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Abstract
Sturgeons are an economically important freshwater aquacultural fish in China and
elsewhere. Research was conducted to study the magnesium requirement of juvenile
hybrid sturgeon (Acipenser schrenckii♀ × Acipenser baerii♂) based on mineral compo-
sition, proximate chemical analysis, antioxidant enzyme levels, and growth metrics.
Different levels of magnesium supplements (43.2, 157.3, 326.5, 549.6, 743.9, 938.4,
and 1118.2 mg kg−1) were fed to juvenile sturgeon for 8 weeks. Five hundred twenty-five
juvenile hybrid sturgeons (an average initial body weight of 7.65 g) were randomly
divided into 7 groups with 3 replicates each (25 fish per replicate, tanks of 100×50×50
cm, dissolved oxygen ≥ 5.0 mg L−1, 12 light:12 dark) and fed 4 times per day with the
experimental diets containing 40.78% crude protein and 10.03% crude fat. The body
tissues and blood of fish were then sampled and analyzed. Growth performance was not
significantly different between treatments (P>0.05). The optimal dietary magnesium
requirement for hybrid sturgeon was estimated to be 355.16, 573.6, or 584.6 mg kg−1

dietary magnesium based on whole-body Mg retention, the whole-body or vertebrae
magnesium content versus dietary magnesium levels. The whole-body calcium to phos-
phorus ratio of the 43.2 and 326.5 mg kg−1 groups was significantly higher than that of
the 938.4 mg kg−1 group (P< 0.05). A dietary magnesium concentration of 350–700 mg
kg−1 improved the antioxidant capacity by decreasing the serum malondialdehyde and
enhancing serum superoxide dismutase, glutathione peroxidase, and catalase activities.
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Introduction

As an essential mineral, magnesium (Mg) has a crucial role in physiology in fish, such as the
maintenance of intra- and extracellular homeostasis; numerous enzymatic processes (at least 300
enzymatic steps); nucleic acid, carbohydrate, lipid, and protein metabolism; skeletal tissue metab-
olism; osmoregulation; neuromuscular transmission; ion balance and exchange (Davis and Gatlin
1996; Lall 2002; Vormann 2003); tissue mineral metabolism (Zhang et al. 2016); and immune
system regulation (Tam et al. 2003). Anorexia, sluggishness, reduced growth, reduced tissue Mg
content, and vertebral deformity were the signs of Mg deficiency in fish (Lall 2002).

The Mg requirements of fish can be met by its uptake from water, the diet, or both (Bijvelds
et al. 1997). For marine species, dietary Mg supplementation may not be necessary because
Mg requirements can be met by uptake from seawater, where Mg concentrations are high
(Sakamoto and Yone 1979; Ye et al. 2010; Liang et al. 2015). In contrast, if the concentration
of Mg in freshwater is low (1–4 mg kg−1), its uptake from the environment is considered
insufficient to satisfy metabolic requirements (Lall 2002), and dietary requirements of Mg
have been reported for several species of freshwater fish (Ogino and Chiou 1976; Gatlin et al.
1982; Shim and Ng 1988; Reigh et al. 1991; Han et al. 2012; Liang et al. 2011; Mohammad
and Khan 2018).

Sturgeons are important aquatic products, not only for preserving genetic resources and
extending biological diversity, but also for breeding and consumption. They are particularly
important as freshwater aquaculture species with high nutritional value (CFSY, 2018).
Balancing the intake of trace elements is important to ensure the health and production of
sturgeon in aquaculture systems and needs further study. Thus, the aim of the current study
was to estimate the dietary Mg requirement of juvenile hybrid sturgeon (Acipenser
schrenckii♀ × Acipenser baerii♂) using growth indices supported by growth performance,
body composition, mineral concentration, Mg balance, and plasma antioxidant function
analyses.

Materials and methods

Ethics statement

All procedures involving animals were conducted according to the Guidelines for the Care and
Use of Laboratory Animals of Heilongjiang River Fisheries Research Institute, Chinese
Academy of Fishery Sciences (CAFS). The procedures were reviewed and approved by the
Committee for the Welfare and Ethics of Laboratory Animals of Heilongjiang River Fisheries
Research Institute, CAFS.

Diet preparation

The ingredients and composition of the control diet used in the study are shown in Table 1.
The experimental diets were supplemented with 0 (control diet), 100, 300, 500, 700, 900, and
1100 mg kg−1 Mg (as Mg sulfate; Sigma-Aldrich, St. Louis, MO, USA) with corresponding
amounts of cellulose removed. Diets comprising dry ingredients were mixed thoroughly with
distilled water and the pellets were then crushed into desirable particle sizes. The feeds were
then dried and stored at −20 °C until use. The element analysis showed final Mg
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concentrations of 43.2, 157.3, 326.5, 549.6, 743.9, 938.4, and 1118.2 mg kg−1 dry diet, and the
distilled water was found to contain 2.8 mg L−1 Mg. The concentrations of other essential
elements in the diet, calcium (Ca) and phosphorus (P), are shown in Table 2. Element analysis
of the experimental diets following the method of Ye et al. (2010) was performed to determine
the final Mg concentrations. Feed samples of approximately 0.10–0.15 g were digested with
15 mL 65–68% nitric acid and 2 mL 72% perchloric acid using Kjeldahl flasks. After
digestion, samples were diluted to 50 mL and their Ca, P, and Mg contents analyzed by using
an inductively coupled plasma atomic emission spectrophotometer. The standard solution was
provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The analysis of Mg
in water was performed using an atomic absorption spectrometer (Nthunya et al., 2018). The
analysis was performed under an air pressure of 28 psi, a fuel (acetylene) pressure of 8 psi, and
a sample uptake of 4 mL. The samples were filtered using 0.45-μm filters and 0.4 mL of NaCl-

