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Abstract Many exoplanets are discovered in binary star
systems in internal or in circumbinary orbits. Whether the
planet can be habitable or not depends on the possibility to
maintain liquid water on its surface, and therefore on the lu-
minosity of its host stars and on the dynamical properties
of the planetary orbit. The trajectory of a planet in a dou-
ble star system can be determined, approximating stars and
planet with point masses, by solving numerically the equa-
tions of motion of the classical three-body system. In this
study, we analyze a large data set of planetary orbits, made
up with high precision long integration at varying: the mass
of the planet, its distance from the primary star, the mass ra-
tio for the two stars in the binary system, and the eccentricity
of the star motion. To simulate the gravitational dynamics,
we use a 15th order integration scheme (IAS15, available
within the REBOUND framework), that provides an opti-
mal solution for long-term integration. In our data analysis,
we evaluate if an orbit is stable or not and also provide the
statistics of different types of instability: collisions with the
primary or secondary star and planets ejected away from the
binary star system. Concerning the stability, we find a sig-
nificant number of orbits that are only marginally stable, ac-
cording to the classification introduced by Musielak et al.
(Astron. Astrophys. 434:355, 2005). For planets of negli-
gible mass, we estimate the critical semi-major axis ac as
a function of the mass ratio and the eccentricity of the bi-
nary, in agreement with the results of Holman and Wiegert
(Astron. J. 117:621, 1999). However we find that for very
massive planets (Super-Jupiters) the critical semi-major axis
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decrease in some cases by a few percent, compared to cases
in which the mass of the planet is negligible.
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1 Introduction

The first possible observational evidence of a Jupiter-like
planet in the binary star system gamma Cephei was reported
by Campbell et al. (1988), based on the measurements of
the radial velocity variations in a sample of stars. However,
due to possibility that the low signal was due to chromo-
spheric activities of the star, the existence of a planet in this
system was subsequently questioned (Walker et al. 1992).
It was thanks to more accurate measurements that the true
nature of the gamma Cephei planet was finally confirmed
(Hatzes et al. 2003), fifteen years after the first observation.
It is worth noticing that the small distance (about 20 AU) be-
tween the two stars in gamma Cephei has as a consequence
a complex dynamics of the planetary orbit, whose stability
is not guaranteed. Assuming the system as a classic New-
tonian, isolated, three-body problem, no general analytical
solution exists, also in the special case where the mass of
the planet is negligible, i.e. for the so called restricted three
body problem. A recent review of the three-body problem
in the context of both historical and modern developments
is presented by Musielak and Quarles (2014). To date, the
catalogue1 maintained by Schwarz et al. (2016) reports 103
binary and 26 multiple confirmed star systems hosting plan-
ets, and 28 candidates. The vast majority of multiple systems

1http://www.univie.ac.at/adg/schwarz/multiple.html.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-021-03959-x&domain=pdf
http://www.univie.ac.at/adg/schwarz/multiple.html
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hosting planets are made up by three stars. In some case, the
binary (or multiple) star system hosts more than one planet.

Orbits of planets in binary systems are traditionally clas-
sified into three categories (Dvorak 1986): i) the Planet-type
(P-type) external orbits around both stars in the binary, ii)
the Satellite type (S-type) internal orbits, around one of the
two stars, and iii) the Libration-type (L-type) orbits, cor-
responding to librations around the Lagrangian equilibrium
points L4 and L5, which are stable when the stellar mass ra-
tio m1/(m1 + m2) is less than ∼ 0.04 (assuming m1 < m2).
While L-type orbits are not normally of interest for exoplan-
ets in binary systems, P-type and S-type orbits are of rele-
vant astronomical impact and deserves to be deeply studied
in their characteristics. For a recent review of planet forma-
tion and dynamical evolution in binary systems see Marzari
and Thebault (2019).

