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Abstract The duration distribution of 408 GRBs with mea-
sured both duration T90 and redshift z is examined. Mix-
tures of a number of distributions (standard normal, skew-
normal, sinh-arcsinh, and alpha-skew-normal) are fitted to
the observed and intrinsic durations using the maximum log-
likelihood method. The best fit is chosen via the Akaike in-
formation criterion. The aim of this work is to assess the
presence of the presumed intermediate GRB class, and to
provide a phenomenological model more appropriate than
the common mixture of standard Gaussians. While logT obs

90
are well described by a truly trimodal fit, after moving to the
rest frame the statistically most significant fit is unimodal.
To trace the source of this discrepancy, 334 GRBs observed
only by Swift/BAT are examined in the same way. In the ob-
server frame, this results in a number of statistically plausi-
ble descriptions, being uni- and bimodal, and with the num-
ber of components ranging from one to three. After moving
to the rest frame, no unambiguous conclusions may be put
forward. It is concluded that the size of the sample is not big
enough to infer reliably GRB properties based on a univari-
ate statistical reasoning only.

Keywords Gamma ray burst: general · Methods: data
analysis · Methods: statistical

1 Introduction

Gamma-ray bursts (GRBs) are the most powerful explosions
known in the Universe, with an emission peak in the 200–
500 keV region, and the total isotropic energy released of the
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order 1051–1054 ergs (for recent reviews, see Nakar 2007;
Zhang 2011; Gehrels and Razzaque 2013; Berger 2014;
Mészáros and Rees 2015). They are also one of the most
distant astronomical objects discovered, with the highest
known redshift of z ∼ 9.4 measured for GRB090429B (Cuc-
chiara et al. 2011). Mazets et al. (1981) first pointed out hints
for a bimodal distribution of Tb (taken to be the time interval
within which fall 80–90 % of the measured GRB’s intensity)
drawn for 143 events detected in the KONUS experiment.
Kouveliotou et al. (1993) also found a bimodal structure in
the logT90 distribution of 222 events from CGRO/BATSE,
based on which GRBs are commonly divided into short
(T90 < 2 s) and long (T90 > 2 s) classes, where T90 is
the time interval from 5 % to 95 % of the accumulated
fluence. While generally short GRBs are of merger origin
(Nakar 2007) and long ones come from collapsars (Woosley
and Bloom 2006), this classification is imperfect due to a
large overlap in duration distributions of the two popula-
tions (Lü et al. 2010; Bromberg et al. 2011, 2013; Shah-
moradi 2013; Shahmoradi and Nemiroff 2015; Tarnopolski
2015c). Horváth (1998) and Mukherjee et al. (1998) inde-
pendently discovered a third peak in the duration distribu-
tion in the BATSE 3B catalog, located between the short and
long groups, and the statistical existence of this intermediate
class was claimed to be supported (Horváth 2002) with the
use of BATSE 4B data. Interestingly, using clustering tech-
niques, Chattopadhyay et al. (2007) established the optimal
number of classes to be three, too. Also in Swift/BAT data
evidence for a third component in logT90 was announced
(Horváth et al. 2008; Zhang and Choi 2008; Huja et al. 2009;
Horváth et al. 2010; Zitouni et al. 2015). Other datasets, i.e.
RHESSI (Řípa et al. 2009) and BeppoSAX (Horváth 2009),
are both in agreement with earlier results regarding the bi-
modal distribution, and the detection of a third component
was established on a lower, compared to BATSE and Swift,
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significance level. Thence, four different satellites provided
hints about the existence of a third class of GRBs.

Those conclusions were based on the finding that a mix-
ture of three standard Gaussians (a 3-G) is a better fit than a
mixture of two Gaussians (a 2-G). This is not surprising, be-
cause adding parameters to a nested model always results in
a better fit (in the sense of a lower χ2 or a higher maximum
log-likelihood L) due to more freedom given to the model
to follow the data. The important questions are whether this
improvement is statistically significant, can the three com-
ponents be related to physically distinct classes, and whether
the model is an appropriate one—is there a model that is
a better fit? (See Tarnopolski 2015a, 2015b for a discus-
sion.) However, even quantifying the relative improvement
via p-values1 is not a definite detection of another physi-
cal class of astronomical objects. All of the post-BATSE
3B fits were bimodal, not trimodal, even if comprised of
three components. The third peak in the BATSE 3B sam-
ple (Horváth 1998) was smeared out with the BATSE 4B
catalog when more data was gathered (see Fig. 5 in Zitouni
et al. 2015). It was suggested by Zitouni et al. (2015) that
the duration distribution corresponding to the collapsar sce-
nario might not necessarily be symmetrical because of a
non-symmetrical distribution of envelope masses of the pro-
genitors. Specifically, it was shown by Tarnopolski (2015a)
that the logT90 distribution of GRBs detected by Fermi is
also bimodal for several binnings. Moreover, a number of
intrinsically skewed distributions were fitted to the data of
BATSE, Swift and Fermi (Tarnopolski 2015b), and it was
found that mixtures of two skewed components follow the
data at least as good (BATSE and Swift), or better (Fermi)
than a conventionally used 3-G, and that they are bimodal
as well (in the sense of having two local maxima; Schilling
et al. 2002). Generally, n-modality is commonly associated
with n populations underlying a distribution. Hence, the ex-
istence of an intermediate GRB class is unlikely.

