
be independently and uniformly distributed in A. The infor-
mation about the waiting customers is centrally stored. In
distributed policies (NJR), vehicles periodically access the
information and select the jobs. In centralized policies (FJN
and FJW), a central unit periodically asks the vehicles for
information and assigns the jobs to them. We assume that
communication happens just before selection/assignment.
However, in FJW policies, communication and assignment
can be postponed without any effect on the policy outcome
(see Sect. 6.1). Customer requests do not only differ with
respect to timing and locations but also with respect to the
goods requested to be delivered.

Goods are, in general, different but have the same expi-
ration date and are treated with identical priority. The
system consists of L ∈ N depots to store goods. The depots
are interconnected and provide a sufficient number of all
goods and service activities, like recharging batteries. We
assume that, for capacity reasons, a vehicle cannot serve
more than one customer request per trip (see Bertsimas and
Ryzin 1993a, p. 71). The depots are set up at locations
d = [d1 d2 . . . . dL ] ∈ AL , where d is chosen such that the
expected distances between a random point q ∈ A (potential
request) generated according to a uniform distribution over
A and the closest depot are minimal:

HL(d,A) := 1

A
·
∫
A

min
l:l∈{1,...,L} ‖dl − q‖dq. (1)

This corresponds to the solution of the continuous
multimedian problem known from geometric optimization
(Papadimitriou 1981; Zemel 1984):

d∗ = arg min
d∈AL

HL(d,A), (2)
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Fig. 1 Time intervals involved in a customer service: delivery time T ,
waiting time W , return time R, and service time S

with H∗
L(A):=HL(d∗,A). (3)

A depot is a storage but not a permanent home base for partic-
ular vehicles. Whenever a vehicle delivered a good, it either
approaches the nearest depot or one that is more suitable to
handle the next customer request. Suitability is determined
by the job assignment policy.

3.2 Service operations and delivery time

The delivery time for customer cn (n ∈ N) is denoted by
the stochastic variable Tn = Wn + Rn + Sn , whereWn is the
waiting time, Sn is the service time, and Rn is the return
time. Figure 1 illustrates all operations involved in the service
of cn from arrival at t = τ0 to service completion at t =
τ10. The waiting time is Wn = τ5 − τ0. The return time is
Rn = τ7 − τ5 and depends on the position of the customer
cn− having been served before cn and on the system’s load.
Rn is included in [0, R′

n]: It is null if the vehicle is ready at the
depot, and maximum if the service of cn− is not completed
at the arrival of cn . The service time is Sn = τ10 − τ7.

In the context of “classic” queuing theory, the term “ser-
vice time” indicates the total time to process one request Bn ,
which corresponds to Sn + Rn in this paper. Bertsimas and
Ryzin (1991, 1993a, b) use service time to indicate the time
spent on-site at the request location which corresponds to the
term unloading time in this paper.

We neglect the times to load and unload goods. As intro-
duced previously, the service provided to customers is the
transport of goods from a depot to the customers. In practi-
cal applications it is reasonable to assume that loading and
unloading times are negligible compared to the time needed
for travel. These times could be modeled but besides slightly
different numerical values they would not change the quali-
tative results of our analysis.

3.3 Queuing phenomena and stability

A job assignment policy � has to restrain the outstanding
jobs (Bertsimas and Ryzin 1991, 1993a, b; Bullo et al. 2011;
Enright et al. 2009; Frazzoli and Bullo 2004; Pavone et al.
2011; Savla et al. 2008). Policy� is referred to as stabilizing

if the expected number of pending jobs (customers waiting
for service) stays confined over time, i.e., if there exists an
arbitrary constant κ < ∞ such that

N̄� := lim
t→∞E[N (t)|�] ≤ κ, (4)

where N (t) denotes the number of pending jobs at time t . We
assume that N (0) = 0, i.e., no customer is waiting at t = 0.