The stability problem of planetary orbits in binary star
systems have been investigated by many authors, with dif-
ferent methods and in different schemes. After pioneering
work by Henon (1968, 1969), Hénon and Guyot (1970), and
Szebehely (1980), numerical approaches have been done
by Dvorak (1986) (P-orbits in restricted assumptions), Rabl
and Dvorak (1988) (S-orbits in restricted assumptions), and
Pilat-Lohinger and Dvorak (2002) (S-orbits with less restric-
tions). Dvorak (1986) and Rabl and Dvorak (1988) numer-
ically integrated a set of orbits by mean of a scheme based
on Lie-series, as developed by Delva (1985) whose draw-
back is that of being limited to infinitesimal mass for the
third-body, in what the primaries motion is assumed as the
analytical solution of the two-body problem. The work done
by Pilat-Lohinger and Dvorak (2002) using Bulirsh-Stoer al-
gorithm, does not encounter in principle this limitation, but
it was applied by the authors, again, to zero mass planets.
Later on Holman and Wiegert (1999), hereafter referred to
as H99, using a modified symplectic mapping technique ini-
tially developed by Wisdom and Holman (1991) to study
the secular behavior of planetary motion around a dominat-
ing mass, investigated the planet orbital stability extending
significantly with respect to previous works the time basis of
integration; the authors assume that the mass of the planet is
negligible. A straightforward Runge-Kutta-Fehlberg numer-
ical technique was adopted by Musielak et al. (2005) who
dealt with the stability of initially circular planetary orbits
in both S- and P- configurations in the field of two stars re-
volving each other in circular motion. The Frequency Map
Analysis (FMA) method (Laskar et al. 1992) was for the first
time applied by Turrini et al. (2004, 2005) to investigate the
dynamical stability of the giant planet in the γ Cephei bi-
nary system. The FMA method was also applied by Marzari
and Gallina (2016), finding a significant number of stable
planetary orbits in binaries beyond the critical distance from
the primary star as evaluated by H99. Fatuzzo et al. (2006),
by performing a huge set of numerical integrations of Earth-
like planetary orbits in binary systems, report the statistical

distribution of the survival times of planets in these systems.
The authors conclude that in principle some unstable planets
could have a sufficiently long survival time in the habitabil-
ity zone. In systems with multiple planets orbiting around
a single star, the minimum distance beyond which there are
no close encounters is determined by the Hill stability limit
(Marchal and Bozis 1982; Gladman 1993). All these studies
and results stimulated more specific works aimed on obser-
vational implications, including considerations on the habit-
ability regions (see, for instance Cuntz 2014, 2015).

Just a few planetary systems are detected in star cluster,
and so far only one (PSR B1620-26 b) in a globular cluster.
The survivability and characteristics of planetary systems in
star clusters was recently investigated by Cai et al. (2018,
2019), van Elteren et al. (2019), Stock et al. (2020). Among
the observations of planetary systems in binaries, the case
of ν Octantis is enigmatic since the planet is located outside
the zone of orbital stability, as estimated by H99 for pro-
grade orbits. To solve this puzzle, Eberle and Cuntz (2010)
suggested that the planet moves in a stable retrograde orbit.
In a system (K2-290) composed by three stars, retrograde
motions with respect to the primary star’s spin have been
recently observed (Hjorth et al. 2021).

The secular motion has been considered in different
works. In general, the classical analysis of secular mo-
tion is not accurate for objects in highly eccentric or-
bits; Michtchenko and Malhotra (2004) introduce a semi-
numerical approach to study the secular motion of two mas-
sive planets in co-planar orbits on high eccentricity (0.1-
0.6) orbits. Heppenheimer (1978) introduced an analytical
approximation for the three-body problem, providing a de-
scription of the secular orbital evolution for a planet in a
binary star system. To assess the range in parameter space
in which secular motion models provide accurate results,
Andrade-Ines et al. (2016) compared predictions for secular
motion based on first and second order analytical models
with N -body simulations. A semi-analytical correction to
the Heppenheimer (1978) solution was recently presented
by Andrade-Ines and Eggl (2017); this correction provides
a quite accurate description of the S-type planetary secular
motion in a given range of parameters.

