
Astrophysics and Space Science (2024) 369:25
https://doi.org/10.1007/s10509-024-04287-6

R E S E A R C H

A perturbative approach to complexity during dissipative collapse

Megandhren Govender1 · Robert S. Bogadi1 · Wesley Govender1 · Narenee Mewalal1

Received: 30 November 2023 / Accepted: 20 February 2024 / Published online: 5 March 2024
© The Author(s) 2024

Abstract
Radiative gravitational collapse is an important and much studied phenomenon in astrophysics. Einstein’s theory of general
relativity (GR) is well suited to describing such processes provided closure of the system of nonlinear differential equations
is achieved. Within a perturbative scheme, the property of vanishing complexity factor is used in order to complete the
description of the radiative, self-gravitating system. We show that a physically viable model may be obtained which reflects
the absence of energy inhomogeneities for lower density systems, in contrast to what might be expected for more aggressive
collapse processes.
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1 Introduction

Gravitational collapse remains an ongoing subject of re-
search due to its many challenging and often exciting impli-
cations in relativistic astrophysics. In the seminal paper on
gravitational collapse, produced by Oppenheimer and Sny-
der (1939), the first solution for the non-adiabatic collapse
of a spherically symmetric system was found. It is believed
that this phenomenon of gravitational collapse plays a fun-
damental role in shaping the universe by way of its influence
on structure formation and destruction. A result of the end
state of a collapsing star is the formation of a black hole –
a system whose gravity is so strong that nothing can escape
from it, and inside which resides a place of infinite density,
a place where all laws of physics break down – a singularity.
Roger Penrose, in his paper of 1969, famously proposed, by
way of what is now known as the Cosmic Censorship Con-

jecture (CCC), that every singularity in the universe is hid-
den behind the event horizon of a black hole. He refuted the
occurrence of a naked singularity – one that is visible to an
outside observer – on the basis that, while naked singular-
ities comply with general relativity, in a physically reason-
able situation they will never form. Whilst many researchers
agree with Penrose, not all have expressed excitement, with
some providing counter-examples to prove the existence of
naked singularities (Joshi 1993, 2002; Joshi et al. 2004), and
so the CCC remains an open problem.

Discovery of the Vaidya metric (1953) allows for the
study of dissipative gravitational collapse. Given that a ra-
diating collapsing mass distribution undergoes loss of en-
ergy, its exterior spacetime is no longer a vacuum but con-
tains null radiation. Vaidya obtained an exact solution of the
Einstein field equations which describes the exterior field
of a radiating spherically symmetric fluid. Santos (1985)
derived the first set of junction conditions for a collapsing
spherically symmetric shear-free non-adiabatic fluid with
heat flow. This pioneering work addressed the question of
matching a spherically symmetric interior matter distribu-
tion with the exterior Vaidya spacetime, thus paving the
way for the study of dissipative gravitational collapse. Early
work on radiating models has been considered by many au-
thors, some of which are referenced in this article (Herrera
et al. 1989; Chan et al. 1993). Models of collapsing systems
have evolved over time, with studies being extended to in-
clude aspects such as the cosmological constant (Govender
and Thirukkanesh 2009; Thirukkanesh et al. 2012), electro-
magnetic field (de Oliviera and Santos 1987; Maharaj and
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Govender 2000) and the presence of non-zero shear (Chan
2000; Naidu et al. 2006) to name a few. In recent studies,
for the shear-free case, Paliathanasis et al. (2021) explored
the junction condition arising from the matching of a spher-
ically symmetric interior undergoing dissipative collapse to
the Vaidya exterior. This boundary condition is a second or-
der non-linear differential equation governing the temporal
behaviour of the model. They used the method of Lie sym-
metries to produce, for the first time, a general solution to
this equation.

