
Auton Robot (2014) 36:137–152
DOI 10.1007/s10514-013-9363-y

Autonomously learning to visually detect where manipulation
will succeed

Hai Nguyen · Charles C. Kemp

Received: 31 December 2012 / Accepted: 8 August 2013 / Published online: 1 September 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Visual features can help predict if a manipula-
tion behavior will succeed at a given location. For example,
the success of a behavior that flips light switches depends on
the location of the switch. We present methods that enable
a mobile manipulator to autonomously learn a function that
takes an RGB image and a registered 3D point cloud as input
and returns a 3D location at which a manipulation behavior
is likely to succeed. With our methods, robots autonomously
train a pair of support vector machine (SVM) classifiers by
trying behaviors at locations in the world and observing the
results. Our methods require a pair of manipulation behaviors
that can change the state of the world between two sets (e.g.,
light switch up and light switch down), classifiers that detect
when each behavior has been successful, and an initial hint
as to where one of the behaviors will be successful. When
given an image feature vector associated with a 3D location, a
trained SVM predicts if the associated manipulation behav-
ior will be successful at the 3D location. To evaluate our
approach, we performed experiments with a PR2 robot from
Willow Garage in a simulated home using behaviors that flip
a light switch, push a rocker-type light switch, and operate a
drawer. By using active learning, the robot efficiently learned
SVMs that enabled it to consistently succeed at these tasks.
After training, the robot also continued to learn in order to
adapt in the event of failure.

Keywords Robot learning · Mobile manipulation · Home
robots · Behavior-based systems · Active learning

H. Nguyen (B) · C. C. Kemp
Healthcare Robotics Lab, Georgia Institute of Technology,
Atlanta, GA, USA
e-mail: haidai@gmail.com

C. C. Kemp
e-mail: charlie.kemp@bme.gatech.edu

1 Introduction

Informing robot manipulation with computer vision contin-
ues to be a challenging problem in human environments such
as homes. With homes, two types of challenges are particu-
larly notable. First, the robot must handle wide variation in
the appearance of task-relevant components of the world that
can affect its ability to perform tasks successfully. Lighting
can vary from home to home and from hour to hour due to
indoor lighting and windows. In addition, important compo-
nents of household mechanisms used during manipulation,
such as drawer handles and switches, can be distinctive or
even unique. The perspective from which a mobile robot
observes the component will also vary.

Second, the relationship between the appearance of task-
relevant components and the success or failure of a manip-
ulation behavior is complex. For example, the mechanics of
a specific device may require that the robot act at a distinct
location, such as a particular drawer that needs to be pushed
in the center to be closed, or a convoluted handle that the
robot’s gripper can only grasp at particular locations. The
robot itself may also change over time and thus alter the
relationship between visual appearance and a manipulation
behavior, as parts of its body settle, deform, and wear.

One potential solution to these two problems is for
robots to learn how specific objects respond to manipulation
attempts using a behavior, and to continue to learn as they
perform tasks. By using data generated through their actions
without human intervention, robots can autonomously learn
direct mappings from visual features to the input parame-
ters for behaviors, enabling robust execution despite errors
in calibration, pose variation, sensor noise, unexpected envi-
ronmental interactions, and other factors. By continuing to
learn over time, robots can also adapt to changes in the envi-
ronment, the objects, and their bodies.

123

138 Auton Robot (2014) 36:137–152

In this work, we present a system that enables mobile
manipulators to autonomously gather data about the exe-
cution of behaviors to improve their likelihood of success
in future attempts. Our work advances robot learning in
three ways. First, our research addresses challenges asso-
ciated with learning in scenarios that involve both mobil-
ity and manipulation. While our system does not intention-
ally vary the robot’s base position prior to manipulation,
standard navigation methods can result in significant pose
variation that jeopardizes task success. We show that this
issue can be resolved by directly using the robot’s mobil-
ity during learning to account for this and other sources of
pose variation. Notably, our methods result in predictions
that implicitly account for complexities that can arise from
this variation, such as alterations in the mechanism’s appear-
ance due to the robot’s viewing angle, the arm having dif-
ficulty reaching a location due to the base position, or a
grasp not functioning realiably due to the gripper’s angle
of approach.

Second, we show that autonomously learning to visually
predict where a behavior will be successful can be tractable,
requiring no more than a few hours to learn in real-world
scenarios. By using active learning, the robots in our tests
learned each visual function after fewer than 150 interactions
with each device, even though the robot started from scratch
and only used data it collected. The learned visual functions
enabled the robots to successfully operate the devices and
also have intuitive interpretations.

Third, our methods autonomously learn visual mappings
for devices that have an approximately binary state, such as
a light switch being up or down or a drawer being open or
closed. This presents a challenge, since the robot’s actions
change the state of the world, which deters the robot from
trying the same action again. For example, it would be dif-
ficult to learn to open a drawer if, once it is open, the robot
is unable to close it. Our system addresses this difficulty by
simultaneously training pairs of behaviors and alternating
between them as necessary. We also formalize the ideal rela-
tionship between these pairs of behaviors and name them
complementary behaviors.

We evaluated our system using an implementation on a
Willow Garage PR2 robot at the Aware Home, which is a
free-standing house at the Georgia Institute of Technology
constructed to test new technologies. First, the robot learned
to operate six devices. After learning, we tested the robot’s
performance in trials with each of the six devices for a total
of 110 trials. In all trials, the robot autonomously operated
the device successfully after at most two attempts. If the
first attempt failed, the robot detected the failure and then
retrained using this new negative example prior to trying a
second time. We tested opening and closing drawers, turn-
ing on and off light switches, and turning on and off rocker
switches. Figure 1 shows example output from the resulting

Fig. 1 Left Willow garage PR2 operating a drawer, light switch and
rocker switch using learned detector that detects regions where manip-
ulation will succeed. Right Results from learned detectors during exe-
cution

trained classifiers, which classify image feature vectors as
being associated with success or failure of a behavior.

2 Related work

In this section, we discuss related work in robot learning,
robot manipulation, and active learning. Our work also builds
on our earlier workshop publication (Nguyen and Kemp
2011).

2.1 Robot learning

Different robot learning methods such as imitation learning,
interactive learning and developmental learning (Lungarella
et al. 2003; Pfeifer and Scheier 1997) can be grouped by how
they approach the issue of gathering data. We focus on work
in which the robot learns with little human input.

2.1.1 Autonomously learning robot skills and behaviors

Learning from demonstration typically relies on substantial
human involvement to acquire training data from sources
such as teleoperation, shadowing, placing sensors on the
demonstrator, and external observations (Argall et al. 2008).
Robot reinforcement learning often involves substantial prac-
tice by a real robot, during which the real robot acquires
training data. However, implementations in this area often

123

Auton Robot (2014) 36:137–152 139

focus on acquiring and refining a skill, rather than applying a
known skill in a new context, and typically use specially engi-
neered environments and human intervention during training
(Ijspeert et al. 2003; Kober et al. 2010; Pastor et al. 2011).

Many developmental learning systems (Lungarella and
Metta 2003) use data from the robot’s autonomous interac-
tions with the environment. Much of the work to date has
investigated sensorimotor coordination skills such as gaze
control (Berthouze et al. 1997; Berthouze and Kuniyoshi
1998; Butko and Movellan 2010), reaching (Metta et al.
1999; Butko and Movellan 2011), pointing (Marjanovic et al.
1996), and poking (Metta and Fitzpatrick 2003). Our work
focuses on complex multi-step behaviors that have direct
applications in domestic settings.