The analysis of the observed durations was performed
by many authors, as reviewed above. However, the intrin-
sic duration—the one in the rest frame—of a GRB is af-
fected by its cosmological distance, and is shorter than the
observed one:

T int
90 = T obs

90

1 + z
. (1)

1If one has two fits with χ2(ν1) and χ2(ν2), then their difference, �χ2,
is distributed like χ2(�ν), where �ν is the difference in the degrees of
freedom (see Appendix A in Band et al. 1997, and Horváth 1998). Al-
ternatively, if one uses the log-likelihood to assess the goodness of fit,
then twice their difference, 2(L1 −L2), is distributed like χ2(�ν). If a
p-value associated with either of the two versions of χ2(�ν) does not
exceed the significance level α, one of the fits (with lower χ2 or higher
L) is statistically better than the other (Horváth 2002). It is crucial to
note that these methods may be applied to nested models only.

Considering the median redshift of long GRBs, z̃long ≈ 2, it
is evident that GRBs with T obs

90 � 6 s have an intrinsic du-
ration generally smaller than 2 s, which makes them short
ones. Note that the classification of short GRBs is the same
in both the observer and rest frames. The analysis of the T int

90
distribution was performed rarely due to a small number of
GRBs with measured redshift: Zhang and Choi (2008) ex-
amined 95, Huja et al. (2009) analyzed 130, and Zitouni
et al. (2015) investigated 248 Swift GRBs. While Zhang and
Choi (2008) focused on the apparent bimodality, and Huja
et al. (2009) did not translate the observed durations to the
rest frame, Zitouni et al. (2015) found that a 3-G follows the
Swift data better than a 2-G (in observer as well as in the
rest frame; see their Figs. 6 and 7). However, in both frames
the distributions were bimodal, yet apparently skewed, and
hence the existence of an intermediate class is still unlikely.
The plausible explanation of this phenomenon is that there
are two GRB classes with intrinsically non-symmetrical du-
ration distributions.

The aim of this article is to perform a statistical anal-
ysis of the GRBs with measured redshift in order to test
against the existence of the intermediate GRB class. Mix-
tures of various distributions (standard Gaussians, skew-
normal, sinh-arcsinh and alpha-skew-normal) are applied
to verify whether the statistical significance of a three-
Gaussian fit might by challenged by a mixture of skewed
distributions with only two components. Both the observed
and intrinsic durations are examined.

This article is organized as follows. In Sect. 2 the dataset,
fitting methods and the properties of the examined distribu-
tions are described as outlined by Tarnopolski (2015b). In
Sect. 3 the study of the sample of all GRBs with measured
redshift is presented. This is followed by an analysis of Swift
GRBs with known redshift in Sect. 4. Section 5 is devoted
to discussion, and in Sect. 6 concluding remarks are given.

2 Data and methods

2.1 Dataset

A sample of 408 GRBs with measured both the observed du-
rations T obs

90 and redshifts z is used.2 It contains 334 GRBs
detected by Swift, constituting the second sample examined
herein. The sample of all GRBs consists of 386 long GRBs
and 22 short ones. The latter all come from Swift observa-
tions, except one that was detected by HETE (GRB040924).
A scatter plot of the data on a redshift–logarithm of dura-
tion plane is drawn in Fig. 1. The median redshifts for short
and long GRBs are equal to z̃short = 0.72 and z̃long = 1.76,
respectively. The intrinsic durations are calculated accord-
ing to Eq. (1). Distributions of the logT90 for the observed

2http://www.astro.caltech.edu/grbox/grbox.php.
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Fig. 1 A scatter plot of the
redshifts versus the observed
durations. Vertical dotted line
marks the limitting value of 2 s
between short and long GRBs,
and the horizontal dashed lines
denote the medians of the
respective classes, with values
written in the plot. All GRBs
with known both z and T obs

90
are shown

Fig. 2 Distributions of the observed (dashed red) and intrinsic (dotted
blue) durations in the sample of all (408) GRBs

and intrinsic durations are examined hereinafter, and are dis-
played in Fig. 2 for the sample of all GRBs.

