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Abstract
This paper proposes a novel framework for generating action descriptions from human whole body motions and objects to
be manipulated. This generation is based on three modules: the first module categorizes human motions and objects; the
second module associates the motion and object categories with words; and the third module extracts a sentence structure as
word sequences. Human motions and objects to be manipulated are classified into categories in the first module, then words
highly relevant to the motion and object categories are generated from the second module, and finally the words are converted
into sentences in the form of word sequences by the third module. The motions and objects along with the relations among
the motions, objects, and words are parametrized stochastically by the first and second modules. The sentence structures
are parametrized from a dataset of word sequences in a dynamical system by the third module. The link of the stochastic
representation of the motions, objects, and words with the dynamical representation of the sentences allows for synthesizing
sentences descriptive to human actions. We tested our proposed method on synthesizing action descriptions for a human
action dataset captured by an RGB-D sensor, and demonstrated its validity.

Keywords Motion classification · Object classification · Sentence generation

1 Introduction

The demographic trend in advanced countries is that the
percentage of elderly people is increasing, even as the
total population is shrinking. The availability of comprehen-
sive nursing services to provide living support for elderly
people to improve per-capita productivity by covering for
labor force shortages are important problems. The use of
humanoid robots is expected to address these problems.
Because humanoid robots are similar in shape to humans,
they can perform human-like actions, and there is no need to
adapt the environment from what suits humans. This allows
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humanoid robots to be used as a replacement labor force for
humans for everyday tasks.

Research and development into humanoid robots has been
actively pursued in a variety of fields in recent years (Sugano
andKato 1987;Kuroki et al. 2003;Kaneko et al. 2002; Cheng
et al. 2007). Although this research has focused on increasing
the integration density and accuracy of hardware technol-
ogy, other elements are essential to constructing intelligent
humanoid robots: software for obtaining external informa-
tion corresponding to the five human senses (sight, sound,
touch, taste, and smell), perceiving by using the obtained
information, and controlling the motion of the robot. Devel-
opments in these areas are expected to bring value for
replacement labor force, communication with humans, and
information processing systems that exceed the capabilities
of humans.Development of not only the hardware but also the
software (here, considered as the intelligence of the robots)
is an important element that is expected to create new value
in robots.

Research into artificial intelligence that is able to perform
advanced information processing like a human involves a
variety of academic topics beyond robot engineering, includ-
ing also linguistics, semiotics, anthropology, psychology,
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neuroscience, brain science, and sociology. The key differ-
ence between human intelligence and that of other animals
is said to be the ability to use language that incorporates
advanced symbols. Humans have acquired language through
evolutionary processes. For example, in the phrase gread
a book,h the concept of a book is expressed by the word
gbook.h, and the concept of a particular bodily action is
expressed by the word gread.h Phenomena in the real world
can be expressed in this way through language. Human intel-
ligence is built on a symbolic system. Because of this, we are
able to think specifically about actions, understand abstract
concepts, and share the ideas of other people by using sym-
bols. The information processing of symbols and language
forms the foundation of the advanced intelligence expressed
in the computations of humans.

Ferdinand de Saussure described the composition of lan-
guage as using “signe” (sign), “signifiant” (signifier), and
“signifie” (signified) (Saussure 1966). The signifier is the
symbolic representation of the specified item, the signified
is the content of the sign that represents the specified con-
cept, and the relation between the signifier and signified gives
rise to signs. In the example above, the word “book” is the
signifier, and this word signifies the book that exists in the
real world. The book itself is the signified. The ability to
manipulate signs and real world phenomena is improved and
language is developed by arbitrarily forming associations
between signs and the real world.

In brain science, Rizzolatti et al. (2001) discovered the
existence of a set of neurons (mirror neurons) in the brains
of Macaque monkeys that fire when the behavior of another
is observed and when movement is performed by oneself.
Mirror neurons are related to the generation and recognition
of motion, but have also been found in the Brocafs area,
which is responsible for the language processing in humans.
This implies a relation among the mirror neuron system, the
generation and recognition of motions, and the language.

Based on this knowledge, imitation learning models have
been proposed in which the robot learns new actions by
imitating the actions of humans (Kuniyoshi et al. 1994;
Morimoto and Doya 2001; Mataric 2000). Research into
constructing intelligence based on encoding bodily motions
into symbols has been conducted. Haruno et al. (2001) pro-
posed the module selection and identification for control
(MOSAIC) system, which performs environment recogni-
tion andactiongeneration in the frameworkof reinforcement-
based learning of multiple learning modules that store
different action primitives. Tani and Ito (2003) proposed
the recurrent neural network with parametric bias (RNNPB)
method, in which multiple action primitives are encoded into
bias parameters to be added to a recurrent neural network in
which the parameters switch the action primitives. Inamura
et al. (2004) proposed a model of encoding motion patterns
into hidden Markov models (HMMs). Furthermore, Takano

and Nakamura (2015a, b) proposed a model that combines
motion symbols characterized by HMMs with natural lan-
guage, and developed a computation method for creating
sentences that represent motions.