2.1.2 Learning to visually detect grasps

Grasping, being a fundamental skill for mobile manipulators,
have received significant attention in robot learning. Similar
to our work, many have investigated associating visual fea-
tures with 3D locations on objects to localize grasp frames.
One of the earliest investigations in grasp learning is by Dunn
and Segen (1988) that matched objects using visual features
and learned grasps through trial and error. Instead of learning
one grasping classifier, Zhang and Rossler’s (2004) system
learned separate classifiers for grasp position and grasp ori-
entation. Saxena et al.’s (2008) method learned a classifier
using a data set of simulated grasps and was successful in
grasping objects in uncluttered environments. The authors
in Montesano and Lopes (2009) views the same problem as
one of learning object affordances and proposed a method
for estimating grasp densities in images of objects on unclut-
tered backgrounds. Researchers in Erkan et al. (2010) learned
a mapping from 3D edge features using active and semi-
supervised learning. For most systems discussed, the authors
gathered data manually with the exception of Saxena et al.
(2008) where a simulator was used. In contrast, we present
a system that can function with a variety of different behav-
iors, without the need for custom simulators, and in settings
where hand-labeled data are not available.

2.1.3 Autonomously learning to perceive

In contrast to motor learning, most work in learning for
perception relies on data captured manually (Ponce et al.
2006), captured in simulation (Klingbeil et al. 2008; Sax-
ena et al. 2008), or downloaded from the web (http://
www.semantic-robot-vision-challenge.org/, Chatzilari et al.
2011). Although large data sets can be collected from these
sources, data generated can be biased (Torralba and Efros
2011) and may not match what the robot will encounter.
Likewise, the relationship between these data and the robot’s
actions may not be clear. For example, a good location for

a person to grasp or a location that a person believes would
be good for grasping may not be appropriate for a particular
robot. Accurate simulation of physical objects can also be
hard to obtain (Abbeel et al. 2006).

The system that we present uses data generated from self-
experience, (similar to Salganicoff et al. (1996), Erkan et al.
(2010), Pastor et al. (2011), and Kober et al. (2010)). This
has the advantage of training data that is well-matched to
the particular robot and its task. However, obtaining labeled
examples can be difficult, since the robot needs to act in the
real-world and human labeling can be labor intensive and
have errors, ambiguity, and inconsistencies (Barriuso and
Torralba 2012). We address this issue in our work by com-
bining active learning, which reduces the number of exam-
ples needed, with autonomous learning methods that elim-
inate the need for human labeling beyond an initialization
process.

Past work in learning for perceptual categorization, a
process where agents learn through interaction with the world
to divide sensory information into distinct groupings, has
used data from the robot’s experience. However, most sys-
tems were designed to classify simple geometric objects such
as cylinders and rectangles using cross-modal information
(Krichmar and Edelman 2002; Coelho et al. 2001; Christian
Scheier 1996).

A relatively small subset of work investigates more com-
plex objects found in human environments. For example,
Stober and Kuipers (2011) demonstrated an approach for
extracting spatial and geometric information from raw sen-
sorimotor data. Kraft et al. (2010) presented a system that
gradually learns object representations and associates them
with object-specific grasps. Katz and Brock (2008) showed a
method with which a robot determines the structure of artic-
ulated objects through experimentation. And, van Hoof et al.
(2012) presented a system that selects maximally informative
actions to segment tabletop scenes.

Paolini et al.’s (2012) system uses a generative approach
to estimate task success by estimating the poses of grasped
objects with sensor readings then combining it with a model
of task success given the estimated pose. In contrast, our
approach uses discriminative modeling mapping straight
from sensor readings to a label correlated with expected suc-
cess. While generative modeling often resulted in a more
interpretable model, discriminative modeling allows our sys-
tem to be more agnostic of the particulars of behaviors used.

Previous work by the authors of Sukhoy and Stoytchev
(2010) is notable for its similarity to our approach. They pre-
sented a system that uses an uncertainty sampling scheme to
actively learn the appearance of doorbell buttons. In con-
trast, our approach uses a different active learning algo-
rithm, works with a mobile manipulator operating in situ
devices, and handles persistent change to the state of the
world.

123

http://www.semantic-robot-vision-challenge.org/
http://www.semantic-robot-vision-challenge.org/

140 Auton Robot (2014) 36:137–152

2.2 Task-relevant feature detection

In a parallel thread to robot learning, there has been recogni-
tion in the mobile manipulation community of the importance
of exploiting task structure to reduce the complexity of oper-
ating in the real-world (Katz et al. 2008). Work in articulated
object perception (Katz and Brock 2008), tool tip detection
(Kemp and Edsinger 2006), door handle detection (Kling-
beil et al. 2008), behavior-based grasping (Jain and Kemp
2010), use of a sink (Okada et al. 2006), and corner detec-
tion for towel folding (Maitin-shepard et al. 2010) suggests
that low-dimensional task-specific perception can be highly-
effective and that recovery of complex representations of the
state of objects prior to manipulation is often unnecessary.
These particular examples have used hand-coded and hand-
trained feature detectors. With our approach, robots autono-
mously learn, after a human-aided initialization period, to
classify visual features as being relevant to the success of a
specific behavior or not.

2.3 Active learning and curiosity driven learning

With many robot learning scenarios, unlabeled data can be
readily acquired but labeling the data is costly, a issue that can
be addressed by approaches such as active (Settles 2012) and
semi-supervised learning. In our work, use active learning to
pick data to be labeled based a data point’s value in improving
the learner’s model. With many active learning algorithms,
at each iterative learning step the learner is given an option
to select a data point to be labeled out of a set of unlabeled
data points. For one class of proposed approaches, the learner
picks the data point whose label it is most uncertain about
(Lewis and Catlett 1994; Culotta and McCallum 2005; Set-
tles and Craven 2008). With disagreement-based methods,
learner ensembles select the data point they most disagree on
Cohn et al. (1994). More computationally demanding meth-
ods, however, attempt to explicitly minimize future expected
error or variance (Roy and McCallum 2001; Berger et al.
1996; Lafferty et al. 2001). There are also proposals to com-
bine semi-supervised and active learning to exploit structure
in unlabeled data (McCallum and Nigam 1998; Muslea et al.
2002; Zhu et al. 2003). Although there have been several large
scale studies of active learning methods on different data sets
showing its superiority over randomly picking data points for
labeling (Korner and Wrobel 2006; Schein and Ungar 2007;
Settles and Craven 2008), the best active learning algorithm
to use in each circumstance has been application specific. In
our work, we use a heuristic that picks the data point closest
to the decision boundary of a support vector machine (SVM)
for labeling, a method that has been shown to perform well in
a variety of applications (Jain et al. 2010; Schohn and Cohn
2000; Tong and Koller 2000).

3 Approach

Our approach enables a mobile manipulator to autonomously
learn a function that takes a 2D RGB image and a registered
3D point cloud as input and returns a 3D location at which
a manipulation behavior is likely to succeed. To do so, it
requires a pair of manipulation behaviors, verification func-
tions that detect when each behavior has been successful,
and an initial hint as to where one of the behaviors will be
successful.

Each behavior must have input parameters that correspond
with a 3D location that specifies where the behavior will act.
During training, our system executes each behavior multiple
times using different 3D locations around the device being
manipulated and records whether or not the behavior suc-
ceeded at each location. For each 3D location, the system
creates an image feature vector using an area of the registered
2D RGB image associated with the 3D location. These image
feature vectors are labeled with whether or not the behavior
succeeded or failed at their associated 3D locations. In other
words, the collected data set consists of positive and nega-
tive examples of image feature vectors that were or were not
associated with the success of the behavior. With a classifier
trained from this data set, the robot can then predict if the
associated behavior will succeed at a 3D location based on
the image feature vector associated with the location.

To avoid user intervention during training, our procedure
trains two behaviors at the same time, switching to the other
behavior when the current behavior succeeds. This enables
our method to operate devices that can be approximated as
having two binary states, such as a drawer being open or
closed. Using a pair of behaviors allows the robot to change
the device back and forth between these two states, so that
training can continue autonomously. For example, instead of
training a drawer opening behavior in isolation, our process
flips to training a drawer closing behavior when opening suc-
ceeds and vice versa until the classifier converges. We also
formalize the relationship between the two behaviors and
define them as complementary behaviors.

