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Abstract
Vibrio alginolyticus and Streptococcus agalactiae are important bacterial pathogens that 
yielded high losses in Nile tilapia in Egypt. The present study aimed to check the protective 
efficacy of inactivated whole-cell bivalent vaccines against these pathogens using incom-
plete Freund’s adjuvant and Montanide™ IMS 1312 VG as adjuvants. The antibody titers 
have been determined at different weeks post-vaccination (WPV). Moreover, the protection 
levels against the challenged bacterial pathogens have also been examined in relation to 
the time-dependent protection at different WPV. The results revealed that serum antibod-
ies were generated in all immunized fish at 1st WPV, peaked at 4th WPV, continued, and 
gradually decreased from 6th WPV to 14th WPV in all vaccinated groups. In addition, 
vaccines induced significantly higher protection of the immunized tilapia, manifested by 
higher survival rates. We noticed that the antibody levels and survival rates of the vacci-
nated fish by a vaccine adjuvanted by Montanide™ IMS 1312 VG were higher than those 
produced by a vaccine adjuvanted by incomplete Freund’s adjuvant at different time points. 
Moreover, no external clinical signs, visceral adhesions, or internal lesions were recorded 
in the vaccinated tilapia, demonstrating the safety of the formulated vaccines. According to 
the aforementioned findings, we could suggest that the prepared bivalent vaccines, using 
the two adjuvant types, are safe and highly protective and could be utilized as promising 
candidate vaccines to increase the resistance of Nile tilapia against V. alginolyticus and S. 
agalactiae infections. Moreover, Montanide™ IMS 1312 VG enhanced the immuno-pro-
tectivity and exhibited optimum immune response and earlier protection compared to the 
vaccine adjuvanted by incomplete Freund’s adjuvant, demonstrating its added value during 
the preparation of tilapia vaccines.
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Introduction

Egyptian aquaculture is one of the largest fish producers in Africa; however, it currently 
faces several constraints threatening its growth and continual development (Shaalan et al. 
2018), such as the wide spread of infectious diseases, particularly during the summer sea-
son (Abdel-Latif and Khafaga 2020). Bacterial pathogens contribute to heavy kills and sig-
nificant economic loss in many fish farms throughout the globe (Austin and Austin 2016). 
In Egypt, they share the most significant cause of annual economic loss in fish farms (El-
Son et al. 2021), especially when they flourish as combined infections with other patho-
gens (Abdel-Latif et al. 2020). Several types of bacterial pathogens have been implicated 
in disease outbreaks in finfish species throughout the globe (Austin 2019). From these dis-
eases, vibriosis and streptococcosis have gained particular concerns.

Vibriosis is one of the main bacterial diseases that threaten a variety of finfish spe-
cies (Ina-Salwany et al. 2019), as it causes serious pathological lesions, disease signs, and 
heavy kills (Manchanayake et al. 2023; Mohamad et al. 2019). This disease is caused by 
members of the Vibrionaceae family, including Vibrio anguillarum, V. parahaemolyticus, 
V. ordalii, V. harveyi, and V. alginolyticus. From these species, V. alginolyticus has been 
previously identified from several finfish species, such as turbot (Scophthalmus maximus) 
(Austin et al. 1993), Mugil capito (Khalil and Abdel-Latif 2013), cobia (Liu et al. 2004; 
Rajan et al. 2001), Tilapia zillii (El-Sayed et al. 2019), African catfish (Clarias gariepinus) 
(Abdelsalam et al. 2021), Sparus aurata and Dicentrarchus labrax (Ben Kahla-Nakbi et al. 
2009), and Nile tilapia (Oreochromis niloticus) (Younes et  al. 2016). Streptococcosis is 
another frequently encountered disease that affects farmed fish species and is caused by 
several streptococcal strains such as Streptococcus agalactiae, S. iniae, and S. dysgalactiae 
(Klesius et al. 2008; Van Doan et al. 2022). With particular concern, several researchers 
reported the negative impacts of S. agalactiae on tilapia aquaculture (Pretto-Giordano et al. 
2010; Suanyuk et al. 2008; Wangkaghart et al. 2021; Zhang et al. 2020).

