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Abstract The existence and characteristics of periodic or-
bits (POs) in the vicinity of a contact binary asteroid are
investigated with an averaged spherical harmonics model.
A contact binary asteroid consists of two components con-
nected to each other, resulting in a highly bifurcated shape.
Here, it is represented by a combination of an ellipsoid and
a sphere. The gravitational field of this configuration is for
the first time expanded into a spherical harmonics model up
to degree and order 8. Compared with the exact potential,
the truncation at degree and order 4 is found to introduce
an error of less than 10 % at the circumscribing sphere and
less than 1 % at a distance of the double of the reference
radius. The Hamiltonian taking into account harmonics up
to degree and order 4 is developed. After double averag-
ing of this Hamiltonian, the model is reduced to include
zonal harmonics only and frozen orbits are obtained. The
tesseral terms are found to introduce significant variations
on the frozen orbits and distort the frozen situation. Apply-
ing the method of Poincaré sections, phase space structures
of the single-averaged model are generated for different en-
ergy levels and rotation rates of the asteroid, from which the
dynamics driven by the 4 × 4 harmonics model is identified
and POs are found. It is found that the disturbing effect of
the highly irregular gravitational field on orbital motion is
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weakened around the polar region, and also for an asteroid
with a fast rotation rate. Starting with initial conditions from
this averaged model, families of exact POs in the original
non-averaged system are obtained employing a numerical
search method and a continuation technique. Some of these
POs are stable and are candidates for future missions.

Keywords Contact binary asteroid · Spherical harmonics ·
Averaging method · Frozen orbits · Poincaré sections ·
Periodic orbits

1 Introduction

Orbital dynamics around asteroids has become more and
more interesting for mission purposes. It also sheds light
on our understanding of the evolution of the solar system.
This paper focuses on one specific type of asteroid, i.e. the
contact binary asteroid, which consists of two lobes that are
in physical contact and which represents the mostly bifur-
cated body. Together with comets, the contact binary body
is estimated to constitute 10–20 % of all small solar sys-
tem bodies (Harmon et al. 2011). Rosetta’s target comet
67P/Churyumov-Gerasimenko was found to be probably a
contact binary very recently (August 2014).

The irregular gravitational field induced by an asteroid
can be modeled with several different methods (Scheeres
2012). For the study outside of the circumscribing sphere,
the method of a spherical harmonic expansion truncated
at arbitrary degree and order can be used. When the dis-
tance becomes smaller, the polyhedron method of approx-
imation of the shape of a body with triangular faces is more
valid (Werner and Scheeres 1996). Another option is to ap-
proximate the gravitational field by elementary geometrical
shapes (e.g. ellipsoid), in which case closed-form potentials
can be obtained.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-015-2353-0&domain=pdf
mailto:fjlangabc@gmail.com
mailto:R.Noomen@tudelft.nl
mailto:P.N.A.M.Visser@tudelft.nl
mailto:jyuan@nwpu.edu.cn


124 Page 2 of 18 Astrophys Space Sci (2015) 357:124

Following the typical mass distribution of a contact bi-
nary, the model of a combination of an ellipsoid and a sphere
is used in this study, as shown in Fig. 1. This model breaks
one axial symmetry, which is different from the geometri-
cal shapes (a straight segment, two orthogonal segments,
an ellipsoid, a cube, a thin bar) studied in (Bartczak and
Breiter 2003; Bartczak et al. 2006; Elipe and Lara 2003;
Halamek and Broucke 1988; Liu et al. 2011b). For this spe-
cific configuration, possible formation mechanisms and the
relationship between the relative configuration and the ro-
tational angular momentum have been studied in detail in
(Scheeres 2007). In addition, this simplified model already
captures the main characteristics of the full gravitational
field.

To gain some insight into the gravitational field of
this configuration and the orbital dynamics around such
a system, the spherical harmonics expansion is applied.
As already mentioned, it is a good representation of a
non-spherical gravitational field outside the circumscribing
sphere. It has been applied extensively for studying orbital
dynamics around planets and moons, for which the zonal
and C22 terms are usually dominant and several magnitudes
larger than the other tesseral terms. However, for orbital mo-
tion close to a contact binary asteroid, it is typically not suf-
ficient to only include the zonal and C22 terms. Due to the
highly non-spherical shape of the body, the other tesseral
harmonics are much larger and more comparable with the
zonal terms than in the case of planets and moons. For in-
stance, the C30, C31 and C33 terms can easily be only one
order of magnitude smaller than the C22 and C40 terms or
even of the same magnitude, e.g. in the case of Eros and
Itokawa (Barnouin-Jha et al. 2006; Scheeres et al. 2000;
Yu and Baoyin 2012). Therefore, they should not be ignored
during the analysis.

For studying the corresponding orbital dynamics with
a spherical harmonics model, numerical (Hu and Scheeres
2004; Lara and Russell 2007; Russell and Lara 2007, 2009),
analytical (Ceccaroni and Biggs 2013; Coffey et al. 1994;
Liu et al. 2011a; San-Juan et al. 2004) and semi-analytical
(Métris and Exertier 1995; Scheeres et al. 2000) methods
have been developed. Among them, the traditional averag-
ing method has extensive applications, since it simplifies the
system by averaging out the short-term effects while cap-
turing the secular and long-term evolutions. Together with
the Lagrange Planetary Equations (LPE), the effect of the
harmonics C20, C22, C30 and C40 on orbital elements has
been studied by (Scheeres et al. 2000), and they are found to
enlarge the orbital eccentricity. By applying the Lie transfor-
mations, high-altitude frozen orbits have been obtained ana-
lytically by (Ceccaroni and Biggs 2013) for the fast-rotating
asteroid Eros, with the harmonics truncated at degree 15.