Using self-generated data takes considerable time, since
each labeled image feature vector requires that the robot exe-
cute the behavior at a 3D location and observe the results.
To avoid needing an intractable number of trials, our method
uses active learning to execute the behavior at an informa-
tive 3D location at each iteration. Specifically, our procedure
trains a support vector machine (SVM) after each trial using
the current labeled data. It then uses a heuristic proposed
by Schohn and Cohn (2000) to select the unlabeled image
feature vector that is closest to the current SVM’s decision
boundary to be labeled next. It then executes the behavior at
the 3D location associated with this image feature vector.

Our training procedure has two phases. The first is an
initialization phase where the user selects the behavior pair

123

Auton Robot (2014) 36:137–152 141

to train, gives a seed 3D location, and positions the robot’s
mobile base for training. The next phase is an autonomous
phase where the SVM active learning procedure runs until
the learner converges. After convergence, each behavior has
a classifier that predicts 3D locations where it will succeed.

During runtime, if the behavior’s verification function
detects a failed attempt, our procedure appends this nega-
tive example to the data set, retrains the classifier, and tries
again using the output of this new classifier (Sect. 3.3.3).

In the following sections, we discuss the requirements of
our learning procedure (Sect. 3.1), properties of complemen-
tary behaviors (Sect. 3.2), our training procedure in detail
(Sect. 3.3), and classification infrastructure (Sect. 3.4).

3.1 Requirements

Our methods make the following assumptions:

1. The robot can execute a set of behaviors, {B1, . . . Bn},
where each behavior, Bi , requires a 3D location, p3D , in
the robot’s frame of reference as initial input. We have
previously demonstrated that behaviors of this form can
perform a variety of useful mobile manipulation tasks
when provided with a 3D location designated with a laser
pointer (Nguyen et al. 2008).

2. The robot has a way of reliably detecting whether or not
a behavior it has executed was successful or not. Specif-
ically, a verification function, V , returns whether or not
a behavior succeeded. For this work, V takes the form
V (I (b), I (a)), where I (x) is the array of robot sensor
readings when the state of the world is x . The states b
and a are the states before and after the robot executes a
behavior.

3. For each behavior, B, there is a complementary behav-
ior, B∗. If B successfully executes, then successful exe-
cution of B∗ will return the world to a state that allows
B to execute again. We discuss the implications of this
requirement in the next section (Sect. 3.2).

4. Upon successful execution, a behavior returns a 3D loca-
tion near where its complementary behavior can success-
fully execute.

3.2 Complementary behaviors

In order to train without human intervention our procedure
uses a complementary pair of behaviors during its data gath-
ering process. We introduce the notion of a complementary
robot behavior B∗ to a behavior B as being a behavior that is
capable of “reversing” the state of the world, so that behavior
B can be used again. For example, if behavior B’s function
is to turn off the lights using a light switch, its complement,

S

G*

S*

G

B

B*E

S

G*

S*

G

B

B*E

Fig. 2 Relationships between set S, G, S∗, G∗, B, and B∗. Top an
example set of complementary behaviors where G∗ ⊆ S and G ⊆ S∗.
In this case, the effect of B is reversible using B∗. Bottom an example
set of behaviors that are not complements with G∗ � S, so B∗ can
produce states that are not in S

B∗, would turn the lights back on using that light switch. If a
behavior opens a door, then its complement would close the
door.

We formalize our notion of complementary behaviors
by defining the relationship between ideal complementary
behaviors. We first define a hypothetical state space E that
contains the states of everything in the world, including the
robot’s state. We then represent execution of behavior B
given an initial state of the world i ∈ E as B(i), where
B is an operator that takes the initial state of the world i as
input and returns the resulting state of the world r ∈ E . Fur-
thermore, when B is applied to a state s ∈ S, where S ⊆ E
is a set of starting states, it returns g ∈ G, where G ⊆ E is
a set of goal states. We define

G = {g|V (I (i), I (g)) = success ∧ g = B(i) ∧ i ∈ E} (1)

and

S = {s|g ∈ G ∧ g = B(s) ∧ s ∈ E}. (2)

Intuitively, if the state of the world, s, is a start state, s ∈ S,
then the behavior B will be successful and the resulting state
of the world, g = B(s), will be a goal state, g ∈ G.

We now define a complement B∗ of behavior B to have
a set of start states, S∗, and a set of goal states, G∗, such
that G∗ ⊆ S and G ⊆ S∗ (see Fig. 2). This guarantees that
applying B’s complement, B∗, after successfully applying
B will result in a state of the world that allows B to once

123

142 Auton Robot (2014) 36:137–152

Fig. 3 Illustration of the
initialization procedure for a
pair of behaviors that flip light
switches. Left position robot in
front of the switch. Middle
illuminate an initial 3D location
as input to the behavior using a
laser pointer. Right A 3D
location associated with success
(green) and a 3D location
associated with failure (red)
after initialization. Candidate 3D
locations to explore are shown
in white (Color figure online)

again be applied successfully. More formally, it guarantees
that B∗(B(i)) ∈ S when i ∈ S, and that B(B∗(i)) ∈ S∗
when i ∈ S∗.

3.3 Autonomous training

3.3.1 Initialization

Our initialization procedure is motivated by the scenario in
which a user would take the robot on a home tour and point
out 3D locations using a green laser pointer (Nguyen et al.
2008) and specify behaviors applicable to those locations.
After this tour, the robot would later autonomously navigate
back and learn to robustly perform the behaviors.

For this paper, we have implemented an initialization pro-
cedure that starts with the user navigating the robot to be
in front of the device to be operated using a gamepad inter-
face. Then using a green laser pointer (Nguyen et al. 2008),
the user designates an initial 3D location to begin explor-
ing by holding the laser point steady at the intended target.
The robot samples 3D points around this designated location
(using a spherical Gaussian with a variance of 4 cm) and
executes the behavior pair with respect to them. After each
execution of a behavior at a 3D location, the behavior’s ver-
ification function returns a label of either success or failure.
The sampling process continues until the procedure gathers
data points from at least one successful and one failed trial.
These two data points are then used to train SVM classifiers
that guide the data gathering process with the active learning
heuristic (Schohn and Cohn 2000).

After this initialization, the robot stores a 2D mobile base
pose with respect to a global map, the user provided 3D loca-
tion, an SVM trained using two labeled data points, and labels
indicating which pair of behaviors is applicable at the speci-
fied location. We illustrate this procedure in Fig. 3. In addi-
tion, the user navigates the robot to eight different poses in the
room, referred to as practice poses, each at least a half meter
away from the device. The robot also stores the 2D mobile
base poses associated with these eight practice poses.

Fig. 4 This figure shows a visualization of task variation due to the
robot’s mobility. We affixed a red dot at the center of a rocker switch.
The robot attempted to navigate to the same pose and take the same
picture of the switch ten times. This image superimposes the red dot
from nine images onto the first image to illustrate the wide variation
due to navigation. One of the ten dots is obscured by two others. The
switch plate shown has a width of 7.0 cm. If the robot were to use its
localization estimate to press this switch, most of the attempts would
result in a failure (Color figure online)

3.3.2 Training procedure

Our training procedure is designed to emulate conditions that
the robot would encounter when performing the task. After
receiving a command, the robot navigates to the device so
that it can execute the commanded behavior. Navigation and
localization errors result in variations that can substantially
reduce the performance of a behavior, such as variation in
the robot’s point of view. We illustrate task variation due
to navigation in Fig. 4. Our training method samples from
this source of task variation by commanding the robot to
navigate to one of eight practice poses in the room and then
commanding it to navigate back to the device (see Fig. 5).