2.2 Fitting method

Two standard fitting techniques are commonly applied:
χ2 fitting and maximum likelihood method (ML). For the
first, data needs to be binned, and despite various bin-
ning rules are known (e.g. Freedman-Diaconis, Scott, Knuth

etc.), they still leave place for ambiguity, as it might hap-
pen that the fit may be statistically significant on a given
significance level for a number of binnings (Huja and Řípa
2009; Koen and Bere 2012; Tarnopolski 2015a). The ML
method is not affected by this issue and is therefore applied
herein. However, for display purposes, the binning was cho-
sen based on the Freedman-Diaconis rule.

Having a distribution with a probability density function
(PDF) given by f = f (x; θ) (possibly a mixture), where
θ = {θi}pi=1 is a set of p parameters, the log-likelihood func-
tion is defined as

Lp(θ) =
N∑

i=1

lnf (xi; θ), (2)

where {xi}Ni=1 are the datapoints from the sample to which
a distribution is fitted. The fitting is performed by searching
a set of parameters θ̂ for which the log-likelihood is maxi-
mized (Kendall and Stuart 1973). When nested models are
considered, the maximal value of the log-likelihood func-
tion, Lmax ≡ Lp(θ̂), increases when the number of parame-
ters p increases.

For nested as well as non-nested models, the Akaike in-
formation criterion (AIC) (Akaike 1974; Burnham and An-
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derson 2004; Liddle 2007; Tarnopolski 2015b) may be ap-
plied. The AIC is defined as

AIC = 2p − 2Lmax. (3)

A preferred model is the one that minimizes AIC. The for-
mulation of AIC penalizes the use of an excessive number of
parameters, hence discourages overfitting. It prefers models
with fewer parameters, as long as the others do not provide
a substantially better fit. The expression for AIC consists of
two competing terms: the first measuring the model com-
plexity (number of free parameters) and the second mea-
suring the goodness of fit (or more precisely, the lack of
thereof). Among candidate models with AICi , let AICmin de-
note the smallest. Then,

Pri = exp

(
−�i

2

)
, (4)

where �i = AICi − AICmin, can be interpreted as the rel-
ative (compared to AICmin) probability that the i-th model
minimizes the AIC.3

The AIC is suitable when N/p is large, i.e. when
N/p > 40 (Burnham and Anderson 2004, see also refer-
ences therein). When this condition is not fulfilled, a sec-
ond order bias correction is introduced, resulting in a small-
sample version of the AIC, called AICc:

AICc = 2p − 2Lmax + 2p(p + 1)

N − p − 1
. (5)

The relative probability is computed similarly to when AIC
is used, i.e. Eq. (4) is valid when one takes �i = AICc,i −
AICc,min. Thence,

Pri = exp

(
−AICc,i − AICc,min

2

)
. (6)

It is important to note that this method allows to choose
a model that is best among the chosen ones, but does not
allow to state that this model is the best among all possible.
Hence, the probabilities computed by means of Eq. (6) are
the relative, with respect to a model with AICc,min, probabil-
ities that the data is better described by a model with AICc,i .
What is essential in assessing the goodness of a fit in the
AIC method is the difference, �i = AICc,i − AICc,min, not
the absolute values of the AICc,i .4 If �i < 2, then there is
substantial support for the i-th model, and the proposition

3Relative probabilities of the models normalized to unity are called the
Akaike weights, wi . In Bayesian language, Akaike weight corresponds
to the posterior probability of a model (under assumption of different
prior probabilities; Biesiada 2007).
4The AIC value contains scaling constants coming from the log-
likelihood L. One might consider �i = AICc,i − AICc,min a rescaling
transformation that forces the best model to have �min = 0, and so �i

are free of such scaling constants (Burnham and Anderson 2004).

that it is a more proper description is highly probable. If
2 < �i < 4, then there is strong support for the i-th model.
When 4 < �i < 7, there is considerably less support, and
models with �i > 10 have essentially no support (Burnham
and Anderson 2004; Biesiada 2007).

2.3 Distributions and their properties

In nearly all researches conducted so far on the GRB dura-
tion distribution, three components were found to describe
the observed distribution statistically better than a mixture
of two components. However, in all previous analyses a mix-
ture of standard (non-skewed) Gaussians was fitted. This
might possibly lead to erroneous conclusions, as describ-
ing a non-symmetrical distribution by a mixture of symmet-
rical components will eventually lead to overfitting (some
of the two-component skewed distributions considered be-
low are characterized by fewer free parameters than a stan-
dard three-Gaussian). Moreover, Zitouni et al. (2015) sug-
gested that the duration distribution of long GRBs might not
necessarily be symmetrical because of a non-symmetrical
distribution of envelope masses of the progenitors. Since
McBreen et al. (1994) observed that the distribution of
logT90 may be in form of a mixture of standard Gaussians,
many authors followed this approach and also restrained the
analysis to non-skewed normal distributions (Koshut et al.
1996; Kouveliotou et al. 1996; Horváth 1998, 2002; Horváth
et al. 2008, 2010; Horváth 2009; Zhang and Choi 2008;
Huja et al. 2009; Huja and Řípa 2009; Řípa et al. 2009;
Koen and Bere 2012; Barnacka and Loeb 2014; Tarnopolski
2015a). Therefore, in light of the suggestion of Zitouni et al.
(2015) that the T90 distributions underlying the two well-
established GRB classes (Kouveliotou et al. 1993; Woosley
and Bloom 2006; Nakar 2007) may not be symmetrical
(Tarnopolski 2015a), the following distributions are consid-
ered herein.