Table 1 Ingredients and proximate composition of the control diet

Ingredients % dry diet

Casein 40.20
Gelatin 8.00
Corn starch 35.68
Fish oil 5.00
Soybean oil 5.00
Cellulose 3.30
Monocalcium phosphate 2.00
Choline chloride 0.20
Betaine 0.10
Butylated hydroxytoluene 0.02
Mineral premixa 0.20
Vitamin premixb 0.30
Proximate composition (%)
Crude protein 40.78
Crude fat 10.03
Crude ash 3.74

a The mineral premix provided the following per kg of diet: zinc, 60 mg; copper, 3 mg; iron, 25 mg; manganese,
15 mg; iodine, 0.6 mg; and selenium, 0.30 mg
b The vitamin premix provided the following per kg of diet: vitamin A, 8000 IU; vitamin C, 500 mg; vitamin D,
33,000 IU; vitamin E, 60 mg; vitamin K, 35 mg; vitamin B1, 15 mg; vitamin B2, 30 mg; vitamin B6, 15 mg;
vitamin B12, 0.5 mg; choline chloride, 5000 mg; nicotinic acid, 175 mg; D-biotin, 2.5 mg; inositol, 1000 mg;
folic acid, 5 mg; and pantothenic acid, 50 mg

Table 2 Mg supplement and mineral content analysis of experimental diets

Mg (mg kg−1) Analyzed content

Mg (mg kg−1) Ca (g kg−1) P (g kg−1)

0 43.2±2.1 7.71±0.24 6.85±0.14
100 157.3±1.8 8.28±0.25 6.77±0.16
300 326.5±11.8 8.06±0.23 7.03±0.20
500 549.6±16.9 7.53±0.17 6.98±0.15
700 743.9±22.0 8.02±0.20 6.54±0.09
900 938.4±12.9 8.47±0.24 6.76±0.09
1100 1118.2±32.6 8.25±0.18 6.79±0.13

Values represent means ± SD, n = 3
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HCl was added to each sample before analysis. The percentage absorption was converted to
absorbance, which was subsequently used to calculate the concentration of each element.
Proximate analyses (crude protein, crude fat, and crude ash) of diets were performed according
to methods of the Association of Official Analytical Chemists (AOAC, 1995). In brief, the dry
matter content was dried to constant weight at 105 °C and the crude protein content was
determined by the Kjeldahl method after acid digestion. The crude fat content was determined
through the ether extraction method using a Soxhlet device, and the samples were placed into a
muffle furnace at 550 °C for 8 h for ash content analysis.

Fish and experimental conditions

Juvenile hybrid sturgeons were obtained from the Fangshan Breeding Center (Beijing, China).
The fish were transferred to an indoor aquarium and acclimated for 2 weeks, during which they
were fed a control diet. The temperature ranged from 21 to 23 °C, the dissolved oxygen was
not less than 5.0 mg L−1, the photoperiod was 12 light:12 dark, and the water was changed
every 3 days. The tanks were filled with a continuously aerated mixture of tap water. After 2
weeks, 28 juvenile hybrid sturgeons (an average weight of 7.65 g) were then randomly
assigned into one of 21 tanks of 100×50×50 cm. Three fish per tank were used to analyze
the initial whole-body Mg at the beginning of the trial. The remaining 25 fish were weighed in-
bulk (initial body weight (IBW)) and formed the experimental group in each tank. Seven diets
were randomly assigned to three replicate tanks. The diets were fed by hand to apparent
satiation at 07:00 h, 11:00 h, 16:00 h, and 19:00 h based on visual observations of the fish
feeding behavior. Water quality was regularly monitored weekly and no differences were
recorded among tanks throughout the experimental period.

During the 8-week experimental period, the feed conversion ratio (FCR) was determined by
feed intake (g)/body weight gain. Uneaten feed particles were dried and weighed and used for
correction of the feed consumption rate.

At the end of the trial, all of the fish were deprived of feed for 24 h and then the fish from
each replicate were weighed (final body weight (FBW)). Weight gain rate (WG, %) was
calculated as 100× [final weight (g) − initial weight (g)]/initial weight (g).

Sample collection and analyses

At the end of the 8-week feeding trial, six fish per tank were anesthetized with MS-222
(250 mg/L) and three of these were then used to analyze the whole-body composition;
the other three were used to analyze the whole-body Mg, Ca, and P concentrations. All
six fish were stored at −80 °C before use. Another three fish per tank were anesthetized
and dissected on an ice plate, and their vertebrae were removed from the surrounding
tissues and rinsed with distilled water, dried, ground, and stored at −40 °C for Mg, Ca,
and P analyses. Blood of another six fish per tank was taken immediately following
euthanasia and collected by 1-mL disposable heparinized syringes through the caudal
vasculature of each fish, transferred into a disposable Eppendorf tube, centrifuged at
4000×g (4 °C) for 15 min to obtain the serum samples (two mixed into one), and then
immediately stored at –20 °C until analysis.

