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Abstract Uncertainties in the satellite world lines lead to
dominant positioning errors. In the present work, using the
approach presented in Puchades and Sáez (Astrophys. Space
Sci. 352, 307–320, 2014), a new analysis of these errors
is developed inside a great region surrounding Earth. This
analysis is performed in the framework of the so-called Rel-
ativistic Positioning Systems (RPS). Schwarzschild metric
is used to describe the satellite orbits corresponding to the
Galileo Satellites Constellation. Those orbits are circular
with the Earth as their centre. They are defined as the nom-
inal orbits. The satellite orbits are not circular due to the
perturbations they have and to achieve a more realistic de-
scription such perturbations need to be taken into account.
In Puchades and Sáez (Astrophys. Space Sci. 352, 307–320,
2014) perturbations of the nominal orbits were statistically
simulated. Using the formula from Coll et al. (Class. Quan-
tum Gravity. 27, 065013, 2010) a user location is deter-
mined with the four satellites proper times that the user re-
ceives and with the satellite world lines. This formula can be
used with any satellite description, although photons need to
travel in a Minkowskian space-time. For our purposes, the
computation of the photon geodesics in Minkowski space-
time is sufficient as demonstrated in Puchades and Sáez
(Adv. Space Res. 57, 499–508, 2016). The difference of the
user position determined with the nominal and the perturbed
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satellite orbits is computed. This difference is defined as the
U-error. Now we compute the perturbed orbits of the satel-
lites considering a metric that takes into account the gravita-
tional effects of the Earth, the Moon and the Sun and also the
Earth oblateness. A study of the satellite orbits in this new
metric is first introduced. Then we compute the U-errors
comparing the positions given with the Schwarzschild met-
ric and the metric introduced here. A Runge-Kutta method
is used to solve the satellite geodesic equations. Some im-
provements in the computation of the U-errors using both
metrics are introduced with respect to our previous works.
Conclusions and perspectives are also presented.

Keywords Relativistic positioning systems · Methods:
numerical · Reference systems

1 Introduction

In this work, the numerical codes developed in Puchades and
Sáez (2014) are used to compute the positioning errors due
to uncertainties in the satellite world lines, which are defined
as the U-errors. In Puchades and Sáez (2014) the U-errors
were computed as the difference in a user positioning when
describing the satellite world lines with Schwarzschild met-
ric and a statistical perturbation of those world lines. Now
the description of the perturbed satellite world lines is made
using a metric that takes into account the gravitational ef-
fects of the Earth, the Moon, the Sun, as well as the Earth
oblateness (Earth quadrupole effect). This analysis is per-
formed in the framework of the so-called Relativistic Posi-
tioning Systems (RPS). Both the satellite world lines and the
user location are numerically computed and then the corre-
sponding U-errors are calculated. Part of the work shown
here was presented in Fullana i Alfonso et al. (2019).
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Firstly, a short introduction on the difference between tra-
ditional positioning with Global Navigation Satellite Sys-
tems (GNSS) and positioning with RPS is presented. Ba-
sically, for positioning, four satellites are needed to locate
a user in space-time; i.e. a satellite for each unknown. The
system of algebraic equations that has to be solved to cal-
culate the user location is given by Eqs. (7) (see Sect. 4 for
more detail). These equations are based on the null line el-
ement travelled by the photon from the emission to the re-
ception event (see Juang and Tsai (2009)). The system given
by Eqs. (7) has zero, one or two possible solutions. A study
of such solutions in RPS can be seen in Puchades and Sáez
(2012). In the present work we assume that only one solu-
tion is present.

The current GNSS are based on a Newtonian approach
including relativistic corrections. The GNSS would work
ideally if all the satellites and the receiver were at rest in
an inertial reference frame. Depending on the desired accu-
racy for the positioning, the necessary corrective terms have
to be included (see Gomboc et al. (2013)). However, RPS
are based on a relativistic treatment from the beginning. For
an account of this approach see Coll et al. (2006a) and Coll
et al. (2006b). Important work has been done using different
relativistic models to describe the motion of artificial satel-
lites. Brumberg and Kopejkin (1989) constructed the har-
monic, dynamically non-rotating reference system for any
body of the solar system and derived the equations of motion
of test particles in the vicinity of the given body using this
reference system. This technique was applied to the Earth
and its satellites. Meanwhile Damour et al. (1994) intro-
duced a particular General Relativity (GR) celestial mechan-
ics framework. They computed the equations needed for
developing a complete relativistic theory of artificial Earth
satellites. They claimed that their approach was more sat-
isfactory than the previous ones especially with regard to
its consistency, completeness and flexibility. In Kostić et al.
(2015) a model of RPS is presented in a more realistic space-
time near the Earth with all important gravitational effects:
Earth multipoles up to 6th order, the Moon, the Sun, Jupiter,
Venus, solid and ocean tides, and Kerr effect. A recent ap-
proach was proposed by Roh et al. (2016), Roh (2018). They
implemented a full set of first-order Post-Newtonian (PN)
corrections in the high-fidelity orbit propagation KASIOP
(Korea Astronomy and Space Science Institute Orbit Prop-
agator). And they numerically evaluated their effects on or-
bital elements for the laser geodynamics satellite (LAGEOS)
and laser relativity satellite (LARES) orbits.

In the paper Philipp et al. (2018) the relativistic orbital
effects were estimated, which need to be considered for
GRACE satellite orbits. They compared the magnitude of
relativistic corrections in a GR space-time with PN correc-
tions with various non-gravitational perturbations of satel-
lite orbits and their results proved that for a GRACE satel-
lite orbit (low Earth orbit), the relativistic acceleration is of

the same order of several environmental effects. Hence, rela-
tivistic effects need to be considered for high precision space
missions. The altitude for GRACE is approx. 456 Km and
for Galileo approx. 23222 Km, then the order of magnitude
of all orbit effects for Galileo is slightly different from that
of GRACE.

a) Connection with previous works.
In this research, some results about RPS, by Coll et al.

(2010), are applied in order to locate a user in the Earth
vicinity up to 105 Km, using the numerical codes developed
in Puchades and Sáez (2014).

In the Schwarzschild case, the time-like geodesic equa-
tions for a satellite were numerically solved in Delva and
Olympio (2009). The authors presented a preliminary study
for a satellite that moves in the equatorial plane. In this case,
they calculated the emission coordinates, from the inertial
ones, for a few users with the same spatial coordinates who
receive the satellite signal at different times. The same prob-
lem was studied using two other methods to compare the
accuracies and the computational time. Moreover, in C̆adez̆
et al. (2010), methods were described, in the Schwarzschild
space-time, to find the emission coordinates from the iner-
tial ones and vice-versa. In Puchades and Sáez (2016), some
aspects of the method described in C̆adez̆ et al. (2010), to
obtain the inertial coordinates (positioning) from the emis-
sion coordinates, were used; for example, a first-order ap-
proximation was used, in the parameter GM⊕/r , of the time
transfer function (see Teyssandier and Le Poncin-Lafitte
(2008)). Moreover, in Puchades and Sáez (2016), other as-
pects such as the use of the analytical solution of Coll et al.
(2010) at zero-order calculations (which are very efficient)
were considered. Also in Puchades and Sáez (2016), the
positioning errors associated to the simplifying assumption
that photons move in Minkowski space-time (S-errors) were
estimated and it was shown that the approach based on the
assumption that the Earth’s gravitational field produces neg-
ligible effects on photons may be used in a large region sur-
rounding Earth.

b) The present work.
In this paper, the computation of a satellite world line

is performed. This calculation is done in a GR space-time
metric (see Resolutions of IAU (2000) for more detail). The
metric taken into account considers the effect of the Earth,
the Moon, the Sun and the Earth oblateness. Solar radiation
pressure and other non-gravitational effects are not consid-
ered although some of them have important contributions
(see for instance Roh et al. (2016), Roh (2018)). However,
the order of magnitude of their contributions depends on
the distance to the Earth. Notice that here linear perturba-
tion theory is not considered, as Kostić et al. (2015) do.
A metric is used from the first step to describe the space-
time. Then satellite geodesic equations are computed. Af-
terwards a Runge-Kutta algorithm is implemented to solve
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the geodesics ordinary differential equations. Although we
are aware that other effects should be considered we have
decided to start with the three effects commented in this
paper to implement our algorithm. Later on we will con-
tinue incorporating more PN contributions and other terms.
Great accuracy in the digits is needed when considering all
PN contributions. The terms considered in the present work
are sufficient to test the algorithm and prepare it for our fu-
ture purposes in RPS. Our results show that the greatest ef-
fect comes from the Earth quadrupole, the second one from
Moon and the third one from Sun (at the height of Galileo
and GPS satellites). Those satellite world lines are needed to
position a user in RPS.