Vaccination could be considered a promising strategy to boost fish immunity and pro-
vide considerable protection against challenging pathogens (Sommerset et al. 2005; Aus-
tin 2012). Researchers developed and constructed many fish vaccines with proven efficacy 
and prominent protective roles (Adams 2019). Vaccine adjuvants have been broadly used 
to augment the efficacy of vaccines by improving their potency and durability of immune 
responses against specific antigenic materials (Brudeseth et al. 2013). Moreover, they can 
minimize the number of the required vaccinal doses (especially the booster doses) and help 
to reduce the amount of antigen needed per vaccinal dose (Wang et  al. 2013; Xu et  al. 
2012). Since the 1990s, vaccines combined with oil-based adjuvants had been applied in 
aquaculture (Aucouturier et  al. 2001; Ribeiro and Schijns 2010), with proven and effec-
tive roles in controlling many bacterial fish diseases. After that, a wide range of vaccine 
adjuvants has been used in several trials (Tafalla et al. 2013), such as chitosan oligosac-
charide, aluminum hydroxide, flagellin, liposomes, astragalus polysaccharides, CpG oligo-
nucleotides, Freund’s complete adjuvant (FCA), incomplete Freund’s adjuvant (IFA), and 
Montanide™ adjuvant (Wangkaghart et al. 2021). Reports enlightened the efficacy of such 
adjuvants for enhancing the immuno-protective roles of vaccines by increasing their mag-
nitude and providing prolonged protection against several infections in many finfish species 
(Jiao et al. 2010; Wangkahart et al. 2019; Zheng et al. 2012).

Bivalent vaccines containing two antigenic combinations could be better than mono-
valent vaccines to reduce the costs and minimize the handling stress exerted on the vac-
cinated fish (Bastardo et  al. 2012). The protective efficacy of the inactivated whole-cell 
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killed bivalent vaccines against two different bacterial antigens has been previously exam-
ined. For example, Shoemaker et al. (2012) reported a proven efficacy of a bivalent vaccine 
against S. iniae and V. vulnificus infections in hybrid tilapia (O. niloticus × O. aureus). 
Moreover, an effective bivalent vaccine has also been developed against S. agalactiae and 
Aeromonas hydrophila in Nile tilapia (Pasaribu et al. 2018). In this context, we formulated 
inactivated formalin-killed whole-cell bivalent vaccines against V. alginolyticus and S. aga-
lactiae infections in Nile tilapia. We evaluated incomplete Freund’s adjuvant and Monta-
nide™ IMS 1312 VG as vaccine adjuvants. After immunization with these vaccines, the 
antibody titers of Nile tilapia were analyzed at different weeks post-vaccination. In addi-
tion, the protective efficacy of the constructed vaccines was also tested by monitoring the 
fish survival after being challenged with V. alginolyticus and S. agalactiae infections at dif-
ferent time points to determine the time-dependent protection of the tested vaccines.

Materials and methods

Ethical statement and approval code

Experiments were ethically approved by the Institutional Animal Care and Use Committee 
at Alexandria University (ALEXU-IACUC-013/2022/12/-3R/4P/187).

Experimental fish: acclimation and rearing

Healthy Nile tilapia, weighing approximately 50.0±10.0 g (as an average initial weight), 
were procured from a fish farm in Kafr El Sheikh, Egypt. After their arrival, fish were 
reared in 500-L fiberglass tanks at the Wet Laboratory belonging to the Central Labora-
tory for Evaluation of Veterinary Biologics, Cairo, Egypt. Before the vaccination trials, 
fish were left in these tanks for two successive weeks to acclimate to the laboratory condi-
tions. During the acclimation, fish were hand-fed ad  libitum daily by commercially pur-
chased well-balanced isocaloric and isoproteinous diet (Aller Aqua Co., Egypt) to fulfill 
the requirements for optimum growth rates. Fish tanks were supplied with well-aerated 
water, and fish were maintained in static water. Water temperature, pH, dissolved oxygen, 
and total ammonia nitrogen were maintained at 28.50±1.0 °C, 7.8±0.1, 6.6±0.3 mg/L, 
and 0.05 mg/L, respectively. After acclimation, twelve individuals were randomly selected 
from the rearing tanks and then examined bacteriologically to confirm they tested negative 
for bacterial infections.

Pathogenic bacterial strains

The used bacterial strains were kindly supplied by the Department of Poultry and Fish 
Diseases, Faculty of Veterinary Medicine, Alexandria University. V. alginolyticus 
(Abdel-Latif 2013; Khalil and Abdel-Latif 2013) and S. agalactiae (Hamoury 2022) 
were formerly identified from naturally infected fish showing septicemic signs. The bac-
terial isolates were preserved in 20% glycerol at −80 °C. Before their use, the bacte-
rial strains were cultured on tryptic soy agar (TSA, HiMedia, Maharashtra, India). The 
retrieved bacterial colonies were then examined and identified using microbiologically 
standard protocols such as Gram staining, colonial morphology, biochemical tests, and 
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β-hemolytic patterns for S. agalactiae on blood agar (BA) media. The phenotypic and 
molecular characterizations (PCR using specific primers) were conducted before the two 
bacterial pathogens were used as antigenic materials to prepare the inactivated vaccines.