The whole-body crude protein, crude fat, dry matter, and ash contents were determined
following the procedures of AOAC (1995) as the same descriptions as proximate analyses of
diets. The Mg, Ca, and P concentrations in whole body and vertebrae were measured using the
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method of Ye et al. (2010). The indexes correlated with whole-body Mg retention (Lin et al.,
2013) were calculated as follows:

Initial whole‐body Mg content mgð Þ ¼ initial whole‐body Mg concentration mg=gð Þ
� initial body weight gð Þ

Total Mg fed mgð Þ ¼ feed Mg concentration mg=gð Þ � total feed intake gð Þ

Final whole‐body content mgð Þ ¼ final whole‐body Mg concentration mg=gð Þ
� final body weight gð Þ

Whole‐body Mg retention %ð Þ
¼ final whole‐body Mg content mgð Þ−initial whole‐body Mg content mgð Þ½ �

� 100=total Mg fed mgð Þ
The serum was used to determine the superoxide dismutase (SOD) (A001-3-2, hydroxylamine
method), glutathione peroxidase (GPx) (A005-1, colorimetric method), and catalase (CAT)
(A007-1-1, ultraviolet) activities and malondialdehyde (MDA) (A003-1, thiobarbituric acid
method) content. All of these indices were determined using commercial kits supplied by
Nanjing Jiancheng Bioengineering Institute. The activities and content were measured accord-
ing to the kit protocols provided in the manufacturer’s instructions.

Statistical analyses

The data were subjected to one-way analysis of variance (ANOVA) using SPSS 22.0 (SPSS,
Chicago, IL, USA) and are presented as the means ± SD. Differences in the means between
dietary treatments were evaluated using Duncan’s multiple range tests. The optimum dietary
Mg requirements, including relationship between the whole-body Mg concentration and
dietary Mg as well as relationship between the vertebrae Mg concentration and dietary Mg,
were estimated using the broken line model (Robbins et al. 1979). The relationships between
whole-body Mg retention and dietary Mg levels were estimated by power function analysis.

Results

Growth performance

The growth performance of juvenile hybrid sturgeon fed the experimental diets for 8 weeks is
shown in Table 3. The effects of the dietary Mg levels on IBW, FBW, WG, and FCR were not
significantly different between treatments (P> 0.05).
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Whole-body composition

The whole-body compositions of juvenile hybrid sturgeon fed the experimental diets contain-
ing different Mg levels for 8 weeks are shown in Table 4. Compared with 43.2 mg kg−1

(control), 743.9 mg kg−1 Mg significantly decreased the body moisture of hybrid sturgeon
and significantly increased the crude protein content (P< 0.05). The fish fed 43.2 mg kg−1

exhibited lower crude fat levels than the other groups (P< 0.05). Fish provided with diets
containing 549.6–1118.2 mg kg−1 had higher ash concentrations than the group given the
control feed (43.2 mg kg−1).

Whole-body and vertebrae mineral concentration

The whole-body and vertebrae Ca and P concentrations of juvenile hybrid sturgeon fed the
experimental diets containing different Mg levels for 8 weeks are shown in Table 5. The
whole-body Ca and P concentrations exhibited no significant differences among all the groups
(P>0.05). The Ca:P ratios in the 43.2 and 326.5 mg kg−1 groups were significantly higher than
those in the 938.4 mg kg−1 group (P< 0.05). The Ca concentrations of the vertebrae in the
157.3–743.9 mg kg−1 groups were significantly higher than those in the 1118.2 mg kg−1 group
(P< 0.05). The Ca:P ratio in the 43.2 and 157.3 mg kg−1 groups was significantly higher than
that in the 938.4 and 1118.2 mg kg−1 groups (P< 0.05) and significantly higher in the
326.5 mg kg−1 group than in the 1118.2 mg kg−1 group (P< 0.05).

Table 3 Growth performances of juvenile hybrid sturgeon fed experimental diets containing different Mg
concentrations for 8 weeks

Mg (mg kg−1) IBW (g) FBW (g) WG (%) FCR

0 (43.2) 7.68±0.16 17.06±1.64 121.95±20.08 1.34±0.05
100 (157.3) 7.67±0.08 17.90±1.77 133.32±15.37 1.37±0.03
300 (326.5) 7.62±0.10 19.83±1.65 160.12±21.16 1.34±0.85
500 (549.6) 7.63±0.05 20.29±1.88 166.01±16.38 1.32±0.12
700 (743.9) 7.65±0.24 20.29±1.44 165.47±21.60 1.30±0.08
900 (938.4) 7.63±0.16 19.99±1.94 162.16±18.65 1.32±0.11
1100 (1118.2) 7.63±0.23 20.00±1.90 162.58±12.23 1.37±0.11

Values represent means ± SD, n = 3

IBW initial body weight, FBW final body weight, WG weight gain rate, FCR feed conversion ratio

Table 4 Whole-body composition (%) of juvenile hybrid sturgeon fed experimental diets containing different
Mg concentrations for 8 weeks