The perturbations computed here using metrics improve
our previous works based on statistical methods as: 1) A bet-
ter description of the real satellite world lines is achieved.
2)The effect of each perturbing contribution in the satellite
world lines is studied. 3) Also the combination of two of
the three terms in the metric is studied and the three of them
together. So, the orbits of the satellites are described depend-
ing on the terms considered. 4) Therefore, the contribution
of each effect on the user’s positioning can also be studied.
5) The value of the U-errors is now smaller. 6) That means
a more precise calculation of the user’s positioning.

c) Schedule of this paper.
Firstly, in Sect. 2, the satellite world lines for a Galileo

satellite (fixed orbital radius) are computed using the met-
rics of this paper. A study of the behaviour of such orbits
is made. Afterwards, in Sect. 3, the satellite world line (in
a space-time given by a metric with the gravitational poten-
tial of the Sun or the Moon or with the Earth’s oblateness
or all effects together) is computed for a satellite at differ-
ent orbital radius from the geocenter. In Sect. 4, the satellite
geodesics recently calculated are used to obtain the user lo-
cation in space-time with RPS. The positioning errors are
also calculated. Different users located on different spher-
ical surfaces are considered. These spheres are centred in
the geocenter and take different radii (from Earth radius to
5 × 104 Km). In Appendix A, a study of the order of mag-
nitude of the orbit effects taken here is computed, that is to
say, Moon and Sun gravitational potential and Earth oblate-
ness. These are some of the greatest effects on the orbits. In
Appendix B, a short description of circular orbits of Galileo
satellites is written. In Appendix C, the time-like geodesic
equations (calculating the Christoffel symbols) are written
from the metric that describes a space-time, with Moon
gravitational potential or Sun gravitational potential or Earth
oblateness or taking into account all effects together. Finally,
in Sect. 5, the main conclusions and perspectives are com-
mented.

d) Notation and general considerations.
Some aspects about the notation of this article are now

commented. The Greek indices take values from 0 to 3 and

the Latin indices go from 1 to 3 and x0 ≡ ct , where t is
the time coordinate and c the light velocity. Also, we use
G for the Gravitational constant and MA for the mass of
the body A. The symbols (subscripts) ⊕, � and � are as-
signed to Earth, Sun and Moon, respectively. We use this
notation throughout the article. The symbol AU is for one
Astronomical Unit. The Minkowski tensor ημν is defined
as: ημμ ≡ (−1,1,1,1) for the diagonal elements and null
for the rest of components. In our codes and in the formu-
lae, we choose the units in such a way than the light velocity
is c = 1.

Moreover, throughout this paper, the reference system
considered is the Geocenter Reference System (GRS). An
appropriate method is used to represent some quantities in
3D, t = constant (user time), space-time sections.

Colour bars and an appropriate pixelization are neces-
sary. In this paper, as in Puchades and Sáez (2012, 2014,
2016), the HEALPIx (hierarchical equal area isolatitude
pixelisation of the sphere) package (Górski et al. (1999)) is
used, with the same parameters and projections than in the
paper Puchades and Sáez (2014).

We simulate the world lines of the Galileo background
configurations and we use these world lines as initial con-
ditions for the ordinary differential equations (ODE). The
Galileo constellation is composed by 27 satellites (ns = 27),
located in three equally spaced orbital planes (9 uniformly
distributed satellites in each plane). The inclination of these
planes is αin = 56 deg and the altitude of the circular or-
bits is h = 23 222 Km; thus, the orbital period is close to
14.2 h. The satellites are numerated in such a way that the
satellites 1 to 9, 10 to 18, and 19 to 27 are placed in dis-
tinct consecutive orbital planes. Initially, the trajectories are
assumed to be circumferences whose centres are located in
the Earth centre, which is also the origin of the almost iner-
tial reference system used for positioning. In Sects. 2 and 3,
the Galileo satellite used is number 1.

2 Satellite world lines (Galileo Constellation)

This section shows the Galileo satellite world lines compu-
tation with our algorithm. The description of the satellite
world lines with Schwarzschild metric gives circumferences
centred in the centre of the Earth. The Earth is approximated
as spherically symmetric and with no rotation. These trajec-
tories are defined as nominal trajectories. A short descrip-
tion of the circular satellite world lines can be seen in Ap-
pendix B. In the present work, the Schwarzschild satellite
world lines are perturbed to compute the effects of the Sun,
the Moon and the Earth quadrupole. A detailed description
of the solution of the Ordinary Differential Equations (ODE)
to compute the satellite world lines in this metric can be seen
in Appendix C. The numerical solution of such ODE is also
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Fig. 1 Radial distance (in Km),
versus the proper time (for two
orbital periods), of a Galileo
satellite from the geocenter. The
gravitational contributions that
are considered in the metric are
Moon (blue), Sun (red) and
Moon plus Sun (magenta)

explained. This section is divided in two subsections. The
first one 2.1, presents computations taking into account only
the Moon and Sun gravitational fields and their sum. The
second one 2.2 presents the effects of the Earth quadrupole
on the orbits too. This second subsection includes the com-
putations of the effect on the satellite of the Earth oblateness
alone and of this oblateness plus the sum of the effects of
Sun and Earth. In all computations, the alignment of Moon
and Sun respect to the satellite has been taken into account
when computing the orbit of the satellite. Notice that the fig-
ures represent the deviation from the corresponding circular
orbits, nominal orbits, that would follow the satellites if the
Earth’s field would describe them, Schwarzschild metric. In
such figures, the circular orbits would be straight horizontal
lines.

Let us remark that this section and the next one are intro-
duced so as to clearly describe the perturbing effects that are
considered in this research. Once those effects have been
presented, we use them to define the U-errors in a similar
way as it was performed in Puchades and Sáez (2014) but
now with the new metrics considerations. That is to say, the
perturbations are not computed with a statistical algorithm
but with some physical effects that affect the satellites. This
represents an advance from the previous work as it can de-
scribe more realistic cases.

2.1 Sun and Moon effects

A gravitational term (Sun or Moon) can be considered as a
satellite orbit perturbation. The B gravitational term reads:

φB = 2G

(
MB

rB

)
(1)

where B is the celestial body (B = �, �), either Sun or
Moon (in our case).

The first spatial derivatives with respect to the additional
B potential stand:

φB
,i = −2G

(
MB

(
xi − xi

B

)
r3
B

)
(2)

The initial conditions for the Moon and Sun are given
from the Ephemeris in the GRS (reference plane: equatorial
and rectangular coordinates). The Miriade Ephemeris Gen-
erator is used. Therefore, the initial conditions (velocity and
position vectors) for the Moon and the Sun are the corre-
sponding Ephemeris for the time 2018 − 12 − 13T 17 : 00 :
00.00. See Resolutions of IAU (2000) for more details about
initial conditions. Nevertheless, the initial conditions for the
satellite (velocity and position vectors) considered here are
a Galileo satellite moving in a circular orbit with angular, �,

and linear, v, velocity from � =
√

GM⊕
R3 , v =

√
GM⊕

R
. The

following factor is also considered:

γ = dx0

dτ
(3)

with:

γ = 1√
1 − 3GM⊕

R

(4)

Notice that the relativistic factor Eq. (4), enhances the
GR treatment with the PN approximation (see Eq. (A.36), p.
210 of Gourgoulhon (2013)):

Figure 1 plots the radial distance, R, of a Galileo satel-
lite, for two orbital periods, from the geocenter. There are
three different computations: a) Considering only the Moon
effect (blue). b) Considering only the Sun effect (red). c)
Considering the Moon plus the Sun effect together (ma-
genta). Moon and Sun contributions are considered in the
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metric. Figure 1 allows us to compute the variation of the
distance of the satellite to the geocenter, this indicates the
deviation from the circular orbit. The circular orbit is the
one described with the metric considering only the Earth
contribution: Schwarzschild metric. In the figure it would
correspond to a straight horizontal line that would start from
the point where the other lines start from left to right. There-
fore the effect of each perturbation alone or combined on
the satellite orbit can be measured. One way to compute this
variation is to calculate the difference between two different
positions of the satellite in its orbit. The maximum variation
of the distance to the geocenter will be the difference be-
tween the farthest position and the nearest one. Notice that
absolute values are computed. Rmax is this maximum dis-
tance (maximum in the plot) and Rmin is the minimum one
(minimum in the plot) when two orbital periods are consid-
ered. So, the maximum variation of the radial distance of
the satellite to the geocenter, when two orbital periods are
considered is Rmax − Rmin.

