ORIGINAL ARTICLE

A New Water-Based ⁸⁷Sr/⁸⁶Sr Isoscape Map of Central and NE Germany, with Special Emphasis on Mountainous Regions

A. Käßner¹ · H. T. Kalapurakkal^{1,2} · B. Huber³ · M. Tichomirowa¹

Received: 16 December 2022 / Accepted: 25 February 2023 / Published online: 16 March 2023 © The Author(s) 2023

Abstract

In this study, we present a new ⁸⁷Sr/⁸⁶Sr isoscape map of Central and NE Germany. This area is characterized by an alternation of sedimentary basins and mountainous regions with a very variable lithology. Since lithology and rock age have a major impact on the isotopic composition of biologically available strontium, Central and NE Germany should reveal highly variable ⁸⁷Sr/86Sr ratios. From lithological characteristics, particularly high ratios are expected in the mountainous regions of the Erzgebirge/Fichtelgebirge and the Harz Mountains. In contrast to these predictions, published ⁸⁷Sr/⁸⁶Sr isoscape maps of Central and NE Germany record rather uniform and low ⁸⁷Sr/86Sr ratios. From this observation, we suspected that existing isoscape maps might be computed from an insufficient database, with mountainous regions being underrepresented. Our goal was to gather ⁸⁷Sr/⁸⁶Sr baselines for each major lithology of Central and NE Germany and to produce an accurate isoscape map of Central and NE Germany. In the first step, we evaluated the suitability of stream water and groundwater as a proxy for biologically available strontium. In a selected watershed, we present mixing relationships and a stream network model. We show that groundwater is prone to very local geologic and anthropogenic influences and should thus be avoided. Instead, we focussed our further sampling on stream water. Altogether, we used 119 new measurements of groundwater and stream water and a set of 23 auxiliary variables as a database for our new isoscape map of Central and NE Germany. Due to a sampling strategy that focussed on covering each major lithology, our measurements and the final isoscape map show a clear contrast between sedimentary basins and mountainous regions. For regions that have been sufficiently sampled, a direct comparison of the isoscape map with published and new data shows good agreement. Although Central and NE Germany were part of published isoscape maps, our new map is the first that predicts ⁸⁷Sr/⁸⁶Sr ratios in mountainous regions with high accuracy.

Keywords Strontium isotopes · Isoscape map · Provenance · Central and NE Germany

A. Käßner alexandra.kaessner@mineral.tu-freiberg.de

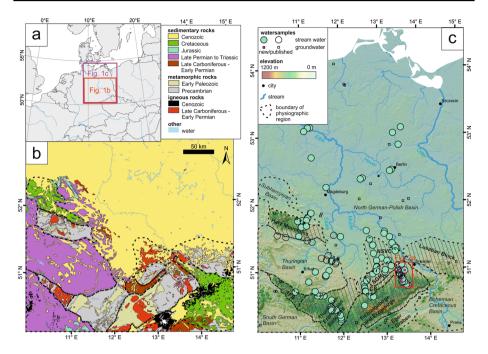
³ Freiberg, Germany

B. Huber: Freelancing in various machine learning projects and as university lecturer (http://www. biancahuber.de).

¹ Institut f
ür Mineralogie, TU Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Sachsen, Germany

² Geomar Helmholtz Centre for Marine Research, Kiel, Germany

1 Introduction


Isoscape (isotope landscape) maps predict the spatial distribution of isotope ratios that contain geographic information, like e.g. strontium, sulphur, hydrogen, or oxygen (West et al. 2010). Since strontium isotopes are not fractionated by metabolic processes when incorporated into living organisms through water or food consumption, they are of particular interest. Isoscape maps of ⁸⁷Sr/⁸⁶Sr can thus be used directly for archaeological or animal migration studies without additional fractionation correction (e.g. Price et al. 2002; Bentley 2006; Bataille et al. 2021). Additionally, strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) may vary over short distances because they are largely influenced by the local geological setting (e.g. Beard and Johnson 2000; Bentley 2006; Voerkelius et al. 2010; Bataille et al. 2014). Thus, provenance assignments based on strontium isotopes can reach a relatively high resolution.

Although rocks are the main source of strontium in the environment, provenance studies have to consider the isotopic composition of biologically available strontium, which may differ significantly from the values of the local lithology (e.g. Price et al. 2002). These differences arise from the differential weathering of minerals and from the addition of strontium from other sources such as dust, sea salt deposition, or fertilizers (Böhlke and Horan 2000; Zieliński et al. 2018; Bataille et al. 2018; Thomsen and Andreasen 2019).

Thus, a representative database of measured ⁸⁷Sr/⁸⁶Sr ratios is necessary to produce accurate isoscape maps (Bataille et al. 2020; Holt et al. 2021). To obtain this database, many strontium isotope studies rely on a suite of different samples like soil leachates, small animal tissue, plants, surface water, and groundwater (e.g. Bataille et al. 2018; Ladegaard-Pedersen et al. 2020). While some studies argue that single materials may not reflect the strontium variability as close as a combination of different archives (Crowley et al. 2017; Grimstead et al. 2017), the inter-site variation typically exceeds intra-site variations (Podio et al. 2013; Ladegaard-Pedersen et al. 2020). This advocates the use of only one single material to compute an isoscape map of ⁸⁷Sr/⁸⁶Sr, as done by some researchers (e.g. Hoogewerff et al. 2019; Scaffidi et al. 2020). Such an approach allows focusing on a broad and representative sampling strategy to optimally cover the spatial variability of ⁸⁷Sr/⁸⁶Sr.

For the generation of isoscape maps from a database of measured ⁸⁷Sr/⁸⁶Sr ratios, machine learning algorithms have recently been preferred over all other interpolation methods (e.g. Bataille et al. 2020; Holt et al. 2021). A major advantage of these algorithms is that a relatively small dataset of measured ⁸⁷Sr/⁸⁶Sr ratios can be used to train the algorithm to calculate high-resolution isoscape maps from a bundle of auxiliary variables (Bataille et al. 2018, 2020). Auxiliary variables are maps of factors that potentially influence ⁸⁷Sr/⁸⁶Sr ratios. Lithology, rock age, sea salt deposition, evapotranspiration, and aridity are typical factors of high impact in isoscape map calculations of Central Europe (Bataille et al. 2018; Hoogewerff et al. 2019). Bataille et al. (2018) tested different machine learning algorithms and showed that random forest regression outperforms many other methods such as support vector machines, neural networks, or ordinary kriging.

In Central and NE Germany, the surface geology is characterized by an alternation of sediment-filled basins and geologically complex mountainous regions (Fig. 1). These two types of regions should result in distinct ⁸⁷Sr/⁸⁶Sr ratios. For mountainous regions (like the Erzgebirge/Fichtelgebirge, the Harz Mountains, the Lusatian Block, the Thuringian-Franconian Slate Belt, the Thuringian Forest Basin, the Chemnitz Basin, the Granulite Mountains, and the North Saxon Volcanic complex, Fig. 1b, c) with prevalent Precambrian and Palaeozoic granitic gneisses, granites, rhyolites and clastic sediments, highly radiogenic and variable ⁸⁷Sr/⁸⁶Sr ratios are suggested. In difference, lower and more homogeneous

Fig. 1 Geological and geographical setting with sample locations. **a** Map of Central Europe with land masses (grey), ocean (white), national borders (black lines), and major streams (blue) **b** Geological overview map of Central and NE Germany showing the distribution of different rock types based on the Geological Map of Germany 1: 1,000,000 (BGR, 2014). Nine major rock types were defined based on their formation type (sedimentary, metamorphic, igneous rocks) and their ages (e.g. Cenozoic, Cretaceous, Jurassic, and other) **c** Elevation map of Central and NE Germany with location and type of water samples. Hollow symbols mark previously published data (Voerkelius et al. 2010; Tichomirowa et al. 2010; Maurer et al. 2012), filled symbols mark new samples. The streams were extracted from SRTM DEM (Jarvis et al. 2008), which is shown as a shaded relief map. Mountainous regions are marked with hatched lines. All regions without hatching are sedimentary basins. Abbreviations of regions are: NSVC—North Saxon Volcanic Complex, SGM—Saxon Granulite Mountains, CB—Chemnitz Basin, TFB—Thuringian Forest Basin

⁸⁷Sr/⁸⁶Sr ratios are expected in carbonate-bearing Meso- and Cenozoic sediments in the Thuringian Basin, the North German Basin, the Czech Eger Graben, the Bohemian Creta-ceous Basin, and the Subhercynian Basin (Fig. 1b, c).

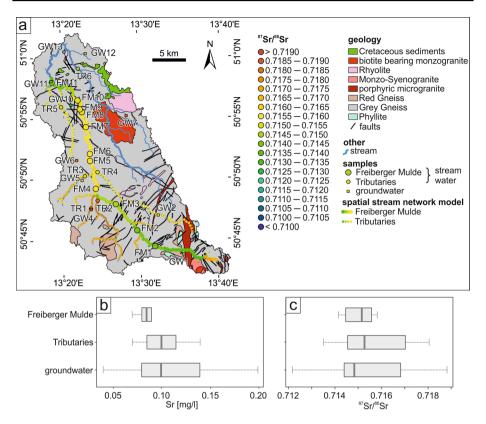
In recently published ⁸⁷Sr/⁸⁶Sr isoscape maps of Central and NE Germany, a clear difference between sedimentary basins and mountainous regions in Central- and NE Germany is not observable (Hoogewerff et al. 2019) or seems to be underestimated (Bataille et al. 2018). Hoogewerff et al. (2019) predicted uniform and low ratios (around 0.705) for entire Central and NE Germany from soil leachate ⁸⁷Sr/⁸⁶Sr data. In contrast, the map of Bataille et al. (2018) predicted differences between mountainous regions (around 0.710 to 0.715) and sediment-filled basins (<0.710). While the modelled values in sediment-filled basins are in agreement with previous published data (Voerkelius et al. 2010; Maurer et al. 2012) the mountainous region of the Erzgebirge should be characterized by ratios up to 0.720 (Voerkelius et al. 2010; Tichomirowa et al. 2010). A variety of other mountainous regions in Central and NE Germany (the Harz Mountains, the Lusatian Block, the Thuringian-Franconian Slate Belt, the Thuringian Forest Basin, the Chemnitz Basin, the Granulite Mountains, and the North Saxon Volcanic complex) is not represented by published samples (Fig. 1c) or ⁸⁷Sr/⁸⁶Sr isoscape maps.

In this study, we designed a sampling strategy that is adapted to complex geological settings. We present a dataset of 119 new ⁸⁷Sr/⁸⁶Sr ratios of water samples from Central and NE Germany and compare the suitability of surface water and groundwater as a proxy for the biologically available ⁸⁷Sr/⁸⁶Sr ratio. In a second step, we used two different approaches to model ⁸⁷Sr/⁸⁶Sr isoscape maps from these data. Because of the dense sampling and the stream network-related sampling strategy, we were able to compute a dendritic model of the strontium isotopic composition of the Freiberger Mulde catchment according to the approach of Brennan et al. (2016). Finally, we used the complete ⁸⁷Sr/⁸⁶Sr dataset to produce an isoscape map of Central and NE Germany by applying the machine learning approach of Bataille et al. (2018), which uses random forest regression to compute an isoscape map from the strontium isotopic composition of the samples and a bundle of auxiliary variables. A comparison with existing isoscape maps of Central Europe highlights the advantages and disadvantages of small-scale and large-scale isoscape maps in migration studies.

2 Materials and Methods

2.1 Sampling Approach

The small sub-catchment of the Freiberger Mulde (Eastern Erzgebirge) has a very diverse lithology where Paleozoic gneisses and phyllites alternate with granites, volcanic dykes, but also with some Cretaceous sediments. In addition, numerous hydrothermal and mineral deposits occur in this region (Hoth et al. 1995; Rohde 2014; Fig. 2a). To understand the impact of small-scale lithological changes on ⁸⁷Sr/⁸⁶Sr, we took 31 closely spaced samples and determined their strontium isotopic composition and concentration. Additionally, we measured physico-chemical parameters (temperature, pH, electrical conductivity, redox potential, and dissolved oxygen) during sample collection. With the parallel sampling of stream water and groundwater (Fig. 2a), we aimed to define the most appropriate type of water samples.