A system which is initially in static equilibrium may un-
dergo a disturbance or perturbation which is likely to render
it dynamic, thus impacting on the stability of that system.
Dynamical stability is the characteristic of a system to re-
tain its stable state under perturbation. The dynamical sta-
bility of self-gravitating bodies is an important property in
modelling, since a static stellar model offers little insight
into a study if it proves to be unstable under collapse. Her-
rera et al. (1989) studied the instability ranges for a non-
adiabatic sphere and showed that when relativistic correc-
tions were imposed to address heat flow, the instability range
of the model decreased, suggesting that the outcome was a
fluid that was less unstable. Chan et al. (1993) investigated
the stability criteria by deviating from the perfect fluid con-
figuration in two ways: they considered dissipation in the
free-streaming approximation and, secondly, they assumed
the fluid to be locally anisotropic. In more recent studies,
Govender et al. (2019) conducted research on the influence
of an equation of state on the gravitational behaviour of a
collapsing star. The study then explored, with great success,
the stability ranges in the Newtonian and post-Newtonian
regimes using the adiabatic index �, introduced in 1964 by
Chandrasekhar (1964), where he showed that for a system
to remain stable under collapse, the value of � must exceed
4
3 . Govender et al. (2021) also examined gravitational col-
lapse of a shear-free radiating star with an initial static core
which satisfied the time-independent Karmarkar condition.
Invoking a perturbative approach, they were able to find a
new radiating model with simple time dependence. In this
work, we employ the perturbative method as an inquiry into
complexity during radiative collapse.

There have been many attempts at defining complexity
in the various fields of science (Kolmogorov 1965; Crutch-
field and Young 1989; Anderson 1991; Lopez-Ruiz et al.
1995; Sanudo and Pacheco 2009; de Avellar et al. 2014),
with little consensus reached on a specific definition. Her-
rera (2018) proposed a new definition of complexity for
static and spherically symmetric self-gravitating fluid dis-
tributions. In this pioneering work, he established a scalar
quantity which he referred to as the ‘complexity factor’ de-
noted by YT F . The complexity factor was obtained by the or-
thogonal splitting of the Riemann tensor within general rela-
tivity. In the analysis conducted by Herrera, he commenced

by defining a simplest (least complex) system as one pos-
sessing isotropic pressure and homogenous energy density,
and for which YT F vanishes. He then proceeded to show that
a complexity factor of value zero may also arise in systems
with the properties of pressure anisotropy and energy den-
sity inhomogeneity, where these two quantities cancel each
other, thus concluding that there existed systems of varying
distributions which satisfy the vanishing complexity condi-
tion. Starting off with a general spherically symmetric static
metric, Contreras and Stuchlik (2022) imposed the condi-
tion of vanishing complexity and were able to complete the
integration and in doing so, reduced the problem of finding
exact solutions to a single-generating metric function. Abbas
and Nazar (2018) studied the complexity factor for a static
anisotropic self-gravitating system in the f (R) gravity the-
ory. In their findings, the anisotropic pressure and inhomo-
geneous energy density cancelled each other, and the zero-
complexity condition was achieved. Extended gravitational
decoupling and complexity were employed to anisotropise
the Buchdahl static solution. In order to completely describe
the gravitational behaviour of the seed solution and the sec-
ondary source, an equation of state and the complexity-free
condition were imposed. It was shown that stability of the
anisotropic Buchdahl sphere was sensitive to the decoupling
parameter (Maurya et al. 2023).

Bogadi and Govender (2022) explored the dynamics of
the complexity factor as the collapse of a shear-free radi-
ating sphere proceeded. They were able to show that the
complexity factor could, in future work on gravitational col-
lapse, form an essential part in justifying the physical vi-
ability of relativistic models. Bogadi et al. (2022) consid-
ered the implications of vanishing complexity in radiative
self-gravitating fluids of spherical configuration, and found
that imposing the constraint of a vanishing complexity re-
sults in metric forms which are similar to those of Maiti
and Bergmann (Maiti 1982; Bergmann 1981). Complexity
and the departure from spherical symmetry was studied by
Govender et al. (2022). They found that a departure from
spherical symmetry lead to a higher degree of complexity
within the stellar structure. A recent detailed article by Her-
rera (2023) addresses the complexity and simplicity of self-
gravitating fluids. This work builds on his proposed defini-
tion of complexity from 2018 (Herrera 2018). In an attempt
to arrive at a reliable definition for complexity, the study
begins with a static spherically symmetric case, is then ex-
tended to the static axially symmetric case, followed by the
non-static spherically symmetric case and then a fluid with
hyperbolic symmetry is considered. The grading of com-
plexity is established from the simplest Minkowski space-
time to the most complex systems undergoing gravitational
radiation.