Quarles et al. (2020) recently performed a numerical
study of the stability of S-type orbits following an approach
similar to that of Holman and Wiegert (1999) enlarging their
initial parameter space. In particular, Quarles et al. (2020)
probe the role of inclined planetary orbits by testing 4 incli-
nations for eccentric binaries, and 8 inclinations for circular
binaries, integrating the motion of Earth-mass particles with
a symplectic scheme. With respect to Quarles et al. (2020),
we probe a wider planet mass parameter space by simulating
the motion of test particles and planets with 1 and 30 Jupiter-
mass. Moreover, we provide a deeper characterization of the
trajectories by recording, for unstable orbits, ejections or
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Fig. 1 Distribution of the masses for the exoplanets discovered in bi-
nary star systems (from exoplanets.org). Although the majority of the
planets have a small mass, a significant fraction of them has a mass
equal to the mass of Jupiter or more

collisions with one of the two stars, and, for stable orbits by
evaluating the average distance of the planet from the unper-
turbed orbit, i.e. the orbit that the planet would have without
the secondary star.

The paper is organized as follows. In Sect. 2 we define the
dataset made up with a huge number planetary orbits that we
have numerically integrated at different initial conditions,
and we describe the data analysis. In Sect. 3 we report on
the results. We end up with the discussion in Sect. 4.

2 Method

2.1 Code and dataset

We approach the problem of the planet orbital stability in a
numerical way, by integrating the orbits under different ini-
tial conditions. We consider a system made up by two star A

(called primary) and B (called secondary) in motion around
their center of mass, with the planet in a co-planar orbit with
zero initial eccentricity. With unperturbed orbit we will call
the orbit around the primary star that the planet would have
without the presence of the secondary star; in our config-
uration the unperturbed orbit is circular. Two examples of
planetary orbits are shown in Fig. 2 (top panel). We notice
that the trajectory of the planet fills a ring nearby the un-
perturbed orbit, whose “thickness” is a consequence of the
gravitational field of the secondary star.

Many ordinary differential equations (ODEs) integration
methods can be applied to calculate the orbits of a grav-
itational N-body system (Aarseth 2003). As test particles
do not interact with each other, H99 simulate large num-
bers of single planet systems in one single integration. For
finite mass planets this approach is not possible and each

simulation must be managed individually. H99 use a mixed
approach for the numerical integration of the orbits. When
the planet is near the primary star, the symplectic integra-
tion scheme Wisdom and Holman (1991) is applied. This
technique is accurate for motion around a single star, but
also in the case of a binary star system it provides a rea-
sonable approximation, the gravity of the primary star being
dominant. Far from this condition, a Bulirsh-Stoer (BS) in-
tegration method is applied; this algorithm combines a fairly
accuracy at a relatively little computational cost (Press et al.
2007). To achieve a very accurate integration of the orbits, in
this study we will use the high-precision integration scheme
IAS15 (Rein and Spiegel 2015) throughout all the duration
of the motion. With IAS15, a 15th-order integrator, the sys-
tematics errors are kept below machine precision for long
term integration over at least 109 orbital time scale. IAS15
is an integration options available in REBOUND Rein and
Liu (2012), a modern open source code for gravitational dy-
namics. REBOUND is written in standard C99; an easy to
use and convenient python wrapper is also provided.

The planetary system is made up by two stars: primary
star A, and the secondary star B , in elliptical motion in
the center of mass frame of the two stars. The distance of
the planet from the primary star plays a crucial role on the
stability. Generally speaking, we expect that the farther the
planet is from the primary star, the stronger is the pertur-
bation due to the secondary star, so that the orbit can even-
tually become unstable. The unperturbed circular orbit is
characterized by the initial (transverse) speed of the planet
vP given by:

vP =
√

G
mA + mP

r
, (1)

where r is the initial distance of the planet from the primary
star, mP is the mass of the planet and mA is the mass of the
primary star. Following H99, we consider as free parameters
the mass ratio and the eccentricity of the binary star system,
and the initial semi-major axis of the planet orbit. The mass
ratio is defined as:

μ = mB

mA + mB

. (2)