The return and service times are crucial for the stability of
the system. A necessary condition for stability is (Bertsimas
and Ryzin 1993a, p. 63):

D̄

ν
≤ K

λ
(5)

if the on-site service time is null. D̄ is the average Euclidean
distance between two customers served in sequence, λ is the
arrival intensity, and ν is the vehicle speed. This condition
applies to our problem with two changes: first, the distance
becomes the distance function customer-depot-customer,
which, divided by the speed, gives R̄′ + S̄ (Fig. 1), where
R̄′ is the average return time in high load and steady state,
and S̄ is the average service time in steady state. Second, the
effective number of used vehicles is on average αK , where
α is the airtime ratio. Therefore, our stability condition is

R̄′ + S̄ ≤ αK

λ
. (6)

The problem analyzed in this paper can be modeled as
an M/G/K queue with interdependent service times Bn . M
indicates Poisson distributed customer arrivals, G indicates
service times distributed according to a generic distribution,
and K is the number of servers. For M/G/K queues with
independent service times (Kleinrock 1975), the load factor
is defined as

ρ := λB̄

αK
. (7)

The system is said to be in low load condition if ρ → 0
and in high load condition if ρ → 1. A necessary condition
for the stability of the system is ρ < 1. In case of stability,
ρ can be interpreted as the expected value of the fraction
of busy servers. This definition does not apply to our case
because B̄ depends on the system state (Kleinrock 1975),
which includes the number of waiting customers. Neverthe-
less, the condition of stability is still valid: B̄ approaches
R̄′ + S̄ for ρ → 1, leading to (6). In words, to stabilize
the system, it is necessary that the average time between two
successfully completed service requests is not larger than the
average time between two customer arrivalsmultiplied by the
average number of available vehicles.
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4 Expenditure for minimum infrastructure

Westart to derive theminimumexpenditure for infrastructure
necessary to build a stable system as a function of system
performance by deriving a lower bound on average delivery
time T̄ . The average delivery time (with respect to the request
location) is minimum if a vehicle is ready at the depot nearest
to the request location. In this case the return time is null.
Thus, the minimum average delivery time is equal to the
minimum average service time: T̄ ≥ T̄min = S̄min. The latter
can be expressed in terms of the L-median function (3) as

S̄min = H∗
L(A)

ν
. (8)

Since the L-median function decreaseswith L , it is necessary
to have a minimum number of depots L to be able to achieve
the targeted performance T̄ . The minimum L as function of
T̄ is non-increasing piecewise constant, and defined as

L(T̄ ) = min

{
l ∈ N : H∗

l (A)

ν
≤ T̄

}
. (9)

In high load, the average time to process a job B̄ is bounded
according to B̄ ≥ 2S̄min. Using the latter in (7) together with
ρ < 1, we derive a condition for the minimum number of
vehicles necessary to have a stable system for a given con-
figuration of depots:

K >
λ2S̄min

α
. (10)

By using (8) in (10) and rounding to the nearest greater inte-
ger, we obtain

K (L) =
⌈
2λ

α

H∗
L(A)

ν

⌉
. (11)

For Cd and Cv denoting the costs of a depot and a vehicle,
respectively, the total infrastructure expenditure is deter-
mined by the piecewise constant function

C(T̄ ) = Cd L(T̄ ) + Cv K (L(T̄ )) . (12)

For some combination of parameters, the function above
increases with the targeted average delivery time T̄ : As T̄
increases, the minimum number of depots L(T̄ ) decreases,
andmore vehicles are needed to stabilize the system.Depend-
ing on the ratio betweenCd andCv this may increase the total
infrastructure expenditure necessary to build a stable system,
denoted by Imin. Yet, Imin has to be a non-increasing function
of T̄ . By construction, this is accomplished in the follow-
ing way: For two configurations of depots with L ′ < L ′′,
T̄ ′
min > T̄ ′′

min, and C ′ > C ′′ we are able to obtain delivery

time T̄ ′
min and reduce total expenditure by employing L = L ′′

instead of L = L ′ depots alongside delaying any delivery by
T̄ ′
min − T̄ ′′

min time units. This yields

Imin(T̄ ) = min
l:l∈{L(T̄ ),...,∞}

Cd l + Cv

⌈
2λ

α

H∗
l (A)

ν

⌉
, (13)

which constitutes the minimum infrastructure expenditure
necessary for building a stable system that meets a targeted
performance T̄ . Note that (13) is sufficient to guarantee sys-
tem stability if the job allocation policy can stabilize the
system for all ρ < 1.