Next the values of this variation, Rmax − Rmin, for the
cases we have considered are here presented as it can be
seen in Fig. 1:

• Around 600 m when only the gravitational contribution
from Moon is considered.

• Around 200 m when only the gravitational contribution
from Sun is considered.

• Around 700 m when the gravitational contributions from
Sun plus Moon are considered together.

The order of magnitude obtained is the one expected for ev-
ery quantity computed in this paper as (see the book Teunis-
sen and Montenbruck (2015), Chap. 3, and Roh (2018)):

• At several hundreds of meters the second-largest effect
producing orbit changes is the acceleration caused by Sun
plus Moon.

• In spite of the fact that Sun is much more massive, the
tidal acceleration in the geocentric frame is bigger for
the Moon. This fact is due to the much lower distance
of Moon to the satellite (according to Table 1, column 4,
Appendix A).

2.2 Adding the Earth oblateness

The gravitational potential for Earth oblateness is (see Mon-
tenbruck and Gill (2005) and Teunissen and Montenbruck
(2015):

φJ2 = −2G

(
J2M⊕R2⊕P2 (cos θ)

r3⊕

)
(5)

where the Legendre polynomial of degree 2 is P2 (cos θ) =
(3 cos2 θ − 1)/2. The value of the zonal gravitational coeffi-
cient of degree 2 of the Earth J2 is J2 = 1.08263×10−3 and

θ and R⊕ are the co-latitude of the satellite and the equato-
rial radius of the Earth, respectively.

The first spatial derivatives due to Earth oblateness are:

φ
J2
,i = −3G

(
J2M⊕

(
xi − xi⊕

)
R2⊕

r7⊕

)

×
⎡
⎣A(i)

3∑
j=1

(
xj − x

j
⊕
)2 − 5

(
x3 − x3⊕

)2

⎤
⎦ (6)

where A(i) is 1 for i = 1,2 and is 3 for i = 3.
Figure 2 plots radial distance, as a function of proper

time (for 2 orbital periods), of a Galileo satellite from the
geocenter (see previous subsection for the definitions of the
quantities used here). In this subsection, we only present the
effects considered in the metric of i) the Earth oblateness
and ii) Moon plus Sun plus Earth oblateness. The study of
Fig. 2, gives the maximum variation of the radial distance of
the satellite, Rmax −Rmin (as defined in the previous subsec-
tion), during two orbital periods:

• About 2 Km for Earth oblateness.
• About 3 Km for Earth oblateness plus direct tides from

Sun and Moon.

Again we obtain the expected order of magnitude for the
effects considered in this paper: the greatest effect on GNSS
satellites is mainly due to Earth’s oblateness (see the book
Teunissen and Montenbruck (2015) and Roh (2018)). That
is, effects at kilometre level are obtained.

We now compare the results of Figs. 1 and 2. As it can
be observed in Figs. 1 and 2, the recovering of the satellite
radial distance in 1 or 2 orbital periods is achieved in the
following cases:

• Direct tides from Sun (see Fig. 1),
• Earth oblateness (see Fig. 2),

that is to say, when direct tides from Moon are not consid-
ered. Satellite position shifting is obtained when Moon is
considered.

Notice that the order of magnitude of the R-axes is dif-
ferent in both figures. In Fig. 1 the difference between each
division is of 100 meters while in Fig. 2 each difference is
of 500 meters. This is done so because the order of mag-
nitudes of the effects are different, greater when the oblate-
ness is introduced, as it can be seen in the plots. Also no-
tice that the presence of the Moon causes the bump in the
effects from Moon + Sun (magenta in Fig. 1). The reason
for not observing this bump in Fig. 2 in the Moon + Sun +
Earth oblateness (violet in Fig. 2, where Moon effect is also
considered) is this difference in the order of magnitude of
divisions of R-axes. We are more interested in emphasizing
orders of magnitude and that’s why this bump is smoothed.
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Fig. 2 Radial distance (in Km),
as a function of the proper time
(2 orbital periods), of a Galileo
satellite from the geocenter.
Earth oblateness (green) and
Moon plus Sun effect plus Earth
oblateness (violet) are here
taken into account

3 Orbital perturbation effects for different
orbital radius from the geocenter

In this section, the satellite world lines are calculated with
our algorithm for different satellite orbital radii from the
geocenter. So we extend the computation to other possible
satellite orbits far from Galileo ones. The orbital pertur-
bation effects are estimated for these satellite orbital radii.
Again, the radial distance R versus proper time is evaluated
for different satellite orbital perturbating effects: presence of
Moon and Sun gravitational field and Earth quadrupole.

3.1 Considering different orbital perturbation
effects for a given satellite altitude

In this subsection, all the orbital perturbation effects consid-
ered are evaluated for a given satellite altitude.

Figures 3 and 4 show the radial distance of a satellite ver-
sus the proper time (for two orbital periods), from the geo-
center, at satellite orbital radius 5 × 104 Km, 105 Km and
1.5 × 105 Km. The perturbing orbit effects that are consid-
ered in the metric are Earth oblateness, Moon gravitational
potential, Sun gravitational potential, Moon plus Sun gravi-
tational potential and, Earth oblateness plus Moon plus Sun
gravitational potential.

From Fig. 3, we can conclude that when the satellite is
orbiting at 5 × 104 Km the perturbing effects considered
such as Earth oblateness, Moon gravitational potential or
Sun gravitational potential are of the same order of mag-
nitude, but the Moon’s effect is the strongest one (see the
amplitude between maximum and minimum distance to the
geocenter for the cases when the Moon gravitational poten-
tial is included). Note that the Earth oblateness effect is big-
ger than Sun and Moon effect at the height of Galileo satel-
lites, but this is not the case at 5 × 104 Km of orbital radius.

All these results are compatible with the figure which gives
the order of magnitude of various perturbations of a satellite
orbit from the book Montenbruck and Gill (2005).

From Fig. 4, we can conclude that as the orbital radius of
the satellite increases, the Earth oblateness effect decreases
and the Moon and Sun effects increase. When the satellite
is approaching the Moon, the Moon effect is bigger than the
Sun one.

3.2 Considering one orbital perturbation effect
varying the satellite altitude

In this subsection, different orbital perturbation effects
(Moon plus Sun gravitational field and Earth quadrupole)
are evaluated for different satellite altitudes.

Figure 5 shows the radial distance, divided by its given
orbital radius, for a satellite, versus the proper time (for two
orbital periods), at different orbital radius from the geocen-
ter. Notice that now a relative distance variation is shown so
as to describe the distance variation from the different satel-
lite positions to the geocenter. The orbital radius is the nom-
inal one, a circumference described by Schwarzschild met-
ric. The orbit perturbations that are taken into account in the
metric are Moon plus Sun gravitational potential. The Earth
oblateness effect is not shown because it decreases when the
distance from the geocenter increases. This effect is much
smaller than Moon and Sun gravitational potential effects
for orbital radius greater than about 5 × 104 Km.

From Fig. 5, we can conclude that the perturbations of a
satellite orbit given by Moon plus Sun gravitational poten-
tials increase as the satellite orbital radius increases.

Figure 6 shows the radial distance, divided by its given
orbital radius, for a satellite, as a function of the proper time
(for two orbital periods), at different orbital radius from the
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Fig. 3 Radial distance of a
satellite versus the proper time
(for two orbital periods) at
5 × 104 Km from the geocenter.
The orbital perturbation effects
that are considered in the metric
are Earth oblateness (green),
Moon gravitational potential
(blue), Sun gravitational
potential (red), Moon plus Sun
gravitational potential
(magenta) and, Earth oblateness
plus Moon plus Sun
gravitational potential (violet)

geocenter. The orbital perturbation effect that is considered
in the metric is the Earth oblateness.