Actually, the averaging process reduces the three de-
grees of freedom (3-DoF) to 2-DoF and even 1-DoF. The

reduced system then can either be numerically integrated
or be solved in closed form. The method of Poincaré sec-
tions is a good tool for solving the reduced 2-DoF by nu-
merical integration, as it transforms the 2-DoF system to a
two-dimensional map. Common applications can be found
in (Broucke 1994; Lara 1996) for finding POs. Generally,
frozen orbits can be obtained from the 1-DoF system (Cof-
fey et al. 1994; Liu et al. 2011a). POs however can be
generated from the 1-DoF system (Palacián 2007), 2-DoF
(Tzirti et al. 2010) and also 3-DoF systems (Lara 1999;
Lara and Russell 2007). The eccentricity and pericenter of
the frozen orbits always remain constant on average, while
those of the POs have small deviations from the ‘mean’
value but will return to the same value after one period. POs,
i.e. repeat ground track orbits in the rotating frame, were
also found to be a subset of frozen orbits in inertial space
(Lara 1999). In addition, the POs can also be explored for
determining the stability bounds (Lara and Scheeres 2002).
Since the propellant consumption for following these kinds
of orbits is usually small, both of them are interesting for
mission purposes.

Little research however has been done on finding POs
with a 4 × 4 spherical harmonics model for the highly irreg-
ular gravitational field of a contact binary asteroid with this
configuration and also with different rotation rates. This will
be the focus of this study. In addition, instead of following a
global search method, the POs of the original system will be
obtained from the Poincaré sections with a numerical search
and correction method.

This paper is arranged as follows. In Sect. 2, the gravi-
tational field potential of the ellipsoid-sphere configuration
is expanded into a spherical harmonics model. In fact, this
kind of expansion has been performed for some specifi-
cally shaped bodies, e.g. an ellipsoid or two spheres con-
nected with each other (Balmino 1994), both of which are
three-axis symmetric. Therefore, the current work is the first
attempt for expanding the gravitational field into spheri-
cal harmonics for a geometrical body of which one axis-
symmetry has been broken. The general method for obtain-
ing the spherical harmonics for a given body is introduced.
In Sect. 3, the contact binary system 1996 HW1 (Magri et al.
2011) (one of the most bifurcated bodies ever found) serves
as the study case for testing the accuracy of the truncation at
degree and order 4, and further at degree and order 8. The
expansion is also checked against the cases when varying
the sizes of this configuration. In Sect. 4, the Hamiltonian
including the 4 × 4 harmonics and the rotation of the aster-
oid is obtained for the analysis of the dynamics. It is reduced
to a 1-DoF system by double-averaging, and frozen orbits
are identified. The effects of the tesseral harmonics on these
frozen orbits are examined. In Sect. 5, by applying Poincaré
sections, the phase space structure of the 2-DoF system is
obtained at various energy levels and at different rotation
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Fig. 1 The ellipsoid-sphere configuration and the body-fixed
frame xyz

rates of the asteroid. In Sect. 6, with a numerical correction
method and the initial conditions from the Poincaré maps, a
number of POs can be obtained in the single-averaged model
and successively in the full non-averaged model.

2 Shape model and geometrical potential

In this study, the contact binary asteroid is modeled as a
combination of an ellipsoid and a sphere, as shown in Fig. 1.

The parameters that describe the configuration in Fig. 1
are the three semi-axes of the ellipsoid α,β, γ and the radius
of the sphere R. The system is assumed to be homogeneous,
with a constant density ρ. It is also assumed that the system
rotates uniformly about the z-axis with a velocity �ω. The
vector from the center of mass of the ellipsoid to that of the
sphere is denoted as �d , where | �d| = α + R. The mass ra-
tio μ0 is defined as ms/(ms + me) = 1/(1 + αβγ/R3) (ms

and me are the mass of the sphere and the ellipsoid, respec-
tively). Here the body-fixed frame is defined as the x-axis
along the line connecting the mass centers of the two com-
ponents with positive direction from ellipsoid to sphere, the
z-axis along the rotation axis of the body with positive di-
rection pointing along the angular velocity, and the y-axis
obtained according to the right-hand rule. With this defini-
tion, the asteroid still has xy- and xz-plane symmetry, while
the yz-plane symmetry is broken. This makes the problem
more complicated, compared to the individual sphere and
ellipsoid geometries which have three planes of symmetry.
The gravitational potential of this two-component asteroid
can be written as

Use = Usphere + Uellipsoid

= G(ms + me)

[
μ0

|�r − (1 − μ0) �d|

+ (1 − μ)Ue(�r + μ0 �d)

]
(1)

where �r = (x, y, z) is the position of a given point P , and
Usphere and Uellipsoid are the potentials of the sphere and el-
lipsoid parts, respectively. The former one can be viewed as

a point mass potential, while the later one is expressed as
(MacMillan 1958)

Ue(r) = 3

4

∞∫
σ

φ(r, v)
dv

	(v)

φ(r, v) = 1 − r2
x

α2 + v
− r2

y

β2 + v
− r2

z

γ 2 + v

	(v) =
√(

α2 + v
)(

β2 + v
)(

γ 2 + v
)
, φ(r, σ ) = 0

where v is an internal variable for the calculation of Ue and
r = (rx, ry, rz) is the independent variable of function Ue .
The potential expressed here will serve as the baseline to
verify the accuracy of the spherical harmonics expansion
studied in the following section.