The minimum infrastructure expenditure depends on the
shape of the service area A through the terms H∗

L(A) and
L(T̄ ). It is possible to obtain a lower bound to Imin(T̄ )which
does not depend the shape of the service area by considering

H∗
L(A) ≥ a

√
A

L
, (14)

where a = 2/(3
√

π), which is equivalent to considering
circular sub-areas (Zemel 1984). If the right hand side of the
equation above is used instead of the L-median function, the
minimum number of depots is

L(T̄ ) =
⌈
a2A

ν2T̄ 2

⌉
. (15)

By using (14) and (15) in (13) we obtain the lower bound. In
general, the bound is not tight but, depending on the parame-
ters, can be very close to the actual minimum infrastructure.

We show in the following sections that one vehicle can
make the difference between almost optimal performance
and an unstable system (see Fig. 3). Therefore, choosing a
sufficient number of vehicles and depots is crucial for a reli-
able system. We call this operation system dimensioning. In
Sect. 7 we use (13) in a numerical example and discuss the
result.

5 Simple job assignment policies

5.1 Description of policies

Job assignment goes beyondmerely picking the next request.
It has to specify all decisions needed to operate a delivery sys-
tem including which customer request to serve first, which
vehicle to let serve the next customer request, at which depot
to let vehicles load up goods, when to recharge the battery,
and where to let vehicles return to if no customers are wait-
ing. We first analyze two simple classes of job assignment
policies: nearest job first to random vehicle (NJR) and first
job first to nearest vehicle (FJN). NJR policies select jobs
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Table 1 Features of job assignment policies

Feature Feature details NJR soon NJR late FJN soon FJN late

Order of
selection

Jobs are selected in FCFS order from a shared queue – – � �
There is no specific assignment order of jobs � � – –

Decision location Decisions at the customer, just after completing a service � – � –

Decisions at the depot, just before loading goods – � – �

Coordination
mechanisms

If many vehicles seek to select a job, a random one does � � – –

If many vehicles seek to select a job, the nearest one does – – � �
If there are no jobs a vehicle goes to the nearest depot � � � �

Battery
management

If a vehicle’s battery level is below 30% the vehicle approaches the
nearest depot. If a vehicle’s battery reaches a charging level higher
than 80% the vehicle is ready for service. If there is no customer the
vehicle fully recharges its battery

� � � �

based on the location of the customer; FJN policies select
jobs based on the arrival time of the customer requests. By
comparing these two policies, we seek to gain insights into
the following question: Is it worth to delay the decision on
job assignment to obtain more information about new cus-
tomer requests in order to reduce the delivery time? For both
classes we evaluate two extreme cases: when assignment is
made as soon as possible (just after the previous service,
NJR-soon and FJN-soon), and when assignment is made as
late as possible (just before loading the good, NJR-late and
FJN-late).

A first issue is the timing of job assignments. It seems
plausible to assume that decisions should be made as late
as possible to utilize the most recent information about
the system status, basically postponing the individual job
assignments until loading goods in the depot. Such delayed
decisions can also have a negative effect. This relates to the
fact that, for L ≥ 2, one of the most important decisions
to make is where a vehicle should return to after satisfying a
customer request. If a non-postponed decision about the next
job includes a “clever” assignment of the depot to travel to,
while a postponed decision leads to being at a suboptimal
place at the moment of job assignment, the advantage gained
by processingmore recent information is counteracted by the
disadvantage of the extra distance traveled to the customer
to be served next. We will investigate this effect in Sect. 5.4.

A second issue is the coordination mechanism to avoid
that more than one vehicle is assigned to the same job. Such
a scenario, where a particular customer, say cn̂ , is selected
by K ′ vehicles with 2 ≤ K ′ ≤ K , can easily happen if the
system is not fully utilized, i.e., for ρ → 0. FJN policies are
centralized: A central entity selects the next job and assigns
it to the nearest vehicle. Hence, the assignment is based on
arrival time and localization of waiting customers, positions
of depots and vehicles. NJR policies are distributed: Every
vehicle selects jobs based on its position with respect to the
position of customers and depots.Whenever a vehicle selects

a job, it is removed from the list ofwaiting jobs. Every vehicle
knows its own position, the positions of depots and ofwaiting
customers. For these policies, the coordination mechanism is
randomized: If more than one vehicle is ready to take a new
job at a given time, a random priority order is assigned to the
vehicles involved. The randomize mechanism corresponds
to a real case where vehicles are not coordinated at all and
the connection delay to the list of waiting customers is not
predictable because it depends on the network conditions.