For equal mass stars, μ = 0.5. The smaller the μ the
lower the gravitational perturbation due to the secondary
star. As in the study of H99, in our dataset the mass ra-
tio of the binary μ goes from 0.1 to 0.9 (with �μ = 0.1)
and the eccentricity e from 0 to 0.8 (with �e = 0.1). The
semi-major axis of the binary is equal to 1 AU, and the bi-
nary initial phase is at periapse or at apoapse. Unlike the
study of H99, where only planets with a negligible mass
are considered, we also study the motion of planets with
finite non negligible mass. We made numerical integra-
tion for a planet of infinitesimal mass and of mass equal
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to 1 and 30 Jupiter masses, which is a reasonable choice,
taking into account the mass distribution of observed for
planets in binary systems (Fig. 1). By putting all these de-
grees of freedom together, our dataset is made by more than
ten thousand orbits. Concerning the masses of the plan-
ets, Stevens and Gaudi (2013) proposed a general classi-
fication based on the following mass regimes: sub-Earths
(10−8M⊕–0.1M⊕), Earths/Super-Earths (0.1M⊕–10M⊕),
Neptunes (10M⊕–100M⊕), Jupiters (100M⊕–103M⊕),
Super-Jupiters (103M⊕–13MJup), brown dwarfs (13MJup–
0.07M�) and stellar companions (0.07M�–1M�).

The integration time extension is an important parameter
of the numerical study. Actually, long-term integration pro-
vides a greater confidence about the stability of a planetary
orbit, but this obviously implies a cost in term of compu-
tational time. The duration of the integration should be a
trade-off between the duration of the numerical integration
and the accuracy of the results. Following the studies of Hol-
man and Wiegert (1999), an integration time equal to 10 000
star orbits it is sufficient to obtain reliable results.

2.2 Analysis of the orbits

We classify the simulated orbits on the basis of their stability
according to the following definitions. We consider an orbit
as unstable if (i) the planet will collide in a finite time with
one of the two stars or (ii) it is ejected from the binary sys-
tem. We catch a collision if the star-planet distance reduces
to a solar radius, an ejection if the planet moves away from
the center of mass of the binary system by more than 100
AU. In these cases we record the orbit lifetime (aka survival
time), that is the time elapsed from the beginning of the orbit
to the collision or the escape. In this classification, we do not
explicitly refer to chaos, i.e. that sensitivity to initial condi-
tions that makes impossible an accurate long term prediction
of the position and velocity of the system particles. Orbits
that we classify as stable, can have chaotic behavior. In any
case, all the stable orbits we find in our sample are well con-
fined in a ring surrounding the unperturbed orbit (Fig. 2). In
general, stable orbits are characterized by how much they
deviate from the unperturbed orbit; the orbits close to the
primary star are almost circular, and little affected by the
gravity of the secondary star. A simple way to characterize
the stable orbits is through the difference �r of the distance
r of the planet from the primary star with respect to the ini-
tial value mediated along the orbit:

〈�r〉T = 〈r(t) − ri〉
ri

, (3)

where the average is made over the entire simulated or-
bit of the planet, so T corresponds to 10 000 orbital peri-
ods the binary. Hereafter this mean is referred simply as
�r . Of course, �r = 0 only if there is no interaction with

the secondary star (mB = 0). Musielak et al. (2005) classi-
fied the planetary orbits in binary on the basis of the value
of the above parameter (Eq. (3)): (1) stable if �r ≤ 5%,
(2) marginally stable if 5% < �r ≤ 35%, (3) unstable if
�r > 35%. The 5% threshold for stability is motivated by
some studies (e.g. Kasting et al. (1993), Underwood et al.
(2003)) which show that this limit is required for the Earth
to remain in the habitable zone and therefore allow the evo-
lution of life.

3 Results

We report in this section how the stability depend on the
mass of the planet, the initial semi-major axis of the plane-
tary orbit, and on the mass ratio and eccentricity of the bi-
nary star system.

3.1 Collisions and ejections

We introduce with some examples2 the statistics of possible
collisions of the planet with one of the two stars of the bi-
nary and of ejections from the binary system. As a demo,
we built a real-time animation based on a 4th order Runke-
Kutta integrator.3 The two orbits shown on the top left and
right panel of Fig. 2 are classified as stable and marginally
stable, on the basis of their estimated �r (see Sect. 2.2).
As the full planetary orbit is too long to be displayed effec-
tively, the plot is obtained integrating the final part of motion
within a time interval T = 30 000 days. We notice that de-
spite �r of the two orbits differ significantly, the planetary
orbit shows similar characteristics.

