Skip to main content
Log in

Effects of oxidized konjac glucomannan on the intestinal microbial flora and intestinal morphology of Schizothorax prenanti

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Prenant’s schizothoracin (Schizothorax prenanti) is an important existemic commercial fish in Yangtze River. Oxidized konjac glucomannan (OKGM) is a kind of polysaccharide oxidative degraded from konjac glucomannan. The diet of S. prenanti was supplemented with 500, 1000, 2000, 4000, and 8000 mg/kg OKGM. After a 60-day feeding trial, Escherichia coli, Salmonella, Lactobacillus, and Bifidobacterium in the intestines of S. prenanti were quantified, and intestinal flora was analyzed using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE). Intestinal plica mucosa height, mucosa epithelial height, submucosa thickness, inner circular muscularis thickness, and outer longitudinal muscularis thickness were measured. In the foregut and midgut, Lactobacillus in the 2000, 4000, and 8000 mg/kg dose groups were significantly (P < 0.05) higher than that of the control group. In the hindgut, E. coli and Salmonella of the 4000 and 8000 mg/kg dose groups were significantly (P < 0.05) lower than those of the control group, but Lactobacillus and Bifidobacterium in these groups were significantly (P < 0.05) more than those of the control group. The bands from PCR-DGGE of the control and 500 mg/kg dose groups were found to be highly similar, as well as the 4000 and 8000 mg/kg dose groups. The intestinal length index of the 8000 mg/kg dose group was significantly (P < 0.05) lower than that of the control group. The plica mucosa height in the gut of the 8000 mg/kg dose group was significantly (P < 0.05) higher than that of the control group. The mucosa epithelial height and inner circular muscularis thickness in the midgut and hindgut of the 8000 mg/kg dose group were significantly (P < 0.05) higher than those of the control group. Hence, OKGM is beneficial to gut health. OKGM doses of 4000 and 8000 mg/kg in the diet significantly affected the intestinal morphology and intestinal microflora of S. prenanti, and the optimal dose was 8000 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bjornsdottir R, Johannsdottir J, Coe J, Smaradottir H, Agustsson T, Sigurgisladottir S, Gudmundsdottir BK (2009) Survival and quality of halibut larvae (Hippoglossus hippoglossus L.) in intensive farming: possible impact of the intestinal bacterial community. Aquaculture 286:53–63

    Article  Google Scholar 

  • Bozza PT, Magalhães KG, Weller PF (2009) Leukocyte lipid bodies—biogenesis and functions in inflammation. Biochim Biophys Acta BBA Mol Cell Biol Lipids 1791:540–551

    Article  CAS  Google Scholar 

  • Brunvold L, Sandaa RA, Mikkelsen H, Welde E, Bleie H, Bergh Ø (2007) Characterisation of bacterial communities associated with early stages of intensively reared cod (Gadus morhua) using Denaturing Gradient Gel Electrophoresis (DGGE). Aquaculture 272:319–327

    Article  CAS  Google Scholar 

  • Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292

    Article  CAS  PubMed  Google Scholar 

  • Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ (2013) Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol 34:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Chua M, Baldwin TC, Hocking TJ, Chan K (2010) Traditional uses and potential health benefits of Amorphophallus konjac K. Kochex N.E. Br. J Ethnopharmacol 128:268–278

    Article  PubMed  Google Scholar 

  • Chua M, Chan K, Hocking TJ, Williams PA, Perry CJ, Baldwin TC (2012) Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydr Polym 87:2202–2210

    Article  CAS  Google Scholar 

  • Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production—a Mediterranean perspective. Fish Shellfish Immunol 30:1–16

    Article  CAS  PubMed  Google Scholar 

  • Geraylou Z, Souffreau C, Rurangwa E, D’Hondt S, Callewaert L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2012) Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol 33:718–724

    Article  CAS  PubMed  Google Scholar 

  • Hermannsdottir R, Johannsdottir J, Smaradottir H, Sigurgisladottir S, Gudmundsdottir BK, Bjornsdottir R (2009) Analysis of effects induced by a pollock protein hydrolysate on early development, innate immunity and the bacterial community structure of first feeding of Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Fish Shellfish Immunol 27:595–602