Mg (mg kg−1) Moisture Crude protein Crude fat Ash

0 (43.2) 80.07±0.44a 12.99±0.42b 3.75±0.19b 2.86±0.05b

100 (157.3) 79.25±0.47ab 13.42±0.33ab 4.36±0.08a 3.17±0.07ab

300 (326.5) 78.37±0.64ab 14.11±0.62ab 4.48±0.10a 3.19±0.10ab

500 (549.6) 77.90±0.57ab 14.44±0.19ab 4.64±0.17a 3.46±0.09a

700 (743.9) 77.13±0.37b 14.77±0.06a 4.86±0.12a 3.49±0.03a

900 (938.4) 78.79±1.58ab 13.90±0.94ab 4.54±0.29a 3.38±0.24a

1100 (1118.2) 78.04±0.64ab 14.46±0.42ab 4.61±0.02a 3.37±0.16a

Values represent means ± SD, n = 3. Means in the same column with different superscript letters are significantly
different (P< 0.05)
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Whole-body and vertebrae Mg concentrations

Whole-body and vertebrae Mg concentrations are shown in Figs. 1 and 2. The Mg concen-
tration in the 43.2 mg kg−1 group was significantly lower than that in the 549.6–1118.2 mg
kg−1 groups (P< 0.05). The whole-body concentrations of Mg increased with increasing Mg
concentrations and then stabilized after a dietary Mg concentration of 549.6 mg kg−1 (Fig. 1).
The Mg concentrations of the vertebrae in the 938.4 and 1118.2 mg kg−1 groups were
significantly higher than those in the 43.2 mg kg−1 group (P< 0.05) (Fig. 2). The optimal
dietary Mg requirement for juvenile hybrid sturgeon was estimated to be 573.6 (Fig. 1) and
584.6 mg kg−1 (Fig. 2) dietary Mg.

Whole-body Mg balance

The whole-body Mg balances of juvenile hybrid sturgeon fed the experimental diets contain-
ing different Mg levels for 8 weeks are shown in Supplementary material Table S1. The
average initial whole-body Mg content of hybrid sturgeon was 6.95–7.65 mg. The final whole-

Table 5 Whole-body and vertebrae Ca and P concentrations of juvenile hybrid sturgeon fed experimental diets
containing different Mg concentrations for 8 weeks

Mg (mg kg−1) Whole-body Vertebrae

Ca (g kg−1) P (g kg−1) Ca:P ratio Ca (g kg−1) P (g kg−1) Ca:P ratio

0 (43.2) 5.88±0.18 5.81±0.49 21.14±0.69a 161.40±8.92ab 141.85±9.16 81.41±8.59a

100 (157.3) 5.94±0.54 5.46±0.46 18.54±1.53ab 172.09±14.25a 136.55±7.27 80.04±2.93a

300 (326.5) 6.68±0.20 5.75±0.42 20.97±1.71a 171.81±7.50a 137.22±11.01 76.73±7.36ab

500 (549.6) 6.54±0.26 6.46±0.29 17.20±1.80ab 172.33±11.24a 164.10±10.60 64.30±7.26abc

700 (743.9) 6.79±0.09 6.41±0.29 17.78±1.27ab 170.32±18.70a 164.12±11.05 66.95±4.89abc

900 (938.4) 6.09±0.10 6.47±0.40 16.05±1.14b 158.60±13.08ab 162.93±9.63 60.32±0.21bc

1100 (1118.2) 6.60±0.36 6.37±0.44 17.19±1.44ab 128.35±11.18b 164.83±9.92 50.33±5.21c

Values represent means ± SD, n = 3. Means in the same column with different superscript letters are significantly
different (P< 0.05)
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body Mg contents increased as the dietary Mg levels increased. Whole-body Mg retention
decreased as the dietary Mg levels increased.

The dietary Mg requirement for juvenile hybrid sturgeon was estimated and is shown in
Fig. 3. Dietary Mg of 355.16 mg kg−1 was a concentration between the whole-body Mg
retention and the dietary Mg levels, when the whole-body Mg retention was 100%.

Antioxidant capacity

The serum antioxidant levels of hybrid sturgeon fed the experimental diets containing different
Mg levels for 8 weeks are shown in Table 6. Serum SOD in the 549.6 to 1118.2 mg kg−1

groups was significantly higher than that in the 43.2 mg kg−1 group (P< 0.05) and significantly
higher in the 549.6 to 938.4 mg kg−1 groups than in the 157.3 mg kg−1 group (P< 0.05). Serum
GPx in the 743.9 and 938.4 mg kg−1 groups was significantly higher than that in the other
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groups (P< 0.05) and was significantly higher in the 326.5, 549.6, and 1118.2 mg kg−1 groups
than in the 43.2 and 157.3 mg kg−1 groups (P< 0.05). Serum CAT was significantly higher in
the 549.6 and 743.9 mg kg−1 groups than in the other groups (P< 0.05) and significantly
higher in the 938.4 and 1118.2 mg kg−1 groups than in the 43.2, 157.3, and 326.5 mg kg−1

groups (P< 0.05). Serum MDA in the 43.2 and 157.3 mg kg−1 groups was significantly higher
than that in the other groups (P< 0.05) and significantly higher in the 326.5, 938.4, and
1118.2 mg kg−1 groups than in the 549.6 mg kg−1 groups (P< 0.05).

