Skip to main content
Log in

High-level expression and characterization of a lipase from Trichosporon fermentans Y3 and its application as an aquafeed additive for grouper (Epinephelus coioides)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

A lipase gene was cloned from Trichosporon fermentans Y3, subcloned into pPICZαA, and then expressed in Pichia pastoris X33. The lipase (lipRT), which was obtained using a 50-L bioreactor, had maximum activity of 6000 U/mL. It had an optimum pH 8.0 and remained stable between pH 3.0 and 11.0, while its optimum temperature was 45 °C, maintaining more than 55% of optimum activity between 20 and 35 °C. To evaluate the potential application of lipRT as an aquafeed additive for juvenile grouper (Epinephelus coioides), fish with initial weight 13.31 ± 0.26 g were randomly divided into 12 sea cages and fed five formulated diets (labeled diets 1 to 4). Diets 1–4 were formulated to include 8% crude lipid and serial levels of lipRT (0 U/kg, 50 U/kg, 500 U/kg, and 1000 U/kg). The results showed that WG, FE, and PER of fish as well as ACH50, LSZ, and O2 production ratio in serum of fish on diets 3 and 4 were significantly (P < 0.05) higher than those on diets 1 and 2. The present data suggests that lipRT could improve the utilization of lipid and some nonspecific immunological parameters, and therefore could potentially be used as an aquafeed additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101(10):3628–3634

    CAS  PubMed  Google Scholar 

  • Al-Marzooqi W, Leeson S (1999) Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poult Sci 78:1561–1566

    CAS  PubMed  Google Scholar 

  • Al-Marzooqi W, Leeson S (2000) Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poult Sci 79:956–960

    CAS  PubMed  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (1995). 16th edn. AOAC, Arlington

  • Beamish FWH, Medland TE (1986) Protein sparing effects in large rainbow trout (Salmo gairdneri). Aquaculture 55:35–42

    Google Scholar 

  • Bessey OA, Lowry OH, Brock MJ (1946) A method for rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem 164:321–329

    CAS  PubMed  Google Scholar 

  • Borges P, Oliveira B, Casal S, Dias J, Conceicao L, Valente LMP (2009) Dietary lipid level affects growth performance and nutrient utilisation of Senegalese sole (Solea senegalensis) juveniles. Br J Nutr 102:1007–1014

    CAS  PubMed  Google Scholar 

  • Chatzifotis S, Panagiotidou M, Papaioannou N, Pavlidis M, Nengas I, Mylonas CC (2010) Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosom usregius) juveniles. Aquaculture 307:65–70

    CAS  Google Scholar 

  • Chen JC, Ishii T, Shimura S, Kirimura K, Usami S (1993) Lipase production by Trichosporon fermentans WU-C12, a newly isolated yeast. J Ferment Bioeng 73:412–414

    Google Scholar 

  • Classics TB, Anderson P (1962) Histochemical methods for acid phosphatase using hexazonium pararosanalin as coupler. J Histochem Cytochem 10:741–753

    Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    CAS  PubMed  Google Scholar 

  • Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186

    CAS  Google Scholar 

  • Domínguez MP, Sánchez-Montero JM, Sinisterra JV, Alcántara AR (2006) Understanding Candida rugosa lipases: an overview. Biotechnol Adv 24:180–196

    Google Scholar 

  • Du ZY, Liu YJ, Tian LX, Wang JT, Wang Y, Liang GY (2005) Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquac Nutr 11:139–146

    CAS  Google Scholar 

  • Faudzi NM, Yong ASK, Shapawi R, Shigeharu S, Biswas A, Takii K (2017) Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown-arbled grouper (Epinephelus fuscoguttatus) × giant grouper (E. lanceolatus) juvenile. Aquac Res 49:431–441

    Google Scholar 

  • Fernándeza L, Pérez-Victoriab I, Zafrab A (2006) High-level expression and characterization of Galactomyces geotrichum (BT107) lipase I in Pichia pastoris. Protein Expr Purif 49:256–264

