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Abstract The problem of Keplerian motion in the uni-
formly rotating reference frame has been solved in terms
of the Kustaanheimo-Stiefel (KS) variables using canonical
formalism. No recourse to the Cartesian variables or orbital
elements has been required. The form of solution is well
suited for the application as a part of symplectic integrator.
The results show that the motion is actually the composi-
tion of four independent harmonic oscillations and of the
rotation in two specific coordinate planes and their conju-
gate momenta planes. As an example of application, we use
the KS symplectic integrator to study the motion of comet
C/1997 J2 (Meunier-Dupuoy) under the action of Galactic
tides. The comet is found to follow an orbit in commensu-
rability with the Sun motion around the Galactic centre, but
the perturbations are not qualified as a resonance.

Keywords KS variables · Celestial mechanics · Comet
C/1997 J2 (Meunier-Dupouy)

1 Introduction

Kustaanheimo-Stiefel (KS) transformation, transforms the
three-dimensional Kepler problem into a four-dimensional
isotropic harmonic oscillator. As a consequence, it attains
both linearization and regularization of motion (Kustaan-
heimo and Stiefel 1965; Stiefel and Scheifele 1971). Al-
though canonical (symplectic) framework for the KS trans-
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formation involves a number of subtleties related with di-
mension raising (Stiefel and Scheifele 1971; Kurcheeva
1977; Deprit et al. 1994), its very existence makes KS vari-
ables attractive for the application in numerical integration
using symplectic methods. Thanks to the regularization, the
fundamental problem of using constant integration step even
for highly eccentric orbits is considerably reduced in KS
variables (Mikkola 1997; Breiter 1998).

The standard form of the KS transformation is given in
the reference frame with fixed direction of axes. But a ref-
erence frame with the origin in the primary body and uni-
formly rotating around one of its axes is a common feature
of various classical problems in celestial mechanics. Most
often it helps to remove explicit time dependence from po-
tential. In artificial satellite theory, if the tesseral part of po-
tential is included, the axes may co-rotate with the planet
(e.g. Segerman and Coffey 2000). In the circular restricted
three-body problem (and its variants, like the Hill problem)
one of the axes passes through two primaries (e.g. Szebe-
hely 1967). Actually, in the latter case, it is more common
to set the origin at the centre of mass of the primaries, but
there are notable exceptions, like Kurcheeva (1977). In the
dynamics of the Oort Cloud comets, it is also advantageous
to handle the Galactic tide perturbations in the heliocentric
frame co-rotating with the centre of the Galaxy (e.g. Breiter
et al. 2008).

The last example is noteworthy. In this particular prob-
lem, Breiter et al. (2007) worked out a symplectic integrator
in KS variables using a partition of Hamiltonian into Ke-
plerian part and perturbation. But the former part requires
the knowledge of explicit solution to construct a propagator
of coordinates, momenta, and optionally of their variations.
Lacking a satisfactory solution in rotating reference frame,
the authors stayed in the fixed coordinate system, accepting
the time dependence of perturbation. The present work aims
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at providing the formulae necessary to construct a Keplerian
motion propagator for the KS variables and their variations
in rotating frame.

Actually, the problem was already discussed under the
name of ‘generating solution’ for the circular, restricted
problem of three bodies, meaning the limiting case when
the ratio of masses for the two primaries tends to zero. Ah-
mad and Huda (1986) provided such solution using directly
the KS variables, but they made an inappropriate and too
particular choice of integration constants values, criticized
by Hassan (1994). Hassan (1994, 2001) published his own
solution, but it was expressed in terms of Keplerian orbit el-
ements, requiring an additional there-and-back trip to Carte-
sian coordinates and momenta.

In this paper we present a direct and explicit solution,
with no resort to Cartesian variables or orbital elements. It
can be easily incorporated into a canonical splitting method
of numerical integration. As an illustrative example we show
the application of such integrator to the heliocentric motion
of a comet perturbed by the tidal potential of the Galaxy.
We find that the test body—comet C/1997 J2 (Meunier-
Dupouy), moves on an interesting, but non-resonant orbit.