Because of the complex geological setting in Central and NE Germany, ⁸⁷Sr/⁸⁶Sr ratios of stream water may change over short distances. We distinguished nine major lithological rock types based on their formation (sedimentary, metamorphic, igneous) and their ages (e.g. Cenozoic, Cretaceous, Jurassic and others, compare Fig. 1b). From prevalent rock types, we defined 14 geologically uniform and coherent regions (Fig. 1b, c). In most cases, these regions correspond to common physiographic regions of Central and NE Germany.

From each physiographic region, we took water samples to cover the entire range of ⁸⁷Sr/⁸⁶Sr ratios. In particular, we sampled several traverses along streams that flow from mountainous regions into sedimentary basins to trace ⁸⁷Sr/⁸⁶Sr changes (Fig. 1c). Altogether, we collected 119 water samples during the summer and early fall from 2016 to 2020 (Table 1). Around 50 ml of sediment-free water from each location was sampled and categorized as groundwater (from wells/springs) or stream water (Table 1, Fig. 1c).

2.2 Strontium Isotope Analysis Methods

Water samples were prepared for analysis in the Isotope Geochemistry and Geochronology Lab at TU Bergakademie Freiberg, Institute of Mineralogy. For strontium isotopic

Fig. 2 Strontium isotopic composition and strontium concentration of the Freiberger Mulde (FM), its tributaries (TR) and groundwater (GW) in the Freiberger Mulde catchment. The general flow direction is from South to North. **a** Catchment area of the Freiberger Mulde river (see location in Fig. 1c) showing the distribution of different rock types together with measured strontium isotopic composition for stream water and groundwater samples (filled circles and squares, respectively) compared to results of spatial stream network modelling (shown as coloured points along streams; colours correspond to the legend). FM: samples from Freiberger Mulde, TR–samples from tributaries, GW – groundwater samples. The streams were extracted from SRTM DEM (Jarvis et al. 2008). **b** Box plots comparing the strontium concentration of the main stream (Freiberger Mulde), its tributaries and groundwater from the Freiberger Mulde catchment. **c** Box plots comparing the ⁸⁷Sr/⁸⁶Sr ratios of the Freiberger Mulde, its tributaries and groundwater from the Freiberger Mulde catchment

composition determination ca. 30 ml of water was evaporated overnight at 85 °C. For the strontium concentration determination weighed aliquots of 7 ml were mixed with a known quantity of a calibrated ⁸⁴Sr-enriched spike solution. The mixed solution was also evaporated at 85 °C. Afterwards, the precipitates were re-dissolved in 0.5 ml of 3.5 N HNO₃ for column chemistry. Strontium was separated from the matrix through cation exchange chromatography using 0.2 ml teflon columns with Sr-Spec cation exchange resins (Charlier et al. 2006) and loaded onto pre-degassed W-filaments. Strontium isotope ratios were measured on the Finnigan MAT 262 thermal ionization mass spectrometer (TIMS, Thermo Fischer Scientific) at TU Bergakademie Freiberg. During measurements, the ⁸⁷Sr/⁸⁶Sr ratio was corrected for mass fractionation using an exponential law, normalizing to ⁸⁶Sr/⁸⁸Sr=0.1194. The standard NBS987 was analysed repeatedly during measurements and yielded an average ⁸⁷Sr/⁸⁶Sr ratio of 0.71023±0.00003 (n=12). This is within

ardrino	Latitude	Longitude	Water body	Category	Geological terrane	⁸⁷ Sr/ ⁸⁶ Sr	Strontium concentration [µg/l]
Freiberger M.	Freiberger Mulde catchment						
FM1	50.96686	13.31326	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71395	66.2
FM2	50.76292	13.49214	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71447	n.a
FM3	51.13022	13.09338	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71281	85.5
FM4	51.16627	12.92405	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71326	82.5
FM5	50.86672	13.39114	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71638	92
FM6	50.86858	13.39308	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71557	n.a
FM7	50.90528	13.38528	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71565	92.4
FM8	50.92583	13.37722	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71542	n.a
FM9	50.92972	13.37306	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71547	n.a
FM10	50.94194	13.36833	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71546	n.a
FM11	50.74066	13.53016	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71415	n.a
FM12	51.06023	13.30385	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71328	81.5
IR1	50.79356	13.39308	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71791	74.5
IR2	50.80453	13.40799	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71804	72.1
TR3	50.83811	13.38109	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71614	120
TR4	50.84332	13.40886	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71523	96
TR5	50.93315	13.33235	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71527	112
TR6	50.98545	13.37026	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71351	137
TR7	50.97308	13.46361	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71388	103
GW1	50.72910	13.59156	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71459	38.9
GW2	50.78321	13.53803	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71506	72
GW4	50.79348	13.39345	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71881	87.8
GW5	50.83250	13.37500	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71641	105
CW/G	2002022			-			

Table 1 (continued)	(pən						
Sample	Latitude	Longitude	Water body	Category	Geological terrane	⁸⁷ Sr/ ⁸⁶ Sr	Strontium concentration [µg/1]
GW7	50.91994	13.47260	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71682	144
GW10	50.93551	13.35355	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71287	108
GW11	50.96830	13.31157	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71439	68.5
GW12	51.00582	13.38693	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71463	163
GW13	51.00871	13.34087	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71216	112
GW14	50.97317	13.46316	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71397	86.1
GW15	50.97411	13.46534	Groundwater Freiberg	Groundwater	Erzgebirge and Fichtelgebirge	0.71768	196
Central and NE Germany	Germany						
CHE1	50.97129	12.79675	Chemnitz	Stream water	Saxon Granulite Mountains	0.71186	n.a
DA1	51.38972	13.18504	Dahle	Stream water	Bohemian Cretaceous Basin	0.71112	n.a
DANI	53.08737	11.08350	Jeetzel	Stream water	North German Basin	0.71008	n.a
DÖL1	51.31719	13.26258	Döllnitz	Stream water	Bohemian Cretaceous Basin	0.71081	n.a
ELB1	51.56745	13.00951	Elbe	Stream water	North German Basin	0.71087	n.a
ELB2	51.48454	13.13157	Elbe	Stream water	North German Basin	0.71097	n.a
ELB3	51.35245	13.23758	Elbe	Stream water	Bohemian Cretaceous Basin	0.71112	n.a
ELB4	51.31153	13.29342	Elbe	Stream water	Bohemian Cretaceous Basin	0.71114	n.a
ELB5	53.14173	11.23632	Elbe	Stream water	North German Basin	0.70919	n.a
ELB6	53.13772	11.17950	Elbe	Stream water	North German Basin	0.70949	n.a
FM3	50.79923	13.44696	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71475	n.a
FM4	50.82058	13.40431	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71583	n.a
FM5*	50.85902	13.39300	Freiberger Mulde	Stream water	Erzgebirge and Fichtelgebirge	0.71555	n.a
GÖTTI	51.53540	9.91895	Leine	Stream water	Thuringian Basin	0.70826	n.a
GT1	51.53650	13.00302	Kuhteich in Torgau	Stream water	North German Basin	0.70977	n.a
HARZ1	51.66813	11.13340	Selke	Stream water	Harz Mountains	0.71204	n.a

101

	(noni						
Sample	Latitude	Longitude	Water body	Category	Geological terrane	⁸⁷ Sr/ ⁸⁶ Sr	Strontium concentration [µg/l]
HARZ10	51.86159	11.24575	Selke	Stream water	Subhercynian Basin	0.70933	n.a
HARZ11	51.85935	11.23327	Bode	Stream water	Subhercynian Basin	0.71027	n.a
HARZ2	51.64751	11.07006	Uhlenbach	Stream water	Harz Mountains	0.71402	n.a
HARZ3	51.65096	11.00972	Elbingstalbach	Stream water	Harz Mountains	0.71287	n.a
HARZ4	51.73861	10.92198	Bode	Stream water	Harz Mountains	0.71170	n.a
HARZ5	51.73885	10.92211	Zufluss zu Bode	Stream water	Harz Mountains	0.71167	n.a
HARZ6	51.75078	11.03225	Bode	Stream water	Harz Mountains	0.71305	n.a
HARZ7	51.75407	11.12999	Quarmbach	Stream water	Subhercynian Basin	0.71586	n.a
HARZ8	51.79065	11.15993	Bode	Stream water	Subhercynian Basin	0.71079	n.a
HARZ9	51.79037	11.16958	Bicklingsbach	Stream water	Subhercynian Basin	0.70904	n.a
HOF1	50.32399	11.91403	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71089	n.a
HVL1	52.37584	12.51294	Sandfurtgraben	Stream water	North German Basin	0.71045	n.a
HVL2	52.36460	12.46437	Buckau	Stream water	North German Basin	0.71058	n.a
JAH1	51.26836	13.25655	Jahna	Stream water	Bohemian Cretaceous Basin	0.71021	n.a
Jenal	50.90687	11.57920	Leutra	Stream water	Thuringian Basin	0.70800	n.a
Jena2	50.92274	11.58463	small stream	Stream water	Thuringian Basin	0.70801	n.a
KGRO	51.03485	12.80108	Sandgrube Biesern	Stream water	Saxon Granulite Mountains	0.71150	n.a
LUB1	50.83281	12.55180	Lungwitzbach	Stream water	Chemnitz Basin	0.71283	n.a
MAGD1	52.24580	11.62275	Ohre	Stream water	North German Basin	0.71128	n.a
RÖB1	50.67182	12.52188	Rödelbach	Stream water	Erzgebirge and Fichtelgebirge	0.71459	n.a
RTLB1	51.51788	10.94528	Schlossteich	Stream water	Harz Mountains	0.70998	n.a
Saa1	50.22159	11.93383	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71381	n.a
Saa10	50.99614	11.66418	Heinze-Quelle	Stream water	Thuringian Basin	0.71070	n.a
Saa11	50.61855	11.53582	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71094	n.a
Saa12	50.61401	11.44198	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71100	n.a

Table 1 (continued)	nued)						
Sample	Latitude	Longitude	Water body	Category	Geological terrane	⁸⁷ Sr/ ⁸⁶ Sr	Strontium concentration [µg/l]
Saa13	50.62022	11.38462	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71117	n.a
Saa14	51.50373	11.95203	Saale	Stream water	Thuringian Basin	0.70862	n.a
Saa2	50.25832	11.93391	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71346	n.a
Saa3	50.28429	11.93322	Ölsnitz	Stream water	Thuringian-Franconian Slate Belt	0.70916	n.a
Saa4	50.36575	11.85609	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71149	n.a
Saa5	50.40127	11.81649	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71122	n.a
Saa6	50.40185	11.70159	Selbitz	Stream water	Thuringian-Franconian Slate Belt	0.70910	n.a
Saa7	50.44945	11.69617	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71071	n.a
Saa9	50.55268	11.71329	Saale	Stream water	Thuringian-Franconian Slate Belt	0.71069	n.a
SAW1	52.69170	11.26250	Moorgraben	Stream water	North German Basin	0.71143	n.a
SLM	50.59212	12.64796	Schlema	Stream water	Erzgebirge and Fichtelgebirge	0.71545	n.a
STR 1	51.04723	13.14837	Striegis	Stream water	Saxon Granulite Mountains	0.71305	n.a
SW1	50.58855	12.70301	Schwarzwasser	Stream water	Erzgebirge and Fichtelgebirge	0.71590	n.a
THY1	51.51421	10.94658	Thyra	Stream water	Harz Mountains	0.71155	n.a
TR1*	51.06746	13.39975	Triebisch	Stream water	Erzgebirge and Fichtelgebirge	0.71168	n.a
VMI	51.23947	12.73336	Vereinigte Mulde	Stream water	North Saxon Volcanic Complex	0.71346	n.a
VM2	51.36368	12.72105	Vereinigte Mulde	Stream water	North Saxon Volcanic Complex	0.71357	n.a
VM3	51.45633	12.64871	Vereinigte Mulde	Stream water	North Saxon Volcanic Complex	0.71350	n.a
VM4	51.58692	12.57708	Vereinigte Mulde	Stream water	North Saxon Volcanic Complex	0.71364	n.a
W1	53.12400	13.50100	Templiner Kanal	Stream water	North German Basin	0.71070	n.a
W10	52.49100	13.23400	Teufelsee	Stream water	North German Basin	0.71037	n.a
W11	52.47800	13.19000	Havel	Stream water	North German Basin	0.70968	n.a
W2	53.04640	13.30000	Burgwall	Stream water	North German Basin	0.71046	n.a
W3	52.86300	13.42600	Liebenwalde	Stream water	North German Basin	0.71042	n.a
W4	50.67900	10.86000	Ilm	Stream water	Thuringian Forest Basin	0.71128	n.a