    Google Scholar 

  • Gao W, Liu YJ, Tian LX, Mai KS, Liang GY, Luo WJ (2010) Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquac Nutr 16:327–333

    CAS  Google Scholar 

  • Gómez-Requeni P, Bedolla-Cázares F, Montecchia C, Zorrill J, Villian M, Toledo-Cuevas ME, Canosa F (2013) Effects of increasing the dietary lipid levels on the growth performance, body composition and digestive enzyme activities of the teleost pejerrey (Odontesthes bonariensis). Aquaculture 416:15–22

    Google Scholar 

  • Han SJ, Back JH, Yoon MY, Shin PK, Cheong CS, Sung MH …, Han YS (2003) Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie 85: 501–510

  • Helland SJ, Grisdale-Helland B (1998) Growth, feed utilization and body composition of juvenile Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in the ratio between the macronutrients. Aquaculture 166:49–56

    Google Scholar 

  • Higgs DA, Dong FM (2000) Lipids and fatty acids. In: Stickney RR (ed) Encyclopedia of aquaculture. Wiley, New York

    Google Scholar 

  • Holmquist M, Tessier DC, Cygler M (1997) High-level production of recombinant Geotrichum candidum lipases in yeast Pichia pastoris. Protein Expr Purif 11:35–40

    CAS  PubMed  Google Scholar 

  • Huang YS, Wen XB, Li Sk Li WJ, Zhu DS (2016) Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu’s croaker Nibea coibor. Aquacult Int 24:1229–1245

    CAS  Google Scholar 

  • Ji QC, Xiao SJ, He BF, Liu XN (2010) Purification and characterization of an organic solvent tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J Mol Catal B-enzym 66:264–269

    CAS  Google Scholar 

  • Jin Y, Tian LX, Zeng SL, Xie SW, Yang HJ, Liang GY, Liu YJ (2013) Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 34:1202–1208

    CAS  PubMed  Google Scholar 

  • Jobling M, Leknes O, Sæther BS, Bendiksen EA, Leknes O, Sæther BS, Bendiksen EA (2008) Lipid and fatty acid dynamics in Atlantic cod (Gadus morhua) tissues: influence of dietary lipid concentrations and feed oil sources. Aquaculture 281:87–94

    CAS  Google Scholar 

  • Karalazos V, Bendiksen EA, Bell JG (2011) Interactive effects of dietary protein/lipid level and oil source on growth, feed utilization and nutrient and fatty acid digestibility of Atlantic salmon. Aquaculture 311:193–200

    CAS  Google Scholar 

  • Kim LO, Lee SM (2005) Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish (Pseudobagrus fulvidraco). Aquaculture 243:323–329

    CAS  Google Scholar 

  • Kok RG, van Thor JJ, Nugteren-Roodzant IM, Brouwer MBW, Egmond MR, Nudel CB, Vosman B, Hellingwerf KJ (1995) Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol Microbiol 15:803–818

    CAS  PubMed  Google Scholar 

  • Lin YH, Shiau SY (2003) Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture 225:243–250

    CAS  Google Scholar 

  • Lin YH, Shiau SY (2005a) Dietary vitamin E requirement of grouper, Epinephelus malabaricus, at two lipid levels, and their effects on immune responses. Aquaculture 248:235–244a

    CAS  Google Scholar 

  • Lin MY, Shiau SY (2005b) Dietary l-ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244:215–221b

    CAS  Google Scholar 

  • Liu LW, Su JM, Zhang T, Liang XF, Luo YL (2012) Apparent digestibility of nutrients in grass carp (Ctenopharyngodon idellus) diet supplemented with graded levels of neutral phytase using pretreatment and spraying methods. Aquac Nutr 19:91–99

    Google Scholar 

  • Liu S, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zeng YY, Xu SD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ (2016) Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 55:88–105

    PubMed  Google Scholar 

  • Lopez LM, Durazo E, Viana MT, Drawbridge M, Bureau DP (2009) Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis. Aquaculture 289:101–105

