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Abstract

The objective of this study was to establish an accurate body weight (BW) prediction model
for gilthead seabream Sparus aurata of 50-1000 g. Three thousand three hundred twelve
(3312) fish were individually weighed and photographed. Traits measured from the images
were total body length (TBL), fork body length (FBL), standard body length (SBL), body
height (BH), head length (HL), eye diameter (ED), body area (BA, without fins), head area
(HA), and eye area (EA). SBL, BH, BA, BA/SBL, and BA/BH showed a strong associa-
tion with BW (correlation coefficients, r: 0.96-0.99). These traits were selected to proceed
with the regression analysis. Simple, multiple linear, and 2nd-order polynomial regressions
were applied to the whole data set and three BW subgroups of interest during gilthead
seabream rearing (i.e., 50-100 g, 100-500 g, 500-1000 g). The prediction of BW from the
whole data set was more accurate than from each BW subgroup. The models with the high-
est coefficient of determination (R?) and the lowest errors (mean absolute percentage error,
MAPE) were either the power regression of BW with BA (R*: 99.0%, MAPE: 5.8%) or the
multiple linear regression of BW with SBL, BA, BA/SBL, and BA/BH (R*: 98.6%, MAPE:
5.1%) as predictors. The accuracy of the two models is considered quite similar, and for
reasons of simplicity, the power regression is advantageous, requiring only one trait to be
measured (BA). The models identified in the present study can help to further develop the
accuracy of machine vision-based systems for gilthead seabream BW measurement.
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Introduction

The Mediterranean marine intensive aquaculture has become one of the most important
parts of the European Union primary production sector (HAPO 2023). This development
is supported by continuous improvements in multiple aspects of the production cycle, e.g.,
fish handling and nutrition, fish health, and equipment (Fgre et al. 2018; Li and Du 2022;
Wu et al. 2022). A highly crucial point for the effective monitoring and management of
the production progress is the knowledge, hopefully at any time, of fish body weight (BW)
within sea cages (Tonachella et al. 2022; Chatziantoniou et al. 2023). Frequent evaluation
of fish BW together with feed intake allows for estimation of fish growth performance and
feed efficiency and thus for decisions regarding, e.g., grading, feeding, and harvest (Ton-
achella et al. 2022; Chatziantoniou et al. 2023).

In the aquaculture practice of marine Mediterranean fish species, the BW of the fish
inside a cage is estimated through scheduled manual weighing of several small fish groups
(Tonachella et al. 2022; Shi et al. 2023). The procedure requires labor effort, is time-con-
suming, and can be stressful to fish. Besides, there is the risk of error in the estimation
since only a small sample of fish are weighed. Acknowledging the necessity for simplifica-
tion and accuracy of the procedure, as well as for a “noninvasive, objective and repeatable
measurement” (Li et al. 2020), several intelligent and automatic systems for BW estima-
tion, mainly based on computer vision, have been developed, while research and interest
on this field is continuously growing (e.g., Li et al. 2020; Li and Du 2022; Tonachella et al.
2022).