3 Spherical harmonics expansion

3.1 Method

The gravitational potential in spherical harmonics is usually
expressed as follows (Kaula 1966)

V = GM

r

{
1 +

∞∑
n≥2

n∑
m=0

(
Re

r

)n

Pnm(sin θ)
[
Cnm cos(mλ)

+ Snm sin(mλ)
]}

(2)

where GM is the gravitational constant of the asteroid; r, θ

and λ are spherical coordinates (the radial distance |�r| from
the center of mass to a given point P , latitude and longi-
tude, respectively) in the body-fixed frame; Re is a charac-
teristic physical dimension and is usually defined as half of
the largest dimension of the whole body, equal to | �d| as de-
fined in Sect. 2; Pnm is the associated Legendre polynomial.
Cnm and Snm are the coefficients of the spherical harmon-
ics expansion which are determined by the mass distribution
within the body. They can be expressed in terms of inertia in-
tegrals which are dependent on the geometric representation
of the body. Assuming a homogeneous density of the body,
the inertia integral Ii,j,k is defined as (MacMillan 1958)

Ii,j,k = ρ

∫∫∫
xiyj zkdxdydz (3)

The triple integration is performed over the entire volume of
the body. For bodies symmetric through the xy-, yz- and xz-
planes, the inertia integrals are zero if there is an odd number
among i, j, k. Therefore, the un-normalized Cnm and Snm in
inertia integrals are expressed as follows (MacMillan 1958)

Cnm = (2 − δ0m)
(n − m)!
(n + m)! · m!

MRen
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×
t∑

s=0

l∑
j=0

∑
p,q,r

(−1)s+j [2n − 2j − 1]j !
(2s)!(m − 2s)!(n − m − 2j)![2j ]p!q!r!

× Im+2p−2s,2s+2q,n−m−2j+2r

Snm = (2 − δ0m)
(n − m)!
(n + m)! · m!

MRen

×
t∑

s=0

l∑
j=0

∑
p,q,r

(−1)s+j [2n − 2j − 1]j !
(2s + 1)!(m − 2s − 1)!(n − m − 2j)![2j ]p!q!r!

× Im+2p−2s−1,2s+2q+1,n−m−2j+2r (4)

Where

δ0m =
{

1, m = 0;
0, m �= 0; t =

{
m/2, m even;
(m − 1)/2, m odd;

l =
{

(n − m)/2, m even;
(n − m − 1)/2, m odd;

{ [2n] = 2n · (2n − 2) · . . . · 2; [0] = 1;
[2n − 1] = (2n − 1) · (2n − 3) · . . . · 1;{
p ≥ 0, q ≥ 0, r ≥ 0, integers;
p + q + r = j.

For simplification, dimensionless units are used in the fol-
lowing study, where the length unit is Re, the gravita-
tional parameter GM = 1 and the resultant time unit T =√

Re3/GM. From now on, the variables are in dimensionless
units however with the same notation. The mathematical ex-
pressions for the configuration of this contact binary, which
also define the limits of the inertia integral, can be written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x + μ0)
2

α2
+ y2

β2
+ z2

γ 2
= 1, −α − μ0 ≤ x ≤ α − μ0

(x − 1 + μ0)
2 + y2 + z2 = R2,

−R + 1 − μ0 ≤ x ≤ R + 1 − μ0

(5)

With this method, the outcome of the associated spherical
harmonics model has been tested against the analytical val-
ues available from literature, and in this way verified. For
the study case of system 1996 HW1 (Appendix A), the co-
efficients up to degree and order 8 are obtained and given in
Appendix B. It is found that higher-order zonal terms and
some tesseral terms, e.g. C31, C40, C60, have the same mag-
nitude as C22.

3.2 Verification

For an ellipsoid, it is found that the external gravitational
harmonics converge uniformly down to the surface when
α < γ

√
2 (Balmino 1994). For a general body the diver-

gence is severe once the point of interest comes into the cir-
cumscribing sphere of the body (MacMillan 1958). There-
fore, the analysis of the dynamics based on the above spher-
ical expansion will be restricted to the area outside the cir-
cumscribing sphere, which has a dimensionless radius of

1.0725 for system 1996 HW1. The accuracy of this expan-
sion (up to degree and order 4 and 8) is verified by com-
paring it with the analytical potential formulation Eq. (1).
The relative errors of the potential value and the radial ac-
celeration on the circumscribing sphere and also on the
sphere with a dimensionless radius equal to 2 are illus-
trated in Fig. 2. The relative error here is defined as the
absolute difference between the potential values or the ac-
celeration from the spherical harmonics expansion and the
analytical formulation, divided by the value of the latter
one.

For the truncation up to degree and order 4, Fig. 2a (top)
shows that the maximum error of the potential is about
8 × 10−2 on the circumscribing sphere and 2 × 10−3 at a ra-
dius of 2. In addition, for the 8 × 8 expansion (Fig. 2b, top),
the potential error reduces to around 2×10−2 and 4×10−5,
respectively. As for the radial acceleration, the relative er-
rors are all about one order of magnitude larger than those
of the potential due to differentiation. This confirms the ex-
pectation that the higher the order of the truncation, the more
accurate the expansion. For this irregularly shaped body, the
largest errors appear at the outer edge of the smaller com-
ponent along the most bifurcated direction (λ = 0◦ or 360◦
and θ = 0◦) i.e. the positive x-axis; we call this point with
the largest error ‘critical point’ from now on. For the radius
larger than 2, the error reduces rapidly. In addition, it is con-
cluded that the relative error of the expanded 4 × 4 potential
and the radial acceleration is much smaller than 0.3 % and
1.5 %, respectively, when the distance to the center of mass
of the system is larger than 2. Of course, the 8 × 8 model
performs better.

In addition, the influence of the configuration on the ac-
curacy of the expansion is also checked. To that end, the
radius of the sphere R is varied from zero to the value
of the smallest semi-major axis of the ellipsoid component
(0.745 km, cf. Appendix A). The maximum relative errors
of the expansions for the 4 × 4 potential at five chosen ra-
dius are illustrated in Fig. 3. When R is zero, the model
reduces to that of the ellipsoid potential. Its largest relative
error is at the magnitudes of 10−2 (circumscribing sphere)
and 10−4 (r = 2), respectively. For all study cases, the small-
est relative error is at R = 0, while the largest one comes out
for R = 0.46 km. This implies that when Revolves from 0
to 0.745 km, at some radius near 0.46 km the most irregu-
lar (bifurcated) shape is generated, in which case the 4 × 4
spherical harmonics approximation does not work so well at
the singular point, and a higher-order truncation, e.g. 8 × 8,
is required.