Table 1 shows all simple policies and classifies them
according to three features: the order of jobs to be done, the
timing of assignment, and the coordination of jobs in case
of ambiguous assignments. A feature included in all poli-
cies is the effect of a vehicle vk’s battery level, bk(t), on the
selection of new jobs. In particular, if at the time of job selec-
tion/assignment the battery level is below 30%, the vehicle
approaches the nearest depot to recharge and does not select
a job until its battery level has reached 80%. If no service
request arrives, vk fully recharges.

5.1.1 NJR policies

In NJR-soon—after completing a service—the vehicle vk
selects the next customer such that the travel distance to this
customer via a generic depot is minimized. In mathematical
terms we solve

min
l:l∈{1,...,L}
n:cn∈N (τ )

‖vk(τ ) − dl‖ + ‖dl − cn‖ , (16)

where τ is the time instant of completion of the previous
job, which is here equal to the time instant of the new job
assignment. Such assignment is made if the battery level at
time τ is high enough, i.e., bk(τ ) ≥ 0.3; otherwise a vehicle
will return to the nearest depot. Every vehicle has to make
L · N (τ ) comparisons to conclude an individual job assign-
ment. If a job is at minimum traveling range for more than
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one vehicle, according to the random coordination described
above, only one randomly chosen vehicle will serve the job.

In NJR-late, after completion of a service, the vehicle vk
first travels to the closest depot. The vehicle then selects the
nearest customer, i.e., it solves:

min
n:cn∈N (τ+R)

‖vk(τ + R) − cn‖, (17)

where τ + R is the time instant vk arrives at the depot. The
vehicle remains in the depot if there is no waiting customer.
If a job is at minimum traveling range for more than one
vehicle, the supplying vehicle is determined randomly. This
policy requires L + N (τ + R) comparisons.

5.1.2 FJN policies

Following a first come first served (FCFS) policy, a central
unit always selects the “oldest” unaddressed request, i.e., the
smallest n with cn ∈ N (t), where t indicates the instance
of the job assignment. Let this request be called n(t). In
particular, policy FJN-soon implies that whenever at least
one vehicle completes a service at time t = τ a central con-
troller selects the next customer in line, i.e., request n(τ ), and
chooses the vehicle vk∗ and the path through the depot, dl∗ ,
that minimizes the total distance between its current posi-
tion vk(τ ), a depot’s position dl , and the customer’s position
cn(τ ):

min
l:l∈{1,...,L}
k:k∈K′

‖vk(τ ) − dl‖ + ‖dl − cn(τ )‖, (18)

where K′ is the number of vehicles ready for the service.
Obeying (18), a total of K ′ · L computations is needed to
come up with a vehicle’s individual assignment of whom to
serve next.

Obeying the rules of policy FJN-late, whenever at least
one vehicle is available at a depot, the central unit selects the
request n(τ +R) and performs K ′ computations to determine
the vehicle nearest to that job. Subsequently, L computations
are performed to find the depot closest to the selected cus-
tomer where the vehicle has to return to after delivery:

min
k:k∈K′ ‖vk(τ + R) − cn(τ+R)‖ + min

l:l∈{1,...,L} ‖cn(τ+R) − dl‖.
(19)

5.2 Simulation setup

For each of the simple policies, we simulate the movement
of K ∈ {1, . . . , 24} vehicles in a square area of A = 16 km2.
The L ∈ {1, 4, 9, 16} depots are located such that the average
distance of any potential request inA from the nearest depot
is minimized. Customer requests are assumed to randomly

arrive over time at a constant rate λ = 0.65 requests/min.
All vehicles travel at a constant velocity of ν = 30 km/h,
neglecting acceleration and deceleration phases and neglect-
ing the extra time for starting and landing. The vehicles’ air
time is limited due to their finite battery capacity, which is
assumed to be full at t = 0. We choose the ratio between air
time and charge time as being 1/3, i.e., α = 0.25. Moreover,
every vk is placed at one of the depots at t = 0. Finally, we
neglect the loading time of goods.