Bacterial inactivation, adjuvants, and vaccine formulation

Bacterial inactivation

Pure colonies of V. alginolyticus and S. agalactiae were inoculated into brain heart infusion 
broth (BHIB, HiMedia, Maharashtra, India) and then incubated at 30 °C for 24–48 h. Ten-
fold serial dilutions of the bacterial cultures were done. Each bacterial isolate was plated 
on TSA medium and then incubated at 30 °C for 24 h to estimate the CFU/mL, according 
to the protocol described in Abu-Elala et al. (2019). Afterward, the CFU/mL was compared 
to McFarland standard concentrations. For bacterial inactivation, the bacterial cultures 
were then suspended in a 3% formalin solution (Algomhuria, Egypt) with continuous agi-
tation for 24 h at 25 °C. The prepared antigenic materials were centrifuged at 1800 × g for 
30 min. Supernatants were removed, and bacterial pellets were re-suspended three times in 
PBS solution (phosphate-buffered saline; pH 7.4). Safety testing was conducted by plating 
100 μL of the formalin-inactivated suspensions on the TSA medium and then incubating at 
30 °C for 3 days to observe any bacterial growth that occurred.

Adjuvants used for vaccine formulation

Montanide™ IMS 1312 VG (SEPPIC, France) and incomplete Freund’s adjuvant (Sigma-
Aldrich, USA) were used to formulate bivalent vaccines. The inactivated whole-cell biva-
lent vaccine was formulated by mixing equal volumes of the antigenic aqueous medium 
containing 3 ×  109 CFU/mL of each bacterial species (V. alginolyticus and S. agalactiae) 
with the adjuvant type at room temperature with adequate agitation. The first formulation 
was made using the prepared bacterial mixtures and then mixed with Montanide™ IMS 
1312 VG in a ratio of 50:50 (v/v) according to the protocol described in Abu-Elala et al. 
(2019). In the same sense, the second formulation was made using the prepared bacterial 
mixtures and then mixed with incomplete Freund’s adjuvant in a ratio of 50:50 (v/v). The 
mixing process was conducted at room temperature under gentle agitation according to the 
procedures provided by the manufacturer to formulate two adjuvanted whole-cell bivalent 
vaccines. Similarly, the control solution was prepared with PBS, which was mixed with 
each adjuvant type in a ratio of 50:50 (v/v). Hence, all prepared adjuvanted vaccines were 
stored at 4 °C until use.

Vaccine sterility test

The sterility of the formulated vaccines was tested and confirmed to be free from bacte-
rial or fungal contamination. These procedures were conducted by spreading 100 μL from 
each vaccine on TSA, blood agar, and Sabouraud’s dextrose agar (SDA) media. All culture 
plates were then incubated at 25 °C for 2 days.
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Vaccine adjuvant safety test

This test examined whether the prepared vaccines caused any adverse reactions in fish before 
their use in the vaccination process. A double dose of the prepared vaccines was used to 
achieve this objective. In this regard, thirty fish (per each group) were intraperitoneally (IP) 
injected with 1.0 mL of each prepared adjuvanted vaccine. Fish were anesthetized with clove 
oil (Algomhuria, Egypt; 5 mL/L) before injection for safe handling during the injection. After 
injection, the inoculated fish were then monitored for 14 days to record any adverse impacts 
which will appear in the form of behavioral changes such as aggression, loss of appetite, isola-
tion, color changes, lesions at the site of injection, immediate mortalities due to toxicity, and 
other signs related to injection at a high dose. Finally, fish were euthanized after the 14-day 
observation period and then aseptically necropsied to check for any postmortem (PM) lesions 
resulting from long-term adverse effects such as lesions or visceral adhesions. A safe vaccine 
could be determined not to produce the changes mentioned above.

Vaccination and blood sampling

Vaccination procedure

Fish were anesthetized with clove oil (5 mL/L) before vaccination for safe handling during 
the injection. Six hundred thirty healthy Nile tilapia were allocated into three groups (each 
one containing 210 individuals). In the 1st group (group I), fish were vaccinated via IP injec-
tion with 0.5 mL/fish of the formulated inactivated whole-cell bivalent vaccine adjuvanted by 
Montanide™ IMS 1312 VG. The IP route was selected for fish immunization according to the 
procedure formerly described by Abu-Elala et al. (2019) and also the approval obtained from 
the adjuvant supplier. In the 2nd group (group II), fish were vaccinated via IP injection with 
0.5 mL/fish of the formulated inactivated whole-cell bivalent vaccine adjuvanted by incom-
plete Freund’s adjuvant. In the 3rd group (group III), where fish were injected with 0.5 mL 
PBS as prepared above, this group served as the control group.

Blood sampling and serum collection

Fish were fasted for 24 h before blood sampling. Fish were then anesthetized, and blood was 
collected from the caudal vein using a 3-mL syringe. Blood samples were collected without 
anticoagulant from 5 fish per group (n = 5). Blood samples were then left in Eppendorf tubes 
on ice in a vertical position to separate the serum. Serum was collected after centrifugation at 
1500 × g for 10 min at 4 °C. The collected serum samples were stored at −20 °C until use. 
Fish sera were taken to evaluate the antibody titers at 1st, 2nd, 3rd, 4th, 6th, 8th, 10th, 12th, 
and 14th weeks post-vaccination (WPV).