SampleLatitudeLongitudeWater bodyCategoryGeological terraneW550.8290011.17900IlmStream waterThuringian BasinW650.9800011.33400IlmStream waterThuringian BasinW751.1320011.72200SaaleStream waterThuringian BasinW850.92550011.32360SaaleStream waterThuringian BasinW850.977711.33441LeutraStream waterThuringian BasinW81150.9797711.33441LeutraStream waterThuringian BasinW81250.979711.34441LeutraStream waterThuringian BasinW1150.580011.34441LeutraStream waterThuringian BasinZM1050.6500212.57914Zwickauer MuldeStream waterErzgebirge and FichtZM1150.5895112.7003Zwickauer MuldeStream waterErzgebirge and FichtZM1150.5895112.70156Zwickauer MuldeStream waterSaxon Granulite MouZM1250.5878512.77197Zwickauer MuldeStream waterSaxon Granulite MouZM350.9565512.77197Zwickauer MuldeStream waterChemitz BasinZM1150.5878512.77197Zwickauer MuldeStream waterSaxon Granulite MouZM1250.5875312.77197Zwickauer MuldeStream waterSaxon Granulite MouZM350.9565512.77197Zwickauer MuldeStream waterSaxon		
50.82900 11.17900 Ilm Stream water 50.98000 11.33400 Ilm Stream water 51.13200 11.72200 Saale Stream water 51.13200 11.72200 Saale Stream water 50.9707 11.33400 Stream water Stream water 50.9797 11.32600 Saale Stream water 50.9797 11.33376 Ilm Stream water 50.9797 11.33341 Leutra Stream water 50.9797 11.33341 Leutra Stream water 50.9797 11.3341 Leutra Stream water 51.13051 12.80255 Zwickauer Mulde Stream water 50.58951 12.7003 Zwickauer Mulde Stream water 50.587438 12.70156 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.95305 12.77197 Zwickauer Mulde Stream water 50.95382 12.70150 Zwickauer Mulde Stream water	Geological terrane ⁸⁷ St/ ⁸⁶ Sr	Sr Strontium concentration [µg/l]
50.98000 11.33400 Im Stream water 51.13200 11.72200 Saale Stream water 51.13200 11.58900 Saale Stream water 50.92500 11.58900 Saale Stream water 50.97975 11.3341 Eutra Stream water 50.97975 11.3341 Leutra Stream water 50.97975 11.3341 Leutra Stream water 50.97975 11.3341 Leutra Stream water 50.5002 12.3014 Zwickauer Mulde Stream water 50.58951 12.70003 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.58785 12.70209 Zwickauer Mulde Stream water 50.95785 12.48820 Zwickauer Mulde Stream	Thuringian Basin 0.70882	82 n.a
51.13200 11.72200 Saale Stream water 50.92500 11.3800 Saale Stream water 50.9797 11.33560 Saale Stream water 50.97975 11.33376 Ilm Stream water 50.97975 11.33376 Ilm Stream water 50.97975 11.33441 Leutra Stream water 50.97975 11.33476 Ilm Stream water 51.13051 12.80255 Zwickauer Mulde Stream water 51.13051 12.80255 Zwickauer Mulde Stream water 50.65002 12.57914 Zwickauer Mulde Stream water 50.58951 12.70003 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.58785 12.70150 Zwickauer Mulde Stream water 50.96505 12.77197 Zwickauer Mulde Stream water 50.96505 12.77197 Zwickauer Mulde Stream water 50.96709 12.749349 Zwickauer Mulde Stream water 50.74092 12.748820 Zwickauer Mulde	Thuringian Basin 0.70810	10 n.a
50.92500 11.58900 Saale Stream water 50.68500 11.32600 Saale Stream water 50.97977 11.33376 Ilm Stream water 50.97975 11.33376 Ilm Stream water 50.97975 11.33441 Leutra Stream water 50.97975 11.33441 Leutra Stream water 51.13051 12.80255 Zwickauer Mulde Stream water 50.58951 12.70003 Zwickauer Mulde Stream water 50.58951 12.70156 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.96505 12.770156 Zwickauer Mulde Stream water 50.96505 12.7711 Zwickauer Mulde Stream water 50.96705 12.77197 Zwickauer Mulde Stream water 50.78212 12.77197 Zwickauer Mulde Stream water 50.78212 12.79197 Zwickauer Mulde Stream water 50.78012 12.57197 Zwickauer Mul	Thuringian Basin 0.70872	72 n.a
50.6850011.32600SaaleStream water50.9797711.3337611mStream water50.9797511.3337611mStream water50.9797511.33441LeutraStream water51.1305112.80255Zwickauer MuldeStream water51.1305112.80255Zwickauer MuldeStream water51.1305112.80255Zwickauer MuldeStream water50.5895112.70003Zwickauer MuldeStream water50.5878512.70156Zwickauer MuldeStream water50.5878512.70156Zwickauer MuldeStream water50.9650512.7711Zwickauer MuldeStream water50.9553212.7711Zwickauer MuldeStream water50.9554312.77117Zwickauer MuldeStream water50.9554312.77197Zwickauer MuldeStream water50.9574312.57197Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.49349Zwickauer MuldeStream water50.6769712.50159Zwickauer MuldeStream water50.6769712.50159Zwickauer MuldeStream water50.6769712.50159Zwickauer MuldeStream water50.6769712.50159Zwickauer MuldeStream water50.6769712.50159Zwickauer MuldeStream water50.578612.99290ZschopauStream water50.9578612.99290ZschopauStream w	Thuringian Basin 0.70955	55 n.a
50.97977 11.33376 Im Stream water 50.97975 11.3341 Leutra Stream water 51.13051 12.80255 Zwickauer Mulde Stream water 51.13051 12.80255 Zwickauer Mulde Stream water 50.65002 12.57914 Zwickauer Mulde Stream water 50.58951 12.70003 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.58785 12.70156 Zwickauer Mulde Stream water 50.58785 12.70173 Zwickauer Mulde Stream water 50.96505 12.7711 Zwickauer Mulde Stream water 50.95382 12.77197 Zwickauer Mulde Stream water 50.95382 12.770209 Zwickauer Mulde Stream water 50.93282 12.770209 Zwickauer Mulde Stream water 50.93282 12.49349 Zwickauer Mulde Stream water 50.74092 12.49349 Zwickauer Mulde Stream water 50.74092 12.49349 Zwickauer Mulde Stream water 50.74092 <	Thuringian Basin 0.71072	72 n.a
50.9797511.33441LeutraStream water51.1305112.80255Zwickauer MuldeStream water50.6500212.57914Zwickauer MuldeStream water50.5895112.70003Zwickauer MuldeStream water50.5895112.70156Zwickauer MuldeStream water50.5895112.70156Zwickauer MuldeStream water50.5895112.70156Zwickauer MuldeStream water50.5895112.70156Zwickauer MuldeStream water50.5878512.70173Zwickauer MuldeStream water50.9578512.7711Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.37409212.77197Zwickauer MuldeStream water50.7409212.48320Zwickauer MuldeStream water50.717412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7578612.99290ZschopauStream water50.9578612.99290ZschopauStream water	Thuringian Basin 0.70827	27 n.a
51.1305112.80255Zwickauer MuldeStream water50.6500212.57914Zwickauer MuldeStream water50.5895112.70003Zwickauer MuldeStream water50.5878512.70156Zwickauer MuldeStream water50.5878512.70156Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water50.9550512.75711Zwickauer MuldeStream water50.9528212.70209Zwickauer MuldeStream water50.328212.77197Zwickauer MuldeStream water50.38543812.57197Zwickauer MuldeStream water50.7409212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7117412.50159Zwickauer MuldeStream water50.756	Thuringian Basin 0.70794)4 n.a
50.6500212.57914Zwickauer MuldeStream water50.5895112.70003Zwickauer MuldeStream water50.5878512.70156Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water51.044712.80775Zwickauer MuldeStream water50.9550512.75711Zwickauer MuldeStream water50.9528212.77197Zwickauer MuldeStream water50.328212.77197Zwickauer MuldeStream water50.7821212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.75786	North Saxon Volcanic Complex 0.71411	11 n.a
50.5895112.70003Zwickauer MuldeStream water50.5878512.70156Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water51.04328212.7711Zwickauer MuldeStream water50.9650512.77711Zwickauer MuldeStream water50.9528212.77197Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.7821212.49349Zwickauer MuldeStream water50.7821212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.5769712.50159Zwickauer MuldeStream water50.578612.99290ZschopauStream water50.9578612.99290ZschopauStream water	Erzgebirge and Fichtelgebirge 0.71616	16 n.a
50.5878512.70156Zwickauer MuldeStream water51.0444712.80775Zwickauer MuldeStream water50.9650512.75711Zwickauer MuldeStream water50.95328212.775711Zwickauer MuldeStream water50.9328212.770209Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.7821212.49349Zwickauer MuldeStream water50.7821212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.99290ZschopauStream water	Erzgebirge and Fichtelgebirge 0.71589	39 n.a
51.0444712.80775Zwickauer MuldeStream water50.9650512.75711Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.9328212.77197Zwickauer MuldeStream water50.8543812.57197Zwickauer MuldeStream water50.8543812.57197Zwickauer MuldeStream water50.7821212.49349Zwickauer MuldeStream water50.7409212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.99290ZschopauStream water	Erzgebirge and Fichtelgebirge 0.72313	l3 n.a
50.9650512.75711Zwickauer MuldeStream water50.9328212.70209Zwickauer MuldeStream water50.8543812.57197Zwickauer MuldeStream water50.7821212.48820Zwickauer MuldeStream water50.7409212.49349Zwickauer MuldeStream water50.7177412.4032Zwickauer MuldeStream water50.7177412.51022Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.99290ZschopauStream water	Saxon Granulite Mountains 0.71355	55 n.a
50.9328212.70209Zwickauer MuldeStream water50.8543812.57197Zwickauer MuldeStream water50.7821212.48820Zwickauer MuldeStream water50.7409212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.92290ZschopauStream water	Saxon Granulite Mountains 0.71455	55 n.a
50.8543812.57197Zwickauer MuldeStream water50.7821212.48820Zwickauer MuldeStream water50.7409212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.9290ZschopauStream water	Saxon Granulite Mountains 0.71429	29 n.a
50.7821212.48820Zwickauer MuldeStream water50.7409212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.9290ZschopauStream water	Chemnitz Basin 0.71466	56 n.a
50.7409212.49349Zwickauer MuldeStream water50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.92290ZschopauStream water	Chemnitz Basin 0.71498	98 n.a
50.7177412.50159Zwickauer MuldeStream water50.6769712.51022Zwickauer MuldeStream water51.1257613.05018ZschopauStream water50.9578612.99290ZschopauStream water	Chemnitz Basin 0.71535	35 n.a
50.67697 12.51022 Zwickauer Mulde Stream water 1 51.12576 13.05018 Zschopau Stream water 2 50.95786 12.99290 Zschopau Stream water	Chemnitz Basin 0.71578	78 n.a
1 51.12576 13.05018 Zschopau Stream water 2 50.95786 12.99290 Zschopau Stream water	Erzgebirge and Fichtelgebirge 0.71568	58 n.a
50.95786 12.99290 Zschopau Stream water	Saxon Granulite Mountains 0.71370	70 n.a
	Saxon Granulite Mountains 0.71429	29 n.a
ZSC3 50.98926 13.00483 Zschopau Stream water Saxon Granulite Mou	Saxon Granulite Mountains 0.71426	26 n.a

D Springer

error equal to the published value of 0.71025 (Faure and Mensing 2005). Total procedural blanks were <30 pg strontium, which is much lower than the amount of strontium in the samples and had no impact on our results.