A mixture of k standard normal (Gaussian) N (μ,σ 2)

distributions:

f
(N )
k (x) =

k∑

i=1

Aiϕ

(
x − μi

σi

)

=
k∑

i=1

Ai√
2πσi

exp

(
− (x − μi)

2

2σ 2
i

)
, (7)

being described by p = 3k − 1 free parameters: k pairs
(μi, σi) and k − 1 weights Ai , satisfying

∑k
i=1 Ai = 1.

Skewness of each component is γ
(N )
1 = 0.

A mixture of k skew normal (SN) distributions (O’Hagan
and Leonard 1976; Azzalini 1985):

f
(SN)
k (x) =

k∑

i=1

2Aiϕ

(
x − μi

σi

)
Φ

(
αi

x − μi

σi

)
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=
k∑

i=1

2Ai√
2πσi

exp

(
− (x − μi)

2

2σ 2
i

)

× 1

2

[
1 + erf

(
αi

x − μi√
2σi

)]
, (8)

described by p = 4k − 1 parameters. Skewness of an SN
distribution is

γ
(SN)
1 = 4 − π

2

(ζ
√

2/π)3

(1 − 2ζ 2/π)3/2
,

where ζ = α√
1+α2

, hence the skewness γ
(SN)
1 is solely

based on the shape parameter α, and is limited to the in-

terval (−1,1). The mean is given by μ + σζ

√
2
π

. When
α = 0, the SN distribution is reduced to a standard Gaus-
sian, N (μ,σ 2), due to Φ(0) = 1/2.

A mixture of k sinh-arcsinh (SAS) distributions (Jones
and Pewsey 2009):

f
(SAS)
k (x)

=
k∑

i=1

Ai

σi

[
1 +

(
x − μi

σi

)2]− 1
2

× βi cosh

[
βi sinh−1

(
x − μi

σi

)
− δi

]

× exp

[
−1

2
sinh

[
βi sinh−1

(
x − μi

σi

)
− δi

]2]
, (9)

being described by p = 5k − 1 parameters. It turns out that
skewness of the SAS distribution increases with increas-
ing δ, positive skewness corresponding to δ > 0. Tailweight
decreases with increasing β , β < 1 yielding heavier tails
than the normal distribution, and β > 1 yielding lighter tails.
With δ = 0 and β = 1, the SAS distribution reduces to a
standard Gaussian, N (μ,σ 2). Skewness of a SAS distribu-
tion is

γ
(SAS)
1 = 1

4

[
sinh

(
3δ

β

)
P3/β − 3 sinh

(
δ

β

)
P1/β

]
,

where

Pq = e1/4

√
8π

[
K(q+1)/2(1/4) + K(q−1)/2(1/4)

]
.

Here, K is the modified Bessel function of the second kind.
The mean is given by μ + σ sinh(δ/β)P1/β .

A mixture of k alpha-skew-normal (ASN) distributions
(Elal-Olivero 2010):

f
(ASN)
k (x) =

k∑

i=1

Ai

(1 − αi
x−μi

σi
)2 + 1

2 + α2
i

ϕ

(
x − μi

σi

)

=
k∑

i=1

Ai

(1 − αi
x−μi

σi
)2 + 1

2 + α2
i

× 1√
2πσi

exp

(
− (x − μi)

2

2σ 2
i

)
, (10)

described by p = 4k − 1 parameters. Skewness of an ASN
distribution is

γ
(ASN)
1 = 12α5 + 8α3

(3α4 + 4α2 + 4)3/2
,

and is limited to the interval (−0.811,0.811). The mean is
given by μ− 2ασ

2+α2 . For α ∈ (−1.34,1.34) the distribution is
unimodal, and bimodal otherwise.

3 Study of the complete z sample

The biggest number of free parameters among the exam-
ined PDFs is p = 14 in the case of a 3-SAS. Combined with
N = 408 for all GRBs, or N = 334 for the Swift subsample,
this implies N/p < 40. Therefore, in what follows the AICc

is used instead of the AIC.
First, the sample of 408 GRBs with measured both red-

shift and duration is examined. The PDFs, given by Eqs.
(7)–(10), with k = 2 or 3, are fitted to the logT90 distribu-
tions using the ML method from Sect. 2.2. Next, the AICc

is calculated according to Eq. (5). The best fit among the
examined is the one that yields the smallest AICc.