The bottom left panel of Fig. 2 shows a collision with the
secondary star. The orbit is the result of the numerical inte-
gration from the initial time to the star collision. The bottom
right panel of Fig. 2 shows a orbit where the planet is ejected
away from the binary. It is interesting to notice that, before
escaping, the planet moves in an outer orbit. This leads to the
hypothesis that, under certain conditions, a transition from
an internal (S-type) orbit to an external (P-type) orbit could
occur. An interesting orbit is shown in Fig. 3. In this case,
before being ejected away from the binary system, the mas-
sive planet scatters with the secondary star, producing a sig-
nificant perturbation of the stellar orbit. As the consequence
of the interaction planet-star, the star moves from a substan-
tially circular orbit to a wider elliptical orbit.

Figure 4 reports the statistics of planet-star collision and
ejection events for a binary with e = 0.5 and μ = 0.5. In this
particular case, the number of collisions and ejections do not
depend on the planetary mass.

2In the examples shown, the distance between the two stars is equal to
10 AU.
3Available at the url https://giovixo.github.io/planets/; the source code
can be accessed with the DOI https://zenodo.org/record/4014681.

https://giovixo.github.io/planets/
https://zenodo.org/record/4014681
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Fig. 2 Top left and right panels: a stable (�r = 3.9%), and a
marginally stable (�r = 7.9%) orbit (see Sect. 2.2). Bottom left, right
panels: a collision of the planet with the secondary star, and an ejec-

tion of the planet away from the binary. The red circle is the orbit of
the secondary star in the frame centered in the primary, the blue circle
is the orbit of the unperturbed planetary motion

3.2 Stability of the orbits

For a given binary, the planetary motion depends mainly on
the initial semi-major axis a of the planetary orbit. In gen-
eral, a planet with a small a, i.e. revolving close to the pri-
mary star, has a stable orbit. We apply here the idea, intro-
duced by H99, of critical semi-major axis ac as threshold
from stability to instability, to evaluate how orbital stability
depends on the mass ratio μ and the eccentricity e of the
binary star system. We notice that ac is well defined only if
the boundary between the region of stability (where a ≤ ac)
and instability where (a > ac) is sharp. In Tables 1 and 2
we report the results for a binary star system with e = 0.5
and μ = 0.5; in Table 1 the binary is initially at periapse,
in Table 2 the binary is initially at apoapse. Our choice of
considering eight values (0, π/4, π/2, (3/4)π , π , (5/4)π ,

(3/2)π , (7/4)π , 2π ) for the initial longitude of the planet
allows a robust estimate of ac = 0.12, that is the same value
obtained by H99. We characterize the stable orbits by the
value of �r (see end of Sect. 2). For stable orbits, in some
cases we estimate a value of �r greater than 5%, which de-
fine a marginally stable orbits, according to the classifica-
tion introduced for the first time by Musielak et al. (2005).
For unstable orbits, we evaluate whether i) there is a col-
lision with the primary star (CA) or ii) with the secondary
star (CB), or iii) if the planet is ejected away from the bi-
nary star system (EJ). In the particular case of a binary with
μ = 0.5 and e = 0.5 (Tables 1 and 2), most of the instabili-
ties correspond to collisions with the primary star, but there
are also ejections and a few collisions with the secondary
star. We obtain different survival times than H99, likely due
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Table 1 Characterization of the planetary orbits for a given value of
mass ratio μ = 0.5, and eccentricity of the binary e = 0.5. a is the ini-
tial major semi-axis or the planetary orbit. The calculation is made for
8 equispaced longitudes (P1-P8) with the binary initially at periapse.
Each cell in this table is associated with a complete simulation of a
planetary orbit. The critical semi-major axis is ac = 0.12. For stable

orbits (a ≤ 0.12) the value of �r is reported. For unstable orbits, we
use a code to indicate whether the instability is due to a collision with
the primary or secondary star (CA, CB) or if the planet is ejected away
(EJ). The survival time of the orbit in units of 10 binary periods is
quoted in brackets