Discussion

The requirements of Mg previously reported for freshwater fish were 326–1400 mg kg−1 diet
(Ogino et al. 1978; Knox et al. 1981; Gatlin et al. 1982; Shim and Ng 1988; Shearer 1989;
Reigh et al. 1991; El-Mowafi and Maage 1998), which was the basis for setting the doses of
Mg in this study. An isotopic study found that when Mg in food was insufficient, fish were
able to absorb some Mg from water; when the Mg concentration in food is too high, fish will
excrete redundant Mg via the skin (Bijvelds et al. 1996; Wang et al., 2011). These processes
could regulate the Mg balance. In the current study, the whole-body Mg concentration
(573.6 mg kg−1 diet of Mg), the vertebrae Mg concentration (584.6 mg kg−1 diet of Mg),
and the whole-body Mg retention (355.16 mg kg−1 diet Mg) were used to estimate the dietary
Mg requirement of grass carp. This value is similar to that reported for other fish from 326 to
745 mg kg−1 diet (Ogino and Chiou 1976; Ogino et al. 1978; Knox et al. 1981; Shim and Ng
1988; Reigh et al. 1991; El-Mowafi and Maage 1998; Duan et al., 2012).

There are differences in reports on the effect of Mg requirement on growth performance. Reigh
et al. (1991) reported a positive response to 30–650mg kg−1 dietMg supplementation of blue tilapia
(Oreochromis aureus) fed casein-based diets in terms of their growth, feed, and protein efficiency. A
lack of Mg in the feed can dull appetite, slow growth, increase mortality, and significantly decrease
the production performance in aquatic animals (Ogino and Chiou 1976; Cowey 1976; Cowey et al.
1976; Cowey et al. 1977; Knox et al. 1981; Gatlin et al. 1982; Shim and Ng 1988; Shearer 1989;
Reigh et al. 1991; Wei et al. 2017; Mohammad and Khan 2018). Not all fish respond well in terms
of growth to dietary Mg, such as Atlantic salmon (Salmo salar L.) (El-Mowafi and Maage 1998),
tilapia (Oreochromis mossambicus (Peters)) (Velden et al. 1991), grass carp (Ctenopharyngodon

Table 6 Serum antioxidants of hybrid sturgeon fed experimental diets containing different Mg concentrations for
8 weeks

Mg
(mg kg−1)

SOD
(U mL−1)

GPx
(U mL−1)

CAT
(U mL−1)

MDA
(nmol mL−1)

0 (43.2) 86.37±9.72d 690.76±16.21d 1.90±0.14c 133.26±12.45a

100 (157.3) 111.93±13.02cd 796.64±45.47d 1.91±0.08c 117.80±10.50a

300 (326.5) 125.84±12.63bcd 931.09±23.71c 2.21±0.09c 73.57±5.77b

500 (549.6) 187.63±6.96a 1168.07±59.47b 6.08±0.67a 36.46±3.22c

700 (743.9) 184.07±16.26a 1712.61±30.85a 6.05±0.26a 50.98±7.62bc

900 (938.4) 161.10±17.97ab 1650.42±54.64a 3.85±0.25b 69.28±8.45b

1100 (1118.2) 150.42±14.10abc 1050.42±49.60bc 4.41±0.27b 72.48±6.78b

Values represent means ± SD, n = 3. Means in the same column with different superscript letters are significantly
different (P< 0.05)
‡U activity unit of enzyme
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idella) (Wang et al., 2011), and gibel carp (Han et al. 2012). In the current study, dietary Mg (from
43.2 to 1118.2 mg kg−1) did not significantly impact the growth performance of juvenile hybrid
sturgeon.

Wang et al. (2011) found that adding an appropriate amount of Mg sulfate to the diet
significantly increased the whole-body crude protein in fish. Compared with the 43.2 mg kg−1

diet Mg group, treatment groups, such as 743.9 mg kg−1 diet Mg in whole-body crude protein
contents, 157.3–1118.2 mg kg−1 diet Mg in whole-body crude fat contents, and 549.6–1118.2 mg
kg−1 diet Mg in whole-body ash contents, were significantly increased in the current study.

The whole-body Ca and P concentrations in rainbow trout (Oncorhynchus mykiss) fed low
Mg diets were considerably higher than those fed normal diets (Shearer 1984), suggesting that
Ca and P levels associated with Mg status. The Ca content in the bones or whole body of fish
fed with low-Mg diets was significantly higher than that in guppy (Poecilia reticulata
(Peters)), rainbow trout, and blue tilapia fed with normal diets (Shim and Ng 1988; Shearer
1989; Reigh et al. 1991). In our results, whole-body Ca and P concentrations were not
influenced by Mg concentrations, and 938.4 mg kg−1 diet Mg in Ca:P ratio of whole-body
mineral concentrations was significantly lower than 938.4 mg kg−1 diet Mg, which may be due
to the difference in species. The vertebrae Ca content was affected by the dietary Mg levels
(Ogino and Chiou, 1976). Our results showed that moderate Mg concentrations (157.3–
743.9 mg kg−1) increased vertebrae Ca concentrations compared with 1118.2 mg kg−1 diet
Mg, and the Ca:P ratios in the lower Mg concentration groups of vertebrae (dietary 43.2 and
157.3 mg kg−1) were higher than those in 938.4 and 1118.2 mg kg−1 diet Mg, which indicated
that low Mg concentrations were beneficial to the deposition of Ca and P.