The results of the fitting procedure applied to the ob-
served durations are gathered in Table 1, and the fits, in
graphical form, are displayed in Fig. 3. Contrary to previ-
ous researches, all of the three-component PDFs (3-G, 3-SN,
and 3-SAS, where the support for the latter is weak) are tri-
modal, and the third peak is located in the area of the pre-
sumed intermediate GRB class, i.e. within the range 2–10 s.
To assess its significance more easily, the AICc and rela-
tive probabilities are plotted in Fig. 4. The PDF with mini-
mal AICc is a conventional 3-G, and the second best fit is a
3-SN, with a relative probability of 90.6 %. A 2-SN, how-
ever, has substantial support, too, due to �2-SN = 1.393. The
remaining two-component fits (2-G and 2-SAS), as well as
a 1-ASN, yield a strong support having 2 < �i < 4, but the
evidence is weaker than for the former three models. The
remaining, 3-SAS and 2-ASN, have considerably less or no
support.

The picture revealed by the rest frame duration distribu-
tion, T int

90 , is different. As displayed in Fig. 5, the 3-SN and
3-SAS are also trimodal, and the 3-G, with the durations be-
ing systematically shifted left-wards comparing with the ob-
served durations, lost its third peak, leaving a bimodal dis-
tribution with a prominent shoulder in the area of the pre-
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Table 1 Parameters of the fits for the observed durations. Label corresponds to labels from Figs. 3 and 4. The smallest AICc is marked in bold,
and p is the number of parameters in a model

Label Dist. i μi σi αi δi βi Ai Lmax AICc �AICc Pr p

(a) 2-G 1 0.607 0.777 – – – 0.156 −414.032 838.214 3.505 0.173 5

2 1.702 0.531 – – – 0.844

(b) 3-G 1 −0.192 0.447 – – – 0.057 −409.174 834.709 0 1 8

2 0.690 0.149 – – – 0.070

3 1.710 0.515 – – – 0.873

(c) 2-SN 1 −0.557 0.240 0.013 – – 0.026 −410.911 836.102 1.393 0.498 7

2 2.178 0.857 −1.732 – – 0.974

(d) 3-SN 1 −0.890 1.471 1.025×103 – – 0.085 −406.120 834.906 0.197 0.906 11

2 0.564 0.205 1.701 – – 0.066

3 1.688 0.508 0.078 – – 0.849

(e) 2-SAS 1 −0.868 0.350 – 1.261 0.919 0.046 −410.085 838.622 3.913 0.141 9

2 1.753 0.516 – −0.185 0.914 0.954

(f) 3-SAS 1 −1.026 0.428 – 1.893 2.224 0.024 −406.322 841.712 7.003 0.030 14

2 0.574 0.028 – 1.866 0.960 0.033

3 1.773 0.451 – −0.192 0.838 0.943

(g) 1-ASN 1 1.099 0.634 −1.017 – – 1 −415.837 837.733 3.024 0.220 3

(h) 2-ASN 1 1.096 0.636 −1.017 – – 0.999 −415.844 845.969 11.260 0.004 7

2 0.237 1.313 −0.946 – – 0.001

Fig. 3 Distributions fitted to
logT obs

90 data of all GRBs. Color
dashed curves are the
components of the (black solid)
mixture distribution. The panels
show a mixture of (a) two
standard Gaussians (2-G),
(b) three standard Gaussians
(3-G), (c) two skew-normal
(2-SN), (d) three skew-normal
(3-SN), (e) two sinh-arcsinh
(2-SAS), (f) three sinh-arcsinh
(3-SAS), (g) one alpha-skew-
normal (1-ASN), and (h) two
alpha-skew-normal (2-ASN)
distributions
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sumed intermediate GRBs. The parameters of the fits are
gathered in Table 2. A remarkably different picture, com-
pared to the result of the T obs

90 analysis, follows from the
AICc plot in Fig. 6. It turns out that the intrinsic durations
are best described by a conventional 2-G; the second best
model is a 3-G, having a relative probability of 17.1 %. The
other models have considerably less or almost no support.
This suggests that the intrinsic T90 distribution may be in-
deed bimodal.

Fig. 4 AICc and relative probability, Pr, for the models examined and
for observed durations

To conclude this Section, the T obs
90 distribution is possi-

bly trimodal, and in the rest frame, due to the properties of
Eq. (2), it turns into a bimodal.