In summary, the spherical harmonics expansion up to de-
gree and order 4 is a good approximation of the gravita-
tional field of the contact binary asteroid especially for a
dimensionless radius larger than 2. Therefore, in the follow-
ing sections, the spherical harmonics truncated at this order
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Fig. 2 (a) The relative error of
potential (top) and radial
acceleration (bottom) of the
4 × 4 spherical harmonics
expansion for a radius equal to
the one of the circumscribing
sphere (left) and 2 (right).
(b) The relative error of
potential (top) and radial
acceleration (bottom) of the
8 × 8 spherical harmonics
expansion for a radius equal to
the one of the circumscribing
sphere (left) and 2 (right). Note
the different color scales

(a)

(b)
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Fig. 3 The maximum relative error of the 4 × 4 spherical harmonics
expansion of the potential field at the circumscribing sphere and r = 2
for the radius of the sphere at 0, 0.26, 0.46, 0.66, 0.745 km

are taken into account in the analysis of the dynamics of or-
bits. The initial conditions are chosen at a distance of no less
than 2.

4 Hamiltonian of the truncated system

Taking into account the spherical harmonics up to degree
and order 4, and the rotation of the asteroid at rate na ,
the Hamiltonian of the truncated system can be written
as

H = H0 +Hna +HCnm (6)

where H0 is the unperturbed Keplerian part, Hna comes
from the rotation of the asteroid, and HCnm represents the
spherical harmonics perturbation. All terms of Eq. (6) in
spherical coordinates are listed in Appendix C. For simplify-
ing this dynamical system and also capturing its mean char-
acteristics, an averaging method is applied. To this aim, H is
translated into a function of orbital elements (a, e, i, g, f,h).
Here a, e, i, f are the semi-major axis, eccentricity, incli-
nation and true anomaly, respectively. In addition g = ω is
the argument of pericenter. The longitude of the ascending
node Ω in the frame co-rotating with the asteroid at rate na

is expressed as h = Ω − nat . The relations between orbital
elements and spherical coordinates (r, θ, λ) are given in Ap-
pendix D.

For studying the dynamics of a Hamiltonian system, it is
convenient to use a canonical set of variables. One common
set is the Delaunay variables, which are defined as follows
(Chicone 1999)

l = M, g = ω, h = Ω − nat, L = √
μa,

G =
√

μa
(
1 − e2

)
, H =

√
μa

(
1 − e2

)
cos i

where G is the modulus of the angular momentum and H

its projection on the z-axis. The equations of motion for a
Hamiltonian system are expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dl

dt
= ∂H

∂L
,

dL

dt
= −∂H

∂l

dg

dt
= ∂H

∂G
,

dG

dt
= −∂H

∂g

dh

dt
= ∂H

∂H
,

dH

dt
= −∂H

∂h

(7)

Since Eq. (7) forms a system with six independent variables
l, g,h,L,G,H , the Hamiltonian is a 3-DoF system. In the
following study, the orbital elements are used in the averag-
ing analysis, while the Delaunay variables will be employed
in the numerical integration part.

4.1 Single-averaged model

By applying the change of variables

dM = r2

a2(1 − e2)1/2
df

H can be averaged over the mean anomaly M (or l), and the
averaged Hamiltonian H̄Cnm up to degree and order 3 can be
given as function of orbital elements (Tzirti et al. 2010)

H̄0 = − μ

2a

H̄na = −na

√
μa

(
1 − e2

)
c

H̄C20 = −μC20R
2
e (1 − 3c2)

4a3(1 − e2)3/2

H̄C22 = −3μC22R
2
e (1 − c2)

2a3(1 − e2)3/2
cos(2h)

H̄C3j
= − 3μeC3iR

3
e

16a4(1 − e2)
5
2

[
K+

3j cos(g + jh)

+ K−
3i cos(g − jh)

]
, j = 1,3

where

c = cos(i), K±
31 = 1 ± 11c − 5c2 ∓ 15c3,

K±
33 = 30

(
1 ± c − c2 ∓ c3)

Extending the averaging HCnmof to degree 4, the resultant
Hamiltonian is obtained using MAPLE16 and given as

H̄C40 = − 3μC40R
4
e

128a5(1 − e2)
7
2

[−(
70s4 − 60s2)e2 cos(2g)

+ (
35s4 − 40s2 + 8

)(
2 + 3e2)]
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Fig. 4 Eccentricity-inclination diagrams for the double-averaged sys-
tem with C20 + C40 dynamics at g = 0 (left) and π/2 (right). The stars
represent the conditions where there is no intersection with the asteroid

(1996 HW1). The two black pentagrams represent the two bifurcations
for a = 2.5

H̄C4j
= − 45μeC4jR

4
e

32a5(1 − e2)
7
2

[
K+

4j cos(2g + jh)e2

+ K−
4j cos(2g − jh)e2

+ K4j cos(jh)
(
2 + 3e2)], j = 2,4

where

s = sin(i), K±
42 = 1 ∓ 5c − 6c2 ± 7c3 + 7c4,

K42 = 1 − 8c2 + 7c4

K±
44 = 14

(−1 ∓ 2c ± 2c3 + c4),
K44 = 14

(
1 − 2c2 + c4)

Since M is averaged out, H is reduced to a 2-DoF system
with variables g and h

H̄ = H̄0 + H̄Cnm + H̄na (8)

However, the system can be reduced further by a second av-
eraging which is carried out in the next section.

4.2 Double-averaged model

It can be seen that in the single-averaged system the tesseral
harmonics still include h = Ω − nat , which is time related.
Therefore, the Hamiltonian can be averaged a second time
over h, denoted as H̃. It can be shown that the corresponding
tesseral terms are all eliminated, thus H̃Cnm only consists of
contributions from zonal terms, which is actually the zonal
approximation of the problem. The Hamiltonian is now re-
duced to 1-DoF and can be written as

H̃ = H̄0 + H̄C20 + H̄C40 + H̄na (9)

The four terms have already been given in Sect. 4.1.