This paper is structured as follows: In Sect. 2 we intro-
duce the interior spacetime of a collapsing star by way of a
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spherically symmetric, shear-free metric, and the associated
field equations. The exterior spacetime and junction condi-
tions required for the smooth matching between the interior
and Vaidya exterior are presented in Sect. 3. In Sect. 4 the
perturbative scheme is described and the field equations for
the static and perturbed configurations are given. Section 5
introduces the complexity factor which is utilised to obtain
forms for the gravitational potentials. A perturbative analy-
sis is performed on YT F in Sect. 6, allowing the complexity
factor to be split into static and non-static parts, and leading
to the solutions for the material functions which completes
the description of the model via a perturbative scheme. The
matching of the interior spacetime with the Schwarzschild
exterior is done in Sect. 7 after which the physical viability
of the model is interrogated in Sect. 8, followed by a dis-
cussion in Sect. 9. We make some concluding remarks in
Sect. 10.

2 Interior spacetime

The interior of the collapsing star is described by the gen-
eral spherically symmetric, shear-free metric in comoving
coordinates

ds2 = −A2dt2 + B2[dr2 + r2(dθ2 + sin2 θdφ2)], (1)

where A = A(r, t) and B = B(r, t) are the unspecified met-
ric potentials. We assume that the interior stellar fluid is
characterised by anisotropic pressures and heat flux.

Tab = (μ + pt)wawb + ptgab + (pr − pt)XaXb

+qawb + qbwa, (2)

where μ is the energy density, pr the radial pressure, pt the
tangential pressure and qa the heat flux, vector wa is the
four-velocity of the fluid and Xa is a unit four-vector along
the radial direction. These quantities must satisfy waw

a =
−1, waq

a = 0, XaX
a = 1 and Xaw

a = 0. Furthermore, in
comoving coordinates we have

wa = A−1δa
0 , (3)

qa = qδa
1 , (4)

and

Xa = B−1δa
1 . (5)

The nonzero components of the Einstein field equations
for the line element (1) and the energy momentum (2) are

μ = − 1

B2

[
2
B ′′

B
−

(
B ′

B

)2

+ 4

r

B ′

B

]
+ 3

A2

(
Ḃ

B

)2

, (6)

pr = 1

B2

[(
B ′

B

)2

+ 2

r

(
A′
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+ B ′

B
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+ 2

A′
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]

+ 1

A2

[
−2
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B
−

(
Ḃ

B

)2

+ 2
Ȧ

A

Ḃ

B

]
, (7)

pt = 1

A2

[
−2

B̈

B
−

(
Ḃ

B

)2

+ 2
Ȧ

A

Ḃ

B

]

+ 1

B2

[
B ′′

B
−

(
B ′

B

)2

+ 1

r

(
A′

A
+ B ′

B

)
+ A′′

A

]
, (8)

q = 2

AB2

[
Ḃ ′

B
− Ḃ

B

(
B ′

B
+ A′

A

)]
, (9)

where the dots and primes represent the partial derivatives
with respect to t and r respectively.

3 Exterior spacetime and junction
conditions

The spacetime consists of two seperate regions, the interior
spacetime which is described by the metric (1) and the exte-
rior spacetime. Due to the star radiating energy, the exterior
spacetime is not a vacuum and can be described by Vaidya’s
metric (Vaidya 1951)

ds2+ = −
[

1 − 2m(v)

r

]
dv2 − 2dvdr+ r2dθ2

+r2 sin2 θdφ2, (10)

where m(v), the total energy inside �, is a function of the
retarded time v, and r is the radial coordinate for the exte-
rior.

