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Abstract

Studies done on small tropical west-flowing river catchments located in the Western Ghats
in southwestern India have suggested very intense chemical weathering rates and associated
CO, consumption. Very less studies are reported from these catchments notwithstanding
their importance as potential sinks of atmospheric CO, at the global scale. A total of 156
samples were collected from a small river catchment in the southwestern India, the Payas-
wini—Chandragiri river Basin, during pre-monsoon, monsoon and post-monsoon seasons in
2016 and 2017, respectively. This river system comprises two small rivers originating at an
elevation of 1350 m in the Western Ghats in peninsular India. The catchment area is domi-
nated by biotite sillimanite gneiss. Sodium is the dominant cation, contributing ~50% of
the total cations, whereas HCO;™ contributes ~75% of total anions. The average anion con-
centration in the samples varied in the range HCO;™>Cl~>S0,?~>NO;™ >F~, whereas
major cation concentration varied in the range Na* > Ca?* >Mg?* >K™*. The average sili-
cate weathering rate (SWR) was 42 t km~2 y~! in the year 2016 and 36 t km~2 y~! in 2017.
The average annual carbon dioxide consumption rate (CCR) due to silicate rock weathering
was 9.6x10° mol km™2y~! and 8.3x10° mol km™ y~! for 2016 and 2017, respectively.
The CCR in the study area is higher than other large tropical river catchments like Ama-
zon, Congo-Zaire, Orinoco, Parana and Indus because of its unique topography, hot and
humid climate and intense rainfall.
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1 Introduction

The chemical composition of rivers is derived from diverse sources like weathering of catch-
ment rocks and soils, atmospheric deposition and anthropogenic discharges. In unpolluted
river waters, lithological characteristics (source rock abundance) dominantly affect the con-
centration of major ions and trace elements (Gaillardet et al. 1999). In a hot and humid tropi-
cal setup, chemical weathering predominates over physical weathering, which has a bearing
on the long-term global climate change.

Chemical weathering of a terrain plays a key role in the atmospheric CO, consumption.
The chemical weathering of a silicate rock converts the atmospheric CO, into dissolved inor-
ganic carbon and deposits in the form of carbonic sediments in the ocean (Berner 1991) as
noted in

CaSiO; + 2CO, + H,0 — Ca + 2HCO; + SiO,

1
Ca® + 2HCO, — CaCO; | +H,0 + CO, 1 W

There are several factors affecting the rate of chemical weathering, such as the geology of
the terrain (rock type), topography (relief), soil cover, discharge, temperature and precipitation
(Gaillardet et al. 1999; Huh 2003; Millot et al. 2002, 2003; Oliva et al. 2003; Guo and Wang
2005; Andersson et al. 2006; Moon et al. 2007). Studies were carried out across the world to
estimate the chemical weathering rate and CCR of the major world rivers in the past decades,
notably Amazon (Stallard and Edmond 1983), Ganges—Brahmaputra (Sarin et al. 1989), Yel-
low (Zhang et al. 1995), Nile (Dekov et al. 1997), Indus (Ahmad et al. 1998), Mississippi
(Sharif et al. 2008), Mekong (Huang et al. 2009), Tigris (Varol et al. 2013), Yangtze (Huang
et al. 2009; Jiang et al. 2015), Netravathi (Gurumurthy et al. 2012), Kavery (Pattanaik et al.
2013) and Brahmaputra (Das et al. 2016).