In the simulations, the system presented in Sect. 3 is
observed every δ time units. Interarrival times are generated
according to a geometric distribution so that the number of
customer arrivals per time unit follows a binomial distribu-
tion with parameters h = 1/δ and p = λδ. The Poisson
distribution is a sufficient approximation of the binomial dis-
tribution if p ≤ 0.08 and h ≥ 1500p (Bronshtein et al. 2007).
Therefore, for all of our simulation runs, we choose δ such
that δ ≤ min{0.08/λ, 1/

√
1500λ}.

The data collected from the simulations are used to
compute the average delivery time. Specifically, we firstly
estimate the length of the warm-up phase using Welch’s
method (1983). Secondly, we compute the average delivery
timewith the replication/deletionmethod (Law 2007), which
is equivalent to the independent replications method (Welch
1983). These methods are used for statistical analysis of data
and enable us to estimate expected values and confidence
intervals.

For every parameter setup, we perform 10 simulations
with a minimum of 4000 jobs for every simulation. If it
is impossible to evaluate whether the system reaches the
steady state within this period, we simulate 10,000 cus-
tomers requests which is more than 10 days of continuous
operation.

5.3 Warm-up phase

We discuss the computation of the warm-up phase for NJR-
soon and FJR-soon for K ∈ {11, 12, 14, 16} vehicles and
L = 16 depots. Figure 2 reveals that the length of the tran-
sient phase decreases with an increasing number of vehicles,
i.e., with a decreasing load factor. We conclude that deliv-
ery systems provided with fewer vehicles must be simulated
for a longer period (higher number of demands ñ) to reach
steady state conditions. Being conservative, we estimate that
the length of the warm-up phase is ñwu = 3000 for the case
K = 11, while being ñwu = 2000 for the case K = 12, and
ñwu = 500 for all other cases.

Moreover, Fig. 2 introduces a result addressed when dis-
cussing Fig. 3d below: FJN-soon can yield a substantially
better system performance than NJR-soon. However, FJN-
soon cannot stabilize the system for K = 11.
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Fig. 2 Delivery time averaged over 10 simulation runs and 2w̃ + 1 =
1001 demands vs. demand index n for K vehicles; L = 16,
A = 16 km2, λ = 0.65 req./min., ν = 30 km/h, and α = 0.25

5.4 Performance evaluation and lesson learned

Figure 3 shows the average delivery time T̄ for different
job assignment policies as a function of the number of vehi-
cles K and the number of depots L . The shaded areas indicate
“impossible regions”, i.e., all ordered pairs (K , T̄ ) for which
either ρ > 1 or T̄ < T̄min or both. The following basic
phenomena can be observed.

5.4.1 Coordination mechanism and low load

FJN policies are optimal in light load, i.e., the best vehicle to
serve a request (in order to minimize the delivery time) is the
vehicle nearest to that request. If the system is in light load,
increasing the number of vehicles K has no effect on the
performance. Additional vehicles are not used because, on
average, there is a vehicle ready to serve every new request
from the nearest depot. As the load factor increases, FJNpoli-
cies become unstable for arrival rates λ rather far from the
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theoretical limit. This is probably due to the non-optimal bat-
tery management. In high load, vehicles spend a significant
amount of time recharging the battery while the customers
are waiting. Therefore, a good policy has to include the bat-
tery level in the job allocation decision.

The randomized coordination mechanism of NJR policies
performs poorly in light load. Even if there are vehicles avail-
able a the depot nearest to a new request, the serving vehicle
might come from another depot. This increases theminimum
average service time and dramatically degrades performance.

