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Abstract
Male sexual orientation is a scientifically and socially important trait shown by family and twin studies to be influenced by 
environmental and complex genetic factors. Individual genome-wide linkage studies (GWLS) have been conducted, but not 
jointly analyzed. Two main datasets account for > 90% of the published GWLS concordant sibling pairs on the trait and are 
jointly analyzed here: MGSOSO (Molecular Genetic Study of Sexual Orientation; 409 concordant sibling pairs in 384 fami-
lies, Sanders et al. (2015)) and Hamer (155 concordant sibling pairs in 145 families, Mustanski et al. (2005)). We conducted 
multipoint linkage analyses with Merlin on the datasets separately since they were genotyped differently, integrated genetic 
marker positions, and combined the resultant LOD (logarithm of the odds) scores at each 1 cM grid position. We continue 
to find the strongest linkage support at pericentromeric chromosome 8 and chromosome Xq28. We also incorporated the 
remaining published GWLS dataset (on 55 families) by using meta-analytic approaches on published summary statistics. 
The meta-analysis has maximized the positional information from GWLS of currently available family resources and can 
help prioritize findings from genome-wide association studies (GWAS) and other approaches. Although increasing evidence 
highlights genetic contributions to male sexual orientation, our current understanding of contributory loci is still limited, 
consistent with the complexity of the trait. Further increasing genetic knowledge about male sexual orientation, especially 
via large GWAS, should help advance our understanding of the biology of this important trait.
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Introduction

Male homosexuality runs in families, and twin studies have 
shown that genetic contributions appear to account for a mod-
erate proportion of the variation in male sexual orientation 
with heritability estimated at ~ 32% (for review, see Bailey 
et al., 2016). Three genome-wide linkage studies (GWLS) 
have been conducted on male sexual orientation, all focusing 
on concordant sibling pairs (2010homosexual brothers)—
we refer here to these GWLS datasets as Hamer (Mustanski 
et al., 2005), MGSOSO (Molecular Genetic Study of Sexual 
Orientation) (Sanders et al., 2015), and Canadian (Ramago-
palan et al., ). The Hamer GWLS combined samples from 
two earlier studies (Hamer et al., 1993; Hu et al., 1995) with 
newly collected families (Mustanski et al., 2005) to total 155 
independent concordant sibling pairs in 145 families. While 
linkage to chromosome Xq28 was prominent in the earlier 
linkage studies focusing on chromosome X (Hamer et al., 
1993; Hu et al., 1995), the Hamer GWLS instead had its 
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strongest finding of suggestive linkage at chromosome 7q36 
(Mustanski et al., 2005). Another research group collected 55 
families in Canada and performed a GWLS, with the strong-
est (albeit not significant) linkage reported at chromosome 
14q32 (Ramagopalan et al., 2010). The MGSOSO performed 
a GWLS on 409 independent concordant sibling pairs in 384 
families, making its strongest finding of significant (Lander 
& Kruglyak, 1995) linkage at pericentromeric chromosome 
8 and also detecting suggestive (Lander & Kruglyak, 1995) 
linkage (supportive evidence of previous findings) at chro-
mosome Xq28 (Sanders et al., 2015). In order to extract the 
maximal positional information from GWLS of currently 
available family resources, we jointly analyzed the Hamer 
and MGSOSO datasets (and included the Canadian dataset 
by meta-analyzing published summary statistics).

Method

Joint Linkage Analyses

The two jointly analyzed datasets used very similar pheno-
type definitions for homosexual men from their questionnaire 
data: Hamer used “Kinsey 5–6” for several questions (attrac-
tion, fantasy, behavior, and self-identification) (Mustanski 
et al., 2005), and MGSOSO used “Kinsey 5–6” for fantasy 
along with homosexual identity (Sanders et al., 2015). The 
Hamer dataset consisted of 441 individuals in 145 families 
genotyped with 408 short tandem repeat polymorphism 
genetic markers (STRPs) (Mustanski et al., 2005), and the 
MGSOSO dataset consisted of 908 individuals in 384 fami-
lies and genotyped with 45,387 single-nucleotide polymor-
phism genetic markers (SNPs) (Sanders et al., 2015). Vari-
ous quality control steps had already been performed in the 
respective GWLS as previously detailed (Mustanski et al., 
2005; Sanders et al., 2015). After obtaining collaborative 
access to genotypes for each dataset, we conducted multi-
point nonparametric linkage analyses with Merlin v1.1.2 
(Abecasis et al., 2002) on the Hamer (Mustanski et al., 2005) 
and MGSOSO (Sanders et al., 2015) datasets separately since 
they were genotyped differently (STRPs vs. SNPs). To inte-
grate, we found the genetic positions of the respective mark-
ers in the Rutgers Map v.3 (hg19 build) (Nato et al., 2018) and 
then used the nonparametric S-pairs and grid 1 cM options 
to perform multipoint linkage on both data sets, followed 

by combining LOD scores at each grid position across the 
marker sets.