However, these motion recognition systems use only
bodily motion information such as the three-dimensional
position of each part of the body or the time-series data of
joint angles, and it is anticipated that these systems will be
extended to handle environment (a) for understanding actions
in which meaning is imparted to human motion by interac-
tions with the environment, and (b) for generating actions
such as manipulation of objects in the environment. For
example, in the case of the action “moving hand towards
mouth,” there is the problem of not being able to understand
whether something is held in the hand and, if so, what that
object is. This is because object type and position informa-
tion are not used. Information about object manipulations
associated with human actions is important for associating
meaning with actions, and the intelligence to understand this
is mandatory for humanoid robots that operate in living envi-
ronments.

In the field of computer vision, the importance of using
information from human motion and objects has been
noted for understanding the actions that accompany objects
(manipulation targets) in everyday life, such as human–object
interactions (HOI) (Gupta et al. 2009; Yao and Fei-Fei 2012).
For this, it has been noted that the pose of the human is impor-
tant when detecting and recognizing objects in images. At
the same time, manipulated object information is important
when recognizing human motions, and the performance of
both is expected to be improved by using both object and
human-pose information. Information about body motion
and information about target object motion are important ele-
ments in understanding human actions, so it is expected that
performance can be improvedbyusing both types of informa-
tion. Recently, there have been extensive works on linking
natural language description to static images or videos (Li
2011; Kojima et al. 2002). Krishnamoorthy et al (2013).
presented an approach to recognizing visual objects and
activities, and generating triples of subject, verb and object in
two probabilistic vision and natural language scores. Kulka-
rni et al. (2011) also proposed a probabilistic approach to
generating image descriptions (Kulkarni et al. 2011). Objects
in an image are detected and their regions are processed for
the positional relationship. A conditional random field pre-
dicts labels for the image description by incorporating the
image potentials and natural language potential. Deep neu-
ral networks has demonstrated the rich representation for
the image classification, and the neural networks has been
actively applied to the image encoder and the description
decoder (Vinyals et al. 2015; Karpathy and Fei-Fei 2015).
These methods focus on generating sentences describing the
images. They don’t handle the positions of the performer
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and manipulated object in the three dimensional environ-
ment, and therefore cannot be directly reused to generate
the activities from the description. Action recognition that
includes motion recognition, object recognition, and genera-
tion of sentences that represent the action can be approached
by extending the statistical information processing system
proposedbyTakanoandNakamura (2015b),whichuses three
dimensional body motion and language, and developing an
information processing mechanism that includes a function
for flexible handling ofmanipulation target (i.e., object infor-
mation).

This paper proposes a link of human whole body motions,
manipulation target objects and language for synthesizing
sentence describing human actions. Human motions and the
spatial relations between the object and body parts are classi-
fied intomotion categories, and objects to bemanipulated are
classified into object categories by motion recognition and
manipulation target object recognition, respectively. Includ-
ing the spatial relation between an object and body parts as
part of the action information allows identification ofmotions
that could not be identified from body motion information
alone. This ability extends beyond that of conventional meth-
ods. The spatial relation is defined by the distances and
relative positions of nodes, in a manner similar to an inter-
action mesh (Ho et al. 2010; Ho and Shum 2013). The mesh
is used in motion synthesis with adaption for objects and
obstacles in the environment and to detect objects in the
environment. Object segmentation is derived from color and
depth information in point cloud data, and object identifi-
cation is subsequently performed using the extracted image
information. We additionally construct a statistical model
(the motion object language model) that learns the relations
that connect motions, objects, and a sentence. The sentence
represents the action by a recurrent neural network (natural
languagemodel) that learns the order ofwords in the sentence
as a dynamical system. Words to reflect the body motion and
object information are identified by applying motion recog-
nition, object recognition, and the motion object language
model, after which sentences are generated by reordering the
words according to the natural language model. This is done
with the aim of more correctly understanding human actions
by using multimodal information comprising body motion
information, such as three-dimensional position information
of each body part and time-series data of joint angles, and
the positions and types of objects in the environment with
descriptive sentences representing the action.

2 Motion and object primitives

A human action consists of a human whole body motion
and an object to be manipulated. The classifications of the
human whole body motion and the object are required to

generate sentences describing the human action. This section
describes the representations of the human motion and the
object, and their classifiers.

2.1 Humanwhole body primitives

Action recognition is a highly competitive field, and many
approaches that handle human body motions and objects
to be manipulated have been reported. Wang et al. (2012)
used a feature called “local occupancy pattern” in which ele-
ments represent the area occupied by an object around each
joint, and they defined the feature for action recognition by
combining the local occupancy pattern with the positional
relations between two joints over the set of all joint pairs.
The temporal sequences of these features were converted to
a Fourier temporal pyramid and classified into the relevant
action category by using a support vector machine (SVM).
The method proposed by Yu et al. (2014) is similar to that of
Wang et al., but they used the distances between two joints
in the whole body as features. SVM-based methods adopt a
discriminative approach to classification that generally out-
performs the generative approach typified by hiddenMarkov
models (HMMs), but they cannot recover the humanmotions,
such as a sequence of joint positions. In this paper, we use
HMMs to encode the human motions to create motion prim-
itives because HMMs can be used for action recognition and
generation of human-like motion for robots.