2 KS variables in rotating frame

2.1 Initial problem statement

Let us consider perturbed Keplerian motion of a material
point with mass mp around a central body with mass mc.
The origin of reference frame is placed in the centre of mass
of the primary and the third axis, ẑ has a fixed direction. The
remaining two axes, x̂ and ŷ rotate around ẑ with a con-
stant angular rate Ω . The motion can be described using
Cartesian coordinates r = [x, y, z]T and conjugate momenta
R = [X,Y,Z]T, which obey canonical equations

ṙ = {r,H}, Ṙ = {R,H}, (1)

where the second argument of canonical Poisson brackets is
the Hamiltonian function

H = H0 +H1. (2)

Keplerian motion results from

H0 = 1

2

(
X2 + Y 2 + Z2) − μ

r
− ΩG3, (3)

where the third component G3 of angular momentum vector
G is

G3 = G · ẑ = (r × R) · ẑ = xY − yX, (4)

the gravitational parameter of relative two-body problem, in-
volving the Gaussian constant k, is defined as

μ = k2(mc + mp), (5)

and

r = ‖r‖ =
√

x2 + y2 + z2. (6)

H1 is a perturbing potential—typically a function of co-
ordinates r and time t (the independent variable of the dif-
ferential system (1)).

Let us recall that although we use momenta and energy
divided by the mass mp, the momentum is not equal to ve-
locity, save for its third component. Indeed, Eq. (1) and the
form of H imply

ẋ = X + Ωy, ẏ = Y − Ωx, ż = Z. (7)

In other words, the momentum vector R is the velocity vec-
tor measured in the fixed frame, whose components are re-
solved along instantaneous axes of the rotating frame at
given epoch.

2.2 KS transformation

Within canonical formalism, the Kustaanheimo-Stiefel trans-
formation is performed in extended phase space as a combi-
nation of point transformation of coordinates, its canonical
extension for the momenta, and Sundman transformation
of the independent variable. We briefly recall its basic ele-
ments, with additional observation that whenever r or R are
mentioned, they stand for coordinates and momenta in the
rotating frame.

Using the convention of Deprit et al. (1994), who intro-
duced an arbitrary length parameter α for the consistency of
units, we define coordinates vj , with j = 0, . . . ,4, through
the inverse transformation
⎡

⎢
⎣

x

y

z

⎤

⎥
⎦ = 1

α

⎡

⎢
⎣

v2
0 + v2

1 − v2
2 − v2

3

2(v1v2 + v0v3)

2(v1v3 − v0v2)

⎤

⎥
⎦ . (8)

For the record, we should warn readers that a more wide-
spread convention of Stiefel and Scheifele (1971) uses sim-
ilar u1 = v1, u2 = v2, u3 = v3, but their u4 = −v0, and
α = 1.

Canonical extension of new coordinates v results in their
conjugate momenta V implicitly given by

⎡

⎢
⎣

X

Y

Z

⎤

⎥
⎦ = 1

2r

⎡

⎢
⎣

v0V0 + v1V1 − v2V2 − v3V3

v3V0 + v2V1 + v1V2 + v0V3

−v2V0 + v3V1 − v0V2 + v1V3

⎤

⎥
⎦ . (9)
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The direct transformation will not be used in present study—
it can be found in Deprit et al. (1994).

A byproduct of the extension is the important bilinear in-
variant

J (v,V) = v1V0 − v0V1 − v3V2 + v2V3 = 0. (10)

Its Poisson bracket with any function of r, R, and t (ex-
pressed in terms of KS variables) is zero, which allows to
drop the occurrence of J in all formulae, provided we dis-
cuss only the motion generated by the KS image of a Hamil-
tonian H(r,R, t).

Finally, we introduce a new independent variable—the
Sundman time τ , a close relative of the eccentric anomaly,
but having the units of time,

dτ

dt
= α

4r
. (11)

This step requires the introduction of a new pair of variables.
A new coordinate type variable v∗ = t + const. (let us call
it formal time) will replace any possible presence of time
in the Hamiltonian. The value of its canonically conjugate
momentum V ∗, should obey

V ∗ +H = 0, (12)

at any epoch (Szebehely 1967, Sect. 6.6). In further discus-
sion, we will not append the fifth component to formal vec-
tors

v = [v0, v1, v2, v3]T, V = [V0,V1,V2,V3]T, (13)

enumerating v∗ and V ∗ separately. Thus the Poisson bracket,
for arbitrary functions f and g, can be specified in new vari-
ables as

{f,g} = ∂f

∂v
∂g

∂V
− ∂f

∂V
∂g

∂v
+ ∂f

∂v∗
∂g

∂V ∗ − ∂f

∂V ∗
∂g

∂v∗ . (14)

KS transformation has two important properties: the dis-
tance r is a quadratic function of vj

r = v2
0 + v2

1 + v2
2 + v2

3

α
, (15)

and

X2 + Y 2 + Z2 = α

4r

(
V 2

0 + V 2
1 + V 2

2 + V 2
3

)
, (16)

where a J 2 term inside the bracket has been dropped. Both
identities facilitate the derivation of the new Hamiltonian