Meta‑Analyses of Summary Statistics

For phenotype definitions for homosexual men, the Cana-
dian dataset used an interview approach based on identity 
and corroboration by sibling, and on a sub-sample all also 
had Kinsey 5–6 for several questions (attraction, fantasy, and 
behavior) (Rice et al., 1999a, b). As we were unable to access 
genotypes for the Canadian dataset (accounting for < 10% 
of the families in GWLS on the trait), we were only able to 
incorporate the Canadian GWLS by meta-analyzing sum-
mary statistics. Thus, we used the plotted multipoint Cana-
dian GWLS Fig. 1 (Ramagopalan et al., 2010) and inter-
polated into cM bins enabling use of GWLS meta-analytic 
methods not needing genotypes, namely the multi-scan prob-
ability (MSP) approach utilizing regional p-values (Badner 
& Gershon, 2002), and the rank-based genome scan meta-
analysis (GSMA) approach (Levinson et al., 2003; Wise & 
Lewis, 1999).

Results

The multipoint plots for the Hamer and the MGSOSO data-
sets for the current analyses (Supplementary Figs. 1 and 
2, respectively) line up very well with the original GWLS 
manuscripts’ multipoint plots–Fig. 1a (Mustanski et al., 
2005) and Fig. 1 (Sanders et al., 2015), respectively. This 
overlap of multipoint findings was found despite some dif-
ferences between the original reports (Mustanski et al., 2005; 
Sanders et al., 2015) and the current manuscript in statisti-
cal analysis software (Aspex vs. Merlin for the Hamer data-
set) and genetic map used (deCode vs. Rutgers for both the 
Hamer and MGSOSO datasets). The joint analysis of the 
combined Hamer and MGSOSO datasets is shown in Fig. 1, 
with zoomed-in plots of the top two multipoint linkage peaks 
from this joint GWLS depicted for chromosomes 8 and X in 
Fig. 2. The results of the meta-analyses of summary statistics 
from Hamer, MGSOSO, and Canadian GWLS datasets are 
presented in Supplementary Tables 1 (MSP) and 2 (GSMA).
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Discussion

Our primary analysis for this investigation was the joint anal-
ysis of multipoint linkage from the Hamer and MGSOSO 
datasets (Mustanski et al., 2005; Sanders et al., 2015), to 
which each dataset contributed some peaks (Fig. 1, Supple-
mentary Figs. 1 and 2). Overall, the maximum multipoint 
peaks increased little in height, though the pericentromeric 
chromosome 8 peak was broadened (Fig. 2). Chromosomes 
8 and X retained the highest multipoint peaks genome-wide, 
mostly arising from the larger (MGSOSO) dataset (Fig. 2). 
The joint analysis gives a more comprehensive picture of 
shared and heterogeneous linkage regions (e.g., at pericen-
tromeric chromosome 8), the studies share overlapping peaks 
(possibly suggesting heterogeneity, perhaps with different 
genes involved in the different datasets), and the evidence 
broadens the search. The secondary analyses on summary 
statistics using MSP and GSMA to incorporate all three 
(Hamer, MGSOSO, Canadian) GWLS datasets showed no 
genome-wide significant results though suggestive findings 
remained present. The joint analysis of multipoint link-
age (Fig. 1) extracted the available positional information 

from collaborating GWLS, though previous GWLS find-
ings were not much further strengthened in these analyses. 
Nevertheless, this provides information to complement other 
approaches, such as helping prioritize findings from GWAS. 
Linkage and association studies measure different genetic 
properties (i.e., segregation of a region within families, vs. 
correlation of alleles in a population), both of which provide 
clues about underlying trait genetics. Thus, since GWLS are 
different from GWAS, we were unable to directly combine 
any GWAS (e.g., Ganna et al., 2019) with the studied GWLS 
in our GWLS meta-analysis. Limitations include those inher-
ent to linkage (as opposed to GWAS) of traits with com-
plex genetics (e.g., their limited utility for phenotypes with 
contributions from more than one or a few genes); on the 
other hand, linkage retains some advantages over associa-
tion approaches, such as being robust to allelic heterogeneity 
(Lipner & Greenberg, 2018). Accumulating genetic studies of 
the trait such as by much enlarged GWAS (e.g., Ganna et al., 
2019) will be especially useful, given its successful applica-
tion in the study of other phenotypes manifesting complex 
genetics (e.g., Fig. 3b in Sullivan et al. (2018)).

Fig. 1  Joint multipoint linkage analysis of the combined Hamer and MGSOSO datasets. Multipoint LOD scores are plotted v. the chromosomal 
positions for the nonparametric linkage analysis. Adjacent chromosomes are separated by alternating black and gray lines
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