A variety of antioxidant defense systems have evolved in organisms. Antioxidant systems
include enzymes, such as SOD, CAT, and GPx, to constantly suppress and remove the
production of oxidative stress. In the current study, serum SOD and CAT activities were
significantly higher in the 549.6 and 743.9 mg kg−1 groups than in the other groups and the
serum GPx activities were significantly higher in the 743.9 and 938.4 mg kg−1 groups than in
the other groups. These results indicated that appropriate Mg levels enhanced the antioxidant
capacity; this observation is supported by Garcia et al. (1998), who found that Mg can reduce
the production of free radicals. Mg can eradicate free radicals by enhancing antioxidant
enzyme activities, such as those of SOD, CAT, and GPx, and this phenomenon might explain
the effectiveness of Mg against peroxidation (Mohammad and Khan 2018). Wang et al. (2011)
documented that grass carp fed imbalanced Mg levels were susceptible to lipid peroxidation as
a result of reduced serum SOD and GPx activities, suggesting reduced antioxidant capacity in
response to dietary Mg deficiency (Mohammad and Khan 2018). As an essential cofactor in
glutathione biosynthesis, Mg can inhibit lipid peroxidation by preventing exhaustion of
glutathione, which showed similar results as the serum GPx activity in response to low-Mg
diets (Zhang et al. 2016). In the current study, the activities of SOD, CAT, and GPx were
positively correlated with the concentration of Mg. MDA is the final product of lipid
peroxidation and an important indicator of membrane injury caused by free radicals
(Longbaf Dezfouli et al. 2019). Mohammad and Khan (2018) reported that the antioxidant
status of Rohu improved with the inclusion of dietary Mg levels up to 460 mg kg−1 diet and
then stabilized in groups fed higher levels of Mg, whereas the reverse pattern was observed for
the MDA content. In the current study, the MDA contents in the 549.6 mg kg−1 groups were
significantly lower than those in the 43.2, 157.3, 326.5, 938.4, and 1118.2 mg kg−1 groups,
suggesting that the antioxidative effect of Mg results from its ability to increase the activity of
radical-scavenging enzymes and decrease the peroxidation of lipids.
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Conclusion

In summary, although dietary Mg concentrations had no effect on growth performance, the
optimal amount of Mg supplementation improved dietary crude protein content, crude fat
content, and whole-body Mg concentration; enhanced serum SOD, GPx, and CAT activities;
and decreased serum MDA contents in juvenile hybrid sturgeon. Thus, a dietary Mg concen-
tration of 350–700 mg kg−1 is suggested as a recommended dosage for the aquaculture of
juvenile hybrid sturgeon.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10499-021-00712-7.

Author contribution Zhang and Wang conceived and designed the experiments; Zhang, Fan, and Wu performed
the experiments; Zhang and Li analyzed the data; and Zhang, Xu, and Liu wrote and modified the paper.

Funding This research was supported by the National Key R & D Program of China, Grant/Award Number
(2019YFD0900200), the China Agricultural Research System (CARS-46), Central Public-interest Scientific
Institution Basal Research Fund (HSY202002M), the Financial Assistance from Postdoctoral Scientific Research
Developmental Fund of Heilongjiang Province (LBHQ20193).

Data availability The data used to support the findings of this study are available from the corresponding
author upon request.

Declarations

Ethical approval All applicable international, national, and/or institutional guidelines for the care and use of
animals were followed by the authors.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington
Bijvelds MJC, Flik G, Kolar ZI, Bonga SW (1996) Uptake, distribution and excretion of magnesium in

Oreochromis mossambicus: dependence on magnesium in diet and water. Fish Physiol Biochem 15(4):
287–298. https://doi.org/10.1007/BF02112355

Bijvelds MJC, Flik G, Bonga SW (1997) Mineral balance in Oreochromis mossambicus: dependence on
magnesium in diet and water. Fish Physiol Biochem 16(4):323–331. https://doi.org/10.1023/A:
1007727819382

CFSY (2018) China Fishery Statistical Yearbook, vol 25. Beijing China Statistics Press, Beijing

1707Aquaculture International (2021) 29:1697–1709

https://doi.org/10.1007/s10499-021-00712-7
https://doi.org/10.1007/s10499-021-00712-7
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02112355
https://doi.org/10.1023/A:1007727819382
https://doi.org/10.1023/A:1007727819382


Cowey CB (1976) Use of synthetic diets and biochemical criteria in the assessment of nutrient requirements of
fish. J Fish Res Board Can 33(4):1040–1045. https://doi.org/10.1139/f76-132

Cowey CB, Coombs TL, Adron JW (1976) The renal and serum concentrations of calcium, magnesium and
phosphorus in captive and wild turbot (Scophthalmus maximus). Mar Biol 38(2):111–115. https://doi.org/10.
1007/BF00390764

Cowey CB, Knox D, Adron JW, George S, Pirie B (1977) The production of renal calcinosis by magnesium
deficiency in rainbow trout (Salmo gairdneri). Brit J Nutr 38(1):127–135. https://doi.org/10.1079/
BJN19770068

Davis DA, Gatlin DM (1996) Dietary mineral requirements of fish and marine crustaceans. Rev Fish Sci 4(1):75–
99. https://doi.org/10.1080/10641269609388579