The junction conditions that are required to be satisfied
across the boundary are(
K+

ij − K−
ij

)
�

= 0, (11)

and(
ds2+ − ds2−

)
�

= 0, (12)

where Kij is the extrinsic curvature on the two sides of the
boundary. The calculations carried out by de Oliviera and
Santos (1987) is utilized and we obtain the following

(pr)� = (qB)� , (13)

(qB)� = −
(

2

r2
v̇2 dm

dv

)
�

, (14)

(rB)� = r�, (15)
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m(v) =
(

r3BḂ2

2A2
− r2B ′ − r3B ′2

2B

)
�

, (16)

and

(Adt)� =
(

1 − 2m

r
+ 2

dr

dv

)1/2

�

dv. (17)

In the above equations ie: (13)-(17), the following condi-
tions are given across the boundary � respectively: the ra-
dius of the bounding surface, � in both coordinate systems,
the conservation of momentum flux, conservation of radia-
tion flux, the total energy inside � and the relationship be-
tween each of the times t and v. We are in a position to give
the total energy entrapped up to a radius of r inside � given
by

m(r, t) = r3BḂ2

2A2 − r2B ′ − r3B ′2

2B
, (18)

which is refered to as the Misner and Sharp mass (Misner
and Sharp 1964).

4 The perturbative scheme

We assume that the fluid is initially in static equilibrium,
hence the fluid is described by quantities that have radial
dependence only. We then assert that the static system is
perturbed, undergoing slow shear-free collapse and produc-
ing pure radiation. We denote the quantities such as energy
density, radial pressure and tangential pressure of the static
system by a zero subscript and those of the perturbed fluid
by an overhead bar. We further assume that the metric func-
tions A(r, t) and B(r, t) have the same time dependence in
their perturbations. This assumption would imply that the
perturbed material functions also have the same time depen-
dence. Therefore the metric functions and the material func-
tions are given by Naidu et al. (2020)

A(r, t) = A0(r) + εa(r)T (t), (19)

B(r, t) = B0(r) + εb(r)T (t), (20)

μ(r, t) = μ0(r) + εμ̄(r, t), (21)

pr(r, t) = pr0(r) + εp̄r (r, t), (22)

pt (r, t) = pt0(r) + εp̄t (r, t), (23)

m(r, t) = m0(r) + εm̄(r, t), (24)

where we assume that 0 < ε � 1.
Einstein’s field equations for the static configuration are

μ0 = − 1

B2
0

[
2
B ′′

0

B0
−

(
B ′

0

B0

)2

+ 4

r

B ′
0
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]
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+ B ′
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B ′
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B ′

0
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)2

+ 1

r

(
A′

0

A0
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0

B0

)
+ A′′

0

A0

]
. (27)

whereas the perturbed field equations up to first order in ε

can be cast as

μ̄ = −3μ0
b

B0
T + 1

B3
0

×
[
−

(
B ′

0

B0

)2

b + 2

(
B ′

0

B0
− 2

r

)
b′ − 2b′′

]
T , (28)

p̄r = −2pr0
b

B0
T + 2

B2
0

[(
B ′

0

B0
+ 1

r
+ A′

0

A0

)(
b

B0

)′

+
(

B ′
0

B0
+ 1

r

)(
a

A0

)′]
T − 2

b

A2
0B0

T̈ , (29)

p̄t = −2pt0
b

B0
T

+ 1

B2
0

[(
b

B0

)′′
+ 1

r

(
b

B0

)′
+ 2

A′
0

A0

(
a

A0

)′
+

(
a

A0

)′′

+1

r

(
a

A0

)′]
T − 2

b

A2
0B0

T̈ , (30)

qB = 2

B0

(
b

A0B0

)′
Ṫ . (31)

The total energy entrapped up to radius r inside � for the
static and perturbed configurations are respectively given by

m0(r�) = −
(

r2B ′
0 + r3B ′

0
2

2B0

)
�

, (32)

m̄(r�, t) = −
([

r2b′ + r3B ′
0

2

2B0

(
2

b′

B ′
0

− b

B0

)]
T (t)

)
�

. (33)