4 Study of the Swift subsample

The reason for examining separately a smaller sample of
334 GRBs detected only by Swift is the fact that the T90

distributions and other features, e.g. sensitivity in different
energy bands, are detector dependent (e.g., Horváth 2009;
Horváth et al. 2006, 2010; Huja et al. 2009; Řípa et al.
2009; Bromberg et al. 2013; Zitouni et al. 2015; Tarnopolski
2015b, 2015c), and thus the sample examined in the previ-
ous Sect. 3 might be biased. The majority of GRBs with
known redshift comes from Swift, and hence one might con-
sider the detections made by other satellites a contamination
that falsifies the outcome. Therefore, it is desired to inves-
tigate a sample in which all observations were made by the
same instrument.

The analysis is performed in the same way as it was done
in Sect. 3. Again, the observed durations are examined first.
A striking difference is that all of the fits are at most bi-
modal, and unimodal when a 2-G, 1-ASN or 2-ASN is con-
sidered. The parameters of the fits are gathered in Table 3,

Fig. 5 The same as Fig. 3, but
for logT int

90
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Table 2 Parameters of the fits for the intrinsic durations. Label corresponds to labels from Figs. 5 and 6. The smallest AICc is marked in bold,
and p is the number of parameters in a model

Label Dist. i μi σi αi δi βi Ai Lmax AICc �AICc Pr p

(a) 2-G 1 0.962 0.759 – – – 0.717 −421.691 853.532 0 1 5

2 1.456 0.299 – – – 0.283

(b) 3-G 1 −0.696 0.232 – – – 0.035 −420.353 857.066 3.534 0.171 8

2 0.305 0.268 – – – 0.154

3 1.330 0.524 – – – 0.811

(c) 2-SN 1 −0.769 0.188 0.015 – – 0.020 −424.224 862.728 9.196 0.010 7

2 1.662 0.834 −1.259 – – 0.980

(d) 3-SN 1 −0.735 0.216 0.025 – – 0.031 −418.252 859.170 5.638 0.060 11

2 0.610 0.439 0.439 – – 0.158

3 1.333 0.518 0.006 – – 0.811

(e) 2-SAS 1 −1.527 0.288 – 7.959 4.655 0.015 −422.369 863.190 9.658 0.008 9

2 1.289 0.527 – −0.172 0.871 0.985

(f) 3-SAS 1 −0.298 0.168 – −2.774 1.790 0.033 −414.767 858.603 5.071 0.079 14

2 0.453 0.630 – 0.586 1.056 0.556

3 1.322 0.444 – 0.376 1.317 0.411

(g) 1-ASN 1 0.699 0.654 −0.837 – – 1 −426.386 858.831 5.299 0.071 3

(h) 2-ASN 1 0.900 0.538 −0.829 – – 0.810 −424.638 863.556 10.024 0.007 7

2 1.090 0.747 1.338 – – 0.190

Fig. 6 The same as Fig. 4, but for intrinsic durations

and the fitted curves are displayed in Fig. 7. The uni- or bi-
modality is consistent with previous analyses performed on
more complete samples of Swift GRBs (Horváth et al. 2008;
Huja et al. 2009; Zitouni et al. 2015; Tarnopolski 2015b),
and the curves for three-component fits show a prominent
shoulder on the left-hand side of the peak related to long
GRBs.

The AIC indicates that the distribution of logT obs
90 is best

described by a 3-G. The next two best fits, a 1-ASN and a
2-SN, have a �i < 2, and hence yield strong support in their

favor. Next, a 2-G has a relative probability of 24.3 % of be-
ing a more proper model. The remaining models have con-
siderably less support. It follows that in case of the observed
durations one cannot discern reliably the best description
among a one- or two-component PDFs, what is also con-
sistent with the previous analyses, as the Swift detection rate
is heavily biased towards long GRBs (the ratio of short to
long GRBs is <1 : 14), hence the sample is strongly dom-
inated by long GRBs. Hence, combined with the relatively
low number of redshift-equipped GRBs, it appears that due
to this domination is unambiguous, in terms of modality,
classification of the T int

90 distribution is uncertain.
When the intrinsic durations are considered, there appear

some trimodal fits (see Fig. 9). Surprisingly, the model with
the lowest AIC is a bimodal 2-ASN, while the second best
fit is achieved by a (also bimodal) 3-G, having a relative
probability of 13.9 %. The remaining models have signifi-
cantly less support (compare with Table 4 and Fig. 10). The
2-ASN consists of a bimodal and a unimodal component.
The former consists of two peaks with comparable height,
and is visually very symmetric. The latter is skewed, with
its mode placed near the peak of the bimodal component
that corresponds to long GRBs. Hence, the overall role of
the unimodal component is to rescale the bimodal one in a
nonlinear way in order to follow the data. The structure of
this fit is unusual and unexpected, as in the previous sam-
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Table 3 Parameters of the fits for the observed Swift durations. Label corresponds to labels from Figs. 7 and 8. The smallest AICc is marked in
bold, and p is the number of parameters in a model