Duan Y, Zhu X, Han D, Yang Y, Xie S (2012) Dietary choline requirement in slight methionine-deficient diet for
juvenile gibel carp (Carassius auratus gibelio). Aquac Nutr 18(6):620–627. https://doi.org/10.1111/j.1365-
2095.2011.00930.x

El-Mowafi AFA, Maage A (1998) Magnesium requirement of Atlantic salmon (Salmo salar L.) parr in seawater-
treated fresh water. Aquac Nutr 4(1):31–38. https://doi.org/10.1046/j.1365-2095.1998.00100.x

Garcia LA, Dejong SC, Martin SM, Smith RS, Buettner GR, Kerber RE (1998) Magnesium reduces free radicals
in an in vivo coronary occlusion-reperfusion model. J Am Coll Cardiol 32(2):536–539. https://doi.org/10.
1016/S0735-1097(98)00231-9

Gatlin DM 3rd, Robinson EH, Poe WE, Wilson RP (1982) Magnesium requirement of fingerling channel catfish
and signs of magnesium deficiency. J Nutr 112(6):1182–1187. https://doi.org/10.1093/jn/112.6.1182

Han D, Liu H, Liu M, Xiao X, Zhu X, Yang Y, Xie S (2012) Effect of dietary magnesium supplementation on
the growth performance of juvenile gibel carp, Carassius auratus gibelio. Aquac Nutr 18(5):512–520.
https://doi.org/10.1111/j.1365-2095.2011.00910.x

Knox D, Cowey CB, Adron JW (1981) Studies on the nutrition of salmonid fish. The magnesium requirement of
rainbow trout (Salmo gairdneri). Brit J Nutr 45(1):137–148. https://doi.org/10.1079/BJN19810086

Lall SP (2002) The Minerals. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Elsevier, Amsterdam, pp
259–308

Liang JJ, Tian LX, Liu YJ, Yang HJ, Liang GY (2011) Dietary magnesium requirement and effects on growth
and tissue magnesium content of juvenile grass carp (Ctenopharyngodon idella). Aquac Nutr 18(1):56–64.
https://doi.org/10.1111/j.1365-2095.2011.00876.x

Liang MQ, Wei YL, Tan F, Zheng KK, Xu HG (2015) The effects of dietary magnesium (Mg) supplementation
on growth performance of adult Japanese seabass (Lateolabrax japonicas). Isr J Aquacult-Bamid 67:1170–
1179 http://hdl.handle.net/10524/49189

Lin YH, Ku CY, Shiau SY (2013) Estimation of dietary magnesium requirements of juvenile tilapia,
Oreochromis niloticus x Oreochromis aureus, reared in freshwater and seawater. Aquaculture 380-383:
47–51. https://doi.org/10.1016/j.aquaculture.2012.11.034

Longbaf Dezfouli M, Ghaedtaheri A, Keyvanshokooh S, Salati AP, Mousavi SM, Pasha-Zanoosi H (2019)
Combined or individual effects of dietary magnesium and selenium nanoparticles on growth performance,
immunity, blood biochemistry and antioxidant status of Asian seabass (Lates calcarifer) reared in freshwa-
ter. Aquac Nutr 25:1422–1430. https://doi.org/10.1111/anu.12962

Mohammad M, Khan MA (2018) Dietary magnesium requirement for fingerlings of Rohu (Labeo rohita).
Aquaculture 496:96–104. https://doi.org/10.1016/j.aquaculture.2018.07.013

Nthunya L, Maifadi S, Mamba B, Verliefde A, Mhlanga S (2018) Spectroscopic determination of water salinity
in brackish surface water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water 10:
990–1003. https://doi.org/10.3390/w10080990

Ogino C, Chiou JY (1976) Mineral requirements in fish, 2: magnesium requirement of carp. Bull Jap Soc Sci
Fish 42(1):71–75. https://doi.org/10.2331/suisan.42.71

Ogino C, Takashima F, Chiou JY (1978) Requirement of rainbow trout for dietary magnesium. Nippon Suisan
Gakkaishi 44(10):1105–1108. https://doi.org/10.2331/suisan.44.1105

Reigh RC, Robinson EH, Brown PB (1991) Effects of dietary magnesium on growth and tissue magnesium
content of blue tilapia Oreochromis aureus. J World Aquacult Soc 22(3):192–200. https://doi.org/10.1111/j.
1749-7345.1991.tb00734.x

Robbins KR, Norton HW, Baker DH (1979) Estimation of nutrient requirements from growth data. J Nutr
109(10):1710–1714. https://doi.org/10.1093/jn/109.10.1710

Sakamoto S, Yone Y (1979) Requirement of red sea bream for dietary Mg. Bull Jap Soc Sci Fish 45(1):57–60.
https://doi.org/10.2331/suisan.45.57

Shearer KD (1984) Changes in elemental composition of hatchery-reared rainbow trout, Salmo gairdneri,
associated with growth and reproduction. Can J Fish Aquat Sci 41(11):1592–1600. https://doi.org/10.
1139/f84-197