2.3 Modelling of Isoscape Maps

2.3.1 Modelling an ⁸⁷Sr/⁸⁶Sr baseline of the Freiberger Mulde catchment using spatial stream networks

For the Freiberger Mulde catchment, we computed a spatial stream network model, which uses autocovariance structures to account for the spatial dependencies of river networks (Isaak et al. 2014; Brennan et al. 2016). We used all stream water sampling sites of the Freiberger Mulde catchment as input parameters (Fig. 2a, Table 1; n=19) and adopted the modelling approach of Brennan et al. (2016) by using a geological map with eight different lithologies (the GLIM database, Hartmann and Moosdorf 2012, Fig. 2a) as an auxiliary variable. As suggested by Brennan et al. (2016), we used upstream and downstream autocorrelation and per cent geology as auxiliary variables.

In the Spatial Tools for the Analysis of River Systems (STARS) toolbox in ArcGIS 10.2 (Peterson and Ver Hoef 2014), a network topology free of geometric errors, a spatial stream network including the sampling and prediction points, the geological information as per cent geology for each sampling and prediction point, and spatial weights depending on the catchment size were prepared. The modelling itself was conducted in R using the spatial stream network (SSN) package (Ver Hoef et al. 2014) following the methodology of Brennan et al. (2016).

2.3.2 Modelling an Isoscape Map of Central and NE Germany by a Machine Learning Approach

To create a high-resolution isoscape map of Central and NE Germany, we used the machine learning approach of Bataille et al. (2018), which applies the caret package on R version 3.5.0 (Kuhn 2008). For this, we combined our new ⁸⁷Sr/⁸⁶Sr dataset with appropriate auxiliary variables (Table 2). Besides 20 auxiliary variables from different sources (Hijmans et al. 2005; Jarvis et al. 2008; Mooney et al. 2008; Potter et al. 2010; Balmino et al. 2012; Hartmann and Moosdorf 2012; Vet et al. 2014; Hengl et al. 2017; Börker et al. 2018; Mahowald et al. 2018; Table 2), predicted ⁸⁷Sr/⁸⁶Sr ratios of the published process-based bedrock model by Bataille et al. (2014) were included as their median (r.m1), first quartile (r.ssrq1), and third quartile (r.ssrq3). We extracted the auxiliary variable values for each geographical location to build the regression matrix and used it for training the spatial prediction model in the caret package (Kuhn 2008).

We applied the random forest regression model of Bataille et al. (2018) to the whole dataset and the auxiliary variables to create an ⁸⁷Sr/⁸⁶Sr isoscape map for Central and NE Germany. To assess the accuracy and precision of the model, the dataset was randomly split into a training subset (80% of the entire dataset) and a testing holdout subset for validation (20% of the total dataset). A comparison of observed vs. predicted ⁸⁷Sr/⁸⁶Sr ratios of training and testing datasets allows assessing the model performance.

Variables	Description	Resolution	Туре	Source
r.maxage_geol	GLiM age attribute (Myrs)	1 km	D	Hartmann and Moosdorf (2012)
r.minage_geol	GLiM age attribute (Myrs)	1 km	D	Hartmann and Moosdorf (2012)
r.meanage_geol	GLiM age attribute (Myrs)	1 km	D	Hartmann and Moosdorf (2012)
r.age	Terrane age attribute (Myrs)	1 km	D	Mooney et al. (2008)
r.GUM	Global unconsolidated sediment map	1 km	С	Börker et al. (2018)
r.ssaw	Multi-models average sea salt wet deposition (kg ha ^{-1} year ^{-1})	$1^{\circ} \times 1^{\circ}$	С	Vet et al. (2014)
r.ssa	Multi-models average	$1^{\circ} \times 1^{\circ}$	С	Vet et al. (2014)
	Sea salt wet + dry deposition (kg ha ⁻¹ year ⁻¹)			
r.salt	CCSM.3 simulation (g m ⁻² year ⁻¹)	$1.4^{\circ} \times 1.4^{\circ}$	С	Mahowald et al. (2018)
r.dust	Multi-models average (g m ⁻² year ⁻¹)	$1^{\circ} \times 1^{\circ}$	С	Mahowald et al. (2018)
r.elevation	SRTM (m)	90 m	С	Jarvis et al. (2008)
r.cec	Cation Exchange Capacity	250 m	С	Hengl et al.
r.pet	Global Potential Evapotranspiration	30-arc sec	С	Hengl et al. 2017
r.ai	Global Aridity Index	30-arc sec	С	Hengl et al. (2017)
r.ph	Soil pH in H2O solution (×10)	250 m	С	Hengl et al. (2017)
r.clay	Clay (weight %)	250 m	С	Hengl et al. (2017)
r.bulk	Bulk density (kg m ⁻³)	250 m	С	Hengl et al. (2017)
r.bouguer	WGM2012_Bouguer	2 min	С	Balmino et al. (2012)
r.map	Mean annual precipitation (mm year ⁻¹)	30-arc sec	С	Hijmans et al. (2005)
r.mat	Mean annual temperature (°C)	30-arc sec	С	Hijmans et al. (2005)
r.fert	Global Nitrogen Fertilization	30-arc sec	С	Potter et al. (2010)
r.m1	Median bedrock model	1 km	D	Bataille et al. (2018)
r.srsrq1	Quartile 1 bedrock model	1 km	D	Bataille et al. (2018)
r.srsrq3	Quartile 3 bedrock model	1 km	D	Bataille et al. (2018)

 Table 2
 List of climatic, geological, pedological, and topographic spatial data used as auxiliary variables

 (C=continuous; D=discrete)

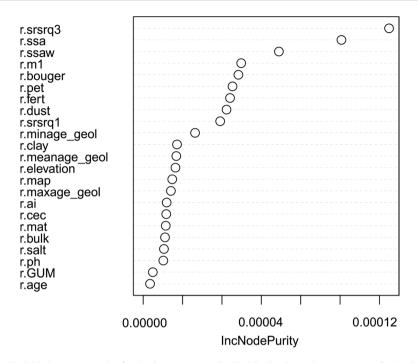
To understand which of the auxiliary variables have the highest impact on the final model, we calculated IncNodePurity using the caret Package (Kuhn 2008) as a measure for variable importance.

3 Results

3.1 Water ⁸⁷Sr/⁸⁶Sr Ratios of Central and NE Germany

The results of strontium analyses are given in Table 1. Figure 2 summarizes the results from 31 samples of the Freiberger Mulde river catchment. On-site parameters and strontium concentrations have been determined together with ⁸⁷Sr/⁸⁶Sr ratios for these samples and are presented in Table 3. Two outliers were defined based on remarkably high electrical conductivity (Table 3). The ⁸⁷Sr/⁸⁶Sr ratios and strontium concentrations of these samples were suspected to be influenced by anthropogenic contaminations and were excluded from Table 1 and the following interpretation and modelling.

Aquatic Geochemistry (202	3) 29:95–125
---------------------------	--------------


Table 3Physico-chemicalparameters of surface- and	Sample	T (°C)	pН	Ec (µS/cm)	Eh (mV)	DO (mg)	DO (%)
subsurface waters of the upper	FM1	9.9	7.6	166	434	11.0	98
Freiberger Mulde catchment	FM2	10.1	7.5	203	458	11.0	101
	FM3	10.6	7.5	214	447	11.0	100
	FM4	11.2	7.8	220	433	11.0	100
	FM5	12.0	7.8	246	416	13.0	129
	FM6	11.6	7.9	241	433	9.9	95
	TR1	22.3	6.4	239	470	8.3	99
	TR2	10.5	7.5	215	451	12.0	110
	TR3	11.0	7.2	240	444	10.0	98
	TR4	10.8	7.4	209	449	13.0	124
	TR5	15.9	8.0	422	469	13.0	136
	TR6	12.3	7.9	335	447	13.0	138
	TR7	22.4	7.0	225	458	7.3	90
	GW1	22.1	6.0	109	528	7.6	91
	GW2	23.1	6.6	135	459	7.3	88
	GW3	21.5	6.6	150	464	7.1	84
	GW4	21.7	6.3	231	525	7.0	82
	GW5	12.3	5.4	165	485	9.1	90
	GW6	21.8	6.0	296	565	7.1	85
	GW7	22.7	6.1	255	517	7.3	87
	GW8*	23.7	6.4	903	480	7.5	92
	GW9*	23.1	6.0	903	481	8.1	99
	GW10	22.1	6.0	360	479	5.6	65
	GW11	21.9	5.4	294	495	6.7	80
	GW12	22.0	6.0	523	471	6.4	75
	GW13	22.0	3.6	690	571	7.2	85
	GW14	22.0	6.4	217	461	4.4	55
	GW15	22.9	4.9	235	517	7.3	94

Sample numbers with remarkably high electrical conductivity (Ec, marked with *) are suspected to be influenced by anthropogenic contaminations and were excluded from ⁸⁷Sr/ Sr⁸⁶ and strontium concenctration analysis

In the Freiberger Mulde catchment, the ⁸⁷Sr/⁸⁶Sr ratios range from 0.71216 to 0.71881, with a mean of 0.71536. We grouped the Freiberger Mulde dataset into samples from the main stream (FM, Freiberger Mulde), samples from tributaries (TR) and groundwater samples (GW) from springs and wells. The grouped strontium isotopic composition and concentration data are presented in Fig. 2b and c. In entire Central and NE Germany, ⁸⁷Sr/⁸⁶Sr ratios range from 0.70794 to 0.72313, with a mean of 0.71279.

3.2 Spatial Stream Network Model of the Freiberger Mulde Catchment

For a part of the Freiberger Mulde catchment, our sampling covered both the topological variation of the stream network and the lithological variation. This is the requirement to model the data in a spatial stream network (Brennan et al. 2016). The result of this model-ling is shown in Fig. 2a, together with the measured ⁸⁷Sr/⁸⁶Sr ratios.