Tropical rivers are the largest carriers of dissolved and sediment load to the world’s oceans
and significantly influence the biogeochemical cycles of elements. Limited studies are done on
the tropical systems worldwide, because of their location in the developing and underdevel-
oped countries. Meybeck (1987) emphasized the importance of tropical ecosystems and the
paucity of data on these systems, though they are responsible for contributing 50% of water,
38% of dissolved ions and 68% of dissolved silica into the global oceans. The objectives of the
present study are to partially fill the paucity in data from the tropical systems. Samples were
collected from the tropical Payaswini—Chandragiri river basin, southwest coast of India dur-
ing pre-monsoon, monsoon and post-monsoon in 2016 and 2017. Currently, no studies have
been reported on the major ion chemistry of this river system. This river system is the biggest
in northern Kerala state among the 13 river systems draining silicate-rich rock terrains. This
study investigated the presence, distribution and source of major ions in the southwest-flowing
river and estimated the SWR and associated CCR using the forward model (Wu et al. 2008).
These data will add to the database of global silicate weathering rates of world rivers and fill-
ing the gaps existing on the silicate weathering and CCR in Indian tropical rivers.
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2 Materials and methods
2.1 Study area

The Chandragiri-Payaswini river system (area 1406 km” and length 105 km) is located
along the southwest coast of peninsular India originating in the Western Ghats. Geographi-
cally the study area lies between 74° 48’ E and 75° 45" E and 12° 18’ N and 12° 32" N
longitudes and latitudes, respectively. These rivers originate at an altitude of about 1350 m
above mean sea level (MSL) and join the Arabian sea near Kasaragod town (Fig. 1).

Geologically, the basement of the study area belongs to the Archean metamorphics
(Fig. 1). The main rock types are granite biotite sillimanite gneiss, charnockite, schist and
dolerite. Charnockites, hornblende-biotite gneiss and high-grade schistose rocks are exten-
sively lateritized in the lower reaches and dominate the drainage basin of Chandragiri river.
There are no reports of the presence of carbonates/evaporates. The study area experiences
typical tropical climate with hot (20°-38 °C) and humid conditions (4,000 mm annual rain-
fall), high surface runoff (2715 mm for entire west-flowing river catchment) with an annual
water discharge of 4.40 km®/ year (Reddy et al. 2019) (Fig. S1).

Anthropogenic activities are minimal in the area, though two plywood industries located
near Sullia town, on the banks of Payaswini River, and hospital discharge outlet near Aleti
are discharging their effluents into the river (Fig. 1). Kasaragod municipal wastewater is
discharged directly into the river estuary.

2.2 Sampling and analysis

Twenty-six river water samples were collected in each season, from the mainstream and
tributaries (Fig. 1) during pre-monsoon (April), monsoon (August) and post-monsoon
(December) seasons for a period of 2 years (2016, 2017). A total of 156 samples were col-
lected in six seasons. Water samples were collected from road bridges such that samples
are received from the center of the river and in the well-mixed condition. A polypropylene
(PP) bucket tied with Nylon rope was dropped to the river for the sample collection. pH,
temperature, electric conductivity (EC) and dissolved oxygen (DO) were measured on-site
using HACH-make portable multiparameter, calibrated with the standard solution.
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Fig. 1 Geological map of Payaswini—Chandragiri river basin with sampling locations ( source of the data;
1:20 K geological map of India)
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The samples were stored in pre-cleaned PP-grade bottles (1000 ml). Water samples
were filtered through 0.22-um pore size, 47-mm-diameter Nuclepore polycarbonate filters
using a Sartorius-make membrane filtration apparatus in a laminar flow bench and stored
at 4 °C for further analysis. The filtered water samples were analyzed for major ions using
DIONEX-1100 ion chromatography with autosampler having separate cation—anion sup-
pressor and column system. Accuracy of the results was checked with a known concen-
tration of the standard solutions, which were within+_5%. Precision of the results was
checked with duplicate samples, which were within+3% (Table S1). Alkalinity of the
samples was measured using the standardized HCI titration method using an autotitrator
(METROHM TIAMO). Since the pH of all the samples is less than 8.3, the carbonate alka-
linity was nonexistent. The end point of bicarbonate alkalinity ranged from 4.8 to 5.5 (Fig.
S2), with + 2% accuracy and precision. Dissolved silica (Si0,) in the river water samples
was measured through the UV—Vis spectrometer, HACH DR 5000 by silicon molybdate
method at 452 nm wavelengths with a precision of + 2%. Normalized inorganic charge bal-
ance (NICB) was calculated between total dissolved cations (TZ*) and total dissolved ani-
ons (TZ7), and the charge balance was within+ 15% (Fig. 2). Above 10% of NICB values
of the samples could be due to the presence of organic anions and cations.