1708 Aquaculture International (2021) 29:1697–1709

https://doi.org/10.1139/f76-132
https://doi.org/10.1007/BF00390764
https://doi.org/10.1007/BF00390764
https://doi.org/10.1079/BJN19770068
https://doi.org/10.1079/BJN19770068
https://doi.org/10.1080/10641269609388579
https://doi.org/10.1111/j.1365-2095.2011.00930.x
https://doi.org/10.1111/j.1365-2095.2011.00930.x
https://doi.org/10.1046/j.1365-2095.1998.00100.x
https://doi.org/10.1016/S0735-1097(98)00231-9
https://doi.org/10.1016/S0735-1097(98)00231-9
https://doi.org/10.1093/jn/112.6.1182
https://doi.org/10.1111/j.1365-2095.2011.00910.x
https://doi.org/10.1079/BJN19810086
https://doi.org/10.1111/j.1365-2095.2011.00876.x
http://hdl.handle.net/10524/49189
https://doi.org/10.1016/j.aquaculture.2012.11.034
https://doi.org/10.1111/anu.12962
https://doi.org/10.1016/j.aquaculture.2018.07.013
https://doi.org/10.3390/w10080990
https://doi.org/10.2331/suisan.42.71
https://doi.org/10.2331/suisan.44.1105
https://doi.org/10.1111/j.1749-7345.1991.tb00734.x
https://doi.org/10.1111/j.1749-7345.1991.tb00734.x
https://doi.org/10.1093/jn/109.10.1710
https://doi.org/10.2331/suisan.45.57
https://doi.org/10.1139/f84-197
https://doi.org/10.1139/f84-197


Shearer KD (1989) Whole body magnesium concentration as an indicator of magnesium status in rainbow trout
(Salmo gairdneri). Aquaculture 77(2-3):201–210. https://doi.org/10.1016/0044-8486(89)90202-0

Shim KF, Ng SH (1988) Magnesium requirement of the guppy (Poecilia reticulata Peters). Aquaculture 73(1-4):
131–141. https://doi.org/10.1016/0044-8486(88)90048-8

Tam M, Gomez S, Gonzalez-Gross M, Marcos A (2003) Possible roles of magnesium on the immune system.
Eur J Clin Nutr 57(10):1193–1197. https://doi.org/10.1038/sj.ejcn.1601689

Velden JAVD, Spanings FAT, Flik G, Zegers C, Kolar ZI, Bongat SW (1991) Growth rate and tissue magnesium
concentration in adult freshwater tilapia, Oreochromis mossambicus (Peters), fed diets differing in magne-
sium content. J Fish Biol 39:83–91. https://doi.org/10.1111/j.1095-8649.1991.tb04343.x

Vormann J (2003) Magnesium: nutrition and metabolism. Mol Asp Med 24(1-3):27–37. https://doi.org/10.1016/
S0098-2997(02)00089-4

Wang FB, Luo L, Lin SM, Li Y, Chen S, Wang YG, Wen H, Hu CJ (2011) Dietary magnesium requirements of
juvenile grass carp, Ctenopharyngodon idella. Aquac Nutr 17(3):691–700. https://doi.org/10.1111/j.1365-
2095.2010.00829.x

Wei CC, Wu K, Gao Y, Zhang LH, Li DD, Luo Z (2017) Magnesium reduces hepatic lipid accumulation in
yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARA, JAK-STAT,
and AMPK pathways in hepatocytes. J Nutr 147(6):1070–1078. https://doi.org/10.3945/jn.116.245852

Ye CX, Tian LX, Mai KS, Yang HJ, Niu J, Liu YJ (2010) Dietary magnesium did not affect calcium and
phosphorus content in juvenile grouper, Epinephelus coioides. Aquac Nutr 16(4):378–384. https://doi.org/
10.1111/j.1365-2095.2009.00675.x

Zhang CX, Huang F, Li J, Wang L, Song K, Mai KS (2016) Interactive effects of dietary magnesium and vitamin
E on growth performance, body composition, blood parameters and antioxidant status in Japanese seabass
(Lateolabrax japonicus) fed oxidized oil. Aquac Nutr 22(3):708–722. https://doi.org/10.1111/anu.12393

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Yuanyuan Zhang1 & Ze Fan1 & Di Wu1 & Jinnan Li1 & Qiyou Xu1,2 & Hongbai Liu1 &

Liansheng Wang1

1 Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province,
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070,
China

2 School of Life Science, Huzhou University, Huzhou 313000, China

1709Aquaculture International (2021) 29:1697–1709

https://doi.org/10.1016/0044-8486(89)90202-0
https://doi.org/10.1016/0044-8486(88)90048-8
https://doi.org/10.1038/sj.ejcn.1601689
https://doi.org/10.1111/j.1095-8649.1991.tb04343.x
https://doi.org/10.1016/S0098-2997(02)00089-4
https://doi.org/10.1016/S0098-2997(02)00089-4
https://doi.org/10.1111/j.1365-2095.2010.00829.x
https://doi.org/10.1111/j.1365-2095.2010.00829.x
https://doi.org/10.3945/jn.116.245852
https://doi.org/10.1111/j.1365-2095.2009.00675.x
https://doi.org/10.1111/j.1365-2095.2009.00675.x
https://doi.org/10.1111/anu.12393

	Dietary...
	Abstract
	Introduction
	Materials and methods
	Ethics statement
	Diet preparation
	Fish and experimental conditions
	Sample collection and analyses
	Statistical analyses

	Results
	Growth performance
	Whole-body composition
	Whole-body and vertebrae mineral concentration
	Whole-body and vertebrae Mg concentrations
	Whole-body Mg balance
	Antioxidant capacity

	Discussion
	Conclusion
	References