4.2.1 Frozen orbits

Substituting Eq. (9) into the Lagrange Planetary Equations
(LPE) (Kaula 1966), the derivatives of the orbital elements
e and g can be obtained. With the perturbation from H̄C20

and H̄C40 , the derivatives of e and g from H̃ are given as

de

dt
= − 3R4

eμ

64a7(1 − e2)3n

[
C40

(
70s4 − 60s2) sin(2g)e

]

dg

dt
= − 3R2

eμ

128a7(1 − e2)4n

{
32C20a

2(5c2 − 1
)(

1 − e2)2

+ 10C40R
2
e cos(2g)

[(
2 − 16c2 + 14c4)

+ (
63c4 − 56c2 + 5

)
e2]

− 5C40R
2
e [

(
12 − 144c2 + 196c4)

+ (
189c4 − 126c2 + 9

)
e2} (10)

where n is the mean rotation rate of the orbit with semi-
major axis a. Frozen orbits can be found by solving ė =
ġ = 0. Only for i0 = 67.8◦ or g = 0 or ±π/2, ė equals
zero. However, no solution for ġ = 0 is found at i0. For the
main problem based on C20 only and also the C20 + C30

dynamics studied in (Tzirti et al. 2010), frozen orbits exist
at i0 = 63.4349◦, which is known as the critical inclination.
However, the situation is different in the C20 + C40 dynam-
ics, which is explained in the following part.

For g = 0 and π/2, solutions for ġ = 0 can be obtained
in the e–i plane as shown in Fig. 4, in which the frozen ec-
centricities are all quite large in all cases, except for those
close to the bifurcations. Therefore, only parts of them (in
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Fig. 5 Eccentricity-inclination diagrams for the double-averaged sys-
tem with C20 and C40 at g = 0 (left) and π/2 (right), when the radius

of the sphere varies from 0 to 0.745 km. The straight dashed lines in-
dicate the value of impact eccentricity

the inclination range around 60–63.5◦) are practical as they
should not impact on the asteroid. In addition, the frozen ec-
centricity increases as a becomes larger. Compared with the
case of g = π/2, for the case of g = 0 the frozen orbit is
slightly more eccentric for a given value of i, and the feasi-
ble range of i for a practical orbit becomes more narrow. For
both situations, no solution exists around i = 70◦ or at low
inclinations due to this specific C20 + C40 dynamics.

Coffey (Coffey et al. 1994) also studied the frozen dy-
namics including the C20 + C40 terms, but with the Lie per-
turbation method. Using the same values for C20 and C40,
Coffey’s results are found to have two similar branches at
both g = 0 and π/2. There is approximately 1–5 % differ-
ence between the results from his method and ours in this
double-averaged model, due to the different averaging meth-
ods applied. The large difference appears at a large frozen
eccentricity. According to his study, for the C20 + C40 dy-
namics, two families (for g = 0 and g = π/2) of solutions
bifurcate around the critical inclination. As we can see from
Fig. 4, there are also two bifurcations (the two black pen-
tagrams) from our results, one at i ≈ 62.5071◦ for g = 0

and the other at i ≈ 62.1144◦ for g = π/2, at a = 2.5. They
are also very close to the critical inclination of the main
problem. Further, the bifurcation moves closer to the critical
value (63.4349◦) with the increase of a, since the perturba-
tion from spherical harmonics is weakened when orbits are
further away from the body. This is consistent with Coffey’s
theory and proves that the traditional averaging technique
also describes the underlying dynamics quite well.

In general, frozen orbit of planetary problem have a small
eccentricity and exists for a large inclination range. How-
ever, for asteroids the frozen eccentricity is large and is only
present in a limited inclination range. This is probably due
to the large C20 and C40 terms, which is always the case
for highly irregular asteroids, e.g. 433 Eros and the contact
binary in this study.

Similarly, the behavior of the frozen orbits in this sys-
tem but with different sizes as in Sect. 3.2 is also investi-
gated and shown in Fig. 5. Again the radius of the sphere
R is changed from zero to 0.745 km. Several aspects can
be noticed. Firstly, the deviations of the frozen eccentrici-
ties among different sizes are smaller for a = 4 than those
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Fig. 6 The effects of different subsets of the 4 × 4 spherical harmonics model on frozen orbits in the non-averaged 4 × 4 model (time is dimen-
sionless)

for a = 2 (note the difference in scale of the y-axis). This
means that R has a smaller influence on orbits for larger
values of a, which is obvious since the irregular shape of
the asteroid has less influence when one is further away.
Secondly, at a specific value of a, the frozen eccentricity
decreases as R reduces when R > 0.46 km, and the oppo-
site occurs when R < 0.26 km. It is concluded that there
is a transition radius somewhere in between these values, at
the right side of which the frozen eccentricity is analogously
proportional to the radius R and the opposite happens on the
left side; again, due to the manifestation of the irregularity
of the contact binary system. In summary, the frozen orbits
are highly elliptic and the feasible ones exist at inclinations
60–63.5°.

4.2.2 Effects of Tesseral harmonics

To check the validity of the frozen orbits found in the pre-
vious section, a numerical integration is carried out under
the influence of different subsets of the 4 × 4 spherical har-
monics in the non-averaged model. One example is given in
Fig. 6, where the evolutions of the orbital elements e, i, g

are illustrated. The initial frozen condition is

a = 2.5, e = 0.4772, g = 90◦, i = 60◦,

Ω = 90◦, θ = 60◦

With the short-period perturbation of the dominant C20, C40,
C22 terms added to the above mean values, the osculating
elements are obtained for integration in the non-averaged
dynamics. A number of cases from Fig. 4 have been simu-
lated, and they have similar evolutions. It is also found that
the more circular (close to the critical inclination) and the
larger a of the orbit, the better behavior of its evolution in
the non-averaged C20 + C40 dynamics.