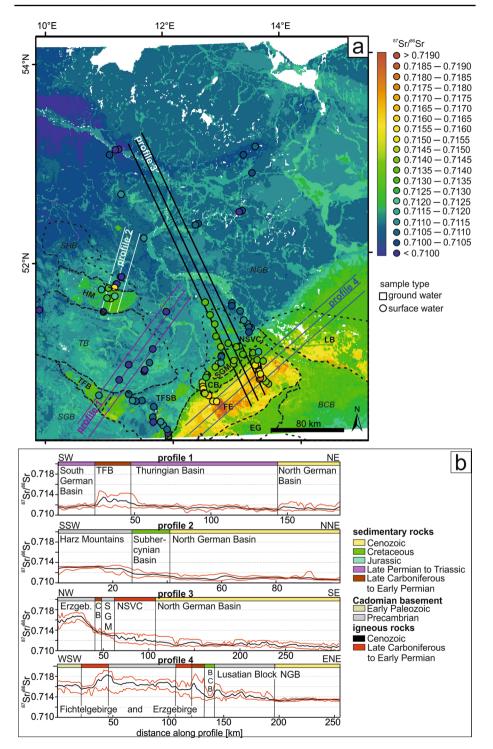


Fig. 3 Variable importance plot for the isoscape map. IncNodePurity is used as a measure for the impact of each auxiliary variable on the final model, as suggested by Bataille et al. (2018). Abbreviations are explained in Table 2

3.3 Strontium Isoscape Map of Central and NE Germany

We computed our final isoscape map from 23 auxiliary variables and 119 new ⁸⁷Sr/⁸⁶Sr data from water. The relative impact of the single auxiliary variables on our model is summarized in Fig. 3. The resulting isoscape map of Central and NE Germany is presented together with the data in Fig. 4a. In Fig. 4b, we present four swath profiles of the ⁸⁷Sr/⁸⁶Sr ratios across the isoscape map. The swath profiles were derived from the final isoscape map using SAGA (Conrad et al. 2015). In swath profile analysis, the values are not only derived from the defined profile line, but also sampled in a specified width (swath width) perpendicular to the profile. From this dataset, mean, maximum and minimum values can be defined at each point along the profile. In Fig. 4, swath width was 20 km for each profile (indicated in Fig. 4a with triple lines). Major changes in lithology are marked above each

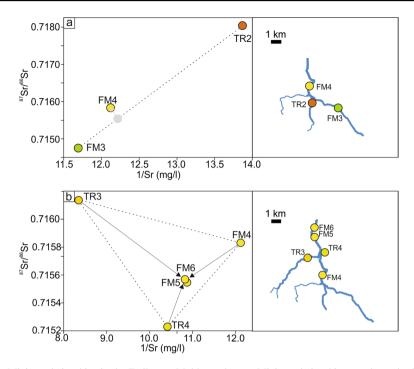
Fig. 4 Results of random forest modelling. **a** Final 87 Sr/ 86 Sr isoscape map produced by the random forest **b** method of Bataille et al. (2018), using the entire dataset of new 87 Sr/ 86 Sr data together with 23 auxiliary variables. For comparison, the data points are colour-coded with the same scale. Each set of 3 parallel lines represents the position and width of one swath profile. **b** Swath profiles across the 87 Sr/ 86 Sr isoscape map. Main lithology and rock age are assigned along the profiles as coloured bars. Swath width is 20 km in each profile. The black line represents the mean, and the red lines are the maximum and minimum 87 Sr/ 86 Sr at each point along the profile lines. Physiographic regions (Fig. 1c) are labelled. Abbreviations are: SHB—Subhercynian Basin, HM—Harz Mountains, TB—Thuringian Basin, SGB—South German Basin, LB—Lusatian Block, EG—Eger Graben, FB–Fichtelgebirge and Erzgebirge, TFB—Thuringian Forest Basin, TFSB—Thuringian-Franconian Slate Belt, NGB—North German Basin, CB—Chemnitz Basin, SGM—Saxon Granulite Mountains, NSVC—North Saxon Volcanic Complex, BCB—Bohemian Cretaceous Basin

profile. The combination of mean ⁸⁷Sr/⁸⁶Sr ratios with lithological changes visualizes the relationship between lithology and the strontium isotopic composition of water. Additionally, minimum and maximum ⁸⁷Sr/⁸⁶Sr ratios along the profiles allow assessing the variability of the strontium isotopic composition within each geologically coherent region.

4 Discussion

4.1 Water ⁸⁷Sr/⁸⁶Sr Ratios of Central and NE Germany

4.1.1 Comparison of the ⁸⁷Sr/⁸⁶Sr Ratios of Stream Water and Groundwater


From the Freiberger Mulde catchment data, we aimed to define the type of water samples that optimally reflects the local 87 Sr/ 86 Sr ratio. For this, we compared the water of the Freiberger Mulde river with smaller tributaries and with groundwater. The median values of all three groups are similar (ca. 0.1 mg/l Sr, 87 Sr/ 86 Sr ~0.715, Fig. 2b, c).

However, the variability of ⁸⁷Sr/⁸⁶Sr ratios and strontium concentrations in the Freiberger Mulde catchment is higher for smaller tributaries than for the main stream and highest for groundwater samples (Fig. 2b, c). In comparison with stream water, groundwater is probably much more influenced by very local geologic phenomena like faults, ore lodes, volcanic dykes, and anthropogenic pollution such as fertilizers (Böhlke and Horan 2000; Thomsen and Andreasen 2019), mine waters (Zieliński et al. 2018), or other groundwater contamination (Nigro et al. 2017). Still, in contrast to completely stationary proxies like plant leaves, roots, or soils, a slightly reduced variability in groundwater can be assumed due to some horizontal and vertical groundwater flow (Ladegaard-Pedersen et al. 2020).

These differences in variability between small streams, larger streams, and groundwater are probably related to mixing processes in stream water. Mixing processes can be recognized in mixing diagrams, where two end-members define a line in an ⁸⁷Sr/⁸⁶Sr vs. 1/Sr diagram and the mixed component will plot exactly on this line (e.g. Tichomirowa et al. 2010). However, in the Freiberger Mulde catchment area, a more complex mixing process is observed, because the mixing product (FM4 in Fig. 5a) is not situated on this straight line, so that one or more additional major sources contributed to the ⁸⁷Sr/⁸⁶Sr ratio of sampling point FM 4. The isotope ratio and Sr concentration of sampling points FM5 and FM6 should result from mixing between FM4- and TR3-waters. However, the mixing diagram reveals an additional input from sampling point TR4 (Fig. 5b). This discussion demonstrates that mixing and transport have a high impact on the Sr isotope ratio of stream water, so that each point in the stream network depends on all its upstream points (Brennan et al. 2016).

In difference, the groundwater ⁸⁷Sr/⁸⁶Sr ratios cannot be explained by simple mixing relationships. We found large differences (up to 0.004) between the predicted Sr isotope ratios from the stream network model and the measured ⁸⁷Sr/⁸⁶Sr ratios in groundwater near the streams. This also emphasizes the high influence of local factors on groundwater.

Based on these results, we decided to concentrate on river water instead of groundwater to constrain the local ⁸⁷Sr/⁸⁶Sr ratios of various physiographic regions for Central and North Germany. We avoided groundwater sampling, because very local geologic phenomena and anthropogenic factors should not be included in a local ⁸⁷Sr/⁸⁶Sr signature.

Fig. 5 Mixing relationships in the Freiberger Mulde catchment. Mixing relationships are shown in the left column. The right column represents the position of the samples within the stream network a) Mixing line of the two end-members FM3 and TR2. Mixing products are situated along the connecting line. The position of a theoretical mixing product and the deviation of sample FM4 from this position are shown as a grey point and arrow, respectively. b) Mixing triangle of the three end-members FM4, TR3, and TR4. Samples FM5 and FM6 are situated inside the triangle and are thus potential mixing products of these end-members

Furthermore, the high variability of groundwater ⁸⁷Sr/⁸⁶Sr ratios would require a much higher amount of samples to define a robust mean value for a region. Instead, we sampled large streams to obtain averaged values for larger regions, and smaller streams to represent smaller-scale variations.

4.1.2 Dependency of Stream Water ⁸⁷Sr/⁸⁶Sr on Lithology and Rock Age

As expected, we observe clear differences between stream water that flows on sedimentary basins and water that flows in mountainous regions. The dependency of ⁸⁷Sr/⁸⁶Sr on lithology and rock age is illustrated in swath profiles that include both mountainous regions and sedimentary basins (Fig. 4b). Higher ⁸⁷Sr/⁸⁶Sr ratios were determined in the mountainous regions of the Erzgebirge/Fichtelgebirge (0.71216–0.72313), the Harz Mountains (0.70998–0.71869), the Thuringian-Franconian Slate Belt (0.70910–0.71414), the Thuringian Forest Basin (0.71128), the Chemnitz Basin (0.71283–0.71579), the Granulite Mountains (0.71150–0.71455), and the North Saxon Volcanic complex (0.71326–0.71411). All these regions are characterized by Precambrian and Palaeozoic granitic gneisses, granites, rhyolites and clastic sediments (Table 4). In contrast, water from sedimentary basins revealed lower values. Thereby, basins filled with Cenozoic sediments (North German Basin: 0.70888–0.71149),

Table 4 Summary of published, measured, and modelled ⁸⁷ Sr/ ⁸⁶ Sr ratios in physiographic regions of Central and NE Germany (defined in Fig. 1)	neasured, and modelled ^{8/} Sr/ ⁸⁰ Sr ratios in	1 physiographic regions of Centr	al and NE Germany (define	in Fig. 1)
Physiographic region	⁸⁷ Sr/ ⁸⁶ Sr measured	⁸⁷ Sr/ ⁸⁶ Sr published	⁸⁷ Sr/ ⁸⁶ Sr from modelling	prevalent lithologies
Thuringian Forest Basin	0.71128 (n=1)	1: 0.70804 (n = 1)	Mean=0.71285 Min=0.71105 Max=0.71414 SD=0.00104	dominantly Late Carboniferous to Early Permian rhyolitic volcanic rocks, interbedded with strata of continental conglomerate and sandstone (Lützner et al. 2012)
Thuringian Basin	0.70794-0.71098 (n=16)	3: 0.70801-0.71178 (n=18) 1: 0.7104-0.71087 (n=3)	Mean=0.71152 Min=0.70953 Max=0.71305 SD=0.00043	Triassic sediments: interbedded strata of marine deposits (carbonate, salt, gypsum, and clastic sediment) and terrestrial (clastic) sediment (Hoppe and Seidel 1971)
South German Basin	0.71190 (n=1)	1: 0.70837–0.71011 (n=9)	Mean=0.71144 Min=0.71024 Max=0.71272 SD=0.00036	Triassic sediments: interbedded strata of marine deposits (carbonate, salt, gypsum and clastic sediment) and terrestrial (clastic) sediment (Doben et al. 1996)
Thuringian-Franconian Slate Belt 0.70910-0.71414 (n=17)	0.70910-0.71414 (n=17)		Mean=0.71199 Min=0.71019 Max=0.71472 SD=0.00101	Precambrian to Palaeozoic greywacke, shale, limestone, and quartzite, mafic volcamic rocks at the transition to the Fichtelgebirge, metamorphically overprinted in the Late Carboniferous (BGR, 2014)
Erzgebirge and Fichtelgebirge	0.71216-0.72313, outlier: 0.74363 (n = 37)	1: 0.71840-0.72900 (n=2) 2: 0.71216-0.71748 (n=8)	Mean=0.71601 Min=0.71274 Max=0.71949 SD=0.00115	Precambrian to Palaeozoic clastic sedimentary and igneous rocks, juxtaposed marine clastic sediments, metamorphosed to gneiss, eclogite, phyllite and micaschist in the Late Carboniferous (Hoth et al. 1995; Min- gram 1998); occasionally Late Car- boniferous to Early Permian granite and rhyolite (Hoth et al. 1995; Förster et al. 1999; Hoffmann et al. 2013)

Table 4 (continued)				
Physiographic region	⁸⁷ Sr/ ⁸⁶ Sr measured	⁸⁷ Sr/ ⁸⁶ Sr published	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ from modelling prevalent lithologies	prevalent lithologies
Lusatian Block	None	1: 0.71282–0.71435 (n=2)	Mean = 0.71418 Min = 0.71263 Max = 0.71718 SD = 0.00098	Cadomian igneous rocks and Cambrian to Late Visean greywacke, largely unmetamorphosed (Kozdrój et al. 2001; Kroner et al. 2007); partial cov- erage with Cenozoic sandstone and siltstone, and intrusion of Cenozoic mafic volcanics (Malkowsky 1987)
Eger Graben	None	1: 0.70403-0.70823, outlier: 0.72038 (n = 3)	Mean = 0.71354 Min = 0.71237 Max = 0.71668 SD = 0.00069	mainly fluviatile Cenozoic sandstone and siltstone that comprises lignite, juxtaposed with Cenozoic mafic vol- canic rocks (Rajchl et al. 2008)
Chemnitz Basin	0.71283-0.71579 (n=5)	1: 0.71297–0.71247 (n=2)	Mean = 0.71332 Min = 0.71180 Max = 0.71415 SD = 0.00061	dominantly Late Carboniferous to Early Permian continental conglomerate and sandstone, interbedded with rhyolitic volcanic rocks (Schneider et al. 2012)
Saxon Granulite Mountains	0.71150-0.71455 (n=10)	None	Mean = 0, 71321 Min = 0, 71323 Max = 0, 71416 SD = 0.00027	granulite, surrounded by an outer slate mantle of Cambrian phyllite, quartz- ite, greywacke, and shale, metamor- phic overprint in the Late Carbonifer- ous, outward decreasing metamorphic grade (Kroner 1995)
North Saxon Volcanic Complex	0.71326-0.71411 (n=6)	None	Mean=0.71226 Min=0.71097 Max=0.71351 SD=0.00080	Late Carboniferous to Early Permian volcanic rocks (Hübner et al. 2021)