After navigating to the device, our procedure begins an
active learning phase (see Fig. 6). We summarize this phase
in Algorithm 1. The process starts with the robot captur-
ing an RGB image and a registered 3D point cloud. The
robot then computes image feature vectors for 3D points
randomly sampled from the point cloud around the device

123

Auton Robot (2014) 36:137–152 143

Navigate to
Device

Active
Learning of

SVM

Navigate
Away from

Device
(to Practice Pose)

Converged!Initialize

capture RGB
Image and

 3D point cloud

Fig. 5 Overview of the training procedure: initialization of the classi-
fier; specification of practice poses in the environment by the user; and
a loop that navigates the robot to each practice pose and back to the
device until the robot gathers enough training data

(extract_features). It then iteratively selects image feature
vectors (svm_pick) that it labels by executing the behavior at
the associated 3D location and using the verification func-
tion (execute_behavior). After each execution, the process
retrains the SVM classifier with a data set that incorpo-
rates the newly acquired labeled example (add_instance-
_and_retrain_svm). In order to make our implementation
efficient, the robot does not collect a new RGB image or
registered 3D point cloud between these executions. If an
execution succeeds (If(success)), however, the robot begins
this same process with the complementary behavior, which
first captures a new RGB image and registered 3D point
cloud. When executing the complementary behavior, the sys-
tem does so until it succeeds with no limits on the number of
retries.

The procedure stops after gathering a maximum of six
labeled image feature vectors or the learner converges
(stop_criteria). We imposed this conservative maximum
limit, determined heuristically, because image feature vectors
gathered from the same view are correlated, which can con-
fuse the learning heuristic and result in the training process
stopping prematurely. However, if we pick a number that is

Algorithm 1: practice(point3D , behavior,
comp_behavior, stop_criteria)

instances, candidates3D = extract_features(point3D);
while True do

instance, candidate3D = svm_pick(behavior, instances,
candidates3D);
if stop_criteria(behavior) or svm_converged(behavior,
instances) then

break;
end
success, candidate3D∗ = execute_behavior(behavior,
candidate3D);
add_instance_and_retrain_svm(instance, success);
instances = instances \ instance;
candidates3D = candidates3D \ candidate3D ;
if success then

practice(candidate3D∗, comp_behavior, None,
stop_criteria=stop_on_first_success);

end
end

too small, the robot’s base would move more often lengthen-
ing the training time.

This process continues until svm_converge is satisfied for
each of the eight practice poses. Once it is satisfied for a
particular practice pose, the robot no longer navigates to the
pose. We define convergence for a practice pose to occur
when after driving up to the device from the practice pose,
none of the initially computed image feature vectors are
closer to the decision boundary than the current support vec-
tors.

3.3.3 Behavior execution procedure

The training process above produces a classifier that can reli-
ably detect locations where the associated behavior will suc-
ceed. To use this classifier, our robot navigates to the device
using the 2D map pose stored during initialization, classi-
fies 3D points in the view that it sees, finds the mode of

Fig. 6 Illustration of the
classifier training procedure
where the system trains the
complementary behavior upon
success of the first behavior and
vice versa. Dashed orange
boxes on the two behaviors and
success detectors highlight that
these modules are provided as
input to our system (Color figure
online)

Feature
Extractor

Feature
Extractor

Success?

Success?

Behavior

Success
Detector

Complementary
Behavior

Success
Detector

Active
Learning for

SVM

Active
Learning for

SVM

label

label

query point query point

3d point

3d point
yes

yes

Training Loop for Behavior Training Loop for Complementary Behavior

no

no

123

144 Auton Robot (2014) 36:137–152

the positive classified points using kernel density estimation,
selects the 3D point in the point cloud closest to this mode,
and executes the associated behavior using the resulting 3D
location.

If the behavior fails to execute using this 3D location, our
procedure adds the associated image feature vector as a neg-
ative example to the data set and retrains the classifier. This
new example changes the classifier’s decision boundary. The
robot then selects a new 3D location using the retrained clas-
sifier with the originally computed image feature vectors.
This continues until the behavior is successful. It then adds
the image feature vector associated with this success to the
data set as a positive example and retrains the SVM. In con-
trast to systems where the execution process is independent
of data gathering and training, the robot has the opportunity
to retrain its classifier when it detects errors made during
execution, giving the possibility of lifelong training.

3.4 Classification

Our methods use standard support vector machine (SVM)
classifiers trained with fully-labeled data. Our current imple-
mentation uses batch learning and retrains these classifiers
many times. Our datasets tended to be small with fewer than
200 examples, which made this feasible, but online learning
with appropriate classifiers might achieve comparable per-
formance with improved efficiency.

We denote the data for our classification problem as D =
{(x1, y1), . . . (xN , yN)} where xi ∈ R

M is the feature vector
that represents the 2D appearance of 3D point i and yi ∈
{1,−1} is the label that represents success, 1, or failure, −1,
of the behavior when it was executed with 3D point i as input.
Our goal is to produce a classifier that predicts y j for future
instances of x j encountered by the robot.

As functional structures on many household devices are
often small compared to nonfunctional components, such as
the size of a switch relative to the plate or wall, there is
typically an unbalanced data set problem, since there can be
many more negative than positive examples. In unbalanced
data sets the SVM can return trivial solutions that misclassify
all the positive samples, since the misclassification cost term
in the SVM objective is defined over all samples. To prevent
this issue, we use an SVM formulation that separates the
costs of misclassifying the negative class from the cost of
misclassifying the positive class (Chang and Lin 2001),

min
w,b,ξ

1

2
wT w + C+ ∑

yi =1

ξi + C− ∑

yi =−1

ξi

s.t. yi (wT φ(xi) + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , l, (3)

where w and b are SVM parameters, ξi counts the margin
violations for misclassified points (in the case of nonsepara-

ble data), and φ() is the radial basis kernel function we use
(discussed in Sect. 4.1).

This formulation separates the SVM misclassification cost
scalar C into C+ and C− which are, respectively, costs due to
negative and positive misclassifications. For our system, we
set C− to be 1, and C+ to be the number of negative examples
over the number of positive examples. This scaling keeps the
percentage of misclassified positive and negative examples
similar in our skewed data set, where there might be many
more negative than positive examples. Without this adjust-
ment, we found that training often returned trivial classifiers
that classified any input vector as negative.

3.4.1 Active learning heuristic

Our training process iteratively builds a data set that it uses
to train the classifier. Before each trial, the system selects the
image feature vector to label. To select the feature vector,
the system uses a heuristic developed in Schohn and Cohn
(2000) that selects the feature vector closest to the decision
boundary of the existing SVM, under the condition that it is
closer to the boundary than the SVM’s support vectors. The
procedure converges when no feature vectors remain that are
closer to the decision boundary than the support vectors.

At each iteration i of our procedure, we define the pre-
vious iteration’s data set as Di−1, the current set of support
vectors as Xsv

i = {xsv
1 , . . . , xsv

P }, the unlabeled image fea-
ture vectors as Xq

i = {xq
1 , . . . , xq

M }, and the SVM distance
function, which measures distance to the decision boundary,
as d(xi) = ∣∣wT φ(xi) + b

∣∣. The system selects the unlabeled
image feature vector that is closest to the decision boundary
as specified by the following expression:

argmin
xq

i :∀xsv
j d(xq

i)<d(xsv
j)

d(xq
i) (4)

3.4.2 Features

The feature generation procedure, which is illustrated in
Fig. 7, takes as input a 3D point cloud, a registered high res-
olution RGB image, and a reference 3D point. The system
first selects random 3D points from the point cloud, without
replacement, around the reference 3D point according to a
Gaussian distribution N (p̄, �), where � = diag(vx , vy, vz)

with vx , vy, and vz being, respectively, variances in the x, y,
and z direction. The Gaussian mean p̄ is set to the 3D ref-
erence point. This Gaussian search prior enables the system
to save computational effort and focus its attention on the
device that the robot is supposed to manipulate.