For the C20, C40 terms only (Fig. 6A), the short- and
long-period oscillations appear as expected. The orbital el-
ements evolve close to the mean value. When the C22 term
is added, the inclination i has a large variation and perigee
g circulates over the full range from 0 to 360° (Fig. 6B).
After inclusion of the 3rd and 4th order tesseral harmonics
(Figs. 6C and 6D), the general characteristic are kept except
that the oscillations are obvious for the long-period evolu-
tion of e. Since the tesseral terms distort the frozen situation,
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Fig. 7 Poincaré sections for a = 2.5 under different energy levels; areas below the dashed line are the impact regions

their effect should be considered in the double-averaged
model. However, they are all eliminated with the double av-
eraging method applied in this study. The Lie-Deprit pertur-
bation method studied in (Lara 2008) is promising for solv-
ing this problem, where the effect of C22 is preserved after
double averaging. In the following part, the dynamics of the
single-averaged model is studied, where the tesseral terms
are kept.

5 Poincaré sections of the single-averaged model

The single-averaged model given by Eq. (8) is studied in
this section. Since the time term is implicit, the averaged
Hamiltonian H̄ can be viewed as the integral of motion and
is conserved. Since l = M has already been eliminated dur-
ing the averaging, L and a remain constant as ∂H̄/∂l = 0.
To explore the global dynamics, the Poincaré map method
is employed. In the current study, the Poincaré section on
which the flow is cut is defined as the G–g plane with
h = π and ḣ < 0 (which is always the case as time in-
creases). Given an energy level of the system, i.e. H̄initial,

and an initial condition (L0, g0,G0, h0), the value of H0 can
be determined numerically. With this initial point, Eq. (7)
is integrated over long time intervals, and the events when
the solution crosses the G–g plane are recorded through-
out the integration. To get a section fully filled with points,
we chose a 30 × 30 grid of initial values (g0,G0) for each
given H̄initial and L0; therefore the section corresponds to
a range of e0 and i0. Based on the physical parameters of
system 1996 HW1, Figures 7 and 8 present some sections
obtained for a = 2.5 and 4, respectively, both at na = 0.01.
The plots reflect the evolution of phase space of the single-
averaged system at different orbital inclinations or energy
values.

Since the orbital elements of a PO should return to the
same values after one period of the orbit (which may cover
multiple revolutions), it is actually a fixed point on the map,
which can be identified from the center of an island. It is
seen from Fig. 7 that the phase space is very different for dif-
ferent energy levels. For 29◦ < i < 51◦, many islands come
forth both in the impact and non-impact regions, implying
the existence of POs. One is weakly visible located at the
top corner of the map with G = 1.58 and g = 0 or 2π , while
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Fig. 8 Poincaré sections for a = 4 under different energy levels; plots below the dashed line are the impact regions

the largest one is at the center of the map with g = π . When
the inclination increases (Fig. 7B), the upper part of the map
becomes regular without any island apparent, and the region
around the largest island is chaotic. For the region around
the polar case (Fig. 7C), many islands emerge again but at
the very bottom of the map. After that (Fig. 7D), islands
surrounded by large chaotic regions appear. Since the im-
pact eccentricity eimp for a = 2.5 is 0.56, which corresponds
to G = 1.31, small-eccentricity POs can be found at low in-
clinations (Fig. 7A), while high inclinations only give rise
to large-eccentricity ones (but still valid from an impact per-
spective, Fig. 7D). However, the polar PO is not feasible as
its eccentricity already exceeds eimp, which is a restriction
for practical usage as it might intersect with the asteroid at
periapsis (Figs. 7B, 7C).

Now let us go to higher orbits at a = 4, with the corre-
sponding eimp = 0.725 and G = 1.377. As shown in Fig. 8,
in general the sections for a = 4 are more smooth, com-
pared with those of a = 2.5 As expected, the 4 × 4 spheri-
cal harmonics’ influence on orbits is weakened when the or-
bital altitude increases. Similarly, for 0 < i < 90◦ (Figs. 8A
and 8B), the islands move towards the bottom of the map
with the increase of orbital inclination, implying the raise

of eccentricity of the POs. No island appears near the polar
region (Fig. 8C). When it passes the polar region (Fig. 8D),
islands appear again and a new phase structure is generated.
Compared with the maps for a = 2.5, the ones at higher al-
titude are already smooth due to the smaller influence of
the irregular gravitational field on orbits. However, the same
conclusion holds that the phase space is smoother around the
polar region than that close to the equatorial plane, implying
the larger influence of the irregular gravitational field on the
motion in the latter one. As a consequence, the feasible POs
tend to appear at low and high inclinations rather than at the
polar region.

In addition, a similar analysis has also been performed for
different system parameters of this configuration, as done in
the study of frozen orbits (Sect. 3.2). It is found that the
quantitative characteristics of the maps are similar to those
above, for approximately the same a and inclination range if
we vary the size of the sphere for this system configuration.
Therefore, in the following sections, only the size of sys-
tem 1996 HW1 is considered for simulations. What’s more,
some comparisons can be made with the frozen results ob-
tained from Sect. 4. For the same a, i and g the POs have a
close but slightly smaller eccentricity than that of the frozen



124 Page 12 of 18 Astrophys Space Sci (2015) 357:124

Fig. 9 Examples of the
eccentricity vector evolution for
5 periods of the POs

Fig. 10 Families of POs of the non-averaged system, represented as family A, B, C, D
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Fig. 11 The linear stability diagram of POs of families A, B, C, D. The two blue dashed lines are the stability index and the red line is the period

orbits, and also POs appear in the inclination range where
no frozen solution was to be found. This is due to the effects
of inclusion of the tesseral harmonics as well as the rotation
of the asteroid and also the resultant more abundant dynam-
ics.

6 Periodic orbits

The exact POs can be obtained by numerically modifying
the raw initial condition read from the maps. In this section,
the POs found in the single-averaged model and then in the
non-averaged model are given respectively.