5.4.2 Tipping point behavior

As the number of vehicles decreases, FJN policies show a
tipping point behavior: One vehicle makes the difference
between almost optimal performance and instability. In FJN
policies, as the number of vehicles decreases beyond a cer-
tain threshold, the vehicles often have to change depot. Such
depot switching increases the minimum service time mak-
ing the system unstable. The phenomenon is made worse
by the non-optimal battery management. In terms of queu-
ing theory, this extreme behavior is explained by the fact
that the delivery time grows much faster with the parame-
ters defining the load factor (λ, B̄, α, K ) than in “classic”
queues. Bertsimas and van Ryzin report the same for waiting
time and arrival rate (Bertsimas and Ryzin 1991). In a “clas-
sic” queue, a decrement in the number of vehicles K would
increase the load factor according to λB̄/(α(K − �K )).
In our problem, the average time to process a request B̄
increases as the number of vehicles decreases beyond a
certain threshold. Therefore, the load factor increases accord-
ing to λ(B̄ + �B)/(α(K − �K )), which determines higher
increment on the delivery time. Given this relationship
between delivery time and number of vehicles and the fact
that the number of vehicles is discrete, one vehicle can make
the difference between being in mid/light load and exceed-
ing the stability region. The difference in stability of FJN
and NJR policies derives from the differing ability to keep B̄
small as the load factor increases.

Despite the randomcoordination,NJR-soon performs bet-
ter than the FJN policies in high load. In high load, there are
fewer conflicts, and assignment of the nearest job limits the
transitions between depot sub-areas (with high probability
there are requests in the same sub-area). However, this capac-
ity to stabilize the system for higher arrival rates comes at the
price of lack of fairness. Requests are treated with priorities
depending on the distance from the depot. Therefore, there
is a set of demands that is served with long delivery time.

5.4.3 Timingmatters

Using FJN policies, timing has no effect on delivery time and
system stability (see Fig. 3). In contrast, using NJR policies,

an early decision is beneficial for stability, i.e., NJR-soon is
more robust thanNJR-late. The positive effect of more recent
information outweighs the negative effect of returning to a
depot located sub-optimally (on average) for the next job.
The gap between the two NJR policies widens with more
depots, i.e., the effect of “being at a suboptimal place” is
more pronounced in systemswithmany depots. This happens
because in heavy load conditions randomized job coordina-
tion is rarely necessary (if at all), and NJR behaves similar to
a nearest neighbor policy (as mentioned above) which serves
the nearest demand after every service completion.

6 Workload-based job assignment

6.1 Description of policies

We now study two policies that take into account the work-
load of vehicles. The first is known from queuing theory
(Asmussen 2003); the second is an extension based on the
lessons learned from the analysis of simple policies. The
workload at time t is the remaining time that a vehicle needs
to complete all assigned jobs.

The first policy is first job to the vehicle with the small-
est workload (FJWπ ). It serves jobs in an FCFS order and
assigns them to the vehicle with the smallest workload. At
every job arrival, a central unit asks each vehicle to compute
its current workload. All vehicles send back their computed
values and the central unit assigns the job to the vehicle
with the minimum value. A vehicle with no workload heads
toward the nearest depot to charge its battery. For a standard
G/G/K queue, this policy minimizes all moments of the
waiting time, number of jobs in the system (queue length),
andworkloads for all vehicles (Asmussen 2003). In our deliv-
ery system, however, the policy performs poorly because it
does neither consider the positions of the vehicles relative to
the customer and depots nor the energy needed to do the job.

The second policy is first job to the vehicle with the small-
est additional workload (FJWδ). Instead of using the current
workload of a vehicle as an assignment criterion, this pol-
icy employs the amount of workload that the new job adds
to the current workload. The key idea behind this policy is
to minimize the overall workload in the entire system in the
long run. FJWδ considerably increases stability and reduces
delivery time. The additional workload takes into account the
way from the previous customer to the depot in order to pick
up the new good (or the current location if the vehicle is not
serving), battery charging in the depot (to reach the new cus-
tomer and come back to the nearest depot), and transport the
good from the depot to the customer. If a vehicle is currently
not serving a customer, the current location is taken instead
of the customer location.
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It should be emphasized that the policy is scalable with
the number of vehicles and depots: Each vehicle computes
the minimum of L additional workload values to choose the
depot for every assignment, and the central unit computes
the minimum of K additional workload values to choose the
vehicle. The policy can thus be applied in large systems.
Alternatively, it can be applied locally by dividing the multi-
depot system in many single-depot systems.