After randomly selecting a set of 3D points, the system
projects each 3D point pc

i into the high resolution RGB
image, proj (pc

i). For each projected 3D point, it collects
square image patches of successively increasing size cen-

123

Auton Robot (2014) 36:137–152 145

.

.

.

Reduce Dimensionality of the
Image Vector Using PCA

Collect Image Patches Around
Projected 3D Location

Scale and Vectorize the
Image Patches (4 scales)

Generate an Image
Feature Vector

Classify the Image Feature
Vectors Using an SVM

Select a 3D Location Using
Kernel Density Estimation

Fig. 7 To select a 3D location at which the behavior is likely to be
successful, the system first generates image feature vectors for a set of
3D locations. It does so by vectorizing and then reducing the dimen-
sionality of scaled image patches centered around the 2D projection of

each 3D location. Then it uses an autonomously trained SVM to clas-
sify each of these image feature vectors as predicting success (blue) or
failure (orange) of the behavior. Finally, it selects a specific 3D location
using kernel density estimation (Color figure online)

tered at the projected 2D point in the RGB image, scales
these patches to have the same height and width, vectorizes
them, and concatenates them into an image feature vector.
The system then uses Principle Components Analysis (PCA)
to reduce the dimensionality of these image feature vectors.
We discuss the specifics of these steps in Sect. 4.1.

4 Implementation

4.1 Learner parameters

We implemented our system on a PR2 robot: a mobile manip-
ulator produced by Willow Garage with two arms, an omni-
directional base, and a large suite of sensors. Our system
uses 3D point clouds and 5 megapixel RGB images from the
robot’s tilting laser range finder and Prosilica camera.

Starting with a 3D point cloud and registered RGB image,
our process randomly selects 3D points from the point cloud
as described in Sect. 3.4.2. For each selected 3D point, the
system collects image patches at 4 scales centered around
the point’s 2D projection in the RGB image. The raw image
patches have widths of 41, 81, 161, and 321 pixels. They are
then scaled down to 31×31 pixel image patches, vectorized,
and concatenated into an 11,532 element image feature vec-
tor for each 3D point. Computer vision researchers have used
similar representations. We selected these particular sizes
by hand while developing the system. Computational limi-
tations, the resolution of the robot’s camera images, and the

appearance of the mechanisms influenced our selection, but
we would not expect system performance to be sensitive to
these sizes. The vectors are then reduced to 50 element vec-
tors by projecting them onto PCA basis vectors that are calcu-
lated for each action using the 11,532 element image feature
vectors computed from the first 3D point cloud and RGB
image captured during initialization. We used 50 PCA vec-
tors, which preserved 99 % of the variance across 20 images
of a light switch and drawer.

To classify these 50 dimensional image feature vectors,
we use SVMs with radial basis function kernels. We set the
hyperparameters of this kernel using an artificially labeled
data set. We created this data set by taking ten different 3D
point clouds and RGB images of a light switch from dif-
ferent views and geometrically registered them. After hand-
labeling one 3D point cloud and RGB image, we geometri-
cally propagated labels to the other nine. To find the kernel
hyperparameters, we split the labeled image feature vectors
from this data set into a training set and a test set. Finally, we
performed a grid search (Chang and Lin 2001) for the set of
hyperparameters that best generalized to unseen data in the
test set.

4.2 Behaviors

To evaluate our system, we implemented three pairs of com-
plementary behaviors that operate light switches, rocker
switches and drawers. These tasks are sensitive to the location
at which an action is performed. For example, light switches

123

146 Auton Robot (2014) 36:137–152

Fig. 8 Sequence of actions
performed by each of the eight
behaviors used in this work for
operating a light switch, rocker
switch and drawer. Dotted
orange boxes indicate
procedures for detecting success
or failure in a given behavior
(Color figure online)

pressure acceleration

DrawerPush(point)

Open Gripper

Move to Start
Location

Move Gripper
Forward (50 cm)

Reach(point)

Move to Start
Location

Move Gripper
Forward (50 cm)

Detect Movement

pressure acceleration

Close Gripper

Move to Start
Location

Move Gripper
Back (2 cm)

Move to Start
Location

Flip Switch

Detect Light

Reach(point)

SwitchLight(point) RockerSwitch(point)

Close Gripper

Move to Start
Location

Move to Start
Location

Reach(point)

Detect Light

DrawerPull(point)

Open Gripper

Move to Start
Location

Reach(point)

Move Gripper
Back (2 cm)

Open Gripper

pressure acceleration

Move Gripper
Back (25 cm)

Detect Movement

Close Gripper

Detect Handle

are small targets that require high precision and accuracy for
the PR2 to operate with its finger tips. As illustrated in Fig. 4,
we have found that a PR2 will rarely succeed at flipping a
light switch if it simply navigates to a pre-recorded location
and moves the arm through a pre-recorded motion without
visual feedback.

4.3 Light switch behaviors

Our light switch behavior’s strategy is to reach forward to the
specified 3D location, stop on contact detected with gripper
tip tactile sensors, then slide along the contacted surface in
the direction of the switch. A successful 3D location needs
to place the robot’s finger so that its width will make contact
with the switch and far enough above or below the switch
so that the finger will move the switch down or up. Figure 8
shows the sequence of actions taken by this behavior.

The behavior starts with the robot closing its gripper
(Close Gripper), moving the gripper to a pre-manipulation
location (Move to Start Location), reaching to the given 3D
location (Reach), flipping the switch by sliding along the flat
surface (Flip Switch), moving the gripper back (Move Grip-
per Back), then moving back to the initial location (Move to
Start Location).

There are a few steps in this behavior where the robot
detects tactile events. When reaching, the robot stops when
it detects contact using pressure sensors on its finger tips.
Next, the sliding movement stops after detecting a spike in
acceleration with the accelerometer embedded in the robot’s
gripper. In the context of this task, this spike in acceleration
typically corresponds with the light switch flipping.

To detect success, our behavior measures the difference
between the average intensity of an image captured before
sliding along the surface and an image captured after. A large
difference indicates that the lighting intensity changed.

The complementary behavior is identical except for a
change in the direction of flipping. After executing, the
behavior and complementary behavior return the 3D loca-
tion input with a predefined offset (±8 cm).

4.4 Rocker switch behaviors

Our rocker switch behavior consists solely of a reaching out
step similar to the light switch behavior above, since the force
applied from contact during the reach procedure is enough
to activate the switch. A successful 3D location will result in
the robot’s fingers pushing in the top or bottom of the rocker
switch.

This behavior uses the same image differencing method
to detect success as the light switch behavior. It calculates
the difference between images captured before and after the
robot reaches forward. After executing, the behavior and
complementary behavior return the 3D location with a pre-
defined offset (±5 cm).

4.5 Drawer behaviors

Pulling open and pushing closed a drawer require differ-
ent behaviors and success detection methods. Our pulling
behavior reaches to the drawer handle location, detects con-
tact, moves back slightly, grasps with the reactive grasper
from Hsiao et al. (2010), and pulls. When pulling, failure is

123

Auton Robot (2014) 36:137–152 147

detected if the grasp fails or the robot fails to pull for at least
10 cm while in contact with the handle. A successful 3D loca-
tion will result in the robot’s gripper grasping the handle well
enough to pull it back by at least 10 cm. When pushing, fail-
ure is detected if the gripper does not remain in contact with
the surface for at least 10 cm. This classifies events where the
robot pushes against a closed drawer or an immovable part
of the environment as failures. After executing, the behavior
and complementary behavior return the 3D location the tip
of the gripper was in immediately after pulling or pushing.