6.1 POs in the single-averaged model

Starting from the initial conditions given from the center of
the islands in Figs. 7 and 8, POs are found with the dif-
ferential correction method (DC) (Lara and Russell 2007;
Russell and Lara 2007). The evolution of their eccentricity
vectors (defined as [e · sin(g), e · cos(g)]) is given in Fig. 9
for four different cases, all covering 5 periods of the orbit. It

can be observed that all eccentricity vectors repeat their path
completely. The paths in Figs. 9A, 9B and 9D are all simple
circles, as e has a sin/cos wave oscillation and g varies be-
tween 0 and 2π throughout one period. However, the curve
in Fig. 9C is more complicated due to the non-trivial varia-
tion of e and also the oscillation of g is limited to the range
from 1.2π to 1.9π .

6.2 POs in the non-averaged model

One step further, the POs obtained in the single-averaged
model can serve as initial conditions for identifying POs
in the full non-averaged model given by Eq. (1). Here, the
Levenberg-Marquardt method (Lourakis 2005) is applied,
which can be used for searching the zero root of a given
system. Several families of POs are obtained, which are il-
lustrated in Fig. 10. In Fig. 10, the blue orbit in each sub-
figure is modified from the corresponding initial conditions
given by Fig. 9. For example, the blue orbit in family A is
originally from Fig. 9A. With numerical continuation of en-
ergy, many orbits are found for each family. The two orbits
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Fig. 12 Poincaré sections for a = 2.5 and 2 at na = 0.1 at different energy levels; areas below the dashed line are the impact regions

at the ends of the continuation are given in red and green,
respectively.

With the Floquet’s Theory, their linear stabilities can
be evaluated; a PO is stable if all the eigenvalues of
its monodromy matrix have unity magnitude (Chicone
1999). Following (Gómez et al. 2005), the monodromy ma-
trix of a PO usually has the eigenvalues in the form of
{1,1, λ1,1/λ1, λ2,1/λ2}, the stability index is commonly
defined as si = |λi + 1/λi |, i = 1,2. The PO is linearly sta-
ble if si < 2, while linearly unstable if si > 2. Bifurcation

might occur when si = 2. The linear stability diagrams for
these four families of POs are given in Fig. 11.

For family A, the blue orbit and the ‘circular’ green one
are both linearly stable, while the eccentric red one is unsta-
ble. The eccentric orbits of family B are all unstable. One di-
rection of the continuation leads to an orbit that comes close
to the equatorial plane (the green one), while the other (the
red one) gradually approaches the polar region. All the or-
bits of family C are unstable and also highly inclined when
they become smaller and closer to the asteroid. For family
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D in Fig. 10D, the continuation ends at the equatorial plane
with a stable yellow orbit. The orbits out of the plane are all
unstable.

In all four families, the green orbits have the longest pe-
riod while the red ones have the shortest period. The period
is simply lengthened with the increase of energy. These fam-
ilies also share the same characteristic that the orbits become
highly inclined in the close vicinity of the asteroid, resulting
from the highly irregular gravitational field. In addition, all
families of orbits have multiple revolutions within one pe-
riod, and the initial conditions of all blue orbits are given in
Appendix E. It can be noticed that the radius at some epoch
along the orbits is smaller than 2, however this does not play
a role since the simulation is already done in the full model
(cf. Eq. (1)).

6.3 POs of faster rotating asteroid

In fact, the rotation rate of the asteroid is suspected to have
a more important effect on orbital dynamics than that of the
size of this system configuration. Therefore, in this section,
the work in Sects. 5, 6.1 and 6.2 is repeated but with a ro-
tation rate speeded from up na = 0.01 to na = 0.1. Firstly,
the case at a = 2.5 is studied. The dynamical phenomena
on these sections are found not to be as rich as those at
na = 0.01. For low inclinations (Fig. 12A), some ‘thin’ is-
lands are apparent at the very bottom of the map, which are
close to the impact eccentricity. The phase space is very reg-
ular and islands are absent for higher inclination cases, as
shown in Figs. 12B and 12C. Not depicted here, it is found
that nearly no island exists at almost all the sections for
larger values of a. This means that the faster rotation of the
asteroid helps to reduce the effects of the highly irregular
gravitational field on orbits and to smooth out the chaotic
or irregular regions on the maps. Therefore, the case for a
smaller value of a (a = 2) is simulated and the results are
shown in Figs. 12D–12F. Many islands and chaotic regions
now appear again at the low inclination range, as shown in
Fig. 12D. Similarly, the islands gradually move towards the
bottom with the increase of inclination and even disappear
in the polar situation.

In addition, it is found that the fast rotation of the asteroid
smooths out the phase space. For instance, at a = 2.5 but
with na = 0.3, there is already no island on the Poincaré
maps at different inclinations. The same phenomenon holds
for larger a and na . This means that the rotation rate has a
significant influence on the dynamics, rather than the limited
effect from the size of the system.

The method for searching POs in the single-averaged
model is the same for the case with na = 0.01. The evolu-
tion of the eccentricity vector over 5 periods of one sam-
ple PO, originally from Fig. 12E, is given in Fig. 13. It
can be noticed that it has a similar pattern as those of

Fig. 13 The eccentricity vector evolution for 5 periods of the PO in
the single-averaged model

Figs. 9A, 9B and 9D. Similarly, with the initial conditions
from Fig. 13, the PO in the non-averaged model is obtained
with the Levenberg-Marquardt method. With the continua-
tion of energy, one family of orbits is obtained and illus-
trated in Fig. 14. Their general configuration already differ
from those in Fig. 10, confirming that fast rotation of the
asteroid does affect its surrounding orbit. All three orbits
are unstable. The stability diagram of this family is given
in Fig. 15. The green one is highly unstable, while the red
one is slightly unstable, since one stability line is actually
slightly above the line s = 2, not exactly on it. For the con-
tinuation to the green orbits, the period decreases with the
increase of energy probably due to the crossing of the bi-
furcation line (s = 2). It should be mentioned here that it is
more difficult in this situation to find the POs in the non-
averaged model. This is probably due to the smaller accu-
racy of the spherical harmonics truncation at degree and or-
der 4 when the orbit is really close to the asteroid and also
the fact that more information is lost during the low-order
averaging process when the rotation rate of the asteroid is
increasing.