Figure 6 clearly shows that when the orbital radius of the
satellite is increasing the Earth oblateness effect is decreas-
ing. This effect is significant for satellites with lower orbital
radius.

4 Relativistic positioning and user location

In this section, the U-errors are computed taking into ac-
count the difference in location when considering Schwarz-
schild metric and the metric we have introduced. In this way
we can appreciate the difference in the positioning with the
two metrics. The description of the satellite world lines tak-
ing into account the Moon, the Sun and the Earth quadrupole
is more precise and is closer to the positioning it could be
expected from the Galileo Satellite Constellation.

As stated before, the computations presented here are nu-
merically calculated implementing known analytical results
by Coll et al. (2010) and Coll et al. (2010b) concerning RPS.

Our computations are performed in a similar way as in
Puchades and Sáez (2014). Let us then describe the main
features of such computations. Firstly, in Sect. 4.1, two
codes (XTcode/TXcode) are presented, as well as their im-
plementation to calculate the positioning errors. Secondly,
in Sect. 4.2, the procedure to estimate the positioning errors
is described. Thirdly, in Sect. 4.3, the HEALPIx represen-
tation and the initial users distribution are explained. This
kind of representation is used to display our numerical re-
sults. Fourthly, in Sect. 4.4, the analysis of the numerical
results is done. Finally, in Sect. 4.5, the spatial configuration
of user-satellites that is associated to maximum positioning
errors is described.

4.1 XTcode/TXcode

The positioning of a user in space-time is done by two cal-
culations: 1) satellite geodesics and 2) photon geodesics.

First the satellite world lines have to be calculated. Once
this is done the user location is obtained in a certain space-
time. It is necessary to solve the null geodesics followed
by the photons in such space-time. The user inertial coordi-
nates, xα , are defined, and the emission ones, τA (the proper
times that the user receive at the same time from the four
satellites, remember that A is the number which describe
each of the four satellites). In Minskowski space-time those
coordinates must satisfy the following algebraic equations:

ηαβ [xα − xα
A(τA)][xβ − x

β
A(τA)] = 0 . (7)

where ηαβ is the Minkowski diagonal matrix with η00 = −1
and η11 = η22 = η33 = 1, and the points of the satellite
world lines have inertial coordinates x

β
A(τA), which must

be well known functions of the proper times τA. Accord-
ing to Eqs. (7), photons follow null geodesics from satellite
emission to user reception. These algebraic equations may
be solved by the knowledge of the satellite world lines. Also,
a numerical Newton-Raphson method (Press et al. (1999))
is used. (See Puchades and Sáez (2012) and Puchades and
Sáez (2014) for a more detailed description).

We can proceed in two senses. Solve Eqs. (7) for known
xα and determine τA or inversely. In the first case, Eqs. (7)
may be numerically solved for the unknowns τA by assum-
ing that the position coordinates xα are known. Thus, the
emission coordinates are obtained from the inertial ones.
However, the same equations may be solved to get the un-
knowns xα for known emission coordinates τA. This second
case gives the inertial coordinates in terms of the emission
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Fig. 4 Radial distance of a
satellite versus the proper time
(for two orbital periods) at
different orbital radius from the
geocenter. From top to bottom,
the considered orbital radius is:
105 and 1.5 × 105 in Km. The
orbital perturbation effects that
are considered in the metric are
Moon gravitational potential
(blue), Sun gravitational
potential (red), Moon plus Sun
gravitational potential
(magenta) and, Earth oblateness
plus Moon plus Sun
gravitational potential (violet)

ones (positioning); nevertheless, this second numerical so-
lution of Eqs. (7) is not necessary since there is an analytical
formula obtained in Coll et al. (2010), which gives xα in
terms of τA for photons moving in Minkowski space-time,
and arbitrary satellite world lines.

In practice, a numerical code with multiple precision
was designed to calculate the emission coordinates τA (un-
knowns) from the inertial ones (data) by solving Eqs. (7). It
is hereafter referred to as the XT-code. This code, based on
the Newton-Raphson numerical method, requires the satel-
lite world line equations; that is to say, there must be a
subroutine which calculates the inertial coordinates of ev-
ery satellite xα

A(τA) for any value of τA (see Appendices A
and B). Moreover, we built up a numerical code, based on

the analytical formula obtained in Coll et al. (2010), which,
for given emission coordinates τA, allows us the calculation
of the user inertial coordinates xα , positioning. This code is
hereafter referred to as the TX-code.

4.2 Effects of the metric on the positioning

In this subsection, the procedure to calculate the positioning
errors is described.

Let us first suppose that the satellites move without un-
certainties (without any perturbation effect). Their trajecto-
ries are circumferences as it corresponds to the Schwarz-
schild space-time (see Appendix B). These trajectories are
circular orbits in the case of a spherically symmetric non
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Fig. 5 Radial distance R,
divided by its nominal orbital
radius, R0, that is shown in the
legend, for a satellite, versus the
proper time (for two orbital
periods), at different orbital
radius from the geocenter. The
orbital perturbation effects that
are considered in the metric are
Moon plus Sun gravitational
potentials (magenta)

Fig. 6 Radial distance R,
divided by its nominal orbital
radius, R0, that is shown in the
legend, for a satellite, as a
function of the proper time (for
two orbital periods), at different
orbital radius from the
geocenter. The orbital
perturbation effect that is
considered in the metric is the
Earth oblateness (green). hGAL
means the height of a Galileo
satelite

rotating Earth, in the absence of external actions (nominal
trajectories).

In practice, any realistic satellite world line deviates with
respect to the nominal ones. If the nominal world lines are
parametrized by means of their proper times, the equations
of these world lines (see Appendix B) may be written as
follows: xα

A(τA) being xα
A (A = 1...4) the coordinates of a

given satellite A, which is a function of its proper time τA.
In the present paper, the realistic perturbed world lines are
the timelike geodesics in the space-time calculated in the
previous sections (see Appendix C). The satellites are or-
biting at the height of the Galileo Constellation and, in the
present work, only the following major effects are consid-
ered in the metric: the Earth oblateness and the gravitational
effects of the Earth, the Moon and the Sun.

In the absence of deviations with respect to the nominal
lines, our XT-code gives the emission coordinates τA cor-
responding to any set of inertial coordinates xα and, then,
from the resulting emission coordinates, the TX-code allows

us to recover the initial inertial ones. The number of digits
recovered measures the accuracy of our XT and TX codes.
Since multiple precision is used, this accuracy is excellent.

Let us now take the above emission coordinates τA,
which are not to be varied since they are broadcasted by
the satellites and received by the user without ambiguity.
For these coordinates and the perturbed satellite world lines
in the space-time (including the perturbations effects: Moon
and Sun gravitational field and the Earth oblateness) calcu-
lated in the previous sections, the TX-code gives new inertial
coordinates xα + �(xα). Coordinates xα + �(xα) are to be
compared with the inertial coordinates xα initially assumed.
The quantity

�d = [�2(x1) + �2(x2) + �2(x3)]1/2 (8)

is a good estimator of the positioning errors produced by
the perturbations of the satellite motions. Those errors are
called U-errors. It is worthwhile to emphasize that user po-
sitions xα and xα +�(xα) correspond to the same emission
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coordinates, which are received from the satellites, but to
different world lines. The nominal world lines lead to xα

and the perturbed ones give xα + �(xα). We may then say
that the user position is xα with an error whose amplitude
is given by the estimator �d . See Puchades and Sáez (2014)
for a more detailed explanation of the definition of these U-
errors. The improvement presented here is the use of a most
accurate description of satellite perturbations using a metric
which better accounts of a more accurate trajectory of the
satellites.

4.3 HEALPIx representations and initial users
distribution

In a similar way as it was performed in Puchades and Sáez
(2014), we are going to present the results of the compu-
tation of the �d , the U-errors, of different users equidis-
tributed in sphere surfaces with different radius centred in
the geocenter.