K = dt

dτ

(
H0 +H1 + V ∗) = 0. (17)

After elementary substitutions, we find K = K0 + K1, with
two basic components. The term K0, responsible for the Ke-
plerian motion in rotating frame is

K0 = 1

2
V · V + ω2

2
v · v − 4μ

α
, (18)

and the perturbation K1 is

K1 = 4v · v
α2

H1
(
r(v), t

(
v∗)). (19)

Observing formal similarity of K0 to the harmonic oscilla-
tor, we should emphasize, that the frequency ω (real positive
in elliptic motion) is a function of KS variables and of V ∗,
namely

ω = 2
√

2(V ∗ − ΩG3)

α
, (20)

where G3, resulting from the substitution of (8) and (9)
into (4), followed by rejecting zJ /(2r) = 0, is

G3 = 1

2
(v0V3 + v1V2 − v2V1 − v3V0). (21)

The constant term −4μα−1 in Eq. (18) may seem redun-
dant, because it has no influence on equations of motion.
But since the initial value of V ∗ is determined from con-
dition K = 0, rejecting this constant would lead to a false
value of the oscillator frequency ω, defined by Eq. (20).

In general, the frequency ω may vary during the motion.
Constant value of ω requires the original Hamiltonian H1

which is both explicitly time-independent (to conserve V ∗),
and invariant with respect to rotations around z (to con-
serve G3). Further discussion will focus on the case of Ke-
plerian motion, where the conditions become trivially sat-
isfied. Yet, before closing the section, we have to add an
important remark.

Considering a pure, stand-alone Keplerian problem, we
obviously have

K = K0 = 0, (22)

which can be used as a strict identity to simplify expressions.
But if the Keplerian propagator serves as a part of a splitting
method, like a symplectic integrator with alternating appli-
cation of motions generated by K0 and K1, then, instead of
(22), one should substitute

K0 = −K1 = 4E

α
, (23)

where E is constant or variable, depending on the proper-
ties of K1. But even if E varies in the general problem, its
value during Keplerian propagation in a splitting algorithm
remains frozen, hence we will not differentiate it with re-
spect to τ in the next section (see Breiter 1998; Breiter et al.
2007).
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3 Keplerian motion in rotating frame

3.1 Equations of motion

Using the Poisson bracket (14), we find the equations of mo-
tion generated by K0. Let us begin with a trivial

dV ∗

dτ
= {

V ∗,K0
} = −∂K0

∂v∗ = 0, (24)

meaning that V ∗ = const., and an elementary

dv∗

dτ
= {

v∗,K0
} = ∂K0

∂V ∗ = 4v · v
α2

= 4r

α
, (25)

which reconstructs the definition (11). In next equations we
will immediately substitute r , using Eq. (15). Thus, for the
KS coordinates we find

dv
dτ

= {v,K0} = V + 4Ωr

α
{v,G3}, (26)

and for the momenta

dV
dτ

= {V,K0} = −ω2v + 4Ωr

α
{V,G3}. (27)

Freezing rotation (Ω = 0) we recover the usual set of har-
monic oscillator equations. But in general case, Eqs. (26)
and (27) form a coupled system, because

{v,G3} = 1

2
Fv, {V,G3} = 1

2
FV, (28)

with a skew-symmetric matrix

F =

⎡

⎢⎢
⎢
⎣

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎤

⎥⎥
⎥
⎦

. (29)

The resulting system

dv
dτ

= V + 2Ωr

α
Fv, (30)

dV
dτ

= −ω2v + 2Ωr

α
FV, (31)

is not linear, because r is a quadratic function of v. Fortu-
nately, the equations of motion can be reduced to a linear
system with periodic coefficients and then neatly separated
to obtain an explicit solution.

3.2 Explicit solution

The differential system of Eqs. (25), (30), (31) will be solved
as the initial value problem. For convenience, we assume the
initial epoch of the Sundman time τ = 0. At this epoch, the

time-like variable v∗(0) = u∗, KS coordinates are v(0) = u,
and their conjugate momenta are V(0) = U. Knowing that
V ∗ is constant, we will not introduce a special symbol for
its initial value.

3.2.1 Radius

As the first step towards solving the system, we should find
r as the explicit function of τ . The success is almost guaran-
teed, because the solution for r(τ ) in the fixed frame is well
known (up to a factor and phase, τ is the eccentric anomaly
in the Kepler problem), and the distance is invariant with
respect to rotation.