Label Dist. i μi σi αi δi βi Ai Lmax AICc �AICc Pr p

(a) 2-G 1 0.883 0.822 – – – 0.263 −351.758 713.698 2.826 0.243 5

2 1.760 0.519 – – – 0.737

(b) 3-G 1 −0.439 0.280 – – – 0.041 −347.214 710.872 0 1 8

2 0.751 0.328 – – – 0.165

3 1.792 0.493 – – – 0.794

(c) 2-SN 1 −0.499 0.236 −0.125 – – 0.028 −348.914 712.172 1.300 0.521 7

2 2.218 0.901 −1.818 – – 0.972

(d) 3-SN 1 −0.507 0.261 0.152 – – 0.037 −346.393 715.606 4.734 0.094 11

2 1.245 0.515 −1.648 – – 0.295

3 1.500 0.587 2.028 – – 0.669

(e) 2-SAS 1 −0.695 0.409 – 0.921 0.897 0.051 −348.580 715.715 4.843 0.089 9

2 1.780 0.540 – −0.201 0.923 0.949

(f) 3-SAS 1 −1.645 0.776 – 3.578 2.502 0.071 −345.483 720.283 9.411 0.009 14

2 1.920 0.543 – −2.538 2.232 0.397

3 1.831 0.245 – 0.526 0.900 0.532

(g) 1-ASN 1 1.088 0.654 −1.022 – – 1 −352.883 711.845 0.973 0.614 3

(h) 2-ASN 1 1.086 0.655 −1.026 – – 0.999 −352.888 720.121 9.249 0.010 7

2 0.546 1.210 −0.736 – – 0.001

Fig. 7 The same as Fig. 3, but
for logT obs

90 of the Swift
subsample
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Table 4 Parameters of the fits for the intrinsic Swift durations. Label corresponds to labels from Figs. 9 and 10. The smallest AICc is marked in
bold, and p is the number of parameters in a model

Label Dist. i μi σi αi δi βi Ai Lmax AICc �AICc Pr p

(a) 2-G 1 0.105 0.605 – – – 0.143 −360.409 731.001 7.822 0.020 5

2 1.251 0.598 – – – 0.857

(b) 3-G 1 −0.757 0.193 – – – 0.020 −355.344 727.130 3.951 0.139 8

2 1.035 0.715 – – – 0.788

3 1.493 0.275 – – – 0.192

(c) 2-SN 1 −0.505 0.299 −3.146 – – 0.026 −358.784 731.912 8.733 0.013 7

2 1.569 0.794 −0.938 – – 0.974

(d) 3-SN 1 −0.496 0.317 −4.498 – – 0.022 −355.108 733.036 9.857 0.007 11

2 1.033 0.709 0.709 – – 0.793

3 1.483 0.273 0.051 – – 0.185

(e) 2-SAS 1 −0.795 0.467 – 0.708 1.086 0.032 −358.638 735.831 12.652 0.002 9

2 1.267 0.563 – −0.141 0.896 0.968

(f) 3-SAS 1 −0.354 0.056 – −3.073 1.322 0.038 −350.300 729.917 6.738 0.034 14

2 0.408 0.686 – 0.664 1.123 0.592

3 1.230 0.632 – 0.664 1.843 0.370

(g) 1-ASN 1 0.679 0.680 −0.801 – – 1 −360.796 727.665 4.486 0.106 3

(h) 2-ASN 1 0.879 0.324 −4.251×104 – – 0.270 −354.418 723.179 0 1 7

2 0.706 0.661 −1.148 – – 0.730

Fig. 8 The same as Fig. 4, but for observed durations and Swift GRBs

ples the 2-ASN model did not perform very well, being one
of the worst fits.

5 Discussion

Generally, inferring an existence or lack of thereof, based
on statistical evidence, must be done with care. Having sam-
ples with limited size adds difficulty to such an assessment,
as in small samples there is more room for statistical fluc-

tuations that might obscure the global picture. Previous re-
searches, cited in Sect. 1, mostly imply that a 3-G fit is a
better descriptive model than a 2-G. Nevertheless, the fits
achieved were bimodal, indicating the presence of only two
GRB classes (Tarnopolski 2015a). A remarkable exception
was the BATSE 3B dataset (Horváth 1998), where the third
peak had a negligible probability of 10−4 to be a chance
occurrence. It turned out, however, that a bigger dataset ob-
tained by the same instrument did not reveal its presence
anymore (Horváth 2002). Examining the observed, instead
of intrinsic, durations might also cast doubts on the reality of
the observed phenomenon. Having that in mind, it is tempt-
ing to state that the intermediate GRB class is unlikely to be
a real class based on the analysis of 408 GRBs with known
both T90 and redshift. This statement could be justified with
the results presented in Sect. 3, where the two best models
to describe the logT obs

90 distribution were trimodal, but af-
ter moving to the rest frame, the most plausible description
was provided with a conventional 2-G. It may appear that
the intrinsic durations should trace the physical context of
the GRBs more appropriately.