The smooth matching of the interior spacetime to the Vaidya
exterior is facilitated by using the junction conditions de-
rived by Santos (1985), and we may rewrite equations (29)
and (31) as

p̄r = −2pr0
b

B0
T + 2b

A2
0B0

(
αT − T̈

)
, (34)

and

qB = 4b

A2
0B0

βṪ , (35)



A perturbative approach to complexity during dissipative collapse Page 5 of 11 25

where

α(r) = A2
0

B0b

[(
B ′

0

B0
+ 1

r
+ A′

0

A0

)(
b

B0

)′

+
(

B ′
0

B0
+ 1

r

)(
a

A0

)′]
, (36)

and

β(r) = A2
0

2b

(
b

A0B0

)′
, (37)

are constants at the boundary.
The explicit form of the temporal function is obtained by

integrating (35),

T (t) = − exp

[(
−β� +

√
α� + β2

�

)
t

]
, (38)

where α� = α(r�) and β� = β(r�). The above result has
been extensively used by numerous authors in modeling ra-
diating spheres in quasi-static equilibrium (Govender and
Govinder 2002; Pretel and da Silva 2020; Govender et al.
2021).

5 Complexity

The complexity factor for radiating, self-gravitating sys-
tems, is well defined by Herrera et al. (2018) and is given
by

YT F = 8πδ + 4π

(rB)3

∫ r

0
(rB)3

(
ρ′ − 3qB

Ḃ

A

)
dr, (39)

where δ = pt − pr is a measure of the anisotropic stresses
and the first and second terms in the integral are contribu-
tions from the density inhomogeneity and dissipative fluxes
respectively. By utilizing the corresponding field equations
(6)–(9) we determine

YT F = 8πδ − 1

(rB)3

∫ r

0
2r

[
r
(
B ′′ + r

2
B ′′′)

− rB ′

B

(
3B ′ + 2rB ′′) − B ′ + r2(B ′)3

B2

]
dr. (40)

The integration of (40) can be completed to yield

YT F = 8πδ − 1

B2

[
B ′′

B
− 2

(
B ′

B

)2

− 1

r

B ′

B

]
. (41)

The reader is directed to the works of Bogadi and Govender
(2022) for more insight into the YT F function. After inspec-
tion of (41), two cases arise. By setting δ = 0, we have the

isotropic case for vanishing complexity which enables us to
have the following form for B ′

B ′ = C(t)B2r, (42)

where C(t) is a constant of integration. Upon integration,
the form for B(r, t) is achieved

B(r, t) = R(t)

1 + k(t)r2 , (43)

where R(t) and k(t) are once again integration constants.
By utilizing (43) in the Einstein field equations for pres-

sure isotropy, a form for A(r, t) is obtained

A(r, t) = ξ(t) + ζ(t)

1 + k(t)r2
(44)

where ξ(t) and ζ(t) are constants of integration.
The alternative is that of the anisotropic case, which is

obtained by ensuring that δ is nonzero, thus the complexity
factor is reduced to

YT F = 1

B2

[
1

A

(
A′′ − A′

r

)
− 2

A′

A

B ′

B

]
. (45)

Considering the case of vanishing complexity, upon inte-
gration, we obtain

A′ = C(t)B2r (46)

which reduces the problem of finding solutions to a single-
generating function.

6 Perturbative analysis on YT F

Using the perturbative scheme (19) in (45), we obtain

YT F = 1

r (A0 + εaT ) (B0 + εbT )3

×
[
B0(rA

′′
0 − A′

0) − 2rA′
0B

′
0

+εT

(
B0(ra

′′ − a′) − 2r(A′
0b

′ + B ′
0a

′)

+b(rA′′
0 − A′

0)

)]
. (47)

Equation (47) can be split into a static and non-static part.