Let us begin with the first derivative of r = α−1v2, where
we recover the same formula as in the fixed frame:

dr

dτ
= {v2,K0}

α
= 2v · V

α
. (32)

The second differentiation involves a subtle point, signaled
in the last paragraph of Sect. 2.2. Initially, we obtain

d2r

dτ 2
= {{v2,K0},K0}

α
= 2(V2 − ω2v2)

α
. (33)

Then, from Eq. (18), we can substitute V2 = 2K0 − ω2v2 +
8μα−1, obtaining a shifted harmonic oscillator

d2r

dτ 2
= −4ω2r + 16(μ + E)

α2
, (34)

with frequency 2ω, and E which either zero (pure Kepler),
or follows from Eq. (23).

With the initial conditions

r(0) = u2

α
= r0,

dr

dτ

∣∣∣∣
τ=0

= 2u · U
α

= R0, (35)

we find the solution

r(τ ) = 4(μ + E)

α2ω2
+

(
r0 − 4(μ + E)

α2ω2

)
cos 2ψ + R0

2ω
sin 2ψ,

(36)

where

ψ = ωτ, (37)

is simply the half increment of eccentric anomaly. Apart
from the different definition of ω, Eq. (36) agrees with the
usual expressions known from the fixed frame.

3.2.2 Formal time v∗

Once the function r(τ ) has been determined, we can find the
formal time v∗, which is equal to physical time t up to an
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arbitrary phase. Equation (11) can be solved by quadratures,
leading to

v∗(τ ) = u∗ + �(τ), or t = t0 + �(τ), (38)

with

�(τ) = 4

α

∫ τ

0
r
(
τ ′)dτ ′. (39)

Substituting (36) we find

�(τ) = 16(μ + E)

α3ω3
ψ + 2R0

αω2
sin2 ψ

+
(

2r0

αω
− 8(μ + E)

α3ω3

)
sin 2ψ, (40)

the equivalent of Kepler’s equation.
Differentiating radial solution (36) and making use of

(32) and (35), we can relegate periodic terms in �, obtaining

�(τ) = 16(μ + E)

α3ω3
ψ − 2

v(τ ) · V(τ ) − u · U
α2ω2

, (41)

although this form is useful only if the computation of the
frame rotation invariant product v(τ ) ·V(τ ) is done indepen-
dently on v(τ ) and V(τ ).

3.2.3 Coordinates and momenta

Once we start considering r as a known function of time,
we can observe that Eqs. (30) and (31) can be split into two
separate, and formally identical subsystems. Selecting

p =

⎡

⎢⎢⎢
⎣

v0

v3

V0

V3

⎤

⎥⎥⎥
⎦

, q =

⎡

⎢⎢⎢
⎣

v1

v2

V1

V2

⎤

⎥⎥⎥
⎦

, (42)

we find their equations of motion

dp
dτ

= Mp,
dq
dτ

= Mq, (43)

with

M =

⎡

⎢⎢⎢
⎣

0 2Ωr/α 1 0

−2Ωr/α 0 0 1

−ω2 0 0 2Ωr/α

0 −ω2 −2Ωr/α 0

⎤

⎥⎥⎥
⎦

. (44)

The matrix M is amenable to a standard reduction to di-
agonal form. Solving its characteristic equation

λ4 + 2

(
ω2 + 4Ω2r2

α2

)
λ2 +

(
ω2 − 4Ω2r2

α2

)2

= 0, (45)

we find four distinct imaginary eigenvalues

λ1 = −i

(
ω − 2Ωr

α

)
, λ3 = i

(
ω + 2Ωr

α

)
,

λ2 = −i

(
ω + 2Ωr

α

)
, λ4 = i

(
ω − 2Ωr

α

)
.

(46)

Eigenvectors si , associated with these values, are linearly
independent: the matrix S = [s1|s2|s3|s4] built from eigen-
vectors has the form

S = 1

2

⎡

⎢⎢⎢
⎣

1 −1 −1 1

i i −i −i

−iω iω −iω iω

ω ω ω ω

⎤

⎥⎥⎥
⎦

, (47)

so det S = ω2 �= 0. Thus, if Λ = diag(λ1, λ2, λ3, λ4) is a di-
agonal matrix built from the eigenvalues, we have

M = SΛS−1, (48)

where

S−1 = 1

2

⎡

⎢⎢
⎢
⎣

1 −i iω−1 ω−1

−1 −i −iω−1 ω−1

−1 i iω−1 ω−1

1 i −iω−1 ω−1

⎤

⎥⎥
⎥
⎦

. (49)