Feature x of human motion (Fig. 1) consists of two ele-
ments: position pi of the i th joint in the trunk coordinate
system, and distance di between the i th joint and the manip-
ulated object. pi and di are concatenated into x over all joints.
The human motion is expressed by a sequence of these fea-
tures, x = (x1, x2, . . . , xT ).

Human motions are encoded into a set of parameters
to characterize HMMs. HMMs are generative models opti-
mized such that the likelihood of the human motion x being
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Fig. 1 Themotion feature is expressed by the vector xT whose elements
are joint positions in the trunk coordinate system or distances between
the joints and the manipulated object
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Fig. 2 Point cloud data is segmented into object regions, local features are computed in each object region, the global feature is extracted from the
computed local features, and the global feature is then classified into an object primitive

generated from HMM λ is maximized. The parameters to
be optimized are a vector � whose entries πi are (for each
i) the probability of starting at the i th node, the matrix A
whose entries ai j are the probabilities of transition from the
i th node to the j th node, and the output distribution B(x)

whose entries bi (x) are the probabilities of x being generated
from the i th node. The Baum–Welch algorithm can optimize
these parameters (Rabiner 1989). Moreover, HMMs can be
used to classify human motions x into the specific HMM λR
that is the most likely to generate x.

λR = argmax
λ

P(x|λ) (1)

2.2 Object primitives

An object to be manipulated is captured by an RGB-D cam-
era. The image and depth data are segmented into an object
region, scale-invariant feature transform (SIFT) descriptors
are computed for the local feature in the object region, and
the Fisher vector descriptor is extracted from the computed
local features as the global feature, which is classified into an
object primitive. Figure 2 shows the pipeline to convert cap-
tured RGB-D data into the corresponding object primitive.

The method of region growing and region merging par-
titions RGB-D data into object regions (Zhan et al. 2009).
The region growing process randomly selects an ungrouped
point, and then groups itwith all ungrouped points closer than
a manually given threshold. This process is iterated until all
points are grouped into one of the regions. The region merg-
ing process finds two regions that are close to each other and
aggregates them into one region. Themerging process results
in the object region.

The segmented object region is processed to extra the local
features of the objects contained in the region. SIFT descrip-
tors are adopted for the local features because they are colored
and scale-invariant (Lowe 1999; Abdel-Kalim et al. 2006).
The SIFT descriptors represent only local patches in the seg-
mented region. The Fisher vector is introduced as a global
feature to represent the entire region. The derivation of the
Fisher vector is described in the “Appendix”. The Fisher vec-
tor is classified into its relevant object primitive by using the
SVM technique (Cortes and Vapnik 1995). These processes
together convert the captured point cloud data into object
primitives.
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Fig. 3 Human whole body motion and RGB-D images are classified
into the motion primitive and object primitive. These primitives are
connected to their relevant words stochastically. The probabilities of
the latent node being generated from the motion and object primitives
and the probabilities of theword from the latent node are optimized such
that the words related to the action are the most likely to be generated
from the motion and object to be manipulated

3 Connection between human actions
and description

Our framework to generate the sentences fromhuman actions
consists of two modules. The first module combines the
humanwhole bodymotions and themanipulated objectswith
their relevant words. The second module models sequences
of the words in the sentences. This section describes these
modules in details.

3.1 Stochastic model of words frommotions
and objects

The motion primitives and object primitives, which are
derived by classifying human whole body motions and
images containing an object to bemanipulated, are connected
to their relevant words stochastically. Figure 3 shows the
stochasticmodel for the connections. This stochasticmodel is
made of three layers: the top layer contains the primitives, the
bottom layer contains the words, and the middle layer con-
tains the latent nodes. The latent nodes connect the motions
and the objects to the words. The connectivities are char-
acterized by the conditional probability P(s|λ, κ) of latent
node s being generated from motion primitive λ and object
primitive κ and the probability P(ω|s) of word ω being gen-
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Fig. 4 A recurrent neural
network consists of the input,
latent, and output layers. The
latent layer retains the dynamics
of word sequences in sentences,
and this neural network can
predict a word following the
input word sequence
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is given; in this, ω

(i)
j

is the j th word in the word sequence (sentence) that is man-
ually attached to the i th action whose whole body motion is
classified into the motion primitive λ(i), and the manipulated
object is classified into the object primitive κ(i). The E-step
estimates the distribution for latent node s conditioned on
motion primitive λ, object primitive κ , and word ω as

P(s|λ, κ, ω) = P(ω|s)P(s|λ, κ)∑
k
P(ω|sk)P(sk |λ, κ).