YT F = 1

r (εaT + A0) (εbT + B0) 3

×
[

static + dynamic

]
, (48)
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where

static = rB0A
′′
0 − B0A

′
0 − 2rA′

0B
′
0 (49)

and

dynamic = εT

(
B0(ra

′′ − a′) − 2r(A′
0b

′ + B ′
0a

′)

+b(rA′′
0 − A′

0)

)
. (50)

Setting YT F = 0 in equation (48), i.e. for vanishing com-
plexity, the static component (49) integrates to

A′
0 = C

(
rB2

0

)
, (51)

where C is a constant of integration. In addition, the dy-
namic part yields a differential equation in a(r) or b(r) by
equating (50) to zero,

B0(ra
′′ − a′) − 2r(A′

0b
′ + B ′

0a
′) + b(rA′′

0 − A′
0) = 0. (52)

The static configuration is determined by specifying
B0(r) and employing (51). A functional form for b(r),
widely used by researchers to study dissipative collapse in
perturbation models (Chan et al. 1993; Govender et al. 2021;
Naidu et al. 2020), is used which then allows the determina-
tion of a(r) via (52).

Following Pant et al. (2014), we assume the ansatz,

B0(r) = B
(

1 + Cr2
)−k

, (53)

where B and k are constants. This potential formulation has
been successfully employed by Murad and Pant (2014) and
Tewari (2013). Using equation (51), we then obtain

A0(r) = AB2
(
1 + Cr2

)1−2k

2(1 − 2k)
, (54)

where A is a constant. For the non-static part, the functional
form for b(r) is given by

b(r) = A0(r)B0(r) [1 + ζf (r)] , (55)

where f (r) = r2. This functional form for b(r) was used
to study dissiative collapse of shear-free radiating stars in
the Newtonian and Post-Newtoninan regimes (Chan et al.
1993).

Substituting (55) into equation (52) then yields

0 = a′′(r) −
(
1 + (1 − 4k)Cr2

)
r
(
1 + Cr2

) a′(r)

−2A2B4Cr2
(
ζ + C

(
1 − 2k + 2 (1 − k) ζ r2

))
(
1 + Cr2

)4k
(1 − 2k)

(56)

which can be integrated to give

a(r) = A2B4

2C(1 − 2k)

(
(C − ζ )(1 + Cr2)2−4k

2(1 − 2k)

+ζ
(
1 + Cr2

)3−4k

3 − 4k

)

+ω1
(
1 + Cr2

)1−2k

2C(1 − 2k)
+ ω2, (57)

where ω1 and ω2 are integration constants. This completes
the description of our model via the perturbative scheme.

7 Junction conditions

The smooth matching of the static interior spacetime to that
of the Schwarzschild exterior, is facilitated by using the
junction conditions,

(A0)� =
2(1 − 2k)

(
1 − M

2r�

)
B2

(
1 + Cr2

�

)1−2k
(

1 + M
2r�

) , (58)

(B0)� =
(

1 + Cr2
�

)k
(

1 + M

2r�

)2

, (59)

where r� = r�B0(r�). By considering the static part for
which the pressure at the boundary must vanish ((pr0)� =
0), we obtain

r� =
√

3k − 1√
5Ck2 − 5Ck + C

, (60)

where k − 1 > 0 and k > 1
3 , which sets the boundary of the

star.

8 Physical application

In order to test the physical viability of our model we firstly
set the parameters for the static configuration. The initial
mass is chosen to be M = 5 M� with a radius of r� =
2159 km as considered by Bonnor et al. (1989). This intro-
duces an initial setup for a supernova which then collapses
to form a black hole.

Simultaneous equations in parameters C and k are ob-
tained and solved via (32) and (60), which completes the
specification of the static configuration. We obtain Table 1.

The perturbation part is now considered. The parameters
for b(r) are chosen to be,

ζ = 3 × 10−10 km−2, ε = 0.01, (61)
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Table 1 Parameters for the static configuration

Quantity Parameters

A 0.657257

B 1.00513

C 1.10491 × 10−9 km−2

k 0.333143

Fig. 1 Progression of mass

Fig. 2 Luminosity at infinity

whereby ζ was chosen such that ζf (r�) ≈ 0.1%. The
perturbation parameter ε is consistent with the require-
ment ε � 1. In order to set the integration constants for
a(r), we make use of the special case where a(r)/A0(r) =
b(r)/B0(r) (Govender et al. 2003). These are then computed
to be,

(ω1 = 5.94394 × 10−10 km−2; ω2 = −0.644838).