Not any kind of underwater equipment can weigh the fish, but instead, it can acquire
images where fish morphometric traits can be visible and measurable. Thus, an important
feature of any automatic weight-estimator system is the precise conversion of fish mor-
phometric traits visible in the image to fish BW (Viazzi et al. 2015; Li et al. 2020; Holmes
and Jeffres 2021; Li and Du 2022). The most common way to achieve the goal is to estab-
lish accurate regression models that predict fish BW from one or more traits. The weight-
length relationship has been widely used for predictions of fish BW from total, standard, or
fork length (e.g., gilthead seabream Sparus aurata, meagre Argyrosomus regius, red porgy
Pagrus pagrus, Navarro et al. 2016; red tilapia Oreochromis niloticus, Jongjaraunsuk and
Taparhudee 2022; gilthead seabream, Tonachella et al. 2022). However, available data sug-
gest that the use of other morphometric data (e.g., surface area, body height) or the use of
multiple traits can provide more accurate predictions (Alaskan Salmon species Oncorhyn-
chus sp., Balaban et al. 2010a; Alaskan pollock Theragra chalcogramma, Balaban et al.
2010b; rainbow trout Oncorhynchus mykiss, Giimiis and Balaban 2010; herring Clupea
harengus, Mathiassen et al. 2011; European seabass Dicentrarchus labrax larvae, de Ver-
dal et al. 2014, Azevedo et al. 2023; Jade perch Scortum barcoo, Viazzi et al. 2015; Asian
seabass Lates calcarifer, Konovalov et al. 2018, 2019; Nile tilapia, Fernandes et al. 2020;
Taparhudee and Jongjaraunsuk 2023; European catfish Silurus glanis and African catfish
Clarias gariepinus, Giimiis et al. 2021, chinook salmon Oncorhynchus tshawytscha, Hol-
mes and Jeffres 2021; Australasian snapper Chrysophrys auratus, Yang et al. 2021; scaled
and mirror carp Cyprinus carpio, Giimiis et al. 2023).

Given the importance of gilthead seabream Sparus aurata as a major reared species of
intensive Mediterranean aquaculture, the objective of the present study was to establish the
regression models needed to predict BW from traits measurable from images. Present data
covered a BW range from 50 to 1000 g aiming to satisfy the needs of the main part of the
production cycle in sea cages.
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Materials and methods
Fish

A total of 3312 gilthead seabream were used in this study. Within the range of the tar-
geted body weight (BW), i.e., 50-1000 g, special care was taken to have a minimum of
50 observations per 25 g weight classes (a total of 38 classes; in 3 out of 38 classes, the
number of observations is 39—45 due to unsuccessful camera focus; see “Measurements’)
(Table 1). The main bulk of samples (from 175 up to 1000 g) was obtained in a commercial
packaging plant. In brief, harvested fish were slaughtered on site in 1 m® bins with ice-
seawater slurry and were thus transported to the packaging plant with refrigerator tracks.
Upon arrival, fish were distributed according to their weight class (automatic sorting) and
packaged (whole, ungutted, ventral side upwards), with flaked ice, in polystyrene boxes
at 1-2 °C. Present measurements were performed in fish that had not reached full rigor
mortis and not later than 12 h from slaughter. Fish of lower BW (from 50 up to 175 g) were
obtained from a commercial fish farm. Although fish with BW < 175 g were found among
harvested fish in the packaging plant, they were not considered as representative of robust
fish intensively growing. When the fish of a sea cage reach mean commercial weight and
harvest begins, fish of much lower and much larger BW than the commercial size are also
present, are harvested, and reach the packaging plant. However, the much smaller fish (i.e.,
<175 g) are either fish with low growth rates and/or fish that did not manage to feed well
and thus were not suitable to be included in the present study. Instead, fish of 50-175 g,
still growing in sea cages, are much more appropriate. On the farm, fish were netted from
their cage and anesthetized in buckets. After weighing and photographing, fish recovered in
buckets with clean sea water and were returned to their cage.

Measurements

Each fish was individually weighed (scale precision 0.2 g for fish > 175 g and 0.1 g for fish
<175 g), after wiping the surplus of water, and photographed. A photo camera (Canon,
EOS M50) was mounted on a tripod, over the scale, and took lateral pictures of each fish.
A ruler next to the fish was embedded in each photo to be used as a reference during mor-
phometric traits measurements. The latter were performed using an image analyses soft-
ware (Image-Pro Plus, v. 6.0). The software was set so that once the necessary landmarks
were marked in the photo, the desired lengths (mm, Fig. 1), previously calibrated with ref-
erence to the ruler, were provided in an excel file. More precisely, the morphometric traits
measured were total body length (TBL), fork body length (FBL), standard body length
(SBL), body height (BH), head length (HL), and eye diameter (ED). Also, for each fish, the
contour of its body (without fins), head, and eye was used to measure body area (BA), head
area (HA), and eye area (EA) (one side, mm?).