Table 4 (continued)				
Physiographic region	⁸⁷ Sr/ ⁸⁶ Sr measured	⁸⁷ Sr/ ⁸⁶ Sr published	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ from modelling prevalent lithologies	prevalent lithologies
Harz Mountains	0.70998-0.71869 (n=14)	1: 0.70736-0.70759 (n=2)	Mean=0.71222 Min=0.71058 Max=0.71341 SD=0.00074	Precambrian to Early Paleozoic marine sediment, weak metamorphic over- print to greywacke, and phyllite in the Late Carboniferous (Spiess et al. 1998, Martiklos 2002); occasionally Late Carboniferous to Early Permian granites and rhyolites, (Zech et al. 2010)
Subhercynian Basin	0.70904-0.71079; outlier: 0.71586 (n = 5)	1: 0.70879–0.70887 (n=2)	Mean = 0.71097 Min = 0.71017 Max = 0.71210 SD = 0.00038	Early Cretaceous marlstone and sand- stone and Late Cretaceous siliciclas- tic shallow marine and continental sandstone, Jurassic marine marlstone, limestone, and sandstone, (Voigt 2004)
North German Basin	0.70888-0.71149, outliers: 0.71425, 0.71468, 0.71528 (n=27)	1: 0.70928-0.71031 (n = 18)	Mean = 0.71110 Min = 0.70968 Max = 0.71409 SD = 0.00067	Uniform coverage of Cenozoic glacial till, clastic sandstone and siltstone, and small occurrences of peat (Hinze 1986; Lippstreu et al. 1997; Krienke 2003)
Bohemian Cretaceous Basin	None	1: 0.72038 (n = 1)	Mean=0.71088 Min=0.71021 Max=0.71114 SD=0.00040	Early Cretaceous marlstone and sand- stone and Late Cretaceous siliciclas- tic shallow marine and continental sandstone (Mrázová et al. 2020); partly covered by Cenozoic sedi- ments, occurrences of Cenozoic mafic volcanic rocks (Ulrych et al. 2011)

n = number of samples, data sources: 1: Voerkelius et al. (2010), 2: Tichomirowa et al. (2010), 3: Maurer et al. (2012), abbreviations are: Min - minimum, Max - maximum, SD - standard deviation

 $\underline{\textcircled{O}}$ Springer

or with Mesozoic sediments (Thuringian basin: 0.70794–0.71098, South German Basin: 0.71190, Subhercynian basin: 0.70904–0.71079) cannot be discriminated from each other by their ⁸⁷Sr/⁸⁶Sr ratios. Inside one lithologically uniform (physiographic) region, mean ⁸⁷Sr/⁸⁶Sr ratios appear to be rather uniform, whereas sharp changes can be observed near the boundaries between mountainous regions and sedimentary basins.

4.1.3 Changes of Stream Water ⁸⁷Sr/⁸⁶Sr Ratios Across Geological Boundaries

Due to mixing and transport processes in the stream network, the ⁸⁷Sr/⁸⁶Sr ratio at any point along a stream represents a mixture of the ⁸⁷Sr/⁸⁶Sr ratios of this point's entire catchment (Brennan et al. 2016). Thus, stream water ⁸⁷Sr/⁸⁶Sr ratios do not necessarily represent the local biologically available strontium, but might be influenced by distant lithologies. Since we used stream water ⁸⁷Sr/⁸⁶Sr data to produce our final isoscape map, this influence of transport and mixing has to be analysed. In the geologically complex area of Central and NE Germany, it is important to know how far ⁸⁷Sr/⁸⁶Sr ratios are transported from mountainous regions into sedimentary basins.

Our data and the stream network model of the Freiberger Mulde catchment (Fig. 2a) illustrate that the ⁸⁷Sr/⁸⁶Sr ratio along streams is strongly influenced by the lithology and rock age, but does not change abruptly when the stream enters or crosses a different rock type. Strong changes are typically observed at confluences of two or more streams of similar size when the influencing catchment increases suddenly (Fig. 2a). From the upper part of the Freiberger Mulde (samples FM1, FM2, and FM3 in Fig. 2a), we conclude that water draining grey gneisses has an ⁸⁷Sr/⁸⁶Sr ratio of 0.7141–0.7148. Frequent occurrences of rhyolitic dykes cut the grey gneisses. These dykes are expected to increase the ⁸⁷Sr/⁸⁶Sr ratio, but do not show a significant impact on the ⁸⁷Sr/⁸⁶Sr ratios of the stream water. However, an increase of ⁸⁷Sr/⁸⁶Sr ratios is observed in the SW of the Freiberger Mulde as an effect of tributary TR2 draining outcrops of red gneisses (Fig. 2a). The Freiberger Mulde returns to the previous values (typical for grey gneisses) after ca. 20 km along stream (after passing sampling point FM 10; Fig. 2a).

In agreement with our observations from the Freiberger Mulde catchment, high ⁸⁷Sr/⁸⁶Sr ratios are transported into the sedimentary basins for not more than a few tens of kilometres in the swath profiles of the final isoscape map (Fig. 4a).

For the area of Central and NE Germany, we conclude that river water ⁸⁷Sr/⁸⁶Sr is strongly influenced by mixing and transport processes along stream, but is nevertheless a suitable proxy for the local biologically available strontium isotopic composition. Although it might change dramatically at confluences, it adapts its ⁸⁷Sr/⁸⁷Sr ratio to the major geology within a few tens of kilometres along stream. However, we cannot assess this effect for larger streams and their tributaries.

4.2 Accuracy of the Spatial Stream Network Model of the Freiberger Mulde Catchment

We assessed the accuracy of the stream network model by comparing the mean of the closest upstream- and downstream ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ predictions with each measured ratio. Deviations of the modelled from the measured ratios are ≤ 0.0005 and typically below 0.0002.

4.3 Performance of the Machine Learning Model

4.3.1 Auxiliary Variable Impact

A plot of the relative importance of auxiliary variables (Fig. 3) shows that the processbased bedrock model of Bataille et al. (2018) has the largest influence on our model and provides three of the most important variables (the first and third quartiles and mean).

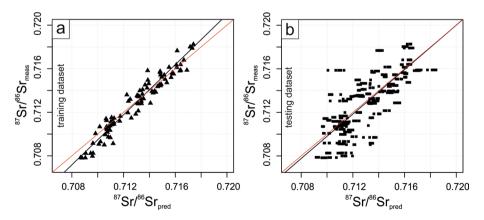
In addition to the bedrock model, we found that the sea salt wet and dry deposition has a major influence on our model (Fig. 3). Central and NE Germany is bordered to approximately ¹/₄ by the coastline to the Baltic Sea. It has a maximum distance from the coast of ca. 430 km. It has been shown that sea salt deposition (sea spray) plays a major role at localities as far as 300 km inland from the coast (Gustafsson and Franzén, 2000; Ladegaard-Pedersen et al. 2020). Possibly, this explains the relatively high impact on the strontium isotopic composition of Central and NE Germany. On the other hand, a crucial contribution of sea salt deposition to Denmark (Frei and Frei 2011) and to Poland (Zieliński et al. 2021), which are located in similar geographic and climatic conditions, was not observed. Thus, it is possible that the correlation between sea salt deposition and surface water ⁸⁷Sr/⁸⁶Sr that was found during random forest modelling, was spurious. Any other parameter that correlates with the distance from the sea could have caused a spurious correlation with sea salt deposition. One possible variable might be the thickness of sediments on the Pre-Permian crystalline basement. These sediments were deposited within the Southern Permian Basin. The southern rim of the Basin was situated close to the recent Fichtelgebirge/Erzgebirge, and the depocenter with the highest sediment thicknesses was located close to the coast line of the recent Baltic Sea (Ziegler 1990) so that the sediment thickness decreased towards South.

The Bouguer anomaly is another auxiliary variable with a high impact. Probably, there is no direct correlation between 87 Sr/ 86 Sr and the Bouguer anomaly. This variable depends, among other things, on the density and thus on the lithology of bedrock. An influence of deep subsurface rocks on the strontium isotopic composition of stream waters and ground-waters can be excluded. Nevertheless, a comparison of the density of surface bedrock and Bouguer anomaly shows good agreement for the Bohemian Massif (Meurers and Steinhauser 1990). Therefore, the Bouguer anomaly is probably a proxy for the surface lithology, which has an undisputable influence on the strontium isotopic composition (e.g. Beard and Johnson 2000; Bentley 2006; Voerkelius et al. 2010; Bataille et al. 2018).

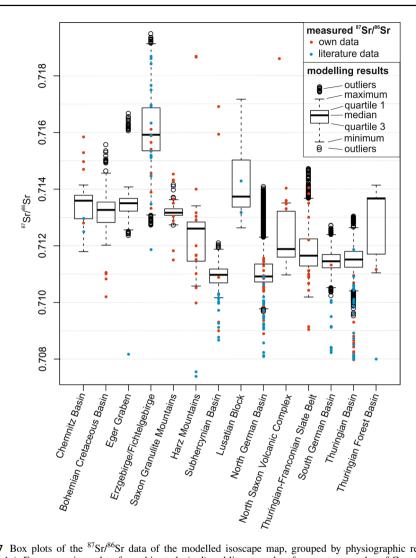
Another important auxiliary variable was dust flux and dust sources, combined in a single variable (r.dust). The relationship between dust and strontium isotopic composition is complex and related to the ⁸⁷Sr/⁸⁶Sr of the provenance region(s) of the dust (Bataille et al. 2020). Especially in regions with slowly weathering rock types, like crystalline felsic rocks in the mountainous regions of Central and NE Germany (Fig. 1a), the influence of exogenous material might be significant. The impact of evapotranspiration (r.pet) on biologically available ⁸⁷Sr/⁸⁶Sr ratios is probably connected to dust and sea salt deposition, since it might control the relative contributions of bedrock-derived strontium versus aerosol- or dust-derived strontium (Bataille et al. 2018).

A potential impact of fertilizers (r.fert) on the ⁸⁷Sr/⁸⁶Sr ratios is typically observed in regions with a high percentage of agricultural land (e.g. Böhlke and Horan 2000; Thomsen and Andreasen 2019). The contribution of agricultural runoff in stream water has been estimated to be as high as 40% in the Karup river (Denmark, Thomsen and Andreasen 2019), and the fraction of agricultural strontium in the Oder river (Poland) has been estimated to

be around 50% (Zieliński et al. 2018). We assume that the amount of fertilizer has a comparably low impact on our model, because its IncNodePurity is lower than that of 6 other variables (Fig. 3).


In summary, from the auxiliary variable importance plot (Fig. 3), three sources can be identified that mainly contribute to the ⁸⁷Sr/⁸⁶Sr ratio of bioavailable strontium in Central and NE Germany. These are: (1) rock-type related parameters like the bedrock lithology and rock age (in form of the bedrock model of Bataille et al. 2018) and the Bouguer anomaly (2) transport from external sources, including sea salt wet and dry deposition and dust input, and (3) anthropogenic influences (e.g. fertilizers).