In order to represent such values an appropriate method is
needed. This method allows us to represent some quantities
in 3D, t = constant, space-time sections. An appropriate
pixelization and colour bars are needed.

The HEALPIx (Hierarchical Equal Area Isolatitude Pix-
elisation of the Sphere) package (Górski et al. (1999)) is a
very useful tool for this representation and it is used here.
This package was initially designed to represent the Cosmic
Microwave Background temperature distribution in the sky.
As it writes the values of a scalar quantity in a sphere sur-
face, it is also very convenient for our kind of pictures. This
method displays any quantity as a function of the direction
(pixel). The sphere surface is divided in 12 × N2

side pixels
and the free parameter Nside takes even natural numbers. In
order to better compare with the pixelization considered in
Puchades and Sáez (2014) Nside = 16 is taken. Initial users
are fixed on a surface of a sphere of radius R centred in
the geocenter. One user per each HEALPIx direction. 3072
initial users (pixels) equally distributed are considered. The
angular area of any one of them is ≈ 13.43 square degrees.
Such angular area is close to sixty four times the mean an-
gular area of the full moon. However their shape in the moll-
weide representation used here is not the same for all pixels.
They are more elongated in the polar zone. For each initial
user, we carry out the procedure that we have commented
for the computations.

The pixelized sphere is shown by using the mollweide
projection, in which, the frontal hemisphere is projected on
the central part of the figure, and the opposite hemisphere is
represented in the lateral parts.

As stated in the latter paragraph, HEALPIx mollweide
maps are taken to represent the scalar quantity required, in
our case the U-errors, �d . According to the colour bar dis-
played, any pixel shows a colour which states the �d value

Fig. 7 HEALPIX mollweide maps of (the error positioning estimator)
�d values, in Km, on spheres with Earth radius 6378 = R⊕ for the
Galileo satellites 2, 5, 20 and 23 at different user times t (shown in the
top of each figure), from 11 h to 17 h

in the map for the direction associated to such pixel. �d

values for different cases are shown in Figs. 7, 8 and 9, con-
sidering Galileo satellites 2, 5, 20 and 23, in a similar way
as in Puchades and Sáez (2014).

HEALPIx mollweide maps of Figs. 7 and 8 are �d val-
ues, in Km, on spheres with Earth radius 6378 = R⊕ at dif-
ferent user times t . Otherwise, Fig. 9 shows �d values, in
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Fig. 8 HEALPIX mollweide maps of (the error positioning estimator)
�d values, in Km, on spheres with Earth radius 6378 = R⊕ for the
Galileo satellites 2, 5, 20 and 23 at different user times t (shown in the
top of each figure), from 19 h to 25 h

Km, on spheres with different radius at user time t = 19 h.
From top to bottom, the radius of the spheres in kilometres
are 1.5×104, 3×104 and 5×104. The first and the third val-
ues are two of the values taken in Puchades and Sáez (2014).
This fact allows us to compare the results obtained with the
two different procedures to compute the U-errors.

Fig. 9 HEALPIX mollweide maps of (the error positioning estima-
tor) �d values, in Km, on spheres with different radius for the Galileo
satellites 2, 5, 20 and 23 at user time t = 19 h. From top to bottom, the
radius of the spheres in kilometres are 1.5 × 104, 3 × 104 and 5 × 104

(shown in the top of each figure). Grey coloured pixels are charac-
terized by the condition �d > 50 Km for the middle subfigure and
�d > 100 Km for the bottom subfigure

4.4 Analysis of results (Figs. 7 and 8)

In this subsection, the analysis of the numerical results for
different initial users distributions is done. As stated at the
end of the previous section, sphere surfaces at the Earth ra-
dius 6378 = R⊕ are taken. We want to know which is the U-
error, �d , produced on the positioning taking into account
the deviation caused on nominal orbits (Schwarzschild ones)
when the effects of Moon, Sun and Earth quadrupole are
considered in the metric. In Puchades and Sáez (2014) it was
pointed out that for 6378 = R⊕ sphere radius the position-
ing errors where of the same order as the satellite deviations
from the nominal orbits. In the cited paper, the deviation
was statistically generated. Now more realistic perturbations
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are considered. Satellites with different relative positions are
considered at different times.

The results commented in the last paragraph are obtained
from HEALPIx maps shown in Figs. 7 and 8. Let us make a
list of our main conclusions:

• The greatest �d values (red pixels) correspond to having
the maximum radial distance deviation of the satellite for
the case of the four chosen satellites (see Fig. 2, violet
line). When the satellite trajectory deviation with respect
to the Schwarzschild trajectory (considering circular or-
bit as nominal trajectory) increases, then the value �d in-
creases. For the positioning, the four satellites are needed.
Therefore, this deviation for the four chosen satellites
has influence on the positioning errors. So, the value �d

depends directly on the satellite-Earth-Moon-Sun spatial
configuration, and this for the four satellites.

• The �d values are of the same order of magnitude of the
perturbation applied on the satellite orbit in most of the
pixels. That is, about a few Kilometres is this order of
magnitude, just the same as the satellite deviations when
we take into account Earth oblateness plus Sun plus Moon
gravitational field. These results are in agreement with the
respective results obtained in Puchades and Sáez (2014).

• Almost the same shape on the maps (but with different
maximum and minimum values) is repeated when we
consider the next satellite orbital period. This periodic
effect was to be expected because the Sun-Moon-Earth-
satellite spatial configuration practically does not change
after one satellite orbital period (14.2 h). Therefore, Sun,
Moon and Earth influence on the satellite orbit is almost
the same than in the previous satellite orbital period. This
periodic effect is shown in Figs. 7 and 8, corresponding
to the cases where the receiver time is 11 h and 25 h, re-
spectively.

• The Earth oblateness (Earth quadrupole) effect is shown
in Fig. 8 (receiver time = 21 h), as it can be seen in
Eq. (5), the sinusoidal shape is obtained.

4.5 Jacobian and user-satellites spatial
configuration (Fig. 9)

In this subsection we present a case with a user-satellites
spatial configuration that is associated to maximum posi-
tioning errors. The purpose of it is to enhance the relation-
ship of the U-errors with the Jacobian, J , values as it was
stated in the Puchades and Sáez (2014) work. For our com-
putation of the errors based on a more realistic case, the rela-
tionship between the Jacobian values near zero and the great
values of the U-errors still stands, as it must be.

For the sake of comparison the Fig. 2 top case of
Puchades and Sáez (2014) has been considered. Let us re-
call which is this Galileo satellites configuration: satellites
2, 5, 20 and 23 at user time t = 19 h. Figure 9 shows

HEALPIx mollweide maps of �d values, in Km, on spheres
with different radius for this satellite distribution. Two ra-
dius spheres in kilometres as in Figs. 5 and 6 of Puchades
and Sáez (2014) have been considered: 1.5 × 104 (top) and
5 × 104 (bottom). Also 3 × 104 (middle) is taken here. Top
subfigure can be compared with the top one of Fig. 6 in
Puchades and Sáez (2014), the satellites configuration and
user time are the same ones. The difference between both
figures is the way of computing the �d errors. The distribu-
tion of those U-errors is very similar as it can be seen com-
paring both subfigures. This is logical as the same satellites
configuration and user time have been taken. When we use
our metric, lower errors are obtained. The range in Puchades
and Sáez (2014) varies from 6.84 to 24.0 km, while in the
present paper the range of such values varies from 0.2 to
10.1 km. The lower values obtained in the present work
should be due to our better approximation: taking a realistic
metric better describes the U-errors in RPS.

As in the mentioned paper, some cutoffs of �d are con-
sidered. In Fig. 9, grey coloured pixels are characterized by
the condition �d > 50 Km for the middle subfigure and
�d > 100 Km for the bottom subfigure. The same as in our
previous work, as the radius of the sphere increases the �d

values increase (more grey pixels). In the above cited pa-
per it was explained the relation between the volume of the
tetrahedron formed by the tips of the four user-satellites unit
vectors, VT , and the Jacobian, J . Specifically, this volume
is a sixth of the |J | value: VT = |J |/6 (see also Langley
(1999)).