Remarkably, all eigenvectors are constant in the Keple-
rian problem. Thus, thanks to

dS

dτ
= 0, (50)

we can perform a linear transformation of variables

g = S−1p, h = S−1q, (51)

bringing the system (43) into diagonalized form. For g we
find

dg
dτ

= S−1 dp
dτ

= S−1Mp = S−1SΛS−1p = Λg, (52)

so, with a similar treatment of h,

dg
dτ

= Λg,
dh
dτ

= Λh. (53)

In these circumstances, each equation

dgj

dτ
= λj (τ )gj ,

dhj

dτ
= λj (τ )hj , j = 1, . . . ,4, (54)

can be solved by quadratures, leading to

gj (τ ) = gj (0) exp

(∫ τ

0
λj

(
τ ′)dτ ′

)
, (55)
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and similarly for hj . According to Eqs. (46) and (25), the
quadrature results in
∫ τ

0
λjdτ ′ = ±iωτ ± iΩ

2

∫ τ

0

4r

α
dτ ′ = ±iψ ± iΩ�

2
, (56)

with the choice of signs for depending on j—similar as in
the definition of λj (46). Thus, introducing

φ = Ω�

2
, (57)

and matrix

Γ = diag
(
ei(−ψ+φ), ei(−ψ−φ), ei(ψ+φ), ei(ψ−φ)

)
, (58)

we can write the solution for principal modes

g = Γ g(0), h = Γ h(0). (59)

With g(0) = S−1p(0), and h(0) = S−1q(0), where

p(0) = [u0, u3,U0,U3]T, q(0) = [u1, u2,U1,U2]T,

(60)

we can transform back to

p(τ ) = SΓ S−1p(0), q(τ ) = SΓ S−1q(0). (61)

These can be rearranged, leading to the explicitly real matrix
form

p(τ ) = W(φ)A−1W(ψ)Ap(0), (62)

q(τ ) = W(φ)A−1W(ψ)Aq(0). (63)

Two matrices present in the final expression are: matrix W,
performing the simultaneous retrograde rotations of two
parts of a vector by some angle β

W(β) =

⎡

⎢⎢⎢
⎣

cosβ sinβ 0 0

− sinβ cosβ 0 0

0 0 cosβ sinβ

0 0 − sinβ cosβ

⎤

⎥⎥⎥
⎦

, (64)

and matrix A combining permutation and scaling of vector
elements

A =

⎡

⎢⎢⎢
⎣

1 0 0 0

0 0 ω−1 0

0 1 0 0

0 0 0 ω−1

⎤

⎥⎥⎥
⎦

, (65)

with the inverse

A−1 =

⎡

⎢⎢⎢
⎣

1 0 0 0

0 0 1 0

0 ω 0 0

0 0 0 ω

⎤

⎥⎥⎥
⎦

, (66)

For a specific pair of coordinate and momentum in
Eqs. (62,63), we can write

vj =
(

uj cosψ + Uj

ω
sinψ

)
cosφ

±
(

u3−j cosψ + U3−j

ω
sinψ

)
sinφ,

Vj = (Uj cosψ − ujω sinψ) cosφ

± (U3−j cosψ − u3−jω sinψ) sinφ,

(67)

taking plus for j = 0,1 and minus for j = 2,3. Suppressing
the rotation of reference frame (φ = 0), we obtain the well
known expressions without the coupling of different degrees
of freedom (Breiter et al. 2007).

3.3 Comments

The main result of Sect. 3 is the set of equations (40) and
(67) which, given the initial values of KS coordinates, mo-
menta and physical time, allow to compute their values at
any epoch of the Sundman time τ . In other words, they con-
stitute a Keplerian propagator for the KS variables in a rotat-
ing reference frame. The propagator can then be used, in par-
ticular, to construct a symplectic integrator, provided some
appropriate perturbation part is added.

Although Eq. (67) are best for practical computations,
their matrix form (62) and (63) is more pleasing from
the theoretical point of view. First, let us observe the way
the symmetry is broken. In the fixed frame, the Keple-
rian motion in KS variables is totally isotropic and may
be considered as four independent oscillations, i.e. clock-
wise rotations on the phase plane (vj ,ω

−1Vj ), with the mo-
menta scaled by the frequency. One may also pick up six
possible ‘elliptic oscillators’ with two degrees of freedom
(vj , vl,Vj ,Vl), and each of them will admit an angular mo-
mentum integral Gjl = vjVl −vlVj (Deprit 1991). Remark-
ably, each component of the Cartesian angular momentum
G = r × R, when expressed in terms of the KS variables, is
a linear combination of two different Gjl .