4.3.2 Estimates for the Accuracy of Our Isoscape Map


The accuracy of our final isoscape map can be estimated through a comparison of measured and modelled data. The training and the testing datasets show a high correlation between the modelled and the measured values (Fig. 6a), suggesting a high accuracy of the modelled data. The regression line is close to, but not identical to the 1:1 line, suggesting a slight overestimation of the lowest and a very slight underestimation of the highest ⁸⁷Sr/⁸⁶Sr ratios in the training data. The testing data fit better to the 1:1 line, but several single analyses and the lowest data (measured ratios < 0.711) deviate even more from this line (Fig. 6b).

Another way to quantify the accuracy of the model is the computation of its RSME (root mean square error, Bataille et al. 2018). In our case, the RSME is 0.0015. This is significantly lower than the RSME reported by Bataille et al. (2018) for their strontium isoscape of Central Europe (0.0023). A lower RSME indicates a better fit between modelled and measured data.

For each physiographic region, the accuracy of the final isoscape map can be assessed by the direct comparison between modelled and measured ⁸⁷Sr/⁸⁶Sr ranges. To do this, we extracted the range of ⁸⁷Sr/⁸⁶Sr ratios for each of the defined physiographic regions (Fig. 1c) from our data and the final isoscape map. Since the ⁸⁷Sr/⁸⁶Sr ratios are variable at a certain distance around the boundaries between regions (Fig. 4b), we sampled the range

Fig. 6 Measured vs. predicted 87 Sr/ 86 Sr ratios for random forest modelling. To assess the accuracy and precision of the model, the dataset was randomly split into a training subset (80% of the entire dataset) and a testing holdout subset for validation (20% of the total dataset). Regression lines are shown in black, 1:1 lines are shown in red. a) Comparison of predicted values with the training dataset. b) Comparison of predicted values with the testing dataset (tenfold cross-validation)

Fig. 7 Box plots of the ⁸⁷Sr/⁸⁶Sr data of the modelled isoscape map, grouped by physiographic regions (Fig. 1c). For comparison, data from this study (red) and literature data from water samples of Central and NE Germany (blue, Voerkelius et al. 2010; Tichomirowa et al. 2010; Maurer et al. 2012) were plotted for each region

of ratios from the interior of each region. For this, we applied a buffer distance of 5 km from the region boundaries. The data are presented as box plots in Fig. 7. In Table 4, we compile the mean, minimum, maximum and standard deviations of our model for each physiographic region, compare these data with new and published ⁸⁷Sr/⁸⁶Sr ratios, and give a brief summary of the geological setting for each region. While most regions reveal a unimodal distribution around a mean value, others display a bimodal distribution of the ⁸⁷Sr/⁸⁶Sr (Fig. 7, e.g. the North German Basin, and the Thuringian-Franconian Slate belt). In boxplots, this results in a high number of outliers towards higher or lower values.

For our isoscape map, we can show that the mean (Table 4) and median (Fig. 7) modelled value is within the measured data range in most regions. The best fit between the values of the model and measured ⁸⁷Sr/⁸⁶Sr ratios, both in absolute data and in data variability, is reached for the Erzgebirge/Fichtelgebirge region, the Saxon Granulite Mountains, the Harz Mountains, and the Thuringian Franconian Slate Belt (Fig. 7, Table 4). Only in the Eger Graben, the Bohemian Cretaceous Basin, the Thuringian Forest Basins and the Subhercynian Basin, the modelled mean and median ⁸⁷Sr/⁸⁶Sr are outside the range of measured data (Table 4, Fig. 7). We assume that the extremely low number of measured data (0–4 observations for the above mentioned regions) is the reason for this. The absolute deviation of the mean modelled from measured data is as high as around 0.005 in the Eger Graben (no observations), 0.002 in the Bohemian Cretaceous Basin (4 observations), and 0.0016 in the Thuringian Forest Basin (1 observation). We conclude that the accuracy of our model depends on the number of samples that were used for modelling.

In summary, the accuracy of our new isoscape map is generally strong, but our model seems to slightly overestimate ⁸⁷Sr/⁸⁶Sr ratios in several regions, especially in sedimentary basins with generally low ⁸⁷Sr/⁸⁶Sr ratios and a low sampling density, like the N German Basin, the Subhercynian Basin, the Thuringian Basin, and the Bohemian Cretaceous Basin (Fig. 7).

4.4 Comparison with Published ⁸⁷Sr/⁸⁶Sr Data and Isoscape Maps of Central and NE Germany

We present the first ⁸⁷Sr/⁸⁶Sr isoscape map that covers entire Central and NE Germany with a very high resolution and accuracy, both in sampling and modelling (Fig. 7, Table 4). Some previously published datasets (Voerkelius et al. 2010; Tichomirowa et al. 2010; Maurer et al. 2012) and isoscape maps (Hoogewerff et al. 2019; Bataille et al. 2018, 2020) include at least parts of Central and NE Germany and can be compared to our results.

Similar to our data and model, Voerkelius et al. (2010) and Tichomirowa et al. (2010) found high ⁸⁷Sr/⁸⁶Sr ratios in the water of the mountainous regions of the Erzgebirge/Fich-telgebirge and the Chemnitz Basin (Table 4). Our new data from the Freiberger Mulde and its tributaries are within the range of published ⁸⁷Sr/⁸⁶Sr ratios from this catchment (Tichomirowa et al. 2010). Additionally, our new data from some sedimentary basins (the Thuringian Basin, the Subhercynian Basin, and the North German Basin) are within the previously published range of data (Table 4; Voerkelius et al. 2010; Maurer et al. 2012). In contrast to this, the previously published ⁸⁷Sr/⁸⁶Sr ratios of the Harz Mountains and the Thuringian Forest Basin (Voerkelius et al. 2010) differ significantly from our new data, which are much higher (Table 4). The reason for such differences might be a too small number of published data from the Harz Mountains and the Thuringian Forest Basin, so that a statistically robust data range could not be defined. Our sampling campaign solved this problem for the Harz Mountains, but not for the Thuringian Forest Basin, where we added only one single measurement to the database.


Our new data reveal a significant difference between ⁸⁷Sr/⁸⁶Sr ratios in mountainous regions (Erzgebirge/Fichtelgebirge, Harz Mountains) and sedimentary basins (North German Basin, Thuringian Basin). We conclude that isoscape maps with uniform and low ⁸⁷Sr/⁸⁶Sr ratios for entire Central and NE Germany (Hoogewerff et al. 2019; Bataille et al. 2020) are not correct. This might be attributed to an insufficient resolution of the maps (Bataille et al. 2020) or an insufficient sampling density (Hoogewerff et al. 2019).

Furthermore, these isoscape maps are not based on water samples, but mainly on soil leachates (Hoogewerff et al. 2019; Bataille et al. 2020). This might induce a small difference in ⁸⁷Sr/⁸⁶Sr, but a generally good correlation between the ⁸⁷Sr/⁸⁶Sr ratios in water and soil leachates has been demonstrated (Ladegaard-Pedersen et al. 2020). Thus, the difference of ⁸⁷Sr/⁸⁶Sr ranges between mountainous regions and sedimentary basins should be recognizable from both materials.

The isoscape map of Western Europe of Bataille et al. (2018) shows strong variability, with higher ⁸⁷Sr/⁸⁶Sr ratios in mountainous regions and lower ratios in sedimentary basins. But here, these differences are obviously not based on measured data, which were sampled in the Thuringian Basin only (Bataille et al. 2018).

As outlined by Bataille et al. (2020), a robust estimate can only be expected in data-rich areas and if sampling covers all geological variations. This is in accord with our observation and a direct comparison of the isoscape map of Bataille et al. (2018) with our new isoscape map can reveal the strengths and weaknesses of both models (Fig. 8). Apparently, the isoscape map of Bataille et al. (2018) underestimates the ⁸⁷Sr/⁸⁶Sr ratios in mountainous regions like the Erzgebirge and the Harz mountains (Fig. 8a, c). Probably, this is because the map was produced without measured data from these regions. In contrast, the modelled ⁸⁷Sr/⁸⁶Sr ratios of the Thuringian Basin, which was part of these authors' sampling approach, are well reproduced (Fig. 8a). In difference, our new isoscape map slightly overestimates the ⁸⁷Sr/⁸⁶Sr ratio in the Thuringian Basin (Fig. 8b), although our 16 new data from the Thuringian Basin do not differ from the dataset used by Bataille et al (2018; Fig. 7).

For our modelling, we used the approach of Bataille et al. (2018) with almost identical auxiliary variables. Thus, the distribution of samples must be the reason for differences in the isoscape maps. Our samples were mainly derived from mountainous regions (Fig. 1c). Consequently, most of the variability in our dataset is found in these regions. Since the machine learning model aims to explain as much as possible of the variability of a dataset, this selective sampling approach optimized our model for mountainous regions. This is

Fig. 8 Comparison of the published strontium isoscape map of Bataille et al. (2018, left column) with our new isoscape map (right column). a, b) Thuringian Basin with Harz mountains. c, d) Erzgebirge/Fichtelgebirge and foreland. The colour scale of all four maps is identical

different to the observations of Bataille et al. (2020) and Brennan et al. (2016), who stated that the modelling approach is not adequate for geologically complex areas. Our study demonstrates that geologically complex areas can be modelled correctly if the sampling density is high enough. Nevertheless, a relative uniform sampling approach is necessary to maintain a similar grade of accuracy for an entire isoscape map.

5 Conclusions

From 119 new stream water and groundwater ⁸⁷Sr/⁸⁶Sr data, we modelled a strontium isoscape map of Central and NE Germany. For this, we used the machine learning method of Bataille et al. (2018) with 23 auxiliary variables.

To support meaningful provenance interpretations in archaeology and animal migration studies, we subdivided the area of Central and NE Germany into 14 geologically coherent regions. We focussed our sampling on the mountainous regions of the Erzgebirge/Fichtel-gebirge and the Harz mountains, which were not well represented by measured ⁸⁷Sr/⁸⁶Sr values in previously published isoscape maps (Bataille et al. 2018, 2020; Hoogewerff et al. 2019) and regional studies (Voerkelius et al. 2010).

In our new data and model, these mountainous regions reveal significantly increased ⁸⁷Sr/⁸⁶Sr ratios in comparison with adjacent sedimentary basins like the Thuringian Basin, the North German Basin, or the Subhercynian Basin. The comparison with existing data and isoscape maps of Central and NE Germany demonstrates that our new isoscape map is the first that resembles stream water ⁸⁷Sr/⁸⁶Sr ratios in mountainous regions with very high accuracy.

Our results demonstrate the need for an increased sampling density in geologically complex areas to cover all possible ⁸⁷Sr/⁸⁶Sr ranges. This is particularly important for studies of migration over short distances, in which the origin and destination of an individual might have similar, but not identical ⁸⁷Sr/⁸⁶Sr. For such studies, isoscape maps are not sufficient to define possible provenance regions, because they do not present uncertainties and ranges of measured data. Instead, each geologically uniform region should be characterized precisely from measured data. Here, we provide a database of Central and NE Germany, in which we present the number and the range of measured data together with mean, minimum and maximum values, and standard deviations of the final isoscape map (Table 4). Such statistical information can be used directly in archaeology and animal migration studies.

Acknowledgements We thank all colleagues and friends who collected single water samples for this study. Constructive comments by an anonymous reviewer and the journal Editor, Marc Benedetti, contributed to the improvement of the manuscript and are gratefully acknowledged.