(2)

The M-step updates probabilities P(s|λ, κ) and P(ω|s) to

P(ωi |s) =
∑

i, j
n(λi , κ j , ω)P(s|λi , κ j , ω)

∑
i, j,k

n(λi , κ j , ωk)P(s|λi , κ j , ωk)
(3)

P(s|λ, κ) =
∑

i
n(λ, κ, ωi )P(s|λ, κ, ωi )∑

i
n(λ, κ, ωi ),

(4)

where n(λ, κ, ω) is a function that counts the number of
words ω attached to the actions for which the whole body
motions are classified into motion primitive λ and the objects
to be manipulated are classified into object primitive κ .
Alternating the E-step andM-step results in the optimal prob-
abilities for P(s|λ, κ) and P(ω|s). The deviation of the EM
algorithm is described in the “Appendix”.

3.2 Recurrent neural network for action descriptions

Neural networks have been widely used for modeling sen-
tences (Bengio et al. 2006), and have been extended to
recurrent neural networks to handle the dynamics of word
sequences in sentences (Mikolov et al. 2010). Recurrent neu-
ral networks predict words that follow the input words via
latent layers that can handle context in sentences. Figure 4
shows a recurrent neural network that consists of input, latent,
and output layers. The input and output layers comprise word

nodes. The number of nodes in the input and output layers
is the same for each layer as the number of words that can
appear in the sentences. The input layer is connected to the
output layer through latent nodes, which represent the cur-
rent state and retain the previous state. Specifically, the input
vector is xt ∈ RNω and the output vector is yt ∈ RNω , where
Nω is the number of distinct words. The activities of the
latent node are expressed by zt ∈ RNz for current activities
and zt−1 ∈ RNz for past activities, where Nz is the number
of nodes in the latent layer. If the kth word is given for the
input, xt is set to the binary vector

xi =
{
1 i f i = k
0 otherwise,

(5)

where xi is the i th element in xt . zt is computed from xt as

z̃t = Uxt + Wzt−1 (6)

zi = f (z̃i ), (7)

where zi and z̃i are the i th elements in zt and z̃t , respectively,
U ∈ RNz×Nω and W ∈ RNz×Nz are weight matrices, and
f (z) is a sigmoid function. yt is computed from zt in a similar
manner,

ỹt = V zt (8)

yi = gi ( ỹt ), (9)

where yi and ỹi are the i th elements in yt and ỹt , respectively,
V ∈ RNω×Nz is a weight matrix, and gi ( ỹt ) is the following
function. In this function, yi represents the probability of the
i th word being generated from the input word sequence.

gi ( ỹt ) = exp(ỹi )∑
k
exp(ỹk)

(10)

The weight matrices, U , V , and W , are trained by back
propagation through time; thismethod incrementally updates
theweight parameters to reduce the errors between the output
vectors yt and the correct vectors d t . Weight matrix V is
tuned as
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Fig. 5 Amodule on the left panel stochastically extracts the relation among human motions, objects, and words. Another module on the right panel
extracts the dynamics of word sequences. The link between these two modules allows the synthesis of sentences describing human actions

et = d t − yt (11)

V t+1 = V t + αst et T . (12)

The errors ẽ are propagated from the output layer to the latent
layer.

ẽi t = hi (et T V , t) (13)

hi (x, t) = xsit (1 − sit ) (14)

ẽi t is the i th element of ẽt , and si t is the i th element of st .
The weight matricesU andW are updated by using the error
ẽ.

U t+1 = U t + βxt ẽ
T
t (15)

W t+1 = W t + γ st−1 ẽ
T
t (16)

α, β, and γ are learning rates; these have been set to decrease
monotonically, following Bergstra and Bengio (2012).

3.3 Generation of action descriptions frommotions
and objects

Integrating the two modules described above allows the gen-
eration of sentences describing human actions. Figure 5
shows an overview of this integration. An observation con-
taining a human motion and an object is classified into a
motion primitive and an object primitive. The words relevant
to the motion and object are associated by the stochas-
tic model, and these words are arranged into a sentence
according to the recurrent neural network. Specifically, given
motion primitive λR and object primitive κR, the pair of
primitives is converted to a sentence that is the most likely
to be generated from these primitives. The sentence can be

formed by searching for a sequence of words according to the
probability of the sentence being generated from two mod-
ules given the motion primitive and the object primitive as

P(ω|λR, κR) =
l∏

i=1

P(ωi |λR, κR)

l−1∏
i=1

P(ωi+1|ω1, . . . , ωi ).

(17)

Here, sentenceω is expressed by word sequenceω1, ω2, . . . ,

ωl . We assume that a set of words contained in the sentence
depends on only the motion primitive and the object primi-
tive, and that a sequence of words depends on only the set of
words. The probability of each word being generated from
the motion primitive and object primitive can be computed
by using Eqs. 3 and 4.