4.6 Robot controllers used

We now discuss the various controllers used for sub-
behaviors shown in Fig. 8. For the arms, we had the option to
use either a joint or Cartesian controller. The joint controller
takes as input a set of 7 joint angles for each arm and creates
splines for each joint individually to move the arm smoothly
to the given goal. Built on Nakanishi et al.’s (2005) acceler-
ation Jacobian pseudo-inverse control scheme, the Cartesian
trajectory controller (provided by the ROS package robot_-
mechanism_controllers) attempts to keep the robot’s end-
effector as close as possible to a given 6 degree-of-freedom
(DoF) goal. As the arms possess 7 DoF, this controller allows
the remaining one degree-of-freedom to be specified using a
posture goal consisting of a set of 7 joint angles. Finally, the
Cartesian controller allows for much more compliant motions
since it is less concerned about following exact joint level
goals.

At the beginning and end of most behaviors discussed,
we issue a “Move to Start Location” command that inter-
nally calls the Cartesian controller to move to a preset 3D
point then uses the joint controller to fix the arm stiffly in
place. For the close and open gripper command, we use the
pr2_gripper_action package in ROS to move to a fully opened
or fully closed position while limiting the maximum effort.
To implement “Reach”, we send a series of Cartesian goals
to the arm in a straight line starting from the end-effector’s
current position and ending at the given goal with the option
to stop when detecting readings from either the pressure of
acceleration sensors. Finally, for modules that move the grip-
per backward or forward for a given distance, we again use
the Cartesian controller but instead of linearly interpolating to
the goal, we just send the final goal point. These motions also
have the option of stopping based on tactile events detected
by the robot’s grippers.

5 Evaluation

We evaluated our system using six separate devices. We first
tested on a rocker switch using the PR2 robot named GATS-
BII in our lab, the Healthcare Robotics Lab (HRL). For the

Fig. 9 Results of experiments for which we used a motion capture
system to track the robot’s pose while navigating between two goal
poses (blue and red). Green is the path the robot took. Stars indicate
the final poses of the robot after it navigated to the goal poses. Circles
show a point 50 cm in front of the robot (Color figure online)

remaining five devices we performed tests in the Georgia
Tech Aware Home, a residential lab on campus used as a test
bed for new technologies.

In each environment, we began our evaluation by cre-
ating an occupancy grid map of the area with the PR2’s
built-in navigation package (Marder-Eppstein et al. 2010).
Then, after initialization (Sect. 3.3.1), we ran the autonomous
training system (Sect. 3.3.2) until convergence. The exper-
imenter provided eight practice poses, four for each behav-
ior in the pair. Here, we picked four for each behavior as
it allowed us to exhaustively pick locations from which the
robot would travel to the mechanism in most rooms. We have
not observed the training process to be particularly sensitive
to this parameter however. The training system ran without
experimenter intervention except for pausing and resuming
when the robot’s batteries ran low. In all, we trained 12 clas-
sifiers, a result of having six devices and a pair of behaviors
for each device (12 = 6 × 2).

After finishing the training sessions, we evaluated each
classifier by running each behavior multiple times, giving
110 trials in all (110 trials = (5 devices × 2 behaviors ×
10 trials) + (1 device × 2 behaviors × 5 trials)). During each
trial we allowed the behavior to retry and incorporate infor-
mation from failures if it did not succeed the first time. How-
ever, we discarded any data gathered during the retry proce-
dure by previous trials at the start of each new trial to obtain
accurate error statistics for the original classifier.

For the devices we used in our evaluation, the functional
components are difficult for the PR2’s laser range finder to
detect. Light switches only show up as a few protruding 3D
points similar to other noisy 3D points produced by the sen-
sor. The rocker switch appears as a flat 2D texture on the 3D
point cloud. Drawer handles tend to be metallic and reflec-
tive resulting in an absence of 3D points. Using features from
RGB images enabled the robot to overcome these challenges.

123

148 Auton Robot (2014) 36:137–152

Fig. 10 Each pair of images shows classification results of learned
detectors just after convergence then on a new test image. Areas with
inverted colors mark locations identified as leading to success of asso-
ciated behaviors. To show these results, we took positively predicted
points, placed those points in a grid, then overlaid this grid on the

original image. Row 1 detectors for a rocker switch in our lab. Row
2 detectors for a different rocker switch in the Aware Home. Row 3
detectors for pushing and pull a wooden drawer. Row 4 detectors for
another dark wooden drawer. Row 5 detectors for a regular light switch.
Row 6 detectors for an ornate light switch

5.1 Effects of navigation errors

To better understand the variation in the task due to the robot’s
mobility, we investigated how the pose of the PR2 varies

when navigating to a goal pose. Using a room equipped with a
NaturalPoint OptiTrak motion capture system, we tracked the
pose of the PR2 and commanded the robot to navigate back
and forth to two goal poses ten times each. As the standard

123

Auton Robot (2014) 36:137–152 149

deviation of the robot’s Cartesian position does not represent
angular errors, we calculated errors for a point 50 cm in front
of the robot, which is representative of where a device would
be located. The standard deviation of the location in front of
the robot was 1.85, and 1.79 cm in the x and y directions,
respectively. For the second position, the standard deviation
was 1.55 and 2.38 cm in the x and y directions, respectively.
We show the results of this experiment in Fig. 9. These errors
demonstrate that navigating to a pre-recorded location and
moving the arm through a pre-recorded motion would result
in large variation that can result in failure. For example, the
robot’s finger tips are 2.0 cm wide and light switches are only
0.8 cm wide.

6 Results

Figure 10 shows the locations that the trained SVMs predict
will be likely to lead to the success of their associated behav-
iors. These predictions are solely a function of the visual
appearance of each location as represented by its image
feature vector. These visualizations of the classifier output
demonstrate that the classifiers identify locations relevant to
their associated behaviors. For example, the robot autono-
mously discovers that opening a drawer requires grasping at
the location of the drawer handle, while closing a drawer can
be performed across the front surface of the drawer. The visu-
alizations also show that different drawer handles can have
distinct task-relevant properties. For example, the opening
behavior works best when grasping the middle of the silver
handle, but can succeed by grasping the far ends of the brass
handle.

Due to the distribution for random sampling including
some points on the lower handles for the white drawers, the
SVM estimates that success can be achieved by pulling on the
top handle or the bottom handle. The illustrates a limitation
with our current approach, since the verification function for
pulling a drawer open can not tell the difference between the
top or the bottom drawer. It also shows the influence of the
distribution used to randomly sample 3D locations. At the
same time, it suggests that the visual classifiers may have
some ability to generalize to distinct objects.

For the light switches, the behaviors slide along the sur-
face of the switch. The robot autonomously discovered that
locations that are along the switch plate above and below the
switch are likely to lead to success. Additionally, it does not
predict success for locations along the wall, which is appro-
priate since the robot’s fingers get caught on the switch plate
edge if the robot tries to slide along the wall to the switch.

In Table 1, we show the number of examples collected for
each classifier. The median number of examples needed was
77, and the maximum needed was 145 examples. With the
rocker switch, where examples are noisy due to the middle

Table 1 Training examples (abbreviated Ex.) gathered for each action

Action Positive ex. Negative ex. Total

HRL rocker on 49 96 145

HRL rocker off 47 94 141

Aware H. rocker on 26 47 73

Aware H. rocker off 29 52 81

Ikea drawer open 23 35 58

Ikea drawer close 23 39 62

Brown drawer open 21 62 83

Brown drawer close 25 46 71

Orange switch on 17 43 60

Orange switch off 20 31 51

Ornate switch on 38 66 104

Ornate switch off 40 76 116

Table 2 For each trained behavior we ran ten trials. We list the number
of tries until success for these trials below

Action 1st Try 2nd Try

HSI rocker on 2 3

HSI rocker off 4 1

Aware home rocker on 10

Aware home rocker off 9 1

Ikea drawer open 10

Ikea drawer close 10

Brown drawer open 10

Brown drawer close 10

Orange switch on 8 2

Orange switch off 9 1

Ornate switch on 9 1

Ornate switch off 9 1

of the switch being an unreliable spot to push, the number
of examples increased to 145 indicating a sensitivity of our
approach to label noise.