    CAS  Google Scholar 

  • Luo L, Liu YJ, Mai KS, Tian LX, Liu DH, Tan XY (2004) Optimal dietary protein requirement of grouper Epinephelus coioides juveniles fed isoenergetic diets in floating net cages. Aquac Nutr 10:247–252

    CAS  Google Scholar 

  • Luo Z, Liu YJ, Mai KS, Tian LX, Liu DH, Tan XY, Lin HZ (2005) Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages. Aquac Nutr 13:257–269

    CAS  Google Scholar 

  • Macauley S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastor is expression system. Yeast 22:249–270

    Google Scholar 

  • Millamena OM (2002) Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture 204:75–78

    Google Scholar 

  • Montero D, Tort L, Izquierdo L, Vergara JM (1998) Depletion of serum alternative complement pathway activity in gilthead seabream caused by a-tocopherol and n-3 HUFA dietary deficiencies. Fish Physiol Biochem 18:399–407

    CAS  Google Scholar 

  • Ni PJ, Jiang WD, Wu P, Liu Y, Kuang SY (2016) Dietary low or excess levels of lipids reduced growth performance, and impaired immune function and structure of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella) under the infection of Aeromonas hydrophila. Fish Shellfish Immunol. 55:28–47

    CAS  PubMed  Google Scholar 

  • Obach A, Quentel C, Bandin Laurencin F (1993) Effects of alphatocopherol and dietary oxidized fish oil on the immune response of sea bass Dicentrarchus labrax. Dis Aquat Org 15:175–185

    CAS  Google Scholar 

  • Park IH, Kim SH, Lee YS, Lee SC, Zhou Y, Kim CM, … Choi YL (2009) Gene cloning, purification, and characterization of a cold-adapted lipase produced by Acinetobacter baumannii BD5. J Microbiol Biotechnol 19:128–135

  • Peres H, Oliva-Teles A (1999) Effect of dietary lipid level on growth performance and feed utilization by European sea bass juvenile (Dicentrarchus labrax). Aquaculture 179:325–334

    CAS  Google Scholar 

  • Polin D, Wing TL, Ki P, Pell KE (1981) The effect of bile acids and lipase on absorption of tallow in young chicks. J Microbiol Biotechnol 59:2738–2743

    Google Scholar 

  • Pomeroy, Robert S (2002) The status of grouper culture in Southeast Asia. SPC Live Reef Fish Information Bulletin 10:22–26

    Google Scholar 

  • Ran C, He SX, Yang YL, Huang L, Zhou ZG (2015) A novel lipase as aquafeed additive for warm-water aquaculture. PLoS One 10(7):132–149

    Google Scholar 

  • Robinson EH, Li MH, Manning BB (2002) Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, ictalurus punctatus. J Appl Aquac 12:81–88

    Google Scholar 

  • Rossita S, Isabella E, Annita Y (2013) Soybean meal as a source of protein in formulated diets for tiger grouper, Epinephelus fuscoguttatus juvenile. Part I: effects on growth, survival, feed utilization and body compositions. Agric Sci 4:317–323

    Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Secombes CJ (1997) The nonspecific immune system: cellular defenses. Fish Physiol 15:63–103

    Google Scholar 

  • Shapawi R, Ng WK, Mustafa S (2007) Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis. Aquaculture 273:118–126

    CAS  Google Scholar 

  • Shiau SY, Lan CW (1996) Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 145:259–266

    CAS  Google Scholar 

  • Shiu YL, Hsieh SL, Guei WC, Tsai YT, Chiu CH, Liu CH (2015) Using Bacillus subtilis E20-fermented soybean meal as replacement for fish meal in the diet of orange-spotted grouper (Epinephelus coioides, Hamilton). Aquac Res 46:1403–1416

    CAS  Google Scholar 

  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    CAS  PubMed  Google Scholar 

  • Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur J Biochem 269:5771–5779

    CAS  PubMed  Google Scholar 

  • Subhadra B, Lochmann R, Rawles S, Chen RG (2006) Effect of dietary lipid source on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides). Aquaculture 255:210–222

    CAS  Google Scholar 

  • Syah R, Usman U, Makmur M (2006) Substitution of fishmeal with soybean meal in humpback grouper, Cromileptes altivelis juvenile diets supplemented with phytase. Indonesian Fisheries Research Journal 10:87–96

    Google Scholar 

  • Takeuchi T, Watanabe T, Ogino C (1978) Optimum ratio of protein to lipid in diets of rainbow trout. Bull Jpn Soc Sci Fish 44:683–688

    CAS  Google Scholar 

  • Torstensen BE, Lie O, Hamre K (2001) A factorial experimental design for investigation of effects of dietary lipid content and pro- and antioxidants on lipid composition in Atlantic salmon (Salmo salar) tissues and lipoproteins. Aquac Nutr 7:265–276

    CAS  Google Scholar 

  • Tuan LA, Williams KC (2007) Optimum dietary protein and lipid speci fications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture 267:129–138

    CAS  Google Scholar 

  • Turchini GM, Mentasti T, Froyland L, Orban E, Caprino F, Moretti VM, Valfre F (2003) Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acidoxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquaculture. 225:251–267

    CAS  Google Scholar 

  • Usman R, Laining A, Ahmad T, Williams KC (2005) Optimum dietary protein and lipid specifications for grow-out of humpback grouper Cromileptes altivelis (Valenciennes). Aquac Res 35:1286–1292

    Google Scholar 

  • Wang Y, Li K, Han H, Zheng ZX, Bureau DO (2008) Potential of using a blend of rendered animal protein ingredients to replace fish meal in practical diets for malabar grouper (Epinephelus malabricus). Aquaculture 281:113–117

    CAS  Google Scholar 

  • Wang JR, Li YY, Xu SD, Li P, Liu JS, Liu DN (2013) High-level expression of pro-form lipase from Rhizopus oryzae in Pichia pastoris and its purification and characterization. Int J Mol Sci 15:203–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T (1982) Lipid nutrition in fish. Comp Biochem Physiol 73:3–15

    Google Scholar 

  • Xie DZ, Yang LP, Yu RM, Chen F, Lu RH, Nie GX (2017) Effects of dietary carbohydrate and lipid levels on growth and hepatic lipid deposition of juvenile tilapia, Oreochromis niloticus. Aquaculture 479:696–703

    CAS  Google Scholar 

  • Yan JY, Yang Jk XL, Yan YJ (2007) Gene cloning, overexpression and characterization of a novel organic solvent tolerant and thermostable lipase from Galactomyces geotrichum Y05. J Mol Catal B Enzym 49:28–35

    CAS  Google Scholar 

  • Zhang H, Mu ZB, Xu LM, Xu GF, Liu M, Shan AS (2009) Dietary lipid level induced antioxidant response in manchurian trout, Brachymystax lenok (Pallas) larvae. Lipids 44:643–654

    CAS  PubMed  Google Scholar 

  • Zheng X, Chu X, Zhang W, Wu N, Fan Y (2011) A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: gene cloning and characterisation. Appl Microbiol Biotechnol 90:971–980

    CAS  PubMed  Google Scholar 

  • Zhou QC, Wu ZH, Tan BP, Chi SY, Yang QH (2006) Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum). Aquaculture 258:551–557

    CAS  Google Scholar 

Download references

Funding

This project is supported by projects of Guangdong Department of Science and Technology (No. 2011B050300026 and S2011030005257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xu, W., Xu, S. et al. High-level expression and characterization of a lipase from Trichosporon fermentans Y3 and its application as an aquafeed additive for grouper (Epinephelus coioides). Aquacult Int 28, 1279–1292 (2020). https://doi.org/10.1007/s10499-020-00525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-020-00525-0

Keywords

Navigation