7 Conclusions

The POs around a contact binary asteroid have been ob-
tained with the spherical harmonics expansion, the averaged
Hamiltonian and the numerical modification method. The
highly irregular gravitational field is represented by the com-
bination of an ellipsoid and a sphere, and then is expanded
into a spherical harmonics model, which is shown to be a
good approximation. For system 1996 HW1, the 8th and
4th degree and order expansions have relative errors of the
potential of less than 2 % and 8 % at the circumscribing
sphere, respectively. The relative errors of the 4 × 4 trunca-
tion are always smaller than 1 % when the orbit radius is



124 Page 16 of 18 Astrophys Space Sci (2015) 357:124

Fig. 14 POs of the original
non-averaged system at
na = 0.1

Fig. 15 The linear stability diagram of POs of family E. The two blue
dashed lines are the stability index and the red line is the period

larger than 2, under different sizes of the system configu-
ration. The radial acceleration has an error one magnitude
larger than that of the potential. It is also found that some
high-order terms also have a large magnitude, e.g. C31, C40,
C60, in comparison with that of planetary bodies and their
moons.

Frozen orbits are obtained from the double-averaged
Hamiltonian including the 4th degree and order spherical
harmonics. They are examined in the non-averaged model,

and the tesseral terms are found to introduce large variations
and distort the frozen situation. With Poincaré sections, the
phase space structure of the single-averaged model is gener-
ated at different energy levels and rotation rates of the aster-
oid. The dynamics of the 4 × 4 harmonics is identified and
POs are obtained. The disturbing effect of the highly irregu-
lar gravitational field on orbit motion is found to be reduced
around the polar region as well as in the case of fast rota-
tion of the asteroid. Further with the Levenberg-Marquardt
method, some POs of the full non-averaged model are iden-
tified, of which the stable ones are interesting for future mis-
sions. In addition, this study provides a method for study-
ing orbital dynamics around a highly bifurcated body repre-
sented by spherical harmonics.
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Appendix A: Table 1

Table 1 The main parameters
of 1996 HW1 (Magri et al.
2011)

Overall dimensions-full axes (km) X: 3.78 ± 0.05; Y: 1.64 ± 0.1; Z: 1.49 ± 0.15

Sidereal period (h) 8.76243 ± 0.00004

Average sphere diameter (km) 1.32

Triaxial ellipsoid principal axes size (km) 2.46 × 1.64 × 1.49

Bulk density (g cm−3) 2.0

Appendix B

The un-normalized dimensionless coefficients of the spher-
ical harmonics expansion of the potential of 1996 HW1 up
to degree and order 8

Up to the degree and order 4

C00 1 C32 0

C10 0 C33 0.002547

C11 0 C40 0.038779

C20 −0.121847 C41 0

C21 0 C42 −0.004258

C22 0.058547 C43 0

C30 0 C44 0.000516

C31 −0.013964

Degree and order 5–8

C51 0.0048 C73 3.55379×10−5

C53 −2.07134×10−4 C75 −1.01047×10−6

C55 2.16853×10−5 C77 7.43626×10−8

C60 −0.015481 C80 0.006693

C62 7.69618×10−4 C82 −1.92847×10−4

C64 −2.52427×10−5 C84 3.18426×10−6

C66 2.05401×10−6 C86 −7.46287×10−8

C71 −0.001752 C88 4.57416×10−9

Appendix C

The terms of the Hamiltonian of the first 4th degree and or-
der spherical harmonics in spherical harmonics are listed as
follows

H0 = −μ/2a, Hna = −na

√
μa

(
1 − e2

)
cos(i)

HC20 = μR2
eC20

r3

(
1 − 3

2
cos2 θ

)
,

HC22 = 3μR2
eC22

r3
cos2 θ · cos 2λ

HC30 = μR3
eC30

2r4
sin θ · (5 sin2 θ − 3

)
,

HC31 = 3μR3
eC31

2r4
cos θ · cosλ · (4 − 5 cos2 θ

)

HC33 = 16μR3
eC33

r4
cos3 θ · cos 3λ,

HC40 = μR4
eC40

8r5

(
35 sin4 θ − 30 sin2 θ + 3

)

HC42 = 15μR4
eC42

2r5
cos2 θ · cos 2λ · (6 − 7 cos2 θ

)
,

HC44 = 105μR4
eC44

r5
cos4 θ · cos 4λ

where μ = GM is the mass constant of the entire body.

Appendix D

The relations between orbital elements and spherical coor-
dinates are given as

sin θ = sin i · sin(f + g), cos(f + g) = cos θ · cos(λ − h)

cos θ = cos i · sin(f + g) · sin(λ − h)

+ cos(f + g) · cos(λ − h)

r = a(1 − e2)

1 + e cosf
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Appendix E: Table 2

Table 2 Initial conditions of the blue periodic orbits in Figs. 10 and 14

Family
(Rev.)

x y z ẋ ẏ ż T

A (17) −2.55457397 5.64799031E-3 −3.53658923E-4 −1.28549893E-3 −0.47909409 0.37960782 388.99897129

B (14) −3.62261850 1.60726159E-3 −1.00020805E-7 −3.11315611E-4 −0.32969659 0.20743635 345.00007481

C (14) 0.24122555 −1.33173497 −1.54128269 −0.41349405 −0.63862589 0.04199977 369.00019323

D (26) −5.66707383 0.22824198 7.98840161E-16 2.16135142E-3 0.32293658 8.67487872E-3 1100.14960642

E (9) 1.37250344 −7.44797928E-4 1.08776131E-3 9.25774395E-4 0.69647207 −0.63225584 91.89849972
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