P(ω|λR, κR) =
∑
s

P(ω|s)P(s|λR, κR) (18)

The probability of word sequence ω1, ω2, . . . , ωi being fol-
lowed by wordωi+1 can be computed by the recurrent neural
network. Taking the logarithm of P(ω|λR, κR) and using
Dijkstra’s algorithm, we can search for the sentence that is
the most likely to be generated from the motion and object.

4 Experiments

Our proposed approach is tested to see how well it gener-
ates descriptions from observations of human actions. The
observation data are collected by using an RGB-D sensor
(Kinect, Microsoft Corporation) and contain human whole
body motions and objects to be manipulated. The RGB-
D sensor measures the positions of 25 joints in the whole
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Fig. 6 The positions of 25 joints are measured by the RGB data. These
data are fitted to a human character with 34 degrees of freedom, to
which 35 markers are attached. The motion by the human character is
encoded into the motion primitive

body, as shown in Fig. 6. These positions are converted to
the positions of 34markers that are attached to a human char-
acter with 34 degrees of freedom. The attachment follows the
Helen Hayes marker set placement (Kadaba et al. 1990). The
positions of the 34 markers in the character’s trunk coordi-
nate system and the distances between these markers and an
object to be manipulated together express the human whole
bodymotion to be used formotion primitives. An image from
the RGB-D sensor is segmented into an object region. The
local features are extracted from the object region, and then
global features are computed for the object primitives. We
measure actions by three performers, and 320 observations
are collected for each of these three performers, giving 960
observations in total. Motion and object data contained in
these datasets can be grouped into 24 motion primitives and
30 object primitives. Additionally, five students attached one
sentence descriptive of each action. Figure 7 shows several
samples of the action and themanually attached descriptions.
The dataset contains 960 sentences, with 335 differentwords.
The dataset is grouped into a training dataset containing 576
actions and a test dataset containing 384 actions.

Figure 8 qualitatively shows the experimental results.
Three sentences that aremost likely to begenerated fromeach

observation are displayed. The observation of “blowing the
nose” is described by three sentences: “a person blows their
nose with a tissue”, “a person blows their nose with tissue
paper”, and “a person is blowing their nose”. The observation
of “sweeping” is expressed by sentences “a person is sweep-
ing the floor with a broom”, “they are cleaning the floor”
and “they clean the floor with a broom”. The observation of
“picking” can be described as sentences: “a person picks up
the box on the bottle” “they pick up the box on the bottle”
and “a person picks up a box”. The first sentence is same as
the training sentence as shown in Fig. 7. The observation of
“drinking” generates the sentences “a person drinks a bottle
of tea”, “a person is drinking a bottle of tea” and “a person
drinks out of a bottle”; these are similar to sentences attached
to the action of “drinking”, as shown in Fig. 7. Other obser-
vations are also described by qualitatively correct sentences.

We also quantitatively test the sentence generation. In the
first test, up to five sentences are generated from each test
observation. When the generated sentence is the same as
the sentence attached to the test observation, this sentence
is counted as correct. This is the 5-best condition; more gen-
erally, for the m-best condition, the number of generated
sentences is set to m, and if any of the generated sentences
is correct, the generation is counted as correct. The correct
ratios are 0.71, 0.84, 0.89, 0.91, and 0.92 for the 1-best, 2-
best, 3-best, 4-best, and 5-best conditions, respectively.

It is important to evaluate the improvement by adding the
object to be manipulated for the sentence generation. We
removes the layer of the object primitives from the module
as shown in Fig. 3. More specifically, we tested the sentence
generation only from the humanmotion. The correct ratios of
the sentence generation are 0.54, 0.54, 0.55, 0.59, and 0.59
for the 1-best, 2-best, 3-best, 4-best, and 5-best conditions,
respectively. The comparison of these correct ratios with
those derived in our proposed framework demonstrates that
the information of the objects is effectively used to generate
sentences from the action observations. Additionally, 9944
sentences with 1174 different words attached to the human
action are crowdsourced. After training 576 human actions
and 5984 sentences attached to these actions, we tested the
sentence generation. Multiple sentences are attached to each
human action. When the generated sentence is the same as
one of the sentences attached to the test observation, this

Motion primitive : drink
Object primitive :  mug
Description:
a person drinks from a cup.
he drinks a cup of water all in one go.
a man drinks a cup of tea.
a man is drinking a mug of coffee.
a person is drinking a mug of coffee.

Motion primitive : pick up
Object primitive :  box
Description:
a person picks up a box on the table.
he takes a box in his hand.
a man takes a sweets box.
a man is picking up a  box.
he is picking up a blue box on the table.

Motion primitive : type
Object primitive :  laptop
Description:
a person types on a laptop.
he types on a computer.
he uses a laptop.
a man types on a keyboard
a person is typing.