We have chosen a user whose �d value is one of the
greatest of Fig. 9 (R = 3 × 104 Km). Figure 10 shows
the locations of the four satellites in the celestial sphere of
this user, whose user-satellites spatial configuration corre-
sponds to a case of J � 0 (J = −6.7 × 10−2). Let us re-
call that J = |∂τA/∂xα|, of the transformation giving the
emission coordinates in terms of the inertial ones. Note that
the considered Galileo satellites are 2, 5, 20 and 23 at user
time t = 19 h for a user on a surface of a sphere of radius
R = 3 × 104 Km. Remember that the volume VT is pro-
portional to the Jacobian value. In Fig. 10, the satellites are
represented by four black asteriks, the user by a blue cross
(the origin of the Cartesian system) and the centres of the
circles by red, blue, green and purple asterisks. Four differ-
ent circles, that pass through three points, with each possi-
ble combination of three satellites (colour points) are also
drawn. As it was explained in Puchades and Sáez (2014),
such satellite configuration corresponds to a tetrahedon near
of null volume value and therefore to a J close to zero. This
fact accounts for such a great U-error value.

In Puchades and Sáez (2014) it was also studied the re-
lation of the user distance to Earth and the �d errors. Let
us make a comment here taken into account the figures pre-
sented in this work. From HEALPIx maps shown in Fig. 9,
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Fig. 10 Locations of the
satellites in the celestial sphere
of a user, whose user-satellites
configuration corresponds to a
case of J � 0. The considered
satellites are 2, 5, 20 and 23 at
user time t = 19 h for a user on
a surface of a sphere of radius
R = 3 × 104 Km. The satellites
considered are represented by
four black asterisks, the user by
a blue cross (the origin of the
Cartesian system) and the
centres of the circles by red,
blue, green and purple dots.
Four different circles, that pass
through three points, represent
each possible combination of
the three satellites (points)

we also see that as the radius of the spherical surfaces in-
creases the �d values also increase (see how the minimum
value of �d increases with R in these maps). This is be-
cause if the user is very far from the satellites, they are all
in a small solid angle and the tetrahedron volume VT is also
expected to be small. Moreover, on these maps, there are re-
gions with J � 0 (grey pixels with high �d value) when the
height is greater than approx. 2 × 104 Km. In Puchades and
Sáez (2014), it was also shown that not only regions near J

null values give great �d error values. There are also regions
where �d is small. One of the conclusions in the mentioned
paper was that to solve this problem of big positioning errors
at great distances, it should be interesting in the future, to
choose the best combination of four satellites (from GPS and
Galileo constellations), whose user-satellites spatial config-
uration gives smaller �d errors. This fact seems possible if
the satellites configurations taken into account are changed
accordingly. Some proposals of how to determine such con-
figurations can be seen in Puchades and Sáez (2014) and
also apply to the results obtained in this paper. Another way
to do that could be to locate the satellites in other orbits in
the solar system, in a way that the user-satellites spatial con-
figuration corresponds to VT values not close to zero.

5 Conclusions and perspectives

The main purpose of this paper is to study the U-errors
obtained as the difference in RPS by using Schwarzschild
and a more accurate metric to describe the Galileo satellite
world lines. This represents an advance with respect to the
research made by Puchades and Sáez (2014). In Puchades
and Sáez (2014) the satellite perturbations were statistically
computed. Here such perturbations are computed differently
by taking into account the effects of Moon, Sun and Earth

quadrupole in the metric. These are the greatest effects per-
turbing satellite world lines at the height of Galileo or GPS
constellation. In order to better understand the difference in
the positioning, the U-errors, a deep study of the change in
the Galileo satellites trajectories has been first developed,
see Sects. 2 and 3. This study takes into account the contri-
bution on the satellite world lines of such three terms by (i)
taking them separately, (ii) combining two of them and (iii)
considering all three together.

A Runge-Kutta algorithm is used to solve the geodesic
equations. High accuracy is achieved (10−18). Also multi-
ple precision (40 significant digits for each number) is used.
Adequate initial conditions have been found to solve the
ODE. Precise satellite geodesics are required to be able to
precisely compute the user location in space-time. More-
over, this precision is needed to incorporate other small con-
tributions to the satellite orbits perturbations. In this work,
only the Galileo Satellite Constellation is considered. As it
is known, one of the greater contributions at the height of
Galileo satellites is the Earth oblateness (about a few kilo-
metres). The Moon and Sun gravitational effects are also
important (about a few hundred Kilometres). Moreover, due
to the greater relative Moon motion, after one orbital period,
the satellite position is shifted when the Moon is consid-
ered. Our results are in agreement with other results known
in the literature. Therefore, our method is working prop-
erly because the order of magnitude computed in preceding
works with the GNSS approximation is obtained (see for
instance Teunissen and Montenbruck (2015), Chap. 3, Mon-
tenbruck and Gill (2005) and Roh (2018)). The RPS meth-
ods are more exact than GNSS classical procedures, even
when the last ones incorporate relativity corrections. From
the beginning, we numerically solve the satellite geodesic
equations (ODE) in our given space-time.

Then we have simulated satellite world lines at differ-
ent distances from Earth (see Sect. 3) and studied the influ-
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ence of the perturbations considered in our metric. The Earth
oblateness orbit perturbing contribution is of the same order
of magnitude than that of Moon and Sun gravitational effect
at 5 × 104 Km. As the satellite orbital height increases, the
Earth oblateness effect decreases and Moon and Sun effects
increase. At 105 Km, the Earth oblateness effect is smaller
than the Moon and the Sun contributions. At these distances,
the satellite position is also shifted when the Moon pres-
ence is considered, as it happens at the Galileo satellites dis-
tances. This is an improvement with respect to our previous
works because now it is possible to appreciate the separate
contribution of each perturbation in the RPS.

After studying the satellite trajectories, we carry out RPS
with our metric. A similar procedure as in Puchades and
Sáez (2014) has been performed. But now, a metric tak-
ing into account the greater physical perturbations at Galileo
Satellite Constellation is considered to compute �d . Notice
that the same formula, Coll et al. (2010), has been used to
compute the proper times that the user receives from the
satellites. Also HEALPIx maps are considered to describe
the U-errors as in Puchades and Sáez (2014).

As it was concluded in the cited paper, the positioning er-
rors values, �d , are almost of the same order of magnitude
as those of the perturbed satellite orbits (orbital perturbation
effect). Here the highest �d values (red pixels in Sect. 4.4)
correspond to having the maximum radial distance devia-
tions of the satellite for the case of the four chosen satellites
in Fig. 2 (violet line). So, the value �d depends directly on
the satellite-Earth-Moon-Sun relative spatial configuration
and it does so for each of the four satellites. Almost the
same HEALPIx maps are recovered after a Galileo satel-
lite orbital period. This is because the relative spatial con-
figuration among satellite-Moon-Sun-Earth does not nearly
change after 14.2 h (periodic effect), as the Moon and Sun
hardly move after a Galileo orbital period. Here the �d val-
ues are smaller than the ones obtained with the statistical
procedure used in Puchades and Sáez (2014). This fact is
due to a more realistic representation of the satellite orbital
perturbations by the use of metrics instead of statistical de-
viations (see Sect. 4.5). Therefore a more accurate compu-
tation of the U-errors is performed and so a more precise
calculation of the user’s positioning can be achieved.

As in Puchades and Sáez (2014) when the radii of the
spherical surfaces increase, the �d values increase. This is
because if the user is very far from the satellites, these are
all in a small solid angle and the tetrahedron volume VT is
expected to be small. Moreover, on these maps, there are
regions with J � 0 when the radius is greater than about
20 000 Km. One solution when J � 0, is to choose another
combination of four satellites from Galileo or GPS constel-
lation, whose user-satellites configuration is associated to
values of J not close to zero. An alternative way to do that
could be to locate the satellites in other orbits in the solar

system, in a way that the user-satellites spatial configuration
corresponds to VT values not close to zero.

We are currently working on an improvement in our nu-
merical procedure. The Newton-Raphson numerical method
(see XTcode in Sect. 4.1) could be avoided, in such a way
that analytical functions of the proper time are not used,
since they imply the use of Schwarzschild world lines for
the satellites. For example, to use the secant method with the
satellite world lines (taking into account the Sun and Moon
presence and the Earth quadrupole). We think this will im-
prove the numerical code and results.