Data analysis

All statistical analysis was carried out using Stata 18 software (Stata Corp, College Sta-
tion, TX, USA). Data analysis was performed on the whole data set (i.e., 50-1000 g) and
on three subgroups (Subgroup 1, S1: 50-100 g; Subgroup 2, S2: 100-500 g; Subgroup 3,
S3: 500-1000 g). The weight range of the chosen subgroups corresponds to specific weight
classes of importance to gilthead seabream intensive rearing. In particular, S1 has the
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Table 1 Frequency tabulation - -
ofbody weight forgilthead (1SN Bodyweight @range - Frequency - Relaive
seabream used in the present Minimum Maximum (%)
study
1 50 75 83 2.51
2 75 100 167 5.04
3 100 125 53 1.60
4 125 150 76 2.29
5 150 175 41 1.24
6 175 200 76 2.29
7 200 225 126 3.80
8 225 250 133 4.02
9 250 275 169 5.1
10 275 300 223 6.73
11 300 325 45 1.36
12 325 350 57 1.72
13 350 375 78 2.36
14 375 400 62 1.87
15 400 425 39 1.12
16 425 450 50 1.51
17 450 475 65 1.96
18 475 500 77 2.32
19 500 525 71 2.14
20 525 550 105 3.17
21 550 575 74 2.23
22 575 600 53 1.60
23 600 625 163 4.92
24 625 650 164 4.95
25 650 675 105 3.17
26 675 700 70 2.11
27 700 725 63 1.90
28 725 750 71 2.14
29 750 775 75 2.26
30 775 800 75 2.26
31 800 825 75 2.26
32 825 850 76 2.29
33 850 875 72 2.17
34 875 900 77 2.32
35 900 925 75 2.26
36 925 950 77 2.32
37 950 975 80 242
38 975 1000 71 2.14

fastest growing fish, while growth rate decreases as fish grow from S1 to S3; S2 includes
fish that reach the commercial size, and S3 includes larger fish which are usually directed
in special markets (e.g., restaurants), filleted, or selected as possible parents in breed-
ing selection programs. The analysis of all the data together and in the three subgroups
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Fig. 1 Morphometric traits meas-
ured. 1-2: total body length—
TBL, mm; 1-3: fork body
length—FBL, mm; 1-4: standard
body length—SBL, mm; 5-6:
body height—BH, mm; 1-7:
head length—HL, mm, 8-9: eye
diameter—ED, mm

was decided in order to investigate whether more accurate BW prediction models can be
obtained when the BW range is more limited.

For the whole data set and for each of the above-mentioned subgroups, Spearman rank
correlations between BW and all morphometric traits measured, as well as the ratios BA/
SBL, BA/BH, BA/HA, BA/EA, and SBL/BH, were calculated. Correlation coefficients
were assessed according to Asuero et al. (2006) and Ratner (2009); special emphasis was
given to identify a very high association of BW with a given morphometric trait (i.e.,
r>0.95). Based on correlation analysis results and taking into consideration that the fins
may not be easily distinguished underwater while they contribute much to area but little to
fish BW, regression models examined to predict BW were focused on SBL, BH, BA, BA/
SBL, and BA/BH.

Simple, multiple linear, and 2nd-order polynomial regression models were applied to
obtained data. In the case of simple regression, for all parameters examined, the power
equation [¥ = a X°, ¥: BW, X: morphometric traits or ratios, In(a): intercept, b: slope]
resulted in the highest coefficient of determination (R?) values, so other models are not
included in the present study. In the case of multiple linear regression (Y = C, + C, X; +
C, X, + ... + G X;; Y: BW; Cj — C;: constants; X, — X;: morphometric traits or ratios), step-
wise regression with backward selection was applied. The analysis was performed includ-
ing only the basic morphometric traits (i.e., SBL, BH, BA) or including only the ratios
(i.e., BA/SBL, BA/BH) or including all data together (i.e., SBL, BH, BA, BA/SBL, BA/
BH). In the tables, the final chosen model of each case is presented. Finally, each morpho-
metric trait or ratio was also fitted to a 2nd-order polynomial regression model (Y = C, +
C, X + C, X% Y: BW, C, — C,: constants; X: morphometric traits or ratios). When the P
value of the 2nd-order term of the polynomial was greater than 0.05, then the term was
removed, and the order of the model was reduced to one.