Planet of negligible mass, μ = 0.5, e = 0.5

a (AU) Binary initially at periapse

P1 P2 P3 P4 P5 P6 P7 P8

0.17 CA(4) CA(< 1) CA(< 1) CB(1) CA(1) CA(1) CA(< 1) EJ(1)

0.16 EJ(4) CA(2) CA(< 1) EJ(1) CA(1) CA(2) EJ(6) CA(< 1)

0.15 CA(4) CA(5) CA(< 1) CA(2) CA(6) CA(2) EJ(2) CA(2)

0.14 CA(86) CA(14) EJ(11) CA(5) CA(135) CA(16) CA(1) EJ(8)

0.13 CA(221) CA(193) CA(11) EJ(205) 3.6 CA(139) CA(38) EJ(23)

0.12 7.7 7.3 8.1 5.8 3.5 5.9 7.7 8.0

0.11 6.4 6.1 5.7 4.2 3.8 4.2 5.7 6.1

0.10 5.7 5.4 5.2 4.2 3.9 4.2 5.2 5.4

0.09 5.2 4.9 4.8 4.2 4.0 4.2 4.8 4.9

0.08 4.7 4.5 4.4 4.1 3.9 4.1 4.4 4.5

Table 2 Characterization of the planetary orbits for a given value of mass ratio μ = 0.5, and eccentricity of the binary e = 0.5 (see Table 1). The
calculation is made for 8 equispaced longitudes (A1-A8) with the binary initially at apoapse

Planet of negligible mass, μ = 0.5, e = 0.5

a (AU) Binary initially at apoapse

A1 A2 A3 A4 A5 A6 A7 A8

0.17 CA(3) CA(1) EJ(3) CA(< 1) CA(2) CA(3) CA(2) CA(< 1)

0.16 CA(2) CB(1) EJ(3) CA(1) EJ(6) CA(3) CA(1) EJ(3)

0.15 CA(1) CA(9) CA(2) CA(1) CA(9) CA(3) CA(1) CA(1)

0.14 2.3 CA(36) EJ(50) CA(15) CA(16) CA(34) CA(10) CA(20)

0.13 CA(235) CA(665) 5.5 6.6 CA(681) CA(149) CA(770) 5.8

0.12 4.8 4.9 5.3 5.2 6.4 5.4 5.1 5.1

0.11 4.8 4.8 4.9 5.0 5.0 5.0 4.9 4.8

0.10 5.0 5.0 4.9 4.9 4.8 4.9 4.9 5.0

0.09 4.7 4.8 4.8 4.7 4.7 4.7 4.8 4.8

0.08 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

to the different, and much more accurate, integration scheme
we adopted. We find some stable orbits beyond the critical
semi-major axis (ac = 0.12): one is quoted in Table 1 with
a = 0.13, four are quoted in Table 2 with a = 0.13,0.14. We
do not find mean motion resonances in these orbits.

The region of stability (a < ac), in which all the orbits
are stable at any longitude, is well defined for all the bi-
naries systems that we considered. The dependence of the
critical semi-major axis ac on the mass ratio μ (from 0.1
to 0.9) and eccentricity e (from 0 to 0.8) of the binary star
system for a planet of negligible mass and equal of 1 and
30 Jupiter mass is reported in Table 3. The results for plan-

ets of negligible mass are in agreement with H99. In most
cases, we find that the value of ac does not depend on the
mass of the planet, with the exception of some entries, that
show different values of ac, especially for 30MJ . However
this result is not reported in Table 3 with a high statistical
significance. The large error is due to the fact that ac val-
ues are using a �ac step equal to 0.01 (see Table 1 and 2).
In order to obtain a greater resolution, we recalculated ac in
four cases using a smaller �ac step (Table 4). The new out-
comes confirm a significant dependence for planets of mass
equal to 30Mj . We find that a mass of the planet equal to
Mj does not produce significant effects in our simulations,
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Table 3 Critical semi-major axis ac for a planet mass (m) of 1, 30
Jupiter mass (MJ), and for a planet of negligible mass (test particle),
as a function of the mass ratio μ and the eccentricity e of the binary.