Vaccine potency

Microtiter plate agglutination test

The agglutinating antibody titers were determined using the microtiter plate agglutination test 
using each antigen independently (Klesius et al. 2000; Shoemaker et al. 2011). To put it briefly, 
two 96-well microtiter plates (with rounded bottoms) were first plated with 25 μL of PBS. 
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Subsequently, 25 μL of the sampled fish serum was added in each well of the first row and then 
mixed well. After the mixing procedure, twofold serial dilutions were performed. Then, 50 μL 
of either V. alginolyticus or S. agalactiae cell suspensions in a dose of 9 ×  108 CFU/mL (equal 
to McFarland 3) was added to and mixed with the contents in each well. Plates were covered 
and incubated overnight (18 h) at 28.0±2.0 °C and then for 4 h at 4 °C prior to plate reading. 
These steps were performed in line with the procedure described by Shoemaker et al. (2012). 
The endpoint of the agglutination was observed visually as the final serum dilution, whereas 
visible agglutination was noticed and was taken as the agglutinating antibody titer. The anti-
body titers were expressed as Log2 (x + 1) of the mutual of the highest dilution of serum sam-
ples that exhibited noticeable agglutination in comparison with the positive control.

Vaccine efficacy

Thirty fish were selected per group (VACC and CNT groups) and were allocated in triplicates 
(10 fish/replicate). Fish were IP injected with 0.1 mL containing 6 ×  108 CFU/mL per fish 
from a suspension of a single live V. alginolyticus or S. agalactiae. This dose was selected 
on the basis of a previously calculated lethal dose 50%. The bacterial challenge test was per-
formed on the 2nd, 4th, 6th, 8th, 10th, 12th, and 14th WPV. All challenged fish were observed 
daily for 2 weeks. In addition, the challenged fish were investigated daily for the clinical signs 
of vibriosis and streptococcosis. Dead fish were removed daily and counted. The cumulative 
mortality and survival percentages were calculated for 2 weeks, and the relative percent sur-
vival (RPS) was determined (Amend 1981) in line with the following formula:

Bacterial re‑isolation

Bacterial re-isolation was performed from the challenged fish to verify the cause of mortali-
ties and confirm that these mortalities originated from the pathogens used for the challenge 
test. To achieve this objective, bacteriological swabs were harvested from the liver samples 
and then subcultured on culture media, which followed the same bacteriological examination 
procedures described before.

Statistical analysis

Data were expressed as means ± SE. Data were examined by a one-way ANOVA. Data were 
analyzed using SPSS software (SPSS Inc., Chicago, IL, USA) and GraphPad prism X8 program.

Results

Vaccine sterility

The sterility of the tested bivalent vaccine was approved, whereas the examination of the 
inoculated culture media did not detect any bacteria other than those used as vaccinal 
strains. Moreover, no fungal contamination or growth was detected.

RPS = 100 ×

(

1 −
Mortality % in VACC group

Mortality % in CNT group

)
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Vaccine safety

The safety studies on the prepared vaccines demonstrated that fish vaccinated with a dou-
ble dose of the inactivated bivalent vaccines did not show any adverse local or systemic 
reactions throughout the post-vaccination period. Moreover, the fish appeared normal and 
healthy post-vaccination, with no clinical signs observed. PM findings also did not reveal 
any visceral adhesions or internal lesions.

Antibody titers

The microtiter plate agglutination test showed the serum antibody titers against S. aga-
lactiae in fish groups vaccinated with bivalent vaccines using Montanide™ or incomplete 
Freund’s adjuvants were generated at 1st WPV to 14th WPV as described in Fig. 1. The 
kinetics of antibody responses of vaccinated tilapia against S. agalactiae (Fig.  2) using 
Montanide™ and incomplete Freund’s adjuvant were 2 and 2.1 Log2 at 1st WPV, respec-
tively. Their values gradually increased until they peaked at the 4th WPV, whereas they 
reached 7.5 and 6.4 Log2 in vaccine adjuvanted by Montanide™ and incomplete Freund’s 
adjuvant, respectively. After that, the agglutination antibody titers gradually decreased 
from 6th WPV to 14th WPV in fish groups vaccinated using both adjuvant types (Fig. 2). 
The results revealed that the agglutination antibody titers in the serum of vaccinated tila-
pia using a vaccine adjuvanted by Montanide™ adjuvant were significantly higher than 
those produced by a vaccine adjuvanted by incomplete Freund’s adjuvant over different 
time points, as presented by Fig. 1. On the other hand, the agglutination antibody titers for 
Nile tilapia reared in the control group were constant at 2.3 Log2 and continued till the end 
of the experiment.