To compare and assess the precision of the models obtained, the following metrics were
used (Asuero et al. 2006; Ratner 2009; Chicco et al. 2021): (a) coefficient of determination
(R%), as a measure of the proportion of the variance in the dependent variable (i.e., BW)
that is predictable from the independent variables (i.e., morphometric traits). Models with
R? > 98% were considered strong. (b) Mean absolute error (MAE), as an estimate of the
absolute difference between the actual and predicted values. (c) Mean absolute percentage
error (MAPE), as an estimate of the percentage difference between predicted values and
actual values. MAPE is the percentage equivalent of MAE. (d) Root mean square error
(RMSE), as a measure of the standard deviation of residuals. In the present data, the best
models were initially sought among those with the highest R> (Chicco et al. 2021). Once
these were identified, then selection was refined among those models with the lowest error
terms.
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Results
Whole data set (50-1000 g)

The mean, median, standard deviation, minimum-maximum value, and coefficient of vari-
ation for BW and morphometric traits recorded and calculated (i.e., ratios) for the whole
data set (BW range 50-1000 g) are shown in Table 2. Spearman rank correlation coeffi-
cients (Table 3) of BW with each of the traits determined were highly significant. Regard-
ing the traits measured, the strongest correlation (r = 0.9904) was detected between BW
and BA (monolateral, fins excluded), while the weakest was between BW and parameters
related to head and eye (i.e., HL, HA, ED, EA). Correlations of BW with body lengths
(i.e., TBL, FBL, SBL, BH) were also strong (r > 0.98). Regarding the ratios calculated, a
strong correlation was found between BW and the ratios BA/SBL and BA/BH. Correlation
coefficients for BW with BA/HA and BA/EA were lower, while no association is indicated
between BW and the ratio SBL/BH.

Regression analysis performed in the present study focused on SBL, BH, BA, BA/SBL,
and BA/BH as possible estimators of the BW (Table 4). Simple power regression (Egs. 1-5,
Table 4) showed that the relationship with the highest R? and the lowest errors (MAPE, MAE,
RMSE) was the one that considers BA as X (Eq. 3, Table 4, Fig. 2). Although the other power
equations also had high R?, the error level was much higher. The investigation of multiple lin-
ear models (Eqgs. 68, Table 4) pointed out the equation that involved SBL, BA, BA/SBL, and

Table 2 Descriptive statistics for body weight (50-1000 g) and morphometric traits recorded in gilthead
seabream used in the present study

Parameter Mean Median Standard deviation Minimum-maximum value CV

Traits measured

Body weight (g), BW 500.9 5154 27351 50.0-1000.0 54.6

Total body length (mm), 305.5 319.5 62.22 143.4-421.0 20.4
TBL

Fork body length (mm), 285.0 297.9 58.46 135.8-385.1 20.5
FBL

Standard body length 257.8 268.7 54.81 122.1-357.2 21.3
(mm). SBL

Body height (mm), BH 101.2 105.8 21.88 46.8-143.9 21.6

Head length (mm), HL 68.9 70.5 12.49 34.1-101.6 18.1

Eye diameter (mm), ED 14.8 14.9 2.11 8.3-22.1 14.3

Body area (mm?), BA 18759.3 19649.3 7191.81 4080.6-33736.4 38.3

Head area (mm?), HA 3580.5 3661.4 1219.49 832.8-7304.5 34.1

Eye area (mm?), EA 208.0 209.8 52.67 60.1-436.8 253

Ratios

BA/SBL 69.7 72.4 14.86 32.2-98.5 21.3

BA/BH 177.4 184.3 37.61 82.2-258.6 21.2

BA/HA 5.2 5.1 0.64 32-79 124

BA/EA 89.0 87.0 26.8 35.1-191.6 30.2

SBL/BH 2.6 2.5 0.12 2.1-3.1 4.7

CV, coefficient of variation (%). n=3312
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Table 3 . Spearman. rank Body weight (g), BW vs B Sig-
correlation coefficients between nificance
body weight and morphometric level (P)