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Habeeb Thanveer Kalapurakkal, Alexandra Käßner and Marion Tichomirowa. Modelling was performed by Habeeb Thanveer Kalapurakkal, Bianca Huber, and Alexandra Käßner. The first draft of the manuscript was written by Alexandra Käßner, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. No funding was received for conducting this study.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86:499–520
- Bataille CP, Brennan SR, Hartmann J, Moosdorf N, Wooller MJ, Bowen GJ (2014) A geostatistical framework for predicting variability in strontium concentrations and isotope ratios in Alaskan rivers. Chem Geol 389:1–15
- Bataille CP, von Holstein ICC, Laffoon JE, Willmes M, Liu XM, Davies GR (2018) A bioavailable strontium isoscape for Western Europe: a machine learning approach. PLoS ONE 13:1–27
- Bataille CP, Crowley BE, Wooller MJ, Bowen GJ (2020) Advances in global bioavailable strontium isoscapes. Palaeogeograph Palaeoclimatol Palaeoecol 555:109849
- Bataille CP, Jaouen K, Milano S, Trot M, Steinbrenner S, Crubézy É, Colleter R (2021) Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe. PLoS ONE 16(5):e0250383
- Beard BL, Johnson CM (2000) Strontium Isotope Composition of Skeletal Material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci 45(5):1049–1061
- Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13(3):135–187
- Böhlke JK, Horan M (2000) Strontium isotope geochemistry of groundwaters and streams affected by agriculture Locust Grove, MD. Appl Geochem 15:599–609
- Börker J, Hartmann J, Amann T, Romero-Mujalli G (2018) Terrestrial sediments of the earth: development of a global unconsolidated sediments map database (gum). Geochem Geophys Geosyst 19:997–1024
- Brennan SR, Torgersen CE, Hollenbeck JP, Fernandez DP, Jensen CK, Schindler DE (2016) Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers. Geophys Res Lett 43:5043–5051
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (2014) Geological Map of Germany 1:1,000,000, (GK1000), Hannover
- Charlier BL, Ginibre C, Morgan D, Nowell GM, Pearson DG, Davidson JP, Ottley CJ (2006) Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chem Geol 232(3–4):114–133
- Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007
- Crowley BE, Miller JH, Bataille CP (2017) Strontium isotopes (⁸⁷Sr/⁸⁶Sr) in terrestrial ecological and palaeoecological research: empirical efforts and recent advantages in continental-scale models. Biol Rev 92:43–59
- Doben K, Doppler G, Freudenberger W, Jerz H, Meyer RKF, Mielke H, Ott W-D, Rohrmüller J, Schmidt-Kaler H, Schwerd K, Unger HJ (1996) Geologische Karte von Bayern (4. Aufl.), Bayerisches Geologisches Landesamt, Augsburg
- Faure G, Mensing M (2005) Isotopes: principles and applications, 3rd edn. Wily, New York, pp 412-446
- Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-Collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645
- Frei KM, Frei R (2011) The geographic distribution of strontium isotopes in Danish surface waters—a base for provenance studies in archaeology, hydrology and agriculture. Appl Geochem 26:326–340

- Frei KM, Villa C, Jørkov ML, Allentoft ME, Kaul F, Ethelberg P, Reiter SS, Wilson AS, Olsen J, Lynnerup N, Willerslev E, Kristiansen K, Frei R (2017) A matter of months: high precision migration chronology of a Bronze Age female. PLoS ONE 12:e0178834
- Grimstead DN, Nugent S, Whipple J (2017) Why standardization of strontium isotope baseline environmental data is needed and recommendations for methodology. Adv Archaeol Pract 5(2):184–195
- Gustafsson MER, Franzén LG (2000) Inland transport of marine aerosols in southern Sweden. Atmos Environ 34:313–325
- Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13(12):12004
- Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12:e0169748
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. J Geod 25:1965–1978
- Hinze C (1986) Geologische Übersichtskarte Von Niedersachsen: Mit Blattschnitt Der Geologischen Kartenwerke 1:200 000 Und 1:25 000, Niedersächs. Landesamt für Bodenforschung, Hannover
- Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous-Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99
- Holt E, Evans JA, Madgwick R (2021) Strontium (⁸⁷Sr/⁸⁶Sr) mapping: a critical review of methods and approaches. Earth Sci Rev 216:103593
- Hoogewerff J, Reimann C, Ueckermann H, Frei R, Frei KM, van Aswegen T, Striling C, Reid M, Clayton A, Ladenberger A, the GEMAS Project Team (2019) Bioavailable 87Sr/86Sr in European soils: a baseline for provenancing studies. Sci Total Environ 672:1033–1044
- Hoppe W, Seidel G (1971) Geologische Karte Von Thüringen (Bezirke Erfurt, Gera, Suhl), Gotha
- Hoth K, Wasternack J, Berger H-J, Breiter K, Mločoch B, Schovánek P (1995) Geologische Karte Erzgebirge/Vogtland 1:1000000, Sächsisches Landesamt für Umwelt und Geologie, Bereich Boden und Geologie
- Hübner M, Breitkreuz C, Repstock A, Schulz B, Pietranik A, Lapp M, Heuer F (2021) Evolution of the Lower Permian Rochlitz volcanic system, Eastern Germany: reconstruction of an intra-continental supereruption. Int J Earth Sci 110:1995–2020
- Isaak DJ, Peterson EE, Ver Hoef JM, Wenger SJ, Falke JA, Torgersen CE, Sowder C, Steel EA, Fortin M-J, Jordan CE, Ruesch AS, Som N, Monestiez P (2014) Applications of spatial statistical network models to stream data, WIREs Water. https://doi.org/10.1002/wat2.1023
- Jarvis A, Reuter HI, Nelson AD, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. CGIAR CSI Consort. Spat. Information. http://srtm. csi.cgiar.org/
- Kozdrój W, Krentz O, Opletal M (2001) Geological map and comments on the geological map Lausitz, Jizera, Karkonosze (without Cenozoic sediments) 1:100000. Państwowy Instytut Geologiczny, Warsaw
- Krienke H-D (2003) Geologisches Landesamt Mecklenburg-Vorpommern. Geologische Karte von Mecklenburg-Vorpommern, Bundesrepublik, Deutschland
- Kroner U (1995) Postkollisionale Extension am Nordrand der Böhmischen Masse: Die Exhumierung des Sächsischen Granulitgebirges, Freiberger Forschungshefte C; 457. Dt. Verl. für Grundstoffindustrie, Leipzig
- Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. Spec Paper Geol Soc Am 423:153–172
- Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26
- Ladegaard-Pedersen P, Achilleos M, Dörflinger G, Frei R, Kristiansen K, Frei KM (2020) A strontium isotope baseline of cyprus assessing the use of soil leachate, plants, groundwater and surface water as proxies for the local range of bioavailable strontium isotope composition. Sci Total Environ 708:134714
- Lippstreu L, Hermsdorf N, Sonntag A, Brandenburg Landesamt für Geowissenschaften und Rohstoffe (1997) Geologische Übersichtskarte Des Landes Brandenburg. Landesvermessungsamt Brandenburg.
- Lützner H, Andreas D, Schneider JW, Voigt S, Werneburg W (2012) Stefan und Rotliegend im Thüringer Wald und seiner Umgebung. In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Heft vol 61, pp 418–487.

- Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2018) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Geochem J Geophys Res Atmos 111:D10202
- Malkowsky M (1987) The mesozoic and tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137:31–42
- Martiklos G (2002) Geologische Übersichtskarte Von Sachsen-Anhalt, Landesamt für Geologie und Bergwesen Halle/Saale
- Maurer A-F, Galer SJG, Knipper C, Beierlein L, Nunn EBV, Peters D, Tütken T, Alt KW, Schöne BR (2012) Bioavailable ⁸⁷Sr⁸⁶Sr in different environmental samples—effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci Total Environ 433:216–229
- Meurers B, Steinhauser P (1990) Die Bouguer-Anomalie am Ostrand der Böhmischen Masse. Österr Beitr Met Geoph H3:13–23
- Mingram B (1998) The Erzgebirge, Germany, a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units. Geol Mag 135(6):785–801
- Mooney WD, Laske G, Masters TG (2008) CRUST 5.1: A global crustal model at 5° × 5°. J Geophys Res Solid Earth 103:727–747
- Mrázová Š, Tomanová Petrová P, Krentz O (2020) Geologie des Sächsisch-Böhmischen Kreidebeckens zwischen Erzgebirge und Jeschken: ResiBil—Wasserressourcenbilanzierung und -resilienzbewertung im Ostteil des sächsisch-tschechischen Grenzraumes, Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden
- Nigro A, Sappa G, Barbieri M (2017) Strontium isotope as tracer of groundwater contamination. Proc Earth Planet Sci 17:352–355
- Palmer MR, Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta 56(5):2099–2111
- Peterson EE, Ver Hoef JM (2014) STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. J Stat Softw 56(2):1–17
- Podio NS, Baroni V, Badini RG, Inga M, Ostera A, Cagnoni M, Gautier EA, García PP, Hoogewerff J, Wunderlin DA (2013) Elemental and isotopic fingerprint of argentinean wheat. Matching soil, water, and crop composition to differentiate provenance. J Agric Food Chemistry 61(16):3763–3773
- Potter P, Ramankutty N, Bennett EM, Donner SDA (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact 14:1–22
- Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44(1):117–135
- Rajchl M, Uličný D, Mach K (2008) Interplay between tectonics and compaction in a rift-margin, lacustrine delta-system: Miocene of the Eger Graben, Czech Republic. Sedimentology 55:1419–1447
- Rohde S (2014) Zusammenstellung geogener Hintergrundwerte in sächsischen Gewässern. Landwirtschaft und Geologie (LfULG), pp 30–39
- Scaffidi BK, Tung TA, Gordon G, Alaica AK, González La Rosa LM, Marsteller SJ, Dahlstedt A, Schach E, Knudon KJ (2020) Drinking locally: a water ⁸⁷Sr/⁸⁶Sr isoscape for geolocation of archeological samples in the Peruvian Andes. Front Ecol Evol 8:281
- Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens. In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe der Deutschen Gesellschaft f
 ür Geowissenschaften, Heft vol 61, pp 530–588
- Spiess H, and Geologisches Landesamt Sachsen-Anhalt (1998) Geologische Karte Harz. 1. Aufl. Geologisches Landesamt Sachsen-Anhalt, Halle
- Thomsen E, Andreasen R (2019) Agricultural lime disturbs natural strontium isotope variations: implications for provenance and migration studies. Sci Adv 5(3):eaav8083
- Tichomirowa M, Heidel C, Junghans M, Haubrich F, Matschullat J (2010) Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997–2008) in the region of Freiberg, central-eastern Germany. Chem Geol 276:104–118
- Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123(1):133–144
- Ver Hoef JM, Peterson EE, Clifford C, Shah R (2014) SSN: an R package for spatial statistical modelling on stream networks. J Stat Softw 56(3):1–45
- Vet R, Artz RS, Carou S, Shaw M, Ro CU, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C, Hou A, Pienaar JJ, Gillett R, Forti MC, Gromov S, Hara H, Khodzher T, Mahowald NM, Nickovic S, Rao PSP, Reid NW (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100

- Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van Bocxstaele M, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118(4):933–940
- Voigt T (2004) Late Cretaceous unconformities in the Subhercynian Basin (Germany). Acta Geol Pol 54(4):673–694
- West JB, Bowen GJ, Dawson TE, Tu KP (2010) Isoscapes—understanding movement, pattern, and process on Earth through isotope mapping. Springer, Dordrecht, p 487
- Zech J, Jeffries T, Faust D, Ullrich B, Linnemann U (2010) U-Pb-dating and geochemical characterization of the Brocken and the Ramberg Pluton, Harz Mountains, Germany. Geologica Saxonica 56(1):9–24

Ziegler PA (1990) Geological atlas of western and Central Europe. Blackwell, Oxford

- Zieliński M, Dopieralska J, Belka Z, Walczak A, Siepak M, Jakubowicz M (2018) Strontium isotope identification of water mixing and recharge sources in a river system (Oder River, central Europe): a quantitative approach. Hydrol Process 32(16):1–15
- Zieliński M, Dopieralska J, Królikowska-Ciagło S, Walczal A, Belka Z (2021) Mapping of spatial variations in Sr isotope signatures (⁸⁷Sr/⁸⁶Sr) in Poland—implications of anthropogenic Sr contamination for archaeological provenance and migration research. Sci Total Environ 775:145792

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.