3 Result and discussion
3.1 Hydrogeochemistry

The physiochemical composition of the Payaswini—Chandragiri river water is tabulated in
Table 1. The pH of the river was slightly alkaline in nature and showed a small variation
seasonally (6.1-8.3) and spatially. In monsoon season, the average pH was lower than the
rest of the seasons, because of the mixing of rain water, which has typical pH of 5.5.

The electric conductivity of the river samples varied from 31 to 176 uS/cm in pre-mon-
soon, 49-93 uS/cm in monsoon and 31-83 pS/cm in post-monsoons. Total dissolved solid
of the samples was calculated from the concentration of obtained major ions and silica.
The concentration of TDS in the pre-monsoon varied from 29 to 112 mg/l, 36-80 mg/l
in monsoon and 29-84 mg/l in post-monsoon, respectively. The average TDS of Payas-
wini—Chandragiri river (60 mg/l) is less than the world’s major rivers (Gaillardet et al.
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1999) and adjacent river Nethravati (Gurumurthy et al. 2012) but higher than Amazon river
(44 mg/1) (Stallard and Edmond, 1983). The TDS (and EC) increases toward the outlet spa-
tially, because of the increasing sea-salt influence.

The mean concentration of major ions in the study area was plotted in bar dia-
gram (Fig. 3). The abundance of the major cations in the samples varied in the order of
Na® >Ca** >Mg®" >Ktin all the seasons. Na* is the major cation dominating in the
study area. The concentration of Nat was ranging from 1.2 to 13 mg/l during the study
period. The main source of the sodium ion is Na- plagioclase (albite) weathering. The con-
centration of K* temporally varied from 0.02 to 3.1 mg/l throughout the study area. The
major source is from the K* feldspar of basement rock. Ca’" was the second dominant
ion in the study area. The Ca®" concentration was ranging from 1 to 10 mg/l in the study
area. The source of calcium is from the basement rock biotite—sillimanite gneiss. Major
cation Mg?* was showing temporal variation from 0.2 to 6.3 mg/l in their concentration.
The main source of magnesium is from the weathering of ferromagnetic minerals.

The average anion concentration in the samples varied in the range
HCO,™>CI~>S0,* >NO,™>F". Bicarbonate concentration ranged from 13 to 77 mg/l
in the river system. Average value of HCO;™ of the river Payaswini—-Chandragiri is higher
than the global average (Gaillardet et al. 1999), Yamuna (Dalai et al. 2002), Kaveri (Pat-
tanaik et al. 2013), Brahmaputra (Galy and France-Lanord, 1999) and river Congo (Dupre
et al. 1996). The major source of HCO;™ ion is from the weathering of silicate rocks in
the catchment. Rainwater reacts with atmospheric CO, and soil CO, and leaches the sili-
cate rocks, leading to the release of HCO;™. The major contribution of chloride is from
the atmospheric deposition. The concentration was showing high temporal variation, with
maximum concentration of 11 mg/l recorded during the pre-monsoon season. The concen-
tration was ranging from 0.2 to 11 mg/l in the study area. The higher concentration of chlo-
ride in the pre-monsoon season could be because of the low discharge in this season couple
with pre-concentration due to evapotranspiration.

The silica concentration in the study area ranged from 2 to 28 mg/l in pre-monsoon;
1-20 mg/1 in monsoon; and 1-16 mg/l during the post-monsoon, respectively. The source
of Si0O, in the study area is from the weathering of catchment silicate rocks (Fig. 1).