This allows for the gravitational collapse of the 5M� stel-
lar object in which a mass loss of about 15% occurs before
horizon formation. Plots of mass and luminosity are shown
in Figs. 1 and 2 respectively.

9 Discussion

We now turn our attention to the physical viability of our
complexity-free model. To this end, we have plotted the
mass function in Fig. 1. Since the star is always close to
quasi-static equilibrium, there is a small decrease in mass as
time evolves. One expects this decrease in mass as the star
is radiating energy to the exterior. The luminosity profile is
shown in Fig. 2 and is typical of that found in other studies
(Pretel et al. (2020)). Here we see that initially the luminos-
ity is zero (no dissipation for early times) and then increases
steadily, reaching a peak in some finite time after which it
decreases to zero as the horizon is reached. The duration of
the process, of the order of half a second, is typically longer
than that expected. This is attributed to imposing the van-
ishing complexity condition. Progression of the energy den-
sity (Fig. 3) is somewhat unexpected as it decreases as the
collapse proceeds. This must be due to loss in energy over
an extended time frame in contrast to more aggressive col-
lapse processes which occur within fractions of a millisec-
ond. Figure 4 shows that the radial pressure is continuous
at each interior point of the collapsing core and increases as

Fig. 3 Progression of energy density

Fig. 4 Progression of radial pressure
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Fig. 5 Heat flux

the collapse proceeds as would be expected. Heat generation
within the collapsing body can be seen in Fig. 5. For early
times, the production of heat is small (the star is close to hy-
drostatic equilibrium). As the star departs from equilibrium
it begins to radiate energy in the form of a radial heat flux
which peaks for some finite time and decreases smoothly as
the horizon is formed.

10 Conclusion

In this work we have employed a perturbative scheme to
model a star undergoing dissipative collapse in the form
of a radial heat flux. In order to complete the gravitational
behaviour of the initially static configuration and the col-
lapsing core, we employed the condition of vanishing com-
plexity factor and the Pant et al. (2014) ansatz. Since the
star is radiating energy, the exterior spacetime is described
by Vaidya’s outgoing solution. The matching of the interior
spacetime and the exterior Vaidya atmosphere determined
the temporal evolution of the perturbed quantities. The van-
ishing of the complexity factor splits the evolution equation
for the metric functions into static and non-static compo-
nents. The static part was easily integrated which enabled us
to write one metric function in terms of the other. The dy-
namic component of the complexity-free condition involved
the perturbation functions and their derivatives. By specify-
ing the behaviour of one of these functions, we were able to
obtain the full radial perturbative behaviour for our model.
The physical viability of our radiating solution was studied
in the context of regularity and stability as the collapse pro-
ceeded. We believe that the perturbative approach to van-
ishing complexity is novel and lends more insight into the
evolution of a star which loses hydrostatic equilibrium and
moves into the dissipative regime.

Appendix A: Static quantities

μ0 = − 1

B2

[
(Z)2k

(
1

B

[
2 (Z)k

(
−4BC2

(−k − 1)kr2 (Z)−k−2
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)]

− 4C2k2r2

(Z)2
− 8Ck

Z

)]
, (A1)

pr0 = 1

B2

[
(Z)2k

(
4C2k2r2

(Z)2
− 8C2(1 − 2k)kr2

(Z)2

+
2
(

2C(1−2k)r
Z

− 2Ckr
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)
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)]
, (A2)

pt0 = 1

B2

[
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(
1

AB2

[
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1
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− 2Ckr
Z

r

)]
, (A3)

m0 = −2BCkr3(Z)−2−k

(−1 + C(−1 + k)r2), (A4)

where Z = Cr2 + 1

Appendix B: Perturbed quantities

μ̄ = − 1

(2k − 1) (Z)[
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(
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)(

1
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where Z = Cr2 + 1, Z1 = Cr2
0 + 1.
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