Fig. 7 The datasets contain human whole body motions, objects and sentences describing human actions. The actions in the left panel consist of
the motion primitive “type”, the motion primitive “laptop” and descriptions “a person types on a laptop”
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[1] a person blows his 
nose with a tissue
[2] a person blows his 
nose with a tissue paper
[3] a person is blowing 
his nose 

[1] a person is sweeping
the floor with a broom
[2] he is cleaning the 
floor
[3] he cleans a floor with
a broom

[1] a person drinks a 
bottle of tea
[2] a person is drinking
a bottle of tea
[3] a person drinks out 
of a bottle

[1] a person eats something
with holding a cup
[2] a person eats
[3] a person eats something
with holding a black bowl

[1] a person is holding
a bucket
[2] he is holding a bucket
[3] he is standing with a 
bucket on his right hand

[1] he opens a gum 
bottle and picks a gum
[2] he opens a gum 
bottle and picks up a gum
[3] a person opens a gum 
bottle and picks a gum

[1] he is reading a 
yellow book
[2] a person is reading
a yellow book
[3] he is reading a book

[1] a person picks up
a box on the table
[2] he picks up a box
on the table
[3] a person picks up 
a box

[1] a person pours a dollop
of shampoo into his hand
[2] he takes a push of
shampoo
[3] a person pours a dollop 
of shampoo into his left hand

[1] a person wears a cap
[2] a person pulls a cap
over his head
[3] a student puts on a cap

[1] a person puts a coin
into a box
[2] a person puts a coin
in a piggy bank
[3] he puts a coin nto a 
box

[1] a student puts a white
box on the table
[2] he puts a white box on
the table
[3] a person puts a white 
box on the table

[1] a student opens a 
pot noodle
[2] he opens a cover 
of a pot noodle
[3] a person opens a
cover of cup noodle

[1] he is shaking the 
maracas
[2] a person plays the 
maracas
[3] he is playing maracas

[1] he opens a sauce 
bottle and pours sauce
[2] a person opens sauce
bottle and pours sauce
[3] a person pours sauce

[1] he is spraying 
deodrant
[2] a person sprays air
freshener
[3] a man is spraying
air refreshener

[1] he picks up trash
with tongs
[2] he picks up a trash
and put it in the trash can
[3] he picks up a wastepaper
and puts into a dust bin

[1] he types at a 
keyboard
[2] he is typing the 
keyboard on the desk
[3] he types at the 
keyboard

[1] he is using a tablet
terminal
[2] a person is using a 
tablet terminal
[3] a student is using a
tablet terminal

[1] a person is wahsing a
dish
[2] a person is washing a 
bowl
[3] a person is washing a
dish with a sponge

[1] he is fanning himself
[2] he is waving a fan
[3] he fans himself

[1] he puts on brown 
slippers
[2] a student puts on 
the slippers
[3] he puts on his slippers

[1] he is writing on a
blue notebook with a
red marker
[2] he is writing on a
blue notebook with a
red pen
[3] a student is writing 
on a blue notebook with 
a red marker

[1] he picks up a 
detergent container
[2] a person picks up 
a detergent container
[3] he is picking up a
detergent

Fig. 8 Observation is classified into its relevant motion primitive and
object primitive, and a pair of these primitives is converted to sentences
describing the observation. The three mostly likely sentences from each
observation are displayed. For example, the observation “blowing the

nose” is described by the sentences “a person blows their nose with
a tissue”, “a person blows their nose with tissue paper”, “a person is
blowing their nose”
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generation is counted as correct. The correct ratios of the sen-
tence generation are 0.67, 0.69, 0.78, 0.84, and 0.90 for the
1-best, 2-best, 3-best, 4-best, and 5-best conditions, respec-
tively.

5 Conclusions

This research is summarized as follows.

1. We proposed a framework for linking human actions
(consisting of human whole body motions and objects to
be manipulated) with sentences describing the actions.
For this, the human whole body motion and positional
relation between the body and the object are encoded into
a motion primitive; also, an object feature is extracted
from an object region in a captured image and is then
encoded into an object primitive. A pair of motion prim-
itive and object primitive is stochastically connected to
words relevant to the action. Additionally, the dynam-
ics of word sequences in sentences descriptive of the
actions is trained by a recurrent neural network, which
can predict that word that is likely to follow a sequence of
words.

2. We linked two modules: a stochastic model between
motions, objects, and words; and a recurrent neural
network for the sentence structure. The link makes
it possible to search for the sentences that are most
likely to be generated from the observation of human
action. Specifically, the recurrent neural network effi-
ciently generates the sentence whose words are most
likely to be generated from a given motion primitive
and object primitive in the stochastic model. This link
implies that the observation of the human action can
be interpreted by considering corresponding descriptive
sentences.