Minimal concentration of major ions was observed during the monsoon season in
the study area, which suggested a high level of dilution due to mixing of rainwater. The
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Fig.3 Bar diagram of major ions concentration (pmol/l) of the Payaswini—-Chandragiri river in different
seasons

@ Springer



Aquatic Geochemistry (2021) 27:173-206 197

pre-monsoon sample showed a high level of concentration in all major ions compared to
the other two seasons. The yearly mean TDS of this river system (55 mg/l) is less than half
the concentration of the world average rivers (120 mg/1- Gaillardet et al. 1999). During the
post-monsoon, major contribution to the river water is from the groundwater discharge.
The leaching of terrain rock into the river water through groundwater was the reason for
the high ionic concentration in the post-monsoon season in the study area (Thomas et al.
2015). The spatial variable can be noticed in water geochemistry in all the seasons, which
is mainly due to the influence of runoff from the different regions.

3.2 Major ion chemistry in Payaswini-Chandragiri river basin

The percentage concentration of major ions is plotted in ternary plot (Fig. 4) to evaluate the
dominance of ions and percentage concentration of major ions in Payaswini—Chandragiri
river water.

On the cation plot (Fig. 4a), most of the samples lie in between the Na+K and Ca**
region. The dominance of Na* and Ca’* in Payaswini—Chandragiri river water indicates
silicate dominant lithology. Forty percentage of the total cations was contributed by Na*,
whereas Ca>*, Mg?* and K* contributed 35%, 19% and 6%, respectively.

In the anion plot (Fig. 4b), the samples plot in between the HCO;™ and Cl™ region.
HCO;™, CI" and SO42_ contributed 85%, 12% and 3%, respectively. Percentage of anion
concentration indicated that the carbonic acid weathering was contributing to high concen-
tration of ions into the river basin, whereas sulfuric acid weathering was negligible.

3.3 Source of major ions in the Payaswini-Chandragiri river basin

The dissolved major ion concentration in Payaswini—Chandragiri river water was mainly
derived from weathering of basin rocks, atmospheric deposition, anthropogenic activities
and biomass deposit (2).

Xriver = Xweathering + Xatmospheric precipitation + Xanthropogenic deposition + Xbiomass contribution
2
Mg® S04%
a 0 ® PRE2016 0 b
® MON 2016
® PRE2016 90 O POST2016
©® MON 2016 ® PRE 2017
O POST2016 8 @ MON 2017 80
® PRE2017 @ POST2017
@ MON 2017 70
@ POST2017

100
0

2¢ -

Ca"op 40 20 30 4 5 60 70 8 9% 10Na+K CI 0 10 20 30 4 5 6 70 8 9 100 .

Fig.4 Ternary plot of a major cations and b major anions in the river water
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where Xweathering = Xcarbonate weathering + Xsilicate weathering.
According to Krishnaswami and Singh (2005), at steady state, plant uptake and its decay

may not change the ionic budget of the river water, thus indicating negligible contribution
from the biomass.

3.3.1 Atmospheric deposition to the river basin

The scatter plot of Na/Cl vs Cl (Fig. 5) explains the major ion contribution by rainwater to
the river water. The cyclic salt input correction (Stallard and Edmond 1981, 1983) deducts
atmospheric deposition of C1™ ions from the river water. This is given in Eq:3.

Seasalt corrected ion = (Xjjyer—Cliiver) * (X/CDppin 3)

where X, =major ion concentration measured in the river water.

The atmospheric contribution from the rain water is corrected using weighted mean
value of published rain water data (C1-=47; Na* =45; Ca**=20; K* =5; Mg?>* =7 and
SO,* =9 pmol/l) of Western Ghats (Gurumurthy et al. 2012). In the Payaswini—Chandra-
giri river system, approximately 50% of Na* was contributed from the atmosphere to the
downstream region (S1) because of its proximity to the Arabian sea. The river water Na/Cl
molar ratio was higher than 1, which indicated that Na* was sourced from the catchment
bedrock (Hem 1985; Meybeck 1987).