traits recorded in gilthead
seabream 50-1000 g

Traits measured

Total body length (mm), TBL 0.9831 HAE
Fork body length (mm), FBL 0.9836 HoHE
Standard body length (mm). SBL 0.9838 Fkk
Body height (mm), BH 0.9813 wkk
Head length (mm), HL 0.8868 Fokk
Eye diameter (mm), ED 0.6344 ok
Body area (mm?), BA 0.9904 Hakk
Head area (mm?), HA 0.9283 ok
Eye area (mm?), EA 0.6049 ke
Ratios
BA/SBL 0.9761 wAE
BA/BH 0.9639 wkk
BA/HA 0.6530 ok
BA/EA 0.8531 ok
SBL/BH —0.0803 ok

“* P<0.001. Traits selected for regression analysis are in bold

BA/BH (Eq. 8, Table 4). R%, as well as the level of errors observed, were comparable to values
obtained in the power regression (Eq. 3, Table 4). Finally, the 2nd-order polynomial regres-
sion (Eqs. 9-13, Table 4) did not reveal a more accurate equation than those observed with
power and multiple linear models. BA was the best estimator for BW (Eq. 11, Table 4), but
still R? and error levels were inferior to those observed for Eqs. 3 and 8.

Data subgroups (50-100 g, 100-500 g, 500-1000 g)

Descriptive statistics (Table SM1), correlation (Table SM2), and regression analysis data
(Tables SM3-SMS5, Fig. SM1-SM3) for each subgroup of BW examined are presented in Sup-
plementary Material (SM). All correlation coefficients were slightly lower compared to those
obtained when the whole data set was considered as one, but the results obtained regarding
their relative importance were identical. Regression analysis applied to each subgroup showed,
in all equations, lower R? and similar or smaller error levels than those obtained from the
whole data set. Apart from these differences, in each regression model category (i.e., power,
multiple linear, 2nd-order polynomial), the more accurate (in terms of R? and errors) equations
obtained were the same as those detected for the weight range 50-1000 g, i.e., power equation
with BA, multiple linear equation with the involvement of SBL, BH, and BA, and polynomial
equation with BA, differing in the related constants.
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Fig.2 Plot of fitted power
model for gilthead seabream of
50-1000g; In(BW) = —8846
+1525 X In(BA) or BW = exp
(—8846 + 1525 x BA); R? =
98.98%; r =0.9949; P < 0.001;
n =3312. Yellow areas mark the
95% confidence intervals

1000

0
=3
=3

600

Fish body weight (BW), g

(X 10000,0)

Fish body area (BA), mm?

Discussion

In the present study, morphometric traits considered to be suitable to predict BW in a
regression model were those that were strongly (r > 0.95) correlated with BW. Strong (i.e.,
r > 0.80) association of BW with BA, SBL, BH, and HL has also been previously reported
for gilthead seabream (Boulton et al. 2011; Navarro et al. 2016) and for other species (i.e.,
de Verdal et al. 2014; Fernandes et al. 2020). Similarly to the present results, a weak asso-
ciation was detected between BA and ED in spotted scat Scatophagus argus (Chen et al.
2022) and between BA and the ratio BH/SBL (the inverse of the present examined ratio)
in pirapitinga Piaractus brachypomus (Ribeiro et al. 2019). Thus, all traits detected to be
strongly associated with BW had adequate potential to be included in the regression mod-
els investigated, while traits like HL, HA, ED, EA, BA/HA, BA/EA, and SBL/BH could be
excluded. Among body lengths, TBL and FBL were also excluded, despite the high corre-
lation coefficients observed, since they involve the caudal fin which may lead to inaccurate
measurements (Viazzi et al. 2015; Konovalov et al. 2019; Jongjaraunsuk and Taparhudee
2021).