    Article  CAS  PubMed  Google Scholar 

  • Hovda MB, Lunestad BT, Fontanillas R, Rosnes JT (2007) Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272:581–588

    Article  CAS  Google Scholar 

  • Kim DH, Kim DY (2013) Microbial diversity in the intestine of olive flounder (Paralichthys olivaceus). Aquaculture 414–415:103–108

    Article  Google Scholar 

  • Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr (2013) Short chain fatty acids and their receptors: new metabolic targets. Transl Res 161:131–140

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Liu Y, Zhang X, Zhang X, Yue B, Song Z (2011) An observation of the loss of genetic variability in prenant’s schizothoracin, Schizothorax prenanti, inhabiting a plateau lake. Biochem Syst Ecol 39:361–370

    Article  CAS  Google Scholar 

  • Liu H, Wang L, Liu M, Wang B, Jiang K, Ma S, Li Q (2011) The intestinal microbial diversity in Chinese shrimp (Fenneropenaeus chinensis) asdetermined by PCR–DGGE and clone library analyses. Aquaculture 317:32–36

    Article  CAS  Google Scholar 

  • Merrifield DL, Güroy D, Güroy B, Emery MJ, Llewellyn CA, Skill S, Davies SJ (2010) Assessment of Chlorogloeopsis as a novel microbial dietary supplement for red tilapia (Oreochromis niloticus). Aquaculture 299:128–133

    Article  Google Scholar 

  • Michot C, Mamoune A, Vamecq J, Viou MT, Hsieh LS, Testet E, Lainé J, Hubert L, Dessein AF, Fontaine M, Ottolenghi C, Fouillen L, Nadra K, Blanc E, Bastin J, Candon S, Pende M, Munnich A, Smahi A, Djouadi F, Carman GM, Romero N, Keyzer Y, Lonlay P (2013) Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochim Biophys Acta BBA Mol Basis Dis 1832:2103–2114

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electro-phoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Sánchez T, Balcázar JL, Merrifield DL, Carnevali O, Gioacchini G, de Blas I, Ruiz-Zarzuela I (2011) Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish Shellfish Immunol 31:196–201

    Article  PubMed  Google Scholar 

  • Salma W, Zhou Z, Wang W, Askarian F, Kousha A, Ebrahimi MT, Myklebust R, Ringø E (2011) Histological and bacteriological changes in intestine of beluga (Huso huso) following ex vivo exposure to bacterial strains. Aquaculture 314:24–33

    Article  Google Scholar 

  • Tester RF, Al-Ghazzewi FH (2013) Mannans and health, with a special focus on glucomannans. Food Res Int 50:384–391

    Article  CAS  Google Scholar 

  • Wei R, Yuan D, Wang T, Zhou C, Lin F, Chen H, Wu H, Yang S, Yan Wang Y, Liu J, Gao Y, Li Z (2013) Characterization, tissue distribution and regulation of agouti-related protein (AgRP) in a cyprinid fish (Schizothorax prenanti). Gene 527:193–200

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Bao B, Peatman E, Li H, Huang L, Ren D (2007) Analysis of the composition of the bacterial community in puffer fish Takifugu obscur. Aquaculture 262:183–191

    Article  Google Scholar 

  • Yeh SL, Lin MS, Chen HL (2010) Partial hydrolysis enhances the inhibitory effects of konjac glucomannan from Amorphophallus konjac C. Koch on DNA damage induced by fecal water in Caco-2 cells. Food Chem 119:614–618

    Article  CAS  Google Scholar 

  • Zhang L, Wu Y, Wang L, Wang H (2013) Effects of oxidized konjac glucomannan (OKGM) on growth and immune function of Schizothorax prenanti. Fish Shellfish Immunol 35:1105–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Sichuan Province Science and Technology support projects of China (2009NZ0077-007) and Higher Education Department of Henan Province key scientific research projects (15A240008). The authors thank Professors Qiongzhi Li and Anxiang Wen for their help in providing test instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, Y., Xu, H. et al. Effects of oxidized konjac glucomannan on the intestinal microbial flora and intestinal morphology of Schizothorax prenanti . Aquacult Int 25, 233–250 (2017). https://doi.org/10.1007/s10499-016-0025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0025-x

Keywords

Navigation