3.3.2 Major ions from the anthropogenic deposition

Anthropogenic sources like domestic and industrial sewage and agricultural effluents can
modify the ion concentrations of river water (Sun et al. 2010; Han et al. 2010; Liu et al.
2018). CI~, SO,>~ and NO;~ are the major ions associated with the anthropogenic activ-
ity, and they are used as proxies to identify anthropogenic activities in various watersheds
(Shin et al. 2011).

The influence of anthropogenic activities on the river in the environment was calculated
based on the percentage of pollution as stated by Pacheco and Van der Weijden (1996).

Fig.5 Scatter plot Na/Cl versus 11
Cl in Payaswini-Chandragiri 104y ® PRE2016
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The percentage of pollution was calculated in every sample and plotted against the Na/Cl
ratio (Fig. 6). The areas having ratio > 40% were dominated by pollution from anthropo-
genic activities, while those with < 40% were dominated by the rock weathering process.
The figure shows all the samples lie within the limits, indicating that the river basin is not
affected by anthropogenic activities. So the contribution of major ions, especially chloride,
to the Payaswini—Chandragiri river water from the anthropogenic inputs is negligible.

3.3.3 Major ions from the rock weathering

Major ion chemistry of Payaswini—Chandragiri river system is dependent on various
natural processes. The ionic ratio of (Ca2++Mg2+)/HCO3_ in the river water varied
from 0.20 to 0.25 suggesting the significance of chemical weathering of silicate rock in
the Payaswini—Chandragiri river hydrochemistry. The ionic ratio of HCO3‘/Ca2+ was
higher than 7 in all the seasons, also indicating the dominance of silicate weathering
in the study area (Holland 1978). The ratios of Ca** and Mg?* versus Na* were used to
calculate the relative concentration from the bedrock (Thomas et al. 2014). The ratios
of these indicated that the Ca>" and Mg?* were dominated by silicate rock weathering.

The mixing plot of the atmospheric input corrected Na/Ca versus Mg/Na (Fig. 7)
molar ratios suggested that the Payaswini—Chandragiri river water was influenced by the
water—silicate rock interaction. The low mean ionic ratios of (Ca** +Mg2+)/(NaJr +K*)
and HCO;7/(Na™ +K) also confirmed that the basin was dominated by the silicate rock
weathering. The degree of rock—water interaction varied seasonally depending upon the
climatic condition (temperature, humidity and rainfall), leading to temporal variation in
the concentration of silicate-derived ions. Samples collected in all seasons were plotting
in the silicate weathering region.
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Fig.7 Mixing diagram of 10 5
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3.4 Silicate weathering rate and carbon dioxide consumption rate
3.4.1 Silicate weathering rate

Silicate weathering rates of the study area for pre-monsoon, monsoon and post-monsoon in
2016 and 2017 were calculated by using the forward model (Wu et al. 2008), the product of
discharge per unit area and concentrations of major elements (Eq. 5).

SWR = Q(Z(Na + K + Mg + Ca), + 5102) (5)

where (Na+K+ Mg+ Ca)g, =dissolved cations derived from silicate weathering, Q = water
discharge per unit area.

During chemical weathering, it is assumed that Na™ and K* are derived from the feld-
spar minerals and Ca?* and Mg?* from the pyroxene minerals. After the atmospheric and
anthropogenic corrections, remaining cations are from the chemical weathering of major
rocks in the river basin. So, silicate-derived Ca** and Mg2+ were calculated from the
gneissic and charnockite rock, based on the following equations.

Ca fromssilicate rock = Na * /(Ca/Na)pegrock (6)

Mg from silicate rock = Na # /(Mg/Na)pedrock )

where Na* is corrected Na mean concentration from atmospheric inputs. In this study,
the basement rock was completely of gneissic and charnockite origin, and thus, the value
of Ca/Na was 0.41 and Mg/Na was 0.325, respectively. These ratios for the bedrock were
obtained through a compilation of previous literature mentioned in Gurumurthy et al.
(2012).