The text is in boldface when the ac estimation differs from the value
obtained for a test particle

Critical semi-major axis (mp = 0,1,30 MJ)

e m (MJ) μ

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.0 30 0.43 0.36 0.38 0.31 0.27 0.23 0.20 0.17 0.13

1 0.45 0.37 0.37 0.30 0.26 0.23 0.20 0.16 0.13

0 0.45 0.38 0.37 0.30 0.26 0.23 0.20 0.16 0.13

0.1 30 0.37 0.31 0.30 0.28 0.24 0.21 0.18 0.15 0.11

1 0.37 0.34 0.30 0.27 0.24 0.21 0.18 0.15 0.11

0 0.37 0.32 0.29 0.27 0.24 0.21 0.18 0.15 0.11

0.2 30 0.32 0.27 0.26 0.23 0.20 0.19 0.16 0.13 0.10

1 0.32 0.27 0.26 0.23 0.20 0.19 0.16 0.13 0.10

0 0.32 0.27 0.25 0.23 0.21 0.19 0.16 0.13 0.10

0.3 30 0.26 0.24 0.21 0.19 0.18 0.16 0.14 0.12 0.09

1 0.28 0.24 0.21 0.19 0.17 0.16 0.14 0.12 0.09

0 0.28 0.24 0.21 0.19 0.18 0.16 0.14 0.12 0.09

0.4 30 0.21 0.20 0.18 0.16 0.14 0.13 0.12 0.10 0.07

1 0.23 0.20 0.18 0.16 0.14 0.13 0.11 0.10 0.07

0 0.23 0.20 0.18 0.16 0.14 0.13 0.11 0.10 0.07

0.5 30 0.16 0.15 0.14 0.13 0.12 0.10 0.09 0.08 0.06

1 0.19 0.16 0.14 0.13 0.12 0.10 0.09 0.08 0.06

0 0.18 0.16 0.14 0.13 0.12 0.10 0.09 0.08 0.06

0.6 30 0.12 0.11 0.10 0.09 0.09 0.08 0.07 0.06 0.050

1 0.13 0.11 0.11 0.10 0.09 0.08 0.07 0.06 0.050

0 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.045

0.7 30 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.045 0.035

1 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.045 0.035

0 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.045 0.035

0.8 30 0.05 0.04 0.04 0.04 0.04 0.035 0.03 0.025 0.0235

1 0.05 0.05 0.04 0.04 0.04 0.035 0.03 0.025 0.0230

0 0.05 0.05 0.04 0.04 0.04 0.035 0.03 0.025 0.0230

with the exception of the (e,μ) = (0.2,0.50) configuration,
where however the significance is quite low. In all the 81
binary configurations we find that a fraction of the orbits
are stable beyond the critical semi-major axis. Considering
a narrow neighborhood of ac, the number of stable orbits
strongly depends on the (μ, e) value. In the case reported
in Tables 1 and 2 (μ = 0.5, e = 0.5, ac = 0.12) there are 4
stable orbits with a = 0.13; the fraction of stable orbits in
this case is 4 over 16 (25%). The mean number of stable
orbits beyond ac over all binary configurations does not de-
pend significantly on the mass of the planet. Averaging over

all binary configurations, the fraction of stable orbits in a
narrow neighborhood of ac is 55%.

4 Discussion

In our numerical study, we simulated more than ten thousand
S-type orbits of planets in a binary star system, using a high
precision, 15th order, integration scheme. We estimated the
critical semi-major axis, which defines the size of the stable
regions, as a function of the mass ratio and orbital eccen-
tricity of the binary star system hosting the planet, finding
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Table 4 High precision
estimates of the critical
semi-major axis ac for the
(e,μ) values reported in the
highlighted entries of Table 3

Critical semi-major axis (mp = 0,1,30 MJ)

e m (MJ) μ

0.20 0.50 0.90

0.0 30 0.368 ± 0.002 – –

1 0.378 ± 0.002 – –

0 0.380 ± 0.002 – –

0.2 30 – 0.208 ± 0.002 –

1 – 0.208 ± 0.002 –

0 – 0.210 ± 0.002 –

0.6 30 0.114 ± 0.002 – 0.048 ± 0.002

1 0.118 ± 0.002 – 0.048 ± 0.002

0 0.118 ± 0.002 – 0.049 ± 0.002

Fig. 3 A peculiar unstable orbit of a planet of 30 Jupiter masses. At
first, the planet moves away from the main star to be captured by the
gravitational field of the secondary star and ejected away from the sys-
tem. The orbit of the secondary star is significantly modified into an
elliptic orbit

results in agreement with H99 for planets with negligible
mass.