The microtiter plate agglutination test showed that the serum antibody titers against 
V. alginolyticus in fish groups vaccinated with a bivalent vaccine using Montanide™ or 
incomplete Freund’s adjuvants were generated at 1st WPV to 14th WPV as described in 
Fig.  3. The kinetics of antibody responses of vaccinated tilapia against V. alginolyticus 
(Fig.  4) using Montanide™ and incomplete Freund’s adjuvants were 3 and 2.1 Log2 at 
1st WPV, respectively. Their values gradually increased until they peaked at the 4th WPV, 
whereas they reached 6 and 5.3 Log2 in vaccine adjuvanted by Montanide™ and incom-
plete Freund’s adjuvant, respectively. After that, the agglutination antibody titers gradually 
decreased from 6th WPV to 14th WPV in fish groups vaccinated using both adjuvant types 
(Fig. 4). The results revealed that the agglutination antibody titers in the serum of vacci-
nated tilapia by a vaccine adjuvanted by Montanide™ adjuvant were significantly higher 
than those produced by a vaccine adjuvanted by incomplete Freund’s adjuvant over differ-
ent time points, as shown by Fig. 3. On the other hand, the agglutination antibody titers for 
Nile tilapia reared in the control group were constant at 1 Log2 and continued till the end 
of the experiment.

Survival (%) against bacterial challenge

As shown in Fig.  5, it was found that post-challenge survival (%) of fish experimen-
tally infected with S. agalactiae was significantly increased in groups immunized with 
a bivalent bacterin using the two adjuvants compared to the controls. With a particular 
concern, it was found that the survival (%) of the vaccinated fish after being challenged 
with S. agalactiae was 60.0%, 90.0%, 80.0%, 75.0%, 70.0%, 50.0%, and 35.0% in case 
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Fig. 1  Antibody titers of Nile tilapia against S. agalactiae as determined by the microtiter plate agglutina-
tion test. Fish were immunized with a bivalent vaccine using Montanide or incomplete Freund’s adjuvant 
compared with the control (PBS). Sera were collected at 1, 2, 3, 4, 6, 8, 10, 12, and 14 weeks post-vaccina-
tion. Data expressed as means ± SE. Bars with asterisks (* (P < 0.05) and ** (P < 0.01) indicate significant 
differences between groups at each time point. Meanwhile, ns indicates non-significant differences between 
groups
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Fig. 2  The kinetics of antibody responses of Nile tilapia in the control group and the vaccinated groups 
with a bivalent vaccine using Montanide or incomplete Freund’s adjuvant. The antibody responses against 
S. agalactiae were determined at 1, 2, 3, 4, 6, 8, 10, 12, and 14 weeks post-vaccination. Values are shown as 
means ± SE



1325Aquaculture International (2024) 32:1317–1334 

1 3

Wk 1 Wk 2 Wk 3 Wk 4 Wk 6 Wk 8 Wk 10 Wk 12 Wk 14
0

2

4

6

8
A
nt
ib
od

y
tit
er

(L
og

2)

Montanide Adjuvant Incomplete Freund’s Adjuvant Control

ns ns ns ns ns

WEEKS POST-VACCINATION
Fig. 3  Antibody titers of Nile tilapia against V. alginolyticus as determined by microtiter plate agglutination 
test. Fish were immunized with a bivalent vaccine using Montanide or incomplete Freund’s adjuvant com-
pared with the control (PBS). Sera were collected at 1, 2, 3, 4, 6, 8, 10, 12, and 14 weeks post-vaccination. 
Data expressed as means ± SE. Bars with asterisks (*) (P < 0.05) indicate significant differences between 
groups at each time point. Meanwhile, ns indicates non-significant differences between groups
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Fig. 4  The kinetics of antibody responses of Nile tilapia in the control group and the vaccinated group with 
a bivalent vaccine using Montanide or incomplete Freund’s adjuvant. The antibody responses against V. 
alginolyticus as determined at 1, 2, 3, 4, 6, 8, 10, 12, and 14 weeks post-vaccination. Values are shown as 
means ± SE
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of a vaccine adjuvanted with Montanide™ adjuvant at 2, 4, 6, 8, 10, 12, and 14 WPV, 
respectively. Moreover, the survival (%) of the vaccinated fish after being challenged 
with S. agalactiae was 45.0%, 80.0%, 75.0%, 75.0%, 55.0%, 50.0%, and 30.0% in the 
case of a vaccine adjuvanted with using incomplete Freund’s adjuvant at 2, 4, 6, 8, 10, 
12, and 14 WPV, respectively.