The silicate weathering rate of the Payaswini—-Chandragiri river system was calculated
based on the major ion composition at Adoor and Kottody. Estimated seasonal and annual val-
ues are given in Table 2. The average annual silicate weathering rate of Payaswini—Chandra-
giri river basin was 42 t km~2 y~! and 36 t km~2 y~! in 2016 and 2017, respectively. The river
system shows higher SWR in monsoon season (37 t km™2 in 2016 and 26 t km~2 in 2017)
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study area in various seasons SWR (t km™2) Pre-monsoon 0.63 0.39
Monsoon 37.30 25.97

Post-monsoon 8.24 9.92

Annual 42.17 36.28

CCR (x 10° mol km™2) Pre-monsoon 0.13 0.10

Monsoon 7.97 5.83

Post-monsoon 1.45 2.34

Annual 9.55 8.28

with 82% of total discharge. The estimated annual SWR (39 t km=2 y~!) of this study was 0.9
times lower than the adjacent southwest-flowing river Netravathi (42 t km=> y~'; Gurumurthy
et al. 2012), mainly due to the runoff and variations in the drainage area. Comparing this study
with the other Indian rivers, the silicate weathering flux of the Payaswini—Chandragiri river
was higher than the other Indian rivers. The silicate weathering rates of the Himalayan river
systems such as Ganga [10.2-15.2 t km~2 y~!, (Krishnaswami et al. 1999; Gaillardet et al.
1999; Dalai et al. 2002)], Indus [3.8 t km~2 y~!, (Gaillardet et al. 1999)]; Bramhmputra [6.47
t km=2 y~!, (Das et al. 2016)], Narmada [12.67 t km™2 y~'; (Gupta et al. 2011)], Tapti (7.32
t km™2 y7!), Kavery [9.44 t km™2 y~!, (Pattanaik et al. 2013)] are all lower than the Payas-
wini—Chandragiri river system (Table 3). And the annual SWR of the study area was higher
than the river Mahanadi [32 t km™> y‘l, (Bastia and Equeenuddin 2019)] and Swarnamukhi
river [30.57 t km™2 y‘l (Patel et al. 2020)]. Also, SWR of the study area was higher than the
global watersheds like Amazon (13 t km=2 y~!), Mackenzie (1.8 t km™2 y™!), Parana (5 t km~2
y_l), Congo-Zaire (4.2 t km™2 y_l), Orinoco (9.5 t km™ y_l), Mekong (14.3 t km™> y_l) and
Rio Icacos (40 t km™ y_l) (Gaillardet et al. 1999).

The southwest-flowing rivers show less SWR as compared to the rivers draining basaltic
rock rivers, though are higher than the other Himalayan rivers. The resultant weathering vari-
ability could be due to variable lithologies in the Indian river basin and the climatic difference
in the tropical region. Higher runoff, temperature and basin formation are the main control-
ling factors of high SWR in the southwest-flowing rivers. The southwest-flowing rivers show
higher SWR comparing to the east-flowing rivers in monsoon season, Krishna Basin and the
Western Ghats of the Deccan Traps [53 t km™2y™! (Pattanaik et al. 2013; Gurumurthy et al.
2012)], due to intense rainfall and resulting higher runoft (Pattanaik et al. 2013).

The large silicate weathering rate was mostly resulting from the high physical erosion rate
(thus exposing the rock surface) in the basin due to high-intensity rainfall (4000 mm/y) (Vinu-
tha 2014). Runoff, granitic terrain, morphology of the study area were the prime factors con-
trolling the silicate weathering rate. Tropical climate speeds up the weathering of silicate min-
erals and CO, sequestration in the Western Ghats, while high runoff contributes to excessive
bicarbonates into the Arabian Sea (Reddy et al. 2019).