Once this is done, another interesting thing to do, and
very useful, should be to create HEALPIx maps as in
Sect. 4.4 (see Figs. 7 and 8), but calculating the positioning
error �d on the geoid, instead of on the spherical surface
of radius R⊕. It would allow us to calculate the accuracy
of Galileo satellites, with our implementation, and compare
with the data from Galileo Constellation, and other constel-
lations. These results should also be interesting for geodesic
treatment.

There are other perturbations a part from those consid-
ered in this paper that also contribute to the computation of
the satellite world lines. The order of magnitude of such con-
tributions depends on the satellite’s height as it can be seen,
for instance, in Montenbruck and Gill (2005) (see, in partic-
ular, Fig. 3.1 at p. 55). Therefore, this variation of the tra-
jectories of the four satellites considered should contribute
to the change in the calculations of RPS. We are studying
such contributions and will present the results obtained else-
where.

Also the use of our method in space navigation is being
planned. The Barycentric Celestial Reference System could
be used as reference system to locate the emitters (four satel-
lites) in the solar system, in such a way that the configura-
tions of the user-satellites associated to J � 0 are avoided.
For example, in the vicinity of the Moon, two emitters fixed
on the Moon surface (North and South poles) and two emit-
ters from Galileo satellites. In such a case, the VT is not
close to zero, in most of the cases. The positioning of a
spacecraft that navigates in the solar system could be de-
termined considering emitters in other appropriate locations
to be studied.
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Appendix A: Effects on the Galileo satellite world
lines

So as to better understand the perturbations on the satellite
world lines, at the beginning of our work we made some
computations of the order of magnitude of the effects of the
Earth, Sun and Moon on Galileo satellites. These are the ma-
jor perturbations on the satellite orbits at the satellite height
(see Roh (2018)). For this reason it is interesting to study
the magnitude of their gravitational field and potential at ap-
prox. 3×104 Km from the geocentre (the radius of a Galileo
orbit). Also the relation between them (Earth-Sun and Earth-
Moon system) is relevant. In a near future the order of mag-
nitude of other smaller effects will be studied. Notice that
here we do not present the metric itself, we only compare
the relation between the order of magnitude of Newtonian
effects on satellite orbits, for the sake of better understand-
ing the impact of the effects considered here.

We assume that the geocentric position vector for Sun,
Moon and satellite is x� = (−1,0,0) AU, x� =
(−384402.0,0,0) Km and x = (29655.3,0,0) Km, respec-
tively. In all the paper �,⊕,� stands for Sun, Earth and
Moon respectively.

As it has been said the origin of the reference system
is the geocentre (GRS). Afterwards, when we consider the
Earth movement and acceleration, the GRS should be co-
moving (the origin of the GRS is moving with the Earth
centre).

The quantities computed here are the order of magnitude
of Newtonian potentials and accelerations on the Galileo
satellites positions.

Two cases are computed:
(a) Stationary Earth.
(b) Earth with accelerated motion and the reference system

co-moving with the Earth.
For the (a) case, we calculate:

• The Earth potential divided by the Sun potential: φ⊕
φ� =

0.0150. The result is that the Sun potential is 67 times
greater than the Earth’s potential.

• The intensity of the Earth gravitational field divided by
the intensity of the Sun’s gravitational field is: a⊕

a� =
74.6525. Then, the force of the Sun on the satellite is 75
times smaller than the force of the Earth on it.

Although the Sun potential has a great effect, its varia-
tions, a�, corresponding to the forces which represent the
gravitational field, can be neglected in a⊕ and the quantity
φ� could be taken as an additive constant of the φ⊕.

• Moon potential divided by the Earth’s potential:
φ�
φ⊕ =

0.0010. This effect (φ�) is either negligible or could be
taken as a perturbation.

• The intensity of the Moon gravitational field divided by
the intensity of the Earth’s:

a�
a⊕ = 8.8139 × 10−5. This

quantity (a�) could be neglected (as we do) or considered
as a small perturbation.

The Newtonian concept of force cannot be applied to
GR. The Christoffel symbols take the “role” of gravita-
tional forces. In the set of ODE, Eqs. (30)-(33), as it can
be seen in Appendix C, the Sun, Earth and Moon “gravi-
tational potentials” are placed in the denominator. And the
term 1 + ∂φ⊕ + ∂φ� + ∂φ� is in the numerator. We next
present a summary of the results obtained for case (a):

Results of case (a):

• a⊕ � a�
• φ⊕ � φ�
• a⊕ � a�
• φ⊕ � φ�
However, the Earth is accelerated [(b) case] under the action
of the celestial body (Sun or Moon) and such action will be
included now.

In the book Teunissen and Montenbruck (2015) (Chap. 3),
the authors show how to compute such perturbations. The
following equation is considered:

aB = GMB

(
xB − x

|xB − x|3 − xB

|xB |3
)

≡ aB1 + aB2. (9)

MB is the mass of the celestial body B (Sun or Moon), xB

its geocentric position and x is the geocentric position vector
of the satellite.

The term aB1 of Eq. (9) is:

aB1 = GMB

(
xB − x

|xB − x|3
)

(10)

This term aB1 stands for the perturbing acceleration of B

exerted on the satellite. And the term aB2 of Eq. (9) is:

aB2 = −GMB

(
xB

|xB |3
)

(11)
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Table 1 Perturbing
acceleration, for the first
Cartesian component, on the
Galileo satellite orbits for the
effects: gravitational field from
Sun and Moon, and Earth
quadrupole.

Perturbation aB1 (m/s2) aB2 (m/s2) aB (m/s2)

� −2.860 × 10−5 3.318 × 10−5 4.583×10−6

� −5.928 × 10−3 5.930 × 10−3 2.350×10−6

J2 −6.793×10−5

This term aB2 is the perturbing acceleration (on the satellite)
caused by the action of B on the Earth. This is the inertial
contribution (notice the minus sign) caused by the acceler-
ated GRS.

Accelerations (aB1 and aB2) on the orbit of a Galileo
satellite due to the Sun and the Moon are computed and
their values can be seen in Table 1. Let us recall that
the geocentric position vectors for Sun, Moon and satel-
lite are x� = (−1,0,0) AU, x� = (−384402.0,0,0) Km
and x = (29655.3,0,0) Km, respectively (satellite-Moon-
Sun aligned in the x axis). Table 1 shows the first Cartesian
component of aB . The numerical results of (b) appear in the
fourth column of Table 1.

Nevertheless, when we consider a stationary Earth [(a)
case], the term aB2 is zero. The results in case (a) appear in
the second column of Table 1.

We can summarize the results obtained and presented in
Table 1 in this way: i) the perturbing acceleration from the
Sun is slightly smaller than that of the Moon. ii) Meanwhile,
the terms aB1 and aB2 from the Sun are 100 times greater
than those from the Moon. iii) As a first conclusion, we
observe that the intensity of the Sun gravitational field is
smaller than such from the Moon at the GRS that considers
the Earth accelerated by the gravitational force of the Sun
and the Moon.

On the one hand, a stationary Earth (in a GRS), gives an
acceleration from the Sun 100 times greater than that from
the Moon. On the other hand, we have obtained an accel-
eration from the Earth central force (for the first Cartesian

component) of −0.453 (m/s2), considering −GM⊕
(

x
|x|3

)
(acceleration of the Earth acting on the satellite), in the mo-
tion equation of the satellite. Therefore the acceleration from
the central force is 105 times greater than the perturbing ac-
celeration caused by Sun and Moon together.

The effect of the oblateness of the Earth is now studied.
Its Cartesian components (a

J2
1 , a

J2
2 , a

J2
3 ) with regard to its

acceleration, (Seeber 2003; Sharma et al. 2019), are given
by

a
J2
i = −3G

(
J2M⊕

(
xi − xi⊕

)
R2⊕

r7⊕

)

×
⎡
⎣A(i)

3∑
j=1

(
xj − x

j
⊕
)2 − 5

(
x3 − x3⊕

)2

⎤
⎦ (12)

where A(i) is equal to 1 for i = 1,2 and A(i) is equal to 3
for i = 3.

The perturbing acceleration from the Earth oblateness
(for the first Cartesian component), a

J2
1 , has been computed

and its value is −6.793 × 10−5 (m/s2) for θ = 0, as it is
shown in the third row of Table 1. Let us recall that the satel-
lite position vector is x = (29655.3,0,0) Km.