As shown in Fig. 6, it was found that post-challenge survival (%) of fish experimen-
tally infected with V. alginolyticus was significantly increased in groups immunized 
with a bivalent bacterin using the two adjuvants compared to the controls. With a par-
ticular concern, it was found that the survival (%) of the vaccinated fish after being chal-
lenged with V. alginolyticus was 80.0%, 95.0%, 90.0%, 90.0%, 85.0%, 75.0%, and 60.0% 
in case of a vaccine adjuvanted with Montanide™ adjuvant at 2, 4, 6, 8, 10, 12, and 14 
WPV, respectively. Moreover, the survival (%) of the vaccinated fish after being chal-
lenged with V. alginolyticus was 75.0%, 90.0%, 85.0%, 85.0%, 70.0%, 60.0%, and 45.0% 
in the case of a vaccine adjuvanted with incomplete Freund’s adjuvant at 2, 4, 6, 8, 10, 
12, and 14 WPV, respectively.

Bacterial re‑isolation

All bacteriological swabs were harvested from the liver samples of the diseased and dead 
fish after being challenged by S. agalactiae and V. alginolyticus. The results confirmed that 
the infection and death had originated from the same pathogens used in the challenge test 
(Fig. S1 and Fig. S2; Supplementary Material). Freshly live fish have been protected from 
the infection, and no bacterial growth was recorded on the bacteriological cultures.
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Fig. 5  Time-dependent protection of the tested inactivated bivalent vaccine. Nile tilapia were injected with 
PBS in the control group (control) and those immunized with inactivated bivalent vaccine using two different 
adjuvants: Montanide and incomplete Freund’s adjuvant. Fish were monitored for survival (%) after being 
challenged with S. agalactiae at different time points (2, 4, 6, 8, 10, 12, and 14 weeks post-vaccination)
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Fig. 6  Time-dependent protection of the tested inactivated bivalent vaccine. Nile tilapia were injected with 
PBS in the control group and those immunized with inactivated bivalent vaccine using two different adju-
vants: Montanide and incomplete Freund’s adjuvant. Fish were monitored for survival (%) after being chal-
lenged with V. alginolyticus at different time points (2, 4, 6, 8, 10, 12, and 14 weeks post-vaccination)

Discussion

Vaccination has become an effective strategy in aquaculture to prevent disease spread 
among farmed fish (Sommerset et  al. 2005; Austin 2012). Bivalent or polyvalent vac-
cines are the most economical way to prevent disease caused by two or multiple infec-
tions (Brudeseth et al. 2013), as in the case of sole (Solea senegalensis) immunized with 
a bivalent vaccine (Arijo et al. 2005) and orange-spotted groupers (Epinephelus coioides) 
immunized with a polyvalent inactivated vaccine (Huang et al. 2012), besides their cost-
effective benefits (Shoemaker et al. 2012). They could also minimize the handling stress 
on the vaccinated fish (Shoemaker et  al. 2012). In the present study, we formulated for-
malin-inactivated whole-cell bivalent adjuvanted vaccines against V. alginolyticus and S. 
agalactiae infections and investigated their efficacy in Nile tilapia as a fish model. There 
are several examples of successful vaccination of hybrid tilapia using inactivated bivalent 
vaccines against two bacterial pathogens, namely, S. iniae and A. hydrophila (Monir et al. 
2021; Monir et al. 2022a, b; Mohd Ali et al. 2023).

Using adjuvants in vaccine preparation has become effective for inducing prolonged 
protection and immunogenicity (Plant and LaPatra 2011). The incomplete Freund’s adju-
vant is a mixture of oil and water combined with a specific antigen to boost the immunity 
of the host organism against that antigen (Chang et al. 1998). Montanide™ adjuvants can 
be used at the industrial level in combination with a wide range of antigens (Aucouturier 
et  al. 2000). Montanide™ IMS 1312 VG is an aqueous adjuvant that consists of water-
dispersed liquid nanoparticles with an immune-stimulating compound. This adjuvant has 
been previously used in vaccination via the IP route with proven efficacy, as in the case of 
Nile tilapia against streptococcal infections (Abu-Elala et  al. 2019). The IP injection for 
fish vaccination is a common route of vaccine delivery because of its potential ability to 
enhance innate and acquired immunity (Gudding et al. 2014).
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Assessing the biosafety of fish vaccines is a fundamental issue that could affect the qual-
ity of the formulated vaccines. Although adjuvants are chemicals that can trigger the immune 
responses of fish to respond promptly to the vaccination process (Tafalla et  al. 2013), these 
chemicals can also cause minor negligible side effects in some vaccinated fish, such as vis-
ceral adhesions or others (Romstad et al. 2013). The present study showed that the prepared 
adjuvanted vaccines did not cause abnormal behavior or clinical signs in the immunized fish 
throughout the post-vaccination period. Moreover, during this period, the vaccinated fish 
appeared healthy and normal. The PM findings revealed no visceral adhesions or internal 
lesions. The findings above propose that the tested vaccines appear nontoxic for application in 
Nile tilapia. It is renowned that the use of oil-based adjuvants is focused on maintaining the 
vaccine persistence for inducing long-term protection with a prolonged immune-boosting abil-
ity of the vaccinated fish (Tafalla et al. 2013). Certainly, reports declared that oil-based adju-
vants induced side effects ranging from mild to moderate lesions in Atlantic salmon (Midtlyng 
et al. 1996), turbot (Noia et al. 2014), and Nile tilapia (Wangkaghart et al. 2021). Our findings 
were also coherent with those reported in turbot immunized by an inactivated bivalent vaccine 
against V. anguillarum and V. harveyi infections (Zhang et  al. 2021), whereas those authors 
found that the immunized turbot did not show any side effects post-vaccination.