3. We constructed a stochastic model to describe the
relations between motions, objects, and words, and
a recurrent neural network to describe the sentence
structures. Each was trained against a dataset con-
taining 576 pieces of data for triples comprising a
human motion, an object, and a (manually chosen) sen-
tence. We conducted an experiment with the stochastic
model and the neural network, generating sentences for
384 test observations. We qualitatively and quantita-
tively confirmed that our proposed method can gen-
erate correct sentences from observations of human
actions.
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Appendix A

The distribution of the local features in the training dataset
is assumed to be expressed by a Gaussian mixture model
(GMM) κ . The GMM consists of three kinds of parameters:
mean vectorμi , covariance matrix�i , and weight parameter
wi for the i th Gaussian distribution. The likelihood of local
feature u being generated from GMM κ is written as

P(u|κ) =
K∑
i=1

P(u|μi ,�i , wi ) (19)

P(u|μi ,�i , wi ) = wi√
(2π)d ||�i ||

× exp

{
−1

2

(
u − μi

)T
�−1

i

(
u − μi

)}
,

(20)

where d is the number of dimensions of u and the K is
the number of Gaussian distributions. Note that w1 can be
removed from the parameter set because of the constraint

K∑
i=1

wi = 1 (21)

When N local descriptors, u1, u2, . . . , uN , are found in an
object region, the likelihood of these local descriptors being
generated from the GMM is calculated as

P(u1, u2, . . . , uN |κ) =
N∑
i=1

P(u|κ). (22)

The Fisher vector, v, is defined as the gradient vector of the
log-likelihood of P(u1, u2, . . . , uN |κ):

v = F− 1
2 ∇κ P(u1, u2, . . . , uN |κ), (23)
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where the elements of the gradient vector are

∂P(u1, u2, . . . , uN |κ)

∂wk
=

N∑
i=1

(
γk(ui )

wk
− γk(u1)

w1

)
(24)

∂P(u1, u2, . . . , uN |κ)

∂μk
=

N∑
i=1

γk(ui )
(
ui − μk

)T
�−1

k (25)

∂P(u1, u2, . . . , uN |κ)

∂�k

=
N∑
i=1

1

2
γk(ui )

[
Tr

{(
(ui − (μk

) (
(ui − (μk

)T }

× �−2
k − �−1

k

]
. (26)

Note that �k is assumed to be a diagonal matrix, and that
γk(u) is written as

γk(u) = wk P(u|μk,�k, wk)

P(u|κ).
(27)

Here, F is the Fisher information matrix, and is defined as

F = EP(u1,...,uN |κ)

×
[
∇κ P(u1, . . . , uN |κ)∇κ P(u1, . . . , uN |κ)T

]
, (28)

where E[∗] is the expectation value.

Appendix B

Human actions contain data about human whole body
motions and objects. The whole body motion, including the
relative position of the object to be manipulated, is encoded
into motion primitive λ, and the image containing the object
is encoded into object primitive κ . The sentence describing
the human action is manually assigned to the action. The
sentence is expressed by a sequence of words, ω. Let the

training dataset be
{
λ(i), κ(i), ω

(i)
1 , . . . , ω

(i)
ni

}
, consisting of

motion primitives, object primitives, and sentences. Then,
the logarithm of the probability of the words ω

(i)
1 , . . . , ω

(i)
ni

in the sentence being generated from motion primitive λ(i)

and object primitive κ(i) over the training dataset is written
as


 =
∑
i

ln P
(
ω

(i)
1 , . . . , ω(i)

ni |λ(i), κ(i)) (29)

=
∑
i, j

ln P
(
ω

(i)
j |λ(i), κ(i)), (30)

where we assume that the word depends on only the motion
and the object. According to the marginal distribution of the

latent node, Eq. 29 is rewritten as


 =
∑
i, j

ln
∑
k

P
(
ω

(i)
j , sk |λ(i), κ(i)). (31)

This equation can be written as the expectation


 =
∑
i, j

ln
∑
k

P̃
(
sk |λ(i), κ(i), ω

(i)
j

) P
(
ω

(i)
j , sk |λ(i), κ(i)

)

P̃
(
sk |λ(i), κ(i), ω

(i)
j

)

(32)

=
∑
i, j

ln E
P̃
(
s|λ(i),κ(i),ω

(i)
j

)
[
P

(
ω

(i)
j , s|λ(i), κ(i)

)

P̃
(
s|λ(i), κ(i), ω

(i)
j

)
]

. (33)

The lower limit of this expectation,
L , is given by the Jensen
inequality.


L =
∑
i, j

E
P̃
(
s|λ(i),κ(i),ω

(i)
j

)
[
ln

P
(
ω

(i)
j , s|λ(i), κ(i)

)

P̃
(
s|λ(i), κ(i), ω

(i)
j

)
]

(34)

From 
 and 
L , the following equations are derived.