Some design choices of FJWδ can be traced back to the
lessons learned from the simple policies: First, we focus
on FCFS to have fairness among requests with varying dis-
tances from the nearest depot. Second, we explicitly take into
account the battery level in job assignments. Third, assign-
ments can be postponedwithout impact on performance until
the workload of the chosen vehicle is zero. This is important
from an implementation point of view as the system can be
well operated in areas with poor network coverage. Vehicles
can exchange informationwith the central unitwhenever they
are intermittently connected. Note that good assignments are
especially important in systemswith high load; since vehicles
in high load have on average a long time to reach a work-
load of zero, the communication can in fact be postponed
over a longer period. In this way, FJWδ combines the best of
two NJR policies: NJR-soon has good performance but strict
connectivity requirements;NJR-late has relaxed connectivity
requirements but bad performance.

6.2 Performance evaluation

Figure 4 shows the expected delivery time over the job arrival
rate for FJW policies. FJWπ is suboptimal in low load (sim-
ilar to NJR) and cannot stabilize the system for high load.
This is because the policy assigns the job to the vehicle that
will be ready for service first but which might be far away
from the customer. In contrast, FJWδ is optimal in low load

0 0.2 0.4 0.6 0.8 1

101

102

λmax

T̄min

FJWπ FJWδ

local global

Arrival rate in requests per minute, λ

A
ve
ra
ge

de
liv

er
y
ti
m
e
in

m
in
ut
es
,T̄

Fig. 4 Expected delivery time (90% confidence) for workload-based
job assignment policies; L = 4, K = 12, A = 16 km2, ν = 30 km/h,
and α = 0.25

and performs very well in high load. It is optimal in low load
because the chosen vehicle typically comes directly from the
depot nearest to the customer it will serve.

A necessary condition to have an optimal policy is that it
performs at least as goodon a global level as on the local level.
This is true in our case: FJWδ applied at local level performs
worse than at global level for mid load. The reason is as
follows: In mid load, there is a benefit in exchanging vehicles
between different depots, so that vehicles from depots with
few jobs can help in depots with many jobs. As the load
increases, all depots have many jobs, thus vehicles tend to
stay at their depot.

It is of interest for dimensioning and controlling the sys-
tem to investigate whether FJWδ can stabilize the system
for all possible load factors ρ, defined by starting from (7)
considering B̄ ≥ 2S̄min (in high load) and using (8):

ρ = λ

αK

2H∗
L(A)

ν
. (20)

Simulation results suggest that this is true if the number
of vehicles per depot K/L is large enough. Figure 5 shows
the maximum load factor for which the policy is able to keep
the system stable:

ρstable = sup
0≤ρ≤1

{
lim
t→∞E[N (t)|ρ,FJWδ] ≤ κ

}
(21)

with some κ < ∞. Let us interpret the results in more detail.
If there are many vehicles per depot, the average return plus
service time in high load depends on the distance between
customer and nearest depot, i.e., is 2H∗

L(A)/ν.With decreas-
ing number of vehicles, to serve customers in an FCFS order,
vehicles do not stay in the same depot area but change depots.
Once this occurs, the average return time increases and the
system soon becomes unstable. Curve fitting suggests that
the value of the stability threshold ρstable increases with K/L
according to an exponential law:

ρstable = 1 − e−γ K/L (22)

withγ = 2.73 in this case.Due to this law, only a fewvehicles
per depot are needed to stabilize the system for almost all load
factors. For example, a load of ρstable = 90% can be carried
with only one vehicle per depot.

Results of Fig. 5 are obtained as follows: For every given
combination of (L, K ), we find the stability threshold ρstable
by visual inspection of T̄ (λ)-plots. Each point on the T̄ (λ)-
plot is obtained by simulating the system ten times over
100,000 jobs. In all scenarios, depots are located to mini-
mize the L-median function.

A comparison of FJWδ with the simple policies NJR and
FJN confirms these findings (see Fig. 3). FJWδ outperforms
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both in all cases except in the configuration (K , L) = (7, 16),
whereNJR-soon seems to have a lower average delivery time.
FJWδ is still preferable because of fairness issues with NJR-
soon. Even though FJWδ works very well, when looking at
the system from the dimensioning point of view, the tipping
point behavior cannot be eliminated. Therefore, a reliable
system inevitably calls for careful dimensioning.