On the other hand, the GRB characteristics are not only
sample-dependent, as showed above, but also detector-
dependent (e.g., Horváth 2009; Horváth et al. 2006, 2010;
Huja et al. 2009; Řípa et al. 2009; Bromberg et al. 2013;
Zitouni et al. 2015; Tarnopolski 2015b, 2015c). Therefore,
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Fig. 9 The same as Fig. 3, but
for logT int

90 and for Swift GRBs

Fig. 10 The same as Fig. 4, but for intrinsic durations and the Swift
GRBs

lacking a dataset numerous enough for the statistics to pro-
vide a convincing proof, one may only claim evidence,
or its lack, in a specific sample under consideration (see
also Tarnopolski 2015a, 2015b). To get rid of the detector-
dependency, only 334 GRBs as detected by Swift were ex-
amined. The outcome of this analysis, shown in Sect. 4, is
surprisingly inconsistent with the one from a bigger sample
in Sect. 3, being at the same time consistent with previous
analyses performed on a bigger sample of Swift GRBs—

the obtained fits are all uni- or bimodal, and the one with
the lowest AICc is a bimodal 3-G; the next best fits were a
unimodal 1-ASN and a bimodal 2-SN. Both yield strong ev-
idence in their favor, so it is not possible to unambiguously
infer the number of components, or even the modality of the
Swift sample.5

After moving to the rest frame, the problems are not
solved, especially that the best fit now is a 2-ASN. The prob-
lem with this distribution is that it consists of a bimodal
component (see Fig. 9(h)), with locations of its peaks in
agreement with the groups of short and long GRBs. It seems
like the role of the second component here is to merely ad-
just the height of the fit. The second best fit, a bimodal 3-G,
has a relative probability of 13.9 %. While this is a statis-
tically valid result, meaning that among the examined dis-
tributions the 2-ASN is best balanced between the goodness
of fit and the number of parameters, from the physical point
of view, regarding the knowledge about GRBs, this result is
an unrealistic one, as the short and long GRBs are known
to stem from different progenitors, mergers and collapsars,
respectively. Even after dismissing the 2-ASN, differentiat-

5This, combined with the fact that the number of GRBs with measured
redshift is relatively low, may be due to the fact that Swift is more
sensitive in soft bands than BATSE was, hence its dataset has a lower
fraction of short GRBs
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ing between a 3-G and 1-ASN is not possible in the frame-
work of the AICc , as these two models yield �i = 0.535.
Hence, the currently available redshift distribution unfortu-
nately does not allow to infer the existence of the interme-
diate GRBs class reliably, likely due to the smallness of the
sample.

6 Conclusions

The research conducted so far on different samples of GRB
duration distributions indicate that a 3-G follows the data
better than a 2-G. However, even with three components, the
fitted distribution is usually bimodal, implying two physical
classes. Because a two-component mixture of skewed distri-
butions was shown to be a statistically better fit, in case of
Fermi/GBM observations, than the commonly applied 3-G
(Tarnopolski 2015b), in this paper the same approach was
undertaken to investigate the modality and goodness of fit
in case of GRBs with measured both redshift and duration.
The reason for this is that in the rest frame the effects of cos-
mological factors are mostly eliminated, hence it is expected
that it will provide an insight into the properties of GRBs.

It was found that in a sample of 408 GRBs with known
redshift, the best fits—3-G and 3-SN—are trimodal (in the
sense of having three local maxima), but after moving to the
rest frame, a (unimodal) 2-G yielded considerably stronger
support than any other examined distribution. However, this
sample is dominated by detections made by Swift/BAT (334
events, ≈82 % of the total number of GRBs with mea-
sured z), and hence this finding might be affected by the
fact that GRB properties are detector-dependent. Therefore,
the Swift/BAT subsample was also examined, and it turned
out that it is not possible to reliably infer the best fit within
the chosen information-theoretic framework (AICc in this
work). This may be caused by the smallness of the sample,
and so the solution is to, hopefully, repeat the analysis in
the future on a wider GRB sample (see also Zhang and Xie
2007). Because the mathematical model of the observed as
well as intrinsic durations is still lacking, the physical inter-
pretation of the results obtained herein is limited. The dis-
tribution of intrinsic durations, being systematically shifted
towards shorter values, while may be believed to trace the
properties of GRB population more accurately, is also af-
fected by statistical fluctuations. Considering the Swift sub-
sample, the distributions are strongly dominated by long
GRBs, what might cause introduction of biases in the anal-
ysis undertaken.
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