Table 2 shows the results of using these trained classifiers
after training. Encouragingly, over the 110 trials our behavior
execution process attained a 100 % success rate after at most
two tries. In addition, errors that led to retries usually caused
the robot to miss an appropriate location on the device by a
small distance.

7 Future work

There are a number of potential extensions to this work, and
interesting issues left to consider. Although we have picked
a particular active learning framework, other frameworks
might perform better. Our current system depends on the ver-
ification function properly labeling the success or failure of
an attempt, both for training data and switching to the com-

123

150 Auton Robot (2014) 36:137–152

plementary behavior. Reducing this dependence or finding
ways to learn or adapt the verification function automatically
could be worthwhile. In addition, we assume that each device
is completely new to the robot, but many devices of a partic-
ular class have visual similarities. Data from other devices
might provide a prior and reduce the training required. Sim-
ilarly, the structure of successful locations might be shared
across devices, even if they are visually distinct. For exam-
ple, the front surfaces of drawers often being pushable, the
centers of drawers often being pullable, and the centers of
light switch panels often being switchable could be useful
information, even if aspects of their appearances change dra-
matically.

8 Discussion and conclusions

In general, there are risks for a robot that learns in human
environments and an unrestrained learning system can get
into situations that are dangerous to itself, to the environment,
or to people. We address this issue by limiting the robot to
using a few classes of behaviors in parts of the home that users
have designated as safe for robot learning. Additionally, the
behaviors move the robot’s arm compliantly and use haptic
sensing to decide when to stop moving. By learning in situ,
a robot’s data gathering activities do not have to stop after its
training phase and can potentially continue for as long as the
robot remains in service.

Autonomous learning in human environments is a promis-
ing area of research that gives robots methods to cope with
devices that they have not encountered before and many
forms of real-world variation. We have presented methods
that enable a mobile manipulator to autonomously learn to
visually predict where manipulation attempts might succeed.
As we discussed in the introduction, our work advances
autonomous robot learning in three ways. First, our approach
uses a robot’s mobility as an integral part of autonomous
learning, which enables the robot to handle the signifi-
cant task variation introduced by its mobility. Second, our
research demonstrates that by using active learning, a robot
can autonomously learn visual classifiers solely from self-
generated data in real-world scenarios with a tractable num-
ber of examples. Third, our research introduces complemen-
tary behaviors to address challenges associated with autono-
mously learning tasks that change the state of the world.

Acknowledgments We thank Aaron Bobick, Jim Rehg, and Tucker
Hermans for their input. We thank Willow Garage for the use of a PR2
robot, financial support, and other assistance. This work was funded in
part by NSF awards CBET-0932592, CNS-0958545, and IIS-1150157.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Abbeel, P., Quigley, M., & Ng, A. Y. (2006). Using inaccurate models
in reinforcement learning. In International Conference on Machine
Learning (pp. 1–8).

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A sur-
vey of robot learning from demonstration. Robotics and Autonomous
Systems, 57, 469–483.

Barriuso, A., & Torralba, A. (2012). Notes on image annotation. In MIT
Technical Note.

Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A maximum
entropy approach to natural language processing. Computational
Linguistics, 22, 39–71.

Berthouze, L., Bakker, P., & Kuniyoshi, Y. (1997). Learning of oculo-
motor control: A prelude to robotic imitation. In International Con-
ference on Robotics and Intelligent Systems.

Berthouze, L., & Kuniyoshi, Y. (1998). Emergence and categorization of
coordinated visual behavior through embodied interaction. Machine
Learning, 5, 369–379.

Butko, N. J., & Movellan, J. R. (2010). Developmental robotics archi-
tecture for active vision and reaching. In International Conference
on Development and Learning (pp. 1–6).

Butko, N. J., & Movellan, J. R. (2010). Learning to look. In International
Conference on Development and Learning (pp. 70–75).

Chang, C.-C., & Lin, C.-J. (2001). Libsvm: A library for support vector
machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chatzilari, E., Nikolopoulos, S., Papadopoulos, S., & Kompatsiaris, C.
Z. Y. (2011). Semi-supervised object recognition using flickr images.
In International Workshop on Content-Based Multimedia Indexing
(pp. 229–234).

Christian Scheier, D. L. (1996). Categorization in a real-world agent
using haptic exploration and active perception. In International Con-
ference on Simulation of Adaptive Behavior (pp. 65–75). Cambridge,
MA: MIT Press.

Coelho, J., Piater, J., & Grupen, R. (2001). Developing haptic and visual
perceptual categories for reaching and grasping with a humanoid
robot. Robotics and Autonomous Systems, 37, 195–218.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with
active learning. Machine Learning, 15, 201–221.

Culotta, A., & McCallum, A. (2005). Reducing labeling effort for
structured prediction tasks. In Conference on Artificial Intelligence
(AAAI) (Vol. 2, pp. 746–751).

Dunn, G., & Segen, J. (1988). Automatic discovery of robotic grasp con-
figuration. In International Conference on Robotics and Automation
(Vol. 1, pp. 396–401).

Erkan, A., Kroemer, O., Detry, R., Altun, Y., Piater, J., & Peters, J.
(2010). Learning probabilistic discriminative models of grasp affor-
dances under limited supervision. In IEEE International Conference
on IROS (pp. 1586–1591).

Hsiao, K., Chitta, S., Ciocarlie, M. & Jones, G. (2010). Contact-reactive
grasping of objects with partial shape information. In IROS.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor
landscapes for learning motor primitives. In Advances in Neural
Information Processing Systems (NIPS) (pp. 1523–1530).

Jain, A., & Kemp, C. C. (2010). El-e: An assistive mobile manipulator
that autonomously fetches objects from flat surfaces. Autonomous
Robots, 28, 45–64.

Jain, P., Vijayanarasimhan, S. & Grauman, K. (2010). Hashing hyper-
plane queries to near points with applications to large-scale active
learning. In Advances in Neural Information Processing Systems
(NIPS)

Katz, D., & Brock, O. (2008). Manipulating articulated objects with
interactive perception. In ICRA (pp. 272–277).

Katz, D., Kenney, J., & Brock, O. (2008). How can robots succeed in
unstructured environments? In RSS, Robot Manipulation Workshop.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Auton Robot (2014) 36:137–152 151

Kemp, C. C. & Edsinger, A. (2006). Robot manipulation of human
tools: Autonomous detection and control of task relevant features.
In ICDL.

Klingbeil, E., Saxena, A., & Ng, A. Y. (2008). Learning to open new
doors. In RSS Workshop on Robot Manipulation.

Kober, J., Oztop, E., & Peters, J. (2010). Reinforcement learning to
adjust robot movements to new situations. In RSS.

Korner, C. & Wrobel, S. (2006). Multi-class ensemble-based active
learning. In European Conference on Machine Learning (ECML)
(pp. 687–694).

Kraft, D., Detry, R., Pugeault, N., Baeski, E., Guerin, F., Piater, J., &
Krger, N. (2010). Development of object and grasping knowledge
by robot exploration. In IEEE Transactions on Autonomous Mental
Development (pp. 368–383).

Krichmar, J. L., & Edelman, G. M. (2002). Machine psychology:
Autonomous behavior, perceptual categorization and conditioning
in a brain-based device. Cerebral Cortex, 12, 818–830.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data. In International Conference on Machine Learning (ICML) (pp.
282–289).

Lewis, D., & Catlett, J. (1994). Heterogeneous uncertainty sampling
for supervised learning. In International Conference on Machine
Learning (ICML) (pp. 148–156).