 − 
L =
∑
i, j

{
ln P

(
ω

(i)
j |λ(i), κ(i))

−E
P̃
(
s|λ(i),κ(i),ω

(i)
j

)
[
ln

P
(
ω

(i)
j , s|λ(i), κ(i)

)

P̃
(
s|λ(i), κ(i), ω

(i)
j

)
]}

=
∑
i, j

{
ln P

(
ω

(i)
j |λ(i), κ(i)) − E

P̃
(
s|λ(i),κ(i),ω

(i)
j

)

×
[
ln

P
(
ω

(i)
j |λ(i), κ(i)

)
P

(
s|λ(i), κ(i), ω

(i)
j

)

P̃
(
s|λ(i), κ(i), ω

(i)
j

)
]}

=
∑
i, j

E
P̃
(
s|λ(i),κ(i),ω

(i)
j

)
[
ln

P̃
(
s|λ(i), κ(i), ω

(i)
j

)

P
(
s|λ(i), κ(i), ω

(i)
j

)
]

(35)

Here, P(s|λ, κ, ω) is the estimated distribution of latent node
s based on themodel, and P̃(s|λ, κ, ω) is the true distribution
of s. Equation 34 implies the Kullback–Leibler information

KL
(
P̃(s|λ, κ, ω)||P(s|λ, κ, ω)

)
between these two distri-

butions. The Kullback–Leibler information is nonnegative,
and is zero only when these two distributions are the same.
Therefore, estimating the true distribution, P̃(s|λ, κ, ω), as
the model-based distribution, P(s|λ, κ, ω), yields zero for
the Kullback–Leibler information. The E-step estimates the
distribution P̃(s|λ, κ, ω) of the latent node such that the
Kullback–Leibler information becomes zero.

After the E-step, themodel parameters are iteratively opti-
mized such that 
 increases incrementally. Let 
[t+1] and

[t] be the objective functions given at the (t + 1)th and t th
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iteration steps, respectively. The relation between
[t+1] and

[t] is


[t+1] − 
[t]

= 

[t+1]
L +

∑
i, j

KL
(
P̃

(
s|λ(i), κ(i), ω

(i)
j

)||P [t+1]

(
s|λ(i), κ(i), ω

(i)
j

)) − 

[t]
L

−
∑

i, jKL
(
P̃

(
s|λ(i), κ(i), ω

(i)
j

)||P [t](s|λ(i), κ(i), ω
(i)
j

))
,

(36)

where 

[t+1]
L and 


[t]
L are the lower limits of 
[t+1]

and 
[t], respectively, and P [t+1](s|λ(i), κ(i), ω
(i)
j ), and

P [t](s|λ(i), κ(i), ω
(i)
j ) are the estimated distributions of the

latent node based on the models derived at the (t + 1)th and
t th iteration steps, again respectively. Estimation of the true
distribution P̃(s|λ, κ, ω) of the latent node as the distribution
P [t](s|λ, κ, ω) based on the model derived at the t th iteration
step leads to the relation


[t+1] − 
[t] ≥ 

[t+1]
L − 


[t]
L (37)

because the second and fourth terms in Eq.36 take positive
and zero values, respectively. The search for the parameters
that maximize 


[t+1]
L at the (t + 1)th iteration step results

in 
[t+1] becoming larger than 
[t]. By assigning the dis-
tribution P [t](s|λ, κ, ω) to P̃(s|λ, κ, ω) in Eq. 34, 
[t+1]

L is
rewritten as



[t+1]
L =

∑
i, j,k

P [t](sk |λ(i), κ(i), ω
(i)
j

)

ln
P

(
ω

(i)
j , sk |λ(i), κ(i)

)

P [t](sk |λ(i), κ(i), ω
(i)
j

) . (38)

Ignoring terms that do not depend on the model parameters,

the function ˆPhi [t+1]
to be maximized can be written as

ˆPhi [t+1] =
∑
i, j,k

P [t](sk |λ(i), κ(i), ω
(i)
j

)

ln P
(
ω

(i)
j , sk |λ(i), κ(i))

=
∑
i, j,k

P [t](sk |λ(i), κ(i), ω
(i)
j

)

[
ln P

(
ω

(i)|sk
j

) + ln P
(
sk |λ(i), κ(i))] . (39)

Themodel parameters P(ω|s) and P(s|λ, κ) to be optimized
must satisfy the following constraints

∑
i

P(ωi |s) = 1 (40)

∑
k

P(sk |λ, κ) = 1. (41)

The Lagrange function is obtained as

L =
∑
i, j,k

P [t](sk |λ(i), κ(i), ω
(i)
j

)

[
ln P

(
ω

(i)|sk
j

) + ln P
(
sk |λ(i), κ(i))]

−
∑
k

αk

[∑
i

P(ωi |sk) − 1

]

−
∑
i, j

βi j

[∑
k

P(sk |λi , κ j ) − 1

]
. (42)

The derivative of the Lagrange function with respect to
P(ωi |s) or P(s|λ, κ) is zero at the optimal parameter, which
is derived as

P [t+1](ωi |s) =
∑

i, j
n(λi , κ j , ω)P [t](s|λi , κ j , ω)

∑
i, j,k

n(λi , κ j , ωk)P [t](s|λi , κ j , ωk)

(43)

P [t+1](s|λ, κ) =
∑

i
n(λ, κ, ωi )P [t](s|λ, κ, ωi )∑

i
n(λ, κ, ωi )

(44)

The M-step searches for the optimal parameters in this man-
ner, and the EM algorithm alternates the E-step and the
M-step.
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