3.4.2 Carbon dioxide consumption rate (CCR) during silicate rock weathering
The intense silicate weathering leads to the drawdown of atmospheric CO,. The actual rate

of carbon dioxide consumption during silicate rock weathering is calculated using the fol-
lowing equation:
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Fig.8 Comparison of annual silicate weathering rate (SWR) and associated CCR in the Payaswini—-Chan-
dragiri river in the year 2017 with major Indian rivers and selected world rivers (Gaillardet et al. 1999;
Dalai et al. 2002; Krishnaswami and Singh (1998;Das et al. 2005; Jha et al. 2009; Gupta et al. 2011; Guru-
murthy et al. 2012; Pattanaik et al. 2013)

CCR = Q/A- ) (Na*+K¥ + Mg + Ca™) ®)

where Q is the discharge in m3/s, A is the surface area of the watershed in km? and
(Na®™+ K" +Mg** +Ca’"), is the silicate-derived cations.

The average annual CCR due to silicate rock weathering of Payaswini—Chandragiri river
catchment was found to be 9.6x 10°> mol km=2 y~! and 8.3x 10° mol km~2 y~! for 2016
and 2017, respectively. The Netravathi showed lower CCR (2.9 x 10° mol km~2 y~!, Guru-
murthy et al. 2012) than this study.

The CCR of Payaswini—Chandragiri river catchment was higher than other tropical
river systems (Fig. 8), Godavari (5.8 10° mol km™2 y~') (Jha et al. 2009) and Yamuna
(5.5%10° mol km™ y~!) (Krishnaswami and Singh 2005), Bhagirathi-Alaknanda
(4x10° mol km™2 y~') (Krishnaswami and Singh 1998), Narmada and Tapti Riv-
ers (12.6x10° mol km™2 y=", Krishna Basin and Western Ghats of the Deccan Traps
(7.4%10° mol km™2 y_l) (Dessert et al. 2003) and Brahmaputra (5.2 % 10° mol km™2 y_l)
(Das et al. 2016), Mahanadi ( 4.78 x 10° mol km ™2 y~V (Bastia and Equeenuddin 2019) and
Kaveri basin (3.83 x 10° mol km™> y_l) (Pattanaik et al. 2013).

The calculated CCR during silicate weathering in the study area was, however,
higher than the world river watersheds (Table 3) such as Amazon (0.5 X 10° mol km™
y~ 1), Congo-Zaire (0.5x10° mol km~2 y~!), Orinoco (0.6x 10> mol km~2 y~!), Parana
(0.9x10° mol km™2 y~") (Gaillardet et al. 1999) and Indus basin (0.6 x 10° mol km=2 y~!)
(Fig. 8). Intense monsoonal rainfall and the dominant silicate minerals in the catchment
area could be the reasons for the higher consumption of CO, during the silicate weath-
ering of Payaswini—-Chandragiri river in the monsoonal season (8x10° mol km™ and
6x10° mol km~2 in 2016 and 2017) compared to other seasons (Table 2).

4 Conclusions

This study analyzed the geochemical characteristics and tabulated the atmospheric CO,
drawdown rate during silicate weathering of a tropical river catchment, Payaswini—Chan-
dragiri river basin, southwestern coast of India. The analyzed results indicate that the
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hydrochemical characteristics of river water gradually change with seasons compared to
spatial variations due to runoff, climate and temperature. The dominance of major ions in
the Payaswini—Chandragiri river system follows the order of HCO;~ > Cl~>S0,*">NO,~
for anions, whereas major cation concentration followed the order Na* > Ca** > Mg?* > K*
in all the seasons. The Na* normalized Ca®" versus Mg?" and HCO,™ plots suggested the
contribution of major ions through silicate minerals.

The estimated silicate weathering rate in Payaswini—Chandragiri river catchment was
42 tkm™? y~!in the year 2016 and 36 t km™2 y~! in 2017. This value was 0.9 times that of
the adjacent west-flowing river Nethravati (Gurumurthy et al. 2012). The average annual
CCR due to silicate rock weathering of Payaswini-Chandragiri river catchment was
9.6x 10° mol km=2 y~! and 8.3 x 10°> mol km~2 y~! for 2016 and 2017, respectively.
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