Lungarella, M., & Metta, G. (2003). Beyond gazing, pointing, and
reaching: A survey of developmental robotics. In EPIROB (pp. 81–
89).

Lungarella, M., Mettay, G., Pfeiferz, R., & Sandini, G. (2003). Devel-
opmental robotics: A survey. Connection Science, 15, 151–190.

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J. & Abbeel, P. (2010).
Cloth grasp point detection based on multiple-view geometric cues
with application to robotic towel folding. In ICRA.

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B. P., & Konolige, K.
(2010). The office marathon: Robust navigation in an indoor office
environment. In International Conference on Robotics and Automa-
tion.

Marjanovic, M., Scassellati, B., & Williamson, M. (1996). Self-taught
visually-guided pointing for a humanoid robot. In International Con-
ference on Simulation of Adaptive Behavior (pp. 35–44).

McCallum, A., & Nigam, K. (1998). Employing em in pool-based
active learning for text classification. In International Conference
on Machine Learning (ICML) (pp. 350–358).

Metta, G., & Fitzpatrick, P. (2003). Early integration of vision and
manipulation. Adaptive Behavior, 11, 109–128.

Metta, G., Sandini, G., & Konczak, J. (1999). A developmental approach
to visually-guided reaching in artical systems. In Neural Networks
(Vol. 12, pp. 1413–1427).

Montesano, L. & Lopes, M. (2009). Learning grasping affordances from
local visual descriptors. ICDL (pp. 1–6).

Muslea, I., Minton, S., & Knoblock, C. (2002). Active + semi-
supervised learning = robust multi-view learning. In International
Conference on Machine Learning (ICML) (pp. 435–442).

Nakanishi, J., Mistry, M., & Schaal, S. (2005). Comparative experi-
ments on task space control with redundancy resolution. In IEEE
International Conference on Intelligent Robots and Systems (pp.
1575–1582).

Nguyen, H., Jain, A., Anderson, C., & Kemp, C. C. (2008). A clickable
world: Behavior selection through pointing and context for mobile
manipulation. In IROS.

Nguyen, H., & Kemp, C. C. (2011). Autonomous active learning of task-
relevant features for mobile manipulation. In RSS 2011 Workshop on
Mobile Manipulation: Learning to Manipulate.

Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., & Inaba, M.
(2006). Vision based behavior verification system of humanoid robot
for daily environment tasks. In Humanoid Robots (pp. 7–12).

Paolini, R., Rodriguez, A., Srinivasa, S. S. , & Mason, M. T. (2012).
A data-driven statistical framework for post-grasp manipulation. In
International Symposium on Experimental Robotics.

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E. & Schaal, S.
(2011). Skill learning and task outcome prediction for manipulation.
In ICRA.

Pfeifer, R., & Scheier, C. (1997). Sensory-motor coordination: The
metaphor and beyond. Robotics and Autonomous Systems, 20, 157–
178.

Ponce, J., Berg, T., Everingham, M., Forsyth, D., Hebert, M., Lazebnik,
S., et al. (2006). Dataset issues in object recognition. In Toward
Category-level Object Recognition (Vol. 4170, pp. 29–48).

Roy, N., & McCallum, A. (2001). Toward optimal active learning
through sampling estimation of error reduction. In International
Conference on Machine Learning (ICML) (pp. 441–448).

Salganicoff, M., Ungar, L. H., & Bajcsy, R. (1996). Active learning for
vision-based robot grasping. Machine Learning, 23, 251–278.

Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of
novel objects using vision. IJRR, 27, 157–173.

Schein, A., & Ungar, L. (2007). Active learning for logistic regression:
An evaluation. Machine Learning, 68, 235–265.

Schohn, G. & Cohn, D. (2000). Less is more: Active learning with
support vector machines. In ICML (pp. 839–846).

Scipy gaussian kde function. http://www.scipy.org/doc/api_docs/SciPy.
stats.kde.gaussian_kde.html. Accessed 17 Jan 2012.

Semantic robot vision challenge. (2007). http://www.semantic-robot-
vision-challenge.org/. Accessed 17 Jan 2012.

Settles, B. (2012). Active learning. San Rafael, CA: Morgan & Claypool
Publishers.

Settles, B., & Craven, M. (2008). An analysis of active learning strate-
gies for sequence labeling tasks. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP) (pp. 1070–1079).

Stober, J., & Kuipers, R. M. B. (2011). Learning geometry from sen-
sorimotor experience. In International Conference on Development
and, Learning.

Sukhoy, V., & Stoytchev, A. (2010). Learning to detect the functional
components of doorbell buttons using active exploration and multi-
modal correlation. In IEEE International Conference on Humanoid
Robots.

Tong, S., & Koller, D. (2000). Support vector machine active learning
with applications to text classification. In Conference on Machine
Learning (ICML) (Vol. 2, pp. 45–66).

Torralba, A., & Efros, A. (2011). Unbiased look at dataset bias. In IEEE
Conference on computer Vision and Pattern Recognition (CVPR)
(pp. 1521–1528).

van Hoof, H., Kroemer, O., Amor, H. B., & Peters, J. (2012). Maximally
informative interaction learning for scene exploration. In IROS (pp.
5152–5158).

Willow garage. http://www.willowgarage.com. Accessed 17 Jan 2012.
Zhang, J., & Rossler, B. (2004). Self-valuing learning and generalization

with application in visually guided grasping of complex objects.
Robotics and Autonomous systems, 47, 117–127.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003). Combining active learn-
ing and semi-supervised learning using gaussian fields and harmonic
functions. In ICML Workshop on the Continuum from Labeled to
Unlabeled Data.

123

http://www.scipy.org/doc/api_docs/SciPy.stats.kde.gaussian_kde.html
http://www.scipy.org/doc/api_docs/SciPy.stats.kde.gaussian_kde.html
http://www.semantic-robot-vision-challenge.org/
http://www.semantic-robot-vision-challenge.org/
http://www.willowgarage.com

152 Auton Robot (2014) 36:137–152

Hai Nguyen Ph.D. Candidate at
the Georgia Institute of Technol-
ogy. He is a member of the Cen-
ter for Robotics and Intelligent
Machines (RIMG@GT), and the
Healthcare Robotics Lab. He
received a Bachelor of Science
in Computer Science from Geor-
gia Tech in 2006. His research
interests include home robotics,
autonomous mobile manipula-
tion, and machine learning for
robots.

Charles C. Kemp is an asso-
ciate professor at the Georgia
Institute of Technology in the
Department of Biomedical Engi-
neering, and has adjunct appoint-
ments in the School of Interac-
tive Computing and the School
of Electrical and Computer Engi-
neering. He earned a doctorate in
Electrical Engineering and Com-
puter Science (2005), an M.Eng.,
and B.S. from MIT. He founded
the Healthcare Robotics Lab in
2007.

123

	Autonomously learning to visually detect where manipulation will succeed
	Abstract
	1 Introduction
	2 Related work
	2.1 Robot learning
	2.1.1 Autonomously learning robot skills and behaviors
	2.1.2 Learning to visually detect grasps
	2.1.3 Autonomously learning to perceive

	2.2 Task-relevant feature detection
	2.3 Active learning and curiosity driven learning

	3 Approach
	3.1 Requirements
	3.2 Complementary behaviors
	3.3 Autonomous training
	3.3.1 Initialization
	3.3.2 Training procedure
	3.3.3 Behavior execution procedure

	3.4 Classification
	3.4.1 Active learning heuristic
	3.4.2 Features

	4 Implementation
	4.1 Learner parameters
	4.2 Behaviors
	4.3 Light switch behaviors
	4.4 Rocker switch behaviors
	4.5 Drawer behaviors
	4.6 Robot controllers used

	5 Evaluation
	5.1 Effects of navigation errors

	6 Results
	7 Future work
	8 Discussion and conclusions
	Acknowledgments
	References