7 Dimensioning

For this reason we propose a method for the systems dimen-
sioning: selection of the number of vehicles and depots. We
have seen that the number of depots must be chosen in rela-
tion to the size of the service area, and that this long-term
choice on depot infrastructure must be coordinated with the
short-term choice on vehicles. For company-specific parame-
ter values, a diagram like Fig. 6 translates the insights derived
in the subsection above into the monetary domain. It relates a
company’s expenditure I for depots and vehicles to average
delivery time T̄ . The purpose of such a plot is to provide deci-
sion making support for companies that set up an airborne
delivery system equipped with small UAVs.

To give an example, Fig. 6 is produced on the assumption
that the cost of a UAV suitable to deliver two-kilogram pack-
ages is 1000 US$ plus a maintenance cost of 100 US$ per
annum, and the cost of a depot is 15,000 US$ plus a mainte-
nance cost of 500 US$ per annum. Operating the system over
ten years, the costs per vehicle and depots are Cv = 2000
US$ and Cd = 20,000 US$, respectively. These parameter
values are those assumed by the company Matternet (Rap-
topoulos 2012).

A lower bound on the expenditure required to build a sta-
ble system, denoted by Imin, is derived in Sect. 4 and is given
by (13). Figure 6 plots this bound for the given parameters,
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Fig. 6 Relation between infrastructure expenditure and average deliv-
ery time; A = 16 km2, λ = 0.65 req./min., ν = 30 km/h, α = 0.25,
Cv = 2000 US$, Cd = 20,000 US$

where all values below the bound are shown as a shaded area.
The bound has a “staircase” shape with tread levels being the
minimum average delivery time achievable with a particular
number of depots. No operable system exists for parameters
in this area, while every combination of I and targeted T̄
located above fulfills ρ < 1 and T̄ > T̄min. The bound cor-
responds to a service possibility frontier; it gives a necessary
but not sufficient condition for infrastructure expenditure.
The actual performance is policy dependent, and more finan-
cial resources than Imin may be needed to operate the system
in a stable manner and to meet the targeted performance. The
performance of the FJWδ policy is plotted for scenarios with
a varying number of depots.

A company that wants to operate a delivery service and
serve a customer within a certain average delivery time can
employ such a diagram as follows: If the average delivery
time should be no more than τ , the company has to look for
feasible combinations of infrastructure and stabilizing poli-
cies, i.e., squares and triangles, that are located as close as
possible to the origin and below the (T̄ = τ)-line. If the cus-
tomers’willingness to pay for several levels of service quality
is given, it is possible to quantify the company’smarginal rev-
enues of increasing performance. From Fig. 6 we know the
marginal cost of decreasing delivery time. Then we are able
to determine the infrastructure thatmaximizes the company’s
profit. For the parameters of Matternet we find that a system
with L = 1depot can serve a customer in about 3minon aver-
age in an area of 16 km2, which comes at a cost of 60,000
US$. This time can be reduced to less than 1.5min if the
company spends more than 100,000 US$ for infrastructure
(associated with L = 4 depots). If the company’s marginal
revenue of reducing delivery time by 1.5min (50%) is larger
than approximately 40,000US$, the four-depot configuration
is better than the one-depot configuration. In other words,
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Figure 6 informs about the financial resources required for
achieving a certain quality of servicewith a certain policy and
about the volume of additional financial resources obligatory
to “buy” a shorter delivery time.

8 Conclusions

This article addresses the high-level control and dimension-
ing of a drone-based delivery system using simulations and
queuing theory. It was found that job assignment policies
can experience a tipping point behavior: A stable system
could immediately become unstable if one vehicle fails.
An advanced job assignment policy is proposed that uses
the increment in workload as assignment metric: The job
is assigned to the vehicle that will do the job faster than
other vehicles. This policy, called first job first to vehicle
with the smallest additional workload, leads to an optimal
average delivery time for low loads and works very well up
to high loads. It is scalable with the number of depots and
vehicles. Simulation results indicate that the policy stabilizes
the system for all loads if the number of vehicles per depot
is sufficient. To account for the tipping point behavior we
show how to dimension a stable delivery system for resolv-
ing the trade-off between expenditure and service quality.
The dimensioning considers two time horizons: long-term
decisions on the number of depots to deploy in the service
area and short-term decisions on the number of vehicles to
use. Future work will analyze systems with inhomogeneous
customers and real-world data.
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