Regarding the persistence of the tested adjuvants, assessment of the adjuvant quality 
can depend upon its persistence in the tissues of vaccinated fish at different time points. 
This is an important factor in choosing the best quality adjuvant for application, with no 
noticeable negative impacts on the vaccinated fish (Wangkaghart et al. 2021; Wangkahart 
et al. 2023). In this context, our findings showed no recorded internal lesions in vaccinated 
fish several weeks post-vaccination. This information was consistent with that described by 
Wangkahart et al. (2023), who recently reported normal internal organs of Nile tilapia with 
no adhesions at the 5th WPV with an inactivated whole-cell vaccine against S. agalactiae 
adjuvanted using Montanide™ ISA 763 A VG or ISA 763 B VG.

Antibody titers are biomarkers for assessing the efficiency of the formulated vaccines 
(Zhang et al. 2021). The study showed that the bivalent vaccine increased acquired immu-
nity and promoted protective immune responses against infection with two bacterial patho-
gens. These results were clarified by measuring the antibody titers against each bacterial 
isolate using the microtiter plate agglutination test. It was found that the immunized tilapia 
with this vaccine produced antibodies against both bacterial isolates, and these antibod-
ies were expected to be implicated in the protection recorded in the challenge test. Hence, 
these results appeared to intensify and boost the roles of serum antibodies in the protective 
immunity of Nile tilapia against the challenged pathogens. Regarding these results, it was 
previously noticed that combining two or more different bacteria in bivalent or polyvalent 
vaccines can augment the antibody titers and protection levels compared to a monovalent 
vaccine (Hoel et al. 1997; Sun et al. 2011). In the current study, we found that the antibody 
titers against both bacterial pathogens started to increase earlier from 1st WPV, increased 
gradually, peaked at 4th WPV, and then gradually decreased from 6th WPV to 14th 
WPV. These results were similar in cases of the vaccine adjuvanted using Montanide™ 
or incomplete Freund’s adjuvant when compared with the controls. However, the findings 
indicated that the levels of antibody titers produced and generated by tilapia vaccinated 
with a bivalent vaccine adjuvanted with Montanide™ were significantly higher than those 
produced by tilapia vaccinated with a vaccine adjuvanted with incomplete Freund’s adju-
vant throughout the whole observation period. A possible interpretation and explanation 
of these results are that the vaccine includes a combination of bacterial antigens scattered 
in the aqueous nanoparticle micro-emulsion of the Montanide™ adjuvant, which could 
increase the immunogenicity of the bivalent vaccine (Abu-Elala et al. 2019; O’Hagan and 
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Singh 2003). The early appearance of the antibodies may also be attributed to the abil-
ity of the adjuvant to enable the early start and initiation of the fish immune responses, 
boosts the adaptive immunity, and enhances the uptake of antigen by the fish mucosal sur-
faces with the noticeable ability to maintain a prolonged and durational immunity and anti-
body production (Abu-Elala et al. 2019; Soltani et al. 2014). Indeed, the degree of immune 
responses and antibody production varies significantly depending on the adjuvant type 
(Areechon et  al. 1992). However, the study conducted by Bastardo et  al. (2012) showed 
that rainbow trout generated high antibody titers after being vaccinated with aqueous and 
adjuvanted bivalent vaccines. Nonetheless, the mechanisms underlying the increased anti-
body titers in a vaccine adjuvanted with Montanide™ over those with incomplete Freund’s 
adjuvant require further studies and warrant additional investigations.