We also studied the motion for planets with a mass of 1
and 30 Jupiter. This is a reasonable choice, because it covers
the observational data. Indeed, looking at the distribution of
the masses measured in binary systems (Fig. 1), we note that
the majority of the planets have a mass equal to about two
hundredths of the Jupiter mass, with a distribution of masses
extending up to 16.1 Jupiter mass (Liu et al. 2008). Consid-
ering all the planetary systems (i.e. including those around
single stars), the largest mass reported in the data archive
(exoplanets.org) is equal to 22.6 Jupiter mass (Sato et al.
2010); in this extreme case the small mass tertiary around
the binary falls in the brown-dwarf regime.

Fig. 4 Synopsis of stability of the studied orbits for three different val-
ues of the planet mass (0, 1, 30 Jupiter mass) in a binary with μ = 0.5,
e = 0.5. ST indicate stable and marginally stable orbits, CA and CB in-
dicate orbits leading to a collision with the primary or secondary star.
Orbits leading the planet to be ejected away from the binary star system
are labelled with EJ. Error bars represent 1σ confidence intervals

Marzari and Gallina (2016), using the FMA method to
select stable orbits, found a significant numbers stable plan-
etary orbits in binaries beyond this critical distance from the
primary star. In general, this result does not disagree with
our simulations, since we find in many cases stable orbits be-
yond the critical distance, as shown for example in Tables 1
and 2 for two stars of equal mass and eccentricity equal 0.5.
For very massive objects (30Mj ) we find differences in the
ac estimation of the order of 3% compared with test (negli-
gible mass) particles (see Table 4). It is worth noting that we
find these dependence on the planetary mass for low binary
mass ratio μ. This is expected, since in these cases the mass
of the secondary star is smaller than that of the primary star,
so where the mass of the planet plays a more important role.

For all the stable orbits we estimated the spread (�r)
of the distance of the planet from the primary star with re-
spect to its initial value, showing that a fraction of these or-
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bits is only marginally stable, according with the classifica-
tion of Musielak et al. (2005). Our data analysis also pro-
duces statistics of planet-star collisions and planetary ejec-
tions away from the binary, in the cases of planet mass equal
to 0,1,30 Jupiter masses. In the particular case of stars of
equal mass and moving on an e = 0.5 orbit, for all planet
masses studied here, the largest fraction of unstable orbits
result into a collision of the planet onto the primary star,
followed by ejection and collisions onto the secondary. A
planet-star collision might result in the pollution of stars
with planetary material, which, in principle, would be de-
tectable by accurate spectroscopic measurements. The mea-
surements of iron abundance for a sample of 23 wide bina-
ries reported by Desidera et al. (2004) seem to rule out a
contamination with a mass of iron greater than 1 Earth Mass
during the Main Sequence lifetime of the stars. The instabil-
ity of planetary orbits in double star systems with a final fate
as ejection of the planet away from the binary system has an
relevance in increasing the number of freely-floating planets
as detected by gravitational microlensing (Sumi et al. 2011).

In terms of the parameter space, we made some assump-
tions. We considered binary systems hosting a single planet
moving on an unperturbed circular co-planar orbit around
the primary star. For the data analysis, we implemented
a code based on standard Python tools (numpy, pandas).
A joint application of the high-order integration code and
our data analysis tools on a High Performance Computing
(HPC) platform will allow a significant extension of the
space of parameters to investigate. An interesting approach
to analyse the large amount of output data that will be pro-
duced is based on Machine Learning techniques (see e.g.
Tamayo et al. (2016)).

An interesting perspective is to investigate our results in
the scenario of the subresonances theory. Indeed, the planet
experiences resonant perturbations from the companion star.
Starting from the observation that planet may be dislodged
from its host star if it is simultaneously affected by two or
more resonances, Mudryk and Wu (2006) found that over-
lap between subresonances lying within mean-motion reso-
nances can explain the boundary of orbital stability within
binary systems.
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