After adding the term (−4r/α)ΩG3 to the Keplerian
Hamiltonian, we observe that G3 is the only component of
G that remains constant. Recalling Eq. (21), we can observe
that G3 = (G03 + G12)/2. And, since {G03,G12} = 0, both
G03 and G12 remain constant in the rotating frame. This fact
explains the partition of (v,V) into p and q, which can be
handled separately.

Subdividing Eqs. (62) and (63)

p′ = A−1W(ψ)Ap(0), p(τ ) = W(φ)p′

q′ = A−1W(ψ)Ap(0), q(τ ) = W(φ)q′,
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we find the evolution of variables as the composition of
two rotations. First, p′ and q′ are obtained according to the
motion of four independent oscillators on the phase planes
(vj ,Vj ). This requires first permutation and scaling by ma-
trix A, to obtain independent (vj ,ω

−1Vj ) pairs. Then, each
pair follows the clockwise (i.e. negative) rotation on the
phase plane, according to the well known properties of har-
monic oscillator. After the rotation, we recover the original
arrangement (vj , vl,Vj ,Vl) by the application of A−1. The
resulting p′ and q′ are subjected to the final rotation that acts
separately in the coordinate plane (vj , vl) and in the momen-
tum plane (Vj ,Vl). Since this is a passive rotation, caused
by the motion of the reference frame, it is again clockwise
(negative).

The result being a composition of the fixed frame Keple-
rian motion and of the reference frame rotation, might have
been guessed from the properties of the motion in Cartesian
coordinates, where the two parts of the Hamiltonian (3) are
in involution, i.e.
{

1

2
R2 − μr−1,ΩG3

}
= 0. (68)

But, unfortunately, it is not the case in the KS variables,
where
{

1

2
V2 + 4V ∗v2,−4Ω

α2
v2G3

}
= 8Ω

α2
G3v · V. (69)

Thus we do not exclude the possibility of a short proof that
the solution must have the form (62) and (63), but—for the
noncommuting Hamiltonian parts—it will not be straight-
forward.

Most of the comments about real and imaginary values,
scattered through the text, refer to the elliptic motion (in-
cluding degenerate radial orbits). But if the motion is hyper-
bolic, the expressions can be adapted without any difficulty.
Enough to replace each ω by i|ω| and use elementary prop-
erties of sin iy = −i sinhy, and cos iy = coshy, as did Bre-
iter et al. (2007). In that case, the motion is a composition
of hyperbolic rotation in phase plane and circular rotation in
coordinate space and momenta space.

4 Application to cometary dynamics

4.1 Galactic tides integrator

In order to validate the utility of presented solution, we
apply it to the problem of heliocentric motion of a dis-
tant comet perturbed by Galactic tides. A symplectic inte-
grator designed for this problem by Breiter et al. (2007)
worked in a heliocentric reference frame with fixed direc-
tion of axes. But the natural framework for this problem is

the system with axis Ox pointing towards the Galactic cen-
tre, Oz aligned with the angular momentum of the Sun in
its motion around the Galactic centre (we assume the pla-
nar motion in the Galactic plane) and Oy completing the
right-handed triad. Moreover, it is better to shift the origin
to the centre of mass of the Solar system, which practically
amounts to using the gravitational parameter

μ = k2M ′ = 2.9630927472248 × 10−4 au3d−2, (70)

where M ′ is the total mass of the Sun and planets (JPL
DE405 ephemeris value).

The system is then described by Hamiltonian (2) with H0

given by Eq. (3), and perturbation

H1 = 1

2
G2

(
y2 − x2) + 1

2
G3z

2. (71)

Similarly to Breiter et al. (2007), we use the constants G2 =
7.0706 × 10−16 yr−2, G3 = 5.6530 × 10−15 yr−2, and the
reference frame rotation rate Ω = −√

G2.
In terms of KS variables, the problem is defined by the

Hamiltonian K, being the sum of K0, as defined by Eq. (18),
and K1, which according to Eq. (19) is

K1 = 2r

α

(
G2

(
y2 − x2) + G3z

2). (72)

Technically, retaining x, y, z, and r leads to more compact
expressions, although these symbols are to be understood as
the functions v, defined by Eqs. (8) and (15).

A symplectic integrator based on the splitting method is
effectively an alternating application of two maps Φ0,h and
Φ1,h′ , each of them representing the motion generated by
the Hamiltonians K0 and K1, respectively, with appropri-
ately chosen time intervals h and h′. In this work we use a
simple, second order ‘leapfrog’ composition, where a single
integrator step over the interval h of Sundman time amounts
to

v(τ + h) = Φ0,h/2 ◦ Φ1,h ◦ Φ0,h/2v(τ ) + O
(
εh2), (73)

where ε is, roughly speaking, the ratio of perturbation H1 to
the leading part H0.