The present study showed that models predicting BW of gilthead seabream from mor-
phometric traits when the whole BW range is included as one data set are more accurate,
in terms of R?, compared to those obtained when the defined subgroups of BW are used.
On the other hand, models identified in the latter case had similar or lower values of the
error terms. However, all MAPE (mean absolute percentage error) values obtained for the
best equations identified in each regression model (no matter the data set) lay at the lower
limit of percentage errors (4-14 %) reported in similar studies for other fish species (e.g.,
Viazzi et al. 2015, Konovalov et al. 2018, 2019; Fernandes et al. 2020, Jongjaraunsuk and
Taparhudee 2021). Besides, according to Chicco et al. (2021), the coefficient of determina-
tion (R?) is considered as a more “informative and truthful” metric for the evaluation of
regression analyses and for the comparison among different regression models. Overall, the
present results suggest that the prediction of BW from the regression models of each BW
subgroup examined does not offer an advantage over the prediction resulting by using the
equations of the whole data set.

A common feature of all best BW prediction models obtained in the present study,
no matter the BW range that they were applied, is the involvement of fish body area
(BA) as an important predictor. Previously reported studies that investigated the best
estimator variables for BW prediction and included fish area along with other measure-
ments (e.g., contour, length, width, height, eccentricity) concluded that just fish area is
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sufficient to produce the more accurate regression models, at least for the species they
studied (Balaban et al. 2010a; de Verdal et al. 2014; Viazzi et al. 2015; Fernandes et al.
2020; Giimiis et al. 2021; Taparhudee and Jongjaraunsuk 2023). Furthermore, the fact
that fins were excluded from the present BA measurement probably adds to the accuracy
of obtained models, as it was observed in Jade perch (Viazzi et al. 2015) and Asian sea-
bass (Konovalov et al. 2019; Jongjaraunsuk and Taparhudee 2021), although no effect
was found for Alaskan pollock (Balaban et al. 2010b). Fins contribute much to the area
but little to BW; they continuously fold and unfold in a swimming fish, while they may
also be damaged. The measurement of BA without the fins is a more accurate variable
and explains the improvement of related predictions, whereas it may better fit in com-
puter vision systems.

Focusing on the prediction models obtained from the whole data set (i.e., 50-1000 g),
the models with the highest R? and the lowest errors were either the power regression of
BW with BA or the multiple linear regression of BW with SBL, BA, BA/SBL, and BA/
BH as predictors. In the latter case, besides BA, two more measurements are involved, i.e.,
SBL and BH. The accuracy of the two models is quite similar, and for reasons of simplic-
ity, the power regression is advantageous. In the literature, the power curve has been exten-
sively used to evaluate allometric relationships between fish BW and mostly body length
in fisheries and marine biology studies (e.g., Sangun et al. 2007; Robinson et al. 2010;
Mathiassen et al. 2011; Karachle and Stergiou 2012; Sinopoli et al. 2022). Morphometric
traits have also been of use in the aquaculture science to identify shape-related differences
between farmed and wild fish (e.g., Arechavala-Lopez et al. 2012; Gonzalez et al. 2016;
Fragkoulis et al. 2017) and skeletal deformities (Costa et al. 2013), as well as to differenti-
ate between the sexes (Coban et al. 2011).

In conclusion, the power equation between BW and BA reported in the present study
[In(BW) = —8.846 +1.525 X In(BA) or BW = exp (—8.846 + 1.525 X BA)] can accurately
predict gilthead seabream BW, in the range of 50-1000 g, through the measurement of only
one trait, i.e., monolateral body area without fins. It remains for the machine vision-based
methods (Li et al. 2020; Li and Du 2022) to develop a way to acquire the image, extract the
fins, and measure the body area by surpassing all the practical difficulties that an underwa-
ter measurement of a great number of swimming fish involves.
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