In the present study, the antibody titers of immunized tilapia peaked at the 4th WPV 
and then declined gradually from the 6th WPV to the 14th WPV. The study by Bastardo 
et al. (2012) also declared that maximum antibody titers were detected in the sera samples 
of rainbow trout vaccinated by a bivalent killed bacterin at 30 days post-vaccination. It 
was reported that the maximum agglutination titers against A. hydrophila were detected 
in rohu (Labeo rohita) immunized with polyvalent and monovalent vaccines at 4 WPV 
(Swain et al. 2007). Our findings were also in concordance with those previously published 
in turbot immunized by a bivalent inactivated vaccine (Zhang et al. 2021), whereas those 
authors also found that specific antibody titers peaked at 4th WPV and declined at 8th 
WPV. Although there are aforementioned consistencies between our findings and others, 
we should clarify that the antibody responses may be affected by several factors and not 
the same among studies, such as factors related to fish (such as fish species, immunity, age, 
size, and physiological status), vaccine factors (adjuvant type, dose, and route of adminis-
tration), and experiment conditions (rearing facilities, type of culture, period, and others). 
All these factors should be considered when comparing the results of different vaccines.

The post-challenge survival is another important indicator to evaluate vaccine efficacy 
and reflect the protective immunity of the tested vaccine. Compared to the controls, it was 
found that the fish survival increased significantly in vaccinated fish with a vaccine adju-
vanted with Montanide™ or incomplete Freund’s adjuvant at different time points after 
being challenged with S. agalactiae or V. alginolyticus. The protection levels and fish 
survivals seem closely related to the antibody titers generated in vaccinated tilapia. Anti-
bodies can enhance the process of phagocytosis and also increase the killing activities of 
phagocytes and promote activation of the antigen-specific B cells (de Ståhl et  al. 2003). 
As discussed earlier in the serum antibody titers, it was found that the fish survivals in the 
present study were higher in fish vaccinated with a vaccine adjuvanted with Montanide™ 
than those adjuvanted with incomplete Freund’s adjuvant. Several other reports showed 
that using non-mineral oil-based adjuvants combined with injectable formalin-killed bacte-
rin provided a prolonged and durational defense and lengthened the fish protection against 
the challenged bacterial pathogens (Ravelo et al. 2006). The suggested mechanism of these 
results may be associated with the depot effect produced by the adjuvant, which will, in 
turn, allow the slow and delayed release of the antigen into the fish tissue or blood, there-
fore augmenting prolonged humoral responses and protection against the challenged patho-
gens (Bastardo et al. 2012). Hence, additional mechanisms underlying the protective roles 
of the adjuvanted bivalent vaccine necessitate additional studies.

Several researchers previously interpreted the close relationship between the 
enhanced survival rates post-challenge and the antibody titers produced after 
vaccination in several finfish species (Bastardo et al. 2012; Wangkaghart et al. 2021). 
However, other researchers did not find a correlation between the antibody titers and 
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relative percent survival post-challenge, as previously seen in Nile tilapia (Klesius et al. 
2000) and turbot (Zhang et  al. 2021). These inconsistencies may be attributed to fish 
species differences and their response to the vaccine used. Furthermore, fish resistance 
following vaccination may also be affected by several factors such as vaccine (type, 
adjuvant type, concentration, and route of administration), fish (immune responses post-
vaccination, size, physiology, age, and others), and experiment design (Wangkahart 
et  al. 2023). All these factors necessitate additional research studies to clarify their 
effects on the antibody responses and fish resistance to the challenged pathogens.

Conclusions

To put it briefly, we prepared inactivated whole-cell bivalent vaccines using Montanide 
™ IMS 1312 VG or incomplete Freund’s adjuvant against S. agalactiae and V. algino-
lyticus infections in Nile tilapia. These vaccines induced higher specific antibody titers 
in the serum of Nile tilapia at 1st WPV, and their peak was reached at the 4th WPV. 
Moreover, these vaccines provoked high protective efficacy against two pathogenic bacte-
rial pathogens, S. agalactiae and V. alginolyticus, known to cause devastating infections 
and high mortalities in Nile tilapia in our country. Of interest, the antibody titers and sur-
vival (%) were elevated when using a vaccine adjuvanted by Montanide™ adjuvant more 
than those obtained by incomplete Freund’s adjuvant. Furthermore, the vaccinated Nile 
tilapia exhibited a normal growth pattern with no significant differences from the control 
non-vaccinated fish, and this vaccine was able to counteract the effects of the challenging 
bacterial pathogens with noticeably decreased cumulative mortalities and enhanced RPS. 
These findings highlighted the beneficial effects of these promising vaccine candidates for 
preventing both streptococcosis caused by S. agalactiae infection and vibriosis caused by 
V. alginolyticus infection in Nile tilapia. Accordingly, these vaccines could confer notice-
able protection levels and may provide a cost-effective strategy to reduce the tilapia losses 
resulting from these important bacterial pathogens if they infect fish singly or in combina-
tion. Future perspectives should also be directed toward studying the immune responses 
of vaccinated fish at the cellular, molecular, and tissue levels to stand over solid ground 
when evaluating the effectiveness of a bivalent vaccine. Finally, our findings suggest the 
safe application and proven efficacy of this formalin-inactivated bivalent vaccine for pos-
sible use in tilapia culture.
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