The map Φ0 has been described in details in Sect. 3. The
second map is elementary, because the absence of V in K1

implies

dv
dτ

= {v,K1} = 0, (74)

so, with constant coordinates v, equations for momenta

dV
dτ

= {V,K1}, (75)
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Table 1 Barycentric osculating elements of C/1997 J2 (Meunier-
Dupouy) for the epoch MJD 2450883.9217462777

Semi-axis a 22403.1501006292 au

Eccentricity e 0.999863826261140

Inclination I 117◦.346203640888405

Ascending node longitude h 260◦.804414406406465

Argument of pericentre g 179◦.497205288261682

Mean anomaly l −0◦.0324723826

have a simple solution

Vj (τ + h) = Vj (τ) − ∂K1

∂vj

h. (76)

The gradient of K1 with respect to v can be compactly writ-
ten as

∇K1 = 8H1

α2
v + 4r

α
F, (77)

where

F = G2y

⎡

⎢
⎢⎢
⎣

v3

v2

v1

v0

⎤

⎥
⎥⎥
⎦

+ G2x

⎡

⎢
⎢⎢
⎣

−v0

−v1

v2

v3

⎤

⎥
⎥⎥
⎦

+ G3z

⎡

⎢
⎢⎢
⎣

−v2

v3

−v0

v1

⎤

⎥
⎥⎥
⎦

. (78)

Both formal time v∗ and its conjugate momentum V ∗ are
constant under the action of Φ1, because K1 is independent
on each of the variables.

4.2 The motion of C/1997 J2 (Meunier-Dupouy)

The symplectic integrator described in previous section has
been applied to the comet C/1997 J2 (Meunier-Dupouy).
The comet has well determined orbital elements and was
discussed by Królikowska and Dybczyński (2010), who no-
ticed it belongs to a rare class of objects having previous
perihelion distance lower than the current one. The barycen-
tric osculating elements given in Table 1 were taken from the
WikiComet web page of P. Dybczyński1 and transformed to
the Galactic frame. The excessive number of digits serves
only to allow independent repetition of the present calcula-
tions; actual uncertainties can be found at the WikiComet
link. It is worth noting that the heliocentric orbit is hyper-
bolic, but in the barycentric frame we obtain a highly elliptic
osculating orbit—a great challenge for a fixed step numeri-
cal integration without regularization.

According to the results of Dybczyński and Królikow-
ska (2011), neglecting the contribution of the Galactic cen-
tre (i.e. setting G2 = 0 in Eq. (71)) does not seriously influ-
ence the computed value of the previous perihelion passage

1http://apollo.astro.amu.edu.pl/PAD/index.php?n=WikicometPub.
CometAdvRys1997j2.

distance of C/1997 J2, leading to the difference of 10 %—
much less than for the remaining three comets from their
Table 11. But this fact should not be taken for evidence that
the Galactic centre has negligible effect on the overall mo-
tion of C/1997 J2—it is quite the opposite (P. Dybczyński,
private communication).

Starting from the initial conditions computed from the el-
ements given in Table 1, we have integrated the past motion
of C/1997 J2 perturbed by the Galactic tides alone. The or-
bit was traced back over 3.78 Gy which amounts to 1128 of
nominal Keplerian periods P ≈ 3.35 My, with a fixed time
step of Sundman time τ equivalent to 0.04 of P . Actually,
the integration span was chosen to cover 16 periods of the
reference frame rotation PΩ = 2πΩ−1 ≈ 236.3 My.

Thanks to the use of rotating frame, we were able to
check the error in the conservation of time-independent
Hamiltonian K = K0 + K1, evaluated at each step from the
current values KS variables v and V. Its relative value (di-
vided by V ∗, because K itself should be equal to 0) oscil-
lated with an amplitude not exceeding 2 × 10−8, without
any noticeable systematic trend.