As it can be seen in the fourth column of Table 1, the
Earth oblateness produces an acceleration on the orbits of
the Galileo satellite one order of magnitude greater, in abso-
lute value (6.793×10−5), than those produced by the Moon
potential (4.583×10−6) or the Sun potential (2.350×10−6).

In this Appendix, we have stated some important rela-
tions. They have helped us to better interpret the results ob-
tained in our work.

Appendix B: A short description of the circular
satellite world lines

As it is well known, in the unperturbed Minkowskian space-
time, the spatial location of a Galileo satellite A, which
moves along a circumference, requires three angles. Two of
them,  and ψ , characterize one of the three orbital planes.
These angles are constant. The third angle, αA, localizes the
satellite on its trajectory. It depends on time. All this was
taken into account in Puchades and Sáez (2012, 2014) to
find the world line equations of the satellite A to first order
in the small dimensionless parameter GM⊕/R, whose max-
imum value is GM⊕/R⊕ � 6.94 × 10−10. These equations
are as follows:

x1
A = R [cosαA(τ) cosψ + sinαA(τ) sinψ cos]

x2
A = −R [cosαA(τ) sinψ − sinαA(τ) cosψ cos]

x3
A = −R sinαA(τ) sin

x4
A = γ τ , (13)

where the factor γ and the angle αA are given by the rela-
tions (Ashby 2003; Pascual-Sánchez 2007)

γ = dt

dτ
=

(
1 − 3GM⊕

R

)−1/2
(14)

and

αA(τ) = αA0 − �γ τ , (15)
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respectively. The last equation involves the satellite angu-
lar velocity � = (GM⊕/R3)1/2, and the angle αA0 fix-
ing the position of satellite A at τ = x4 = 0 (GNSS ini-
tial operation time). The chosen nominal world lines satisfy
Eqs. (13)–(15).

Appendix C: Geodesic Equations of the Satellite
world lines

Now we present a description of the motion equations of
a satellite in the GR space-time considered in this work.
The metrics that describe the contributions of Earth, Sun
and Moon in GR are presented. The solution of the time-
like geodesics, equations of motion, are also described. An
overview of the numerical algorithm used in our solution is
also explained.

The International Astronomical Union IAU 2000 (see
Resolutions of IAU (2000), Soffel et al. (2003)) recom-
mends a resolution for the metric tensor in the Geocenter
Celestial Reference System GCRS up to order o(1/c2) (ne-
glecting terms smaller than o(1/c2), for the A o(1/c3) body
vector potential), such as:

g00 = − [1 − 2 (w0(t,x) + wL(t,x))] , (16)

g0i = 0, (17)

gij = δij [1 + 2 (w0(t,x) + wL(t,x))] (18)

where (t ≡ geocentric coordinate time, x) are the pseudo-
Cartesian isotropic GCRS coordinates, w0 = G

∑
A MA/rA

summation over all solar system bodies, rA = x − xA, xA is
the position vector of the centre of mass of A body, rA =
|rA|, and where wL has the expansion in terms of multipole
moments that requires each body.

In this paper only the masses MA of three bodies are
considered: Sun, Earth and Moon (A = �,⊕,�). Although
there are neglected terms with order greater than GMA

rA
, they

will be considered in the future. wL has been considered, be-
ing 2wL = φJ2 and φJ2 the Earth quadrupole potential. The

quantity w0 as w0 = G
(

M⊕
r⊕ + M�

r� + M�
r�

)
is also taken. φ

is defined as 2 (w0(t,x) + wL(t,x)).
A numerical integration of timelike geodesic equations is

performed to compute the satellite trajectories xα(τ) in the
GCRS,

duα

dτ
= −�α

μνu
μuν (19)

where uν is the four-velocity (uν = dxν

dτ
) and τ the proper

time. See Misner et al. (1973) for a description of the proce-
dure.

The covariant and contravariant components of the metric
in pseudo-Cartesian isotropic GCRS coordinates have this

form:

gμν = ημν + φδμν (20)

gμν = ημν − φδμν (21)

and the Christoffel symbols are calculated from this defini-
tion:

�α
μν = 1

2
gαδ

(
gδν,μ + gμδ,ν − gμν,δ

)
(22)

with:

gμν,δ = φ,δδμν. (23)

being ζ,α ≡ ∂ζ
∂xα , and ζ a function of xα .

The potential φ = φ(xi) is considered as stationary. The
non-null Christoffel symbols are then obtained:

�0
0i = −1

2

1

1 − φ
φ,i (24)

�k
00 = −1

2

1

1 + φ
φ,k (25)

�k
ij = 1

2

1

1 + φ
(δikφ,j + δkjφ,i − δijφ,k) (26)

The Christoffel symbols �k
ij are as follows:

�i
ii = 1

2

1

1 + φ
φ,i (27)

�i
jj = −1

2

1

1 + φ
φ,i i 	= j (28)

�i
ij = 1

2

1

1 + φ
φ,j i 	= j (29)

(no summation over repeated indices).
The following expressions are the geodesic equations for

these Christoffel symbols:

du0

dτ
= 1

1 − φ
φ,iu

0ui (30)

dx0

dτ
= u0 (31)

duk

dτ
= 1

1 + φ

[
1

2
φ,k(u

0u0 + uiui) − uk(φ,iu
i)

]
(32)

dxk

dτ
= uk (33)

The system has the following constraint:

g(u,u) = −1 (34)

This constraint lets us verify the proper functioning of the
code. In each step of the numerical integration the code
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checks that Eq. (34) holds. A Runge-Kutta method is ap-
plied to solve such equations.

In order to completely describe the motion of the system
considered here, the motion equations of the celestial bod-
ies taken into account should also be added to the system of
Eqs. (30)-(33). The Newtonian equations are sufficient. The
Newtonian Earth motion equations in the GCRS, for the sys-
tem Earth-Moon-Sun, are given by:

dxk⊕
dτ

= vk⊕u0 (35)

dvk⊕
dτ

= −G
M�(xk⊕ − xk�)

|x⊕ − x�|3 u0 − G
M�(xk⊕ − xk�)

|x⊕ − x�|3 u0 (36)

similar equations for the Sun stand:

dxk�
dτ

= vk�u0 (37)

dvk�
dτ

= −G
M⊕(xk� − xk⊕)

|x� − x⊕|3 u0 − G
M�(xk� − xk�)

|x� − x�|3 u0 (38)

and also for the Moon:

dxk�
dτ

= vk�u0 (39)

dvk�
dτ

= −G
M⊕(xk� − xk⊕)

|x� − x⊕|3 u0 − G
M�(xk� − xk�)

|x� − x�|3 u0 (40)

The greatest φ “potential” contribution is the Earth’s
contribution, which has the following Schwarzschild metric
form (see Appendix A):

φ⊕ = 2G

(
M⊕
r⊕

)
(41)

where r⊕ = x − x⊕. Additionally, the satellite geodesics in
Schwarzschild perturbed space-time need also be computed.
The gravitational potential is therefore:

φ = φ⊕ + φpert (42)

where φpert are the additional perturbing potentials pro-
duced by the Sun, the Moon and the Earth quadrupole.

The quantities φ,i are the first spatial derivatives ∂φ/∂xi ,
where xi is a function of the proper time xi = xi (τ ), so that:

φ,i = φ⊕
,i + φ

pert
,i (43)

These are the spatial derivatives of the Earth’s gravita-
tional potential (central force):

φ⊕
,i = −2G

(
M⊕

(
xi − xi⊕

)
r3⊕

)
(44)

It should be noted that in this case the reference system
is co-moving with the Earth (GRS).

In order to calculate the satellite world lines the time-like
geodesic equations from this metric are numerically solved.
To solve the ODE system presented here a Runge-Kutta
method with adaptive step has been implemented. Our nu-
merical algorithm has high accuracy (10−18) and multiple
precision (40 significant digits for each number). This pre-
cision will also allow us to consider other PN effects as our
work advances. Our algorithm is being prepared to provide
the precision and accuracy needed for these future additions.
Notice once more that the effects computed in the present
paper consider the corresponding terms of Moon or Sun or
Earth oblateness or a combination of them.
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