Skipping the question of minor, short period perturba-
tions in semi-axis, modulated by TΩ , and less interesting
evolution of the mean anomaly, let us proceed to the remain-
ing elements. Figure 1 compares the results obtained with
the complete model (solid line) with those of the Galactic
disc alone, i.e. obtained with G2 = 0 (dashed line). Concern-
ing the eccentricity e, Galactic disc perturbations generate
periodic perturbations resembling a sine wave with the dom-
inating period very close to 4TΩ (4 cycles over the time span
of 16TΩ ). This commensurability of periods has no dynami-
cal consequences in the axially symmetric disc problem, but
in the presence of the Galactic centre it may trigger a reso-
nance. In the complete model we see the presence of equally
strong periodic terms, with the period of 1

2TΩ , superimposed
on the disc contribution. Inspecting the inclination I we find
a similar, although more significant pattern: the disc contri-
bution with period 4TΩ serves as an envelope for the Galac-
tic centre terms with the period of 1

2TΩ , but this time the lat-
ter allow transitions between prograde to retrograde motion.
The argument of pericentre g and the longitude of the as-
cending node h (transformed to the fixed axes) behave quite
similarly, remaining almost constant for most of the time,
yet simultaneously jumping by 180◦ every 4TΩ . The effect
of Galactic centre is barely visible in both the variables.

Another source of information is the evolution of the
Laplace vector e directed to the pericentre and having the
length equal to the eccentricity. In Fig. 2 we show its plot in
the rotating frame. Only the results for the complete model
are displayed, but the picture resulting from the Galactic disc
alone looks practically similar. The tip of e traces a helix, os-
cillating up and down. The two complete cycles with period
8Tω almost coincide; the beginning and the end of the track

http://apollo.astro.amu.edu.pl/PAD/index.php?n=WikicometPub.CometAdvRys1997j2
http://apollo.astro.amu.edu.pl/PAD/index.php?n=WikicometPub.CometAdvRys1997j2
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Fig. 1 Osculating elements of C/1997 J2 in the full model (solid line) and without the Galactic center (dashed). Longitude of the ascending node
h shown in the fixed frame

Fig. 2 Laplace vector e = [ex, ey, ez]T of C/1997 J2 in the rotating
frame. Vertical axis stretched by factor 100

almost meet. Such an almost closed spatial curve might be
another argument in favour of observing a resonance.

Do the results of simulation support the conjecture that
the motion of C/1997 J2 is significantly affected the reso-
nance with Galactic centre? In our opinion, the answer is
negative. Lacking an analytical theory that might show the
absence of a relevant periodic term in the normalized Hamil-
tonian, we have resorted to a simple test, which is possible
thanks to the property, that Galactic disk perturbations pe-
riod is proportional to the mean motion. Thus, we have inte-
grated the motion of a hypothetic comet with all osculating
elements of C/1997 J2, save for the semi-axis, increased to
a = 25000 au. Now, in order to cover 16TΩ , we followed
past 957 of nominal Keplerian periods, in agreement with

the ratio (25/22.4)
3
2 ≈ 1.18. A resonant effect should not

survive such a detuning and the amplitudes should change
considerably. But, as we show in Fig. 3, nothing serious has
happened. In spite of different ‘envelope’ period, the Galac-
tic center contribution with period 1

2TΩ has actually grown
by the factor comparable to the ratio of semi-axes.
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Fig. 3 Osculating eccentricity
and inclination for C/1997 J2
(grey) and its twin with
a = 2500 au (black)

This argument alone suffices to rule out the resonant na-
ture of the Galactic centre perturbations on the Meunier-
Dupouy comet. Their relative strength is mainly the effect
of rather weak perturbations due to Galactic disc. This, in
turn, is related to the low latitudes of the line of apsides (see
Fig. 2); together with high eccentricity it restricts the devia-
tion of the comet from the Galactic plane, whereas the action
of the disc is proportional to z.

5 Conclusions

Providing an explicit solution to the problem of Keplerian
motion in rotating frame in terms of the Kuustanheimo-
Stiefel variables was the main objective of the presented
work. This is more than just an exercise in elementary
Hamiltonian mechanics: the solution is an important build-
ing block for various practical applications. As an example,
we have used to create a symplectic integrator for the ac-
tion of Galaxy on cometary orbits. Using it, we were able to
simulate the motion of comet C/1997 J2 (Meunier-Dupuoy)
over almost 4 Gy in a fraction of second. The integration
time was comparable to the time spent on converting the re-
sults to the osculating elements form. The results show the
1:4 commensurability between the perturbations due to the
Galactic disc and the rotation of the Galactic centre with re-
spect to the Sun. But this commensurability does not results
in a significant resonance.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution 4.0 International License (http://creative
commons.org/licenses/by/4.0/), which permits unrestricted use, distri-
bution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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Dybczyński, P.A., Królikowska, M.: Mon. Not. R. Astron. Soc. 416(1),

51 (2011)
Hassan, M.R.: Indian J. Pure Appl. Math. 25, 337 (1994)
Hassan, M.R.: Bull. Astron. Soc. India 29, 15 (2001)
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