Skip to main content

Advertisement

Log in

Isotopic and Chemical Constraints on the Biogeochemistry of Dissolved Inorganic Carbon and Chemical Weathering in the Karst Watershed of Krka River (Slovenia)

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The hydrogeochemical and carbon isotope characteristics of the Krka River, Slovenia, were investigated to estimate the carbon transfer from the land ecosystem in the watershed. During the 3-year sampling period (2008–2010), temperature, pH, electrical conductivity, major ion content, dissolved inorganic carbon (DIC) and dissolved organic carbon content, and the isotopic composition of DIC (δ13CDIC) were monitored in the main stream of the Krka River and its tributaries. The major solute composition of analysed waters is dominated by an input of HCO3 , Ca2+ and Mg2+ originating from carbonate dissolution. The Mg2+/Ca2+ and Mg2+/HCO3 molar ratio values ranging from 0.24 to 0.71 and 0.05 to 0.30, respectively, indicate a high degree of dolomite dissolution relative to calcite. Dissolved CO2 concentrations in the river were up to tenfold supersaturated relative to the atmosphere, resulting in supersaturation with respect to calcite and degassing of CO2 downstream. The δ13C values in river water range from −15.6 to −9.4 ‰ and are controlled by the input of tributaries, exchange with atmospheric CO2, degradation of organic matter, and dissolution of carbonates. The mass balance calculations for riverine DIC suggest that the contribution from carbonate dissolution and degradation of organic matter have major influence, whereas the exchange with atmospheric CO2 has minor influence on the inorganic carbon pool in the Krka River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiotte Suchet P, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cy 17:1038–1051. doi:10.1029/2002GB001891

    Article  Google Scholar 

  • Atekwana EA, Krishnamurthy RV (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique. J Hydr 205:265–278. doi:10.1016/S0022-1694(98)00080-8

    Article  Google Scholar 

  • Atkins PW (1994) Physical chemistry. Oxford University press, Oxford

    Google Scholar 

  • Aucour AM, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159:87–105. doi:10.1016/S0009-2541(99)00035-2

    Article  Google Scholar 

  • Barth JAC (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chem Geol 200:203–216. doi:10.1016/S0009-2541(03)00193-1

    Article  Google Scholar 

  • Barth JAC, Veizer J (1999) Carbon cycle in St. Lawrence aquatic ecosystems at Cornwall (Ontario), Canada: seasonal and spatial variations. Chem Geol 159:107–128. doi:10.1016/S0009-2541(99)00036-4

    Article  Google Scholar 

  • Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Brook GA, Folkoff ME, Box EO (1983) A world model of soil carbon dioxide. Earth Surf Process Land 8:79–88. doi:10.1002/esp.3290080108

    Article  Google Scholar 

  • Brunet F, Gaiero D, Probst JL et al (2005) δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol Process 19:3321–3344. doi:10.1002/hyp.5973

    Article  Google Scholar 

  • Brunet F, Dubois K, Veizer J et al (2009) Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chem Geol 265:563–572. doi:10.1016/j.chemgeo.2009.05.020

    Article  Google Scholar 

  • Buser S (1974) Tolmač lista Ribnica, Osnovna geološka karta SFRJ 1: 100 000 (in Slovene)

  • Buser S, Cajhen J (1965) Osnovna geološka karta SFRJ 1: 100 000, list Ribnica

  • Čater M, Ogrinc N (2011) Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure. Isotopes Environ Health Stud 47:221–237. doi:10.1080/10256016.2011.578214

    Article  Google Scholar 

  • Cerling T (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400. doi:10.2475/ajs.291.4.377

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Dever L, Durand R, Fontes JC, Vachier P (1983) Etude pedogenetique et isotopique des neoformations de calcite dans un sol sur craie: Caracteristiques et origines. Geochim Cosmochim Acta 47:2079–2090. doi:10.1016/0016-7037(83)90033-9

    Article  Google Scholar 

  • Doctor D, Kendall C, Sebestyen S et al (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Process 2423:2410–2423. doi:10.1002/hyp.6833

    Article  Google Scholar 

  • Ferguson PR, Dubois KD, Veizer J (2011) Fluvial carbon fluxes under extreme rainfall conditions: inferences from the Fly River, Papua New Guinea. Chem Geol 281:283–292. doi:10.1016/j.chemgeo.2010.12.015

    Article  Google Scholar 

  • Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, New York, pp 283–333

    Chapter  Google Scholar 

  • Frantar P (2008) Vodna bilanca Slovenije 1971–2000. Water balance of Slovenia 1971–2000. Ministry for Environment and Spatial Planning—Environmental Agency of the Republic of Slovenia, Ljubljana

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 3–30. doi:10.1016/S0009-2541(99)00031-5

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges—Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31–60. doi:10.1016/S0009-2541(99)00033-9

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090. doi:10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Gieskes JM (1974) The alkalinity-total carbon dioxide system in seawater. In: Goldberg ED (ed) Marine chemistry of the sea, vol 5. Wiley, New York, pp 123–151

    Google Scholar 

  • Hartmann J, Jansen N, Kempe S, Dürr HH (2007) Geochemistry of the River Rhine and the Upper Danube: recent trends and lithological influence on baselines. JESSS 1:39–46

    Article  Google Scholar 

  • Hercod DJ, Brady PV, Gregory RT (1998) Catchment-scale coupling between pyrite oxidation and calcite weathering. Chem Geol 151:259–276. doi:10.1016/S0009-2541(98)00084-9

    Article  Google Scholar 

  • Holley EH (1977) Oxygen transfer at the air–water interface. In: Gibbs R (ed) Transport processes in lakes and oceans. Proceedings of the symposium on transport processes in the ocean held at the 82nd Nat. Meet of the AICE, N.J., August 29–September 1, 1976. Plenum Press, Atlantic City, pp 117–150

  • Jímenez-López C, Caballero E, Huertas FJ, Romanek CS (2001) Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25 °C. Geochim Cosmochim Acta 65:3219–3231. doi:10.1016/S0016-7037(01)00672-X

    Article  Google Scholar 

  • Kanduč T, Szramek K, Ogrinc N, Walter LM (2007) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochem 86:137–154. doi:10.1007/s10533-007-9149-4

    Article  Google Scholar 

  • Kanduč T, Kocman D, Ogrinc N (2008) Hydrogeochemical and stable isotope characteristics of the River Idrijca (Slovenia), the boundary watershed between the Adriatic and Black Seas. Aquat Geochem 14:239–262. doi:10.1007/s10498-008-9035-2

    Article  Google Scholar 

  • Kogovšek J, Petrič M (2002) Underground water flow from the Tržiščica sinking stream (SE Slovenia). Acta Carsologica 3:75–91

    Google Scholar 

  • Levin I, Kromer B, Wagenbach D, Munnich KO (1987) Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus, pp 89–95. doi:10.1111/j.1600-0889.1987.tb00273.x

  • Li S-L, Liu C-Q, Li J et al (2010) Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: isotopic and chemical constraints. Chem Geol 277:301–309. doi:10.1016/j.chemgeo.2010.08.013

    Article  Google Scholar 

  • Ludwig W, Amiotte-Suchette P, Probst J-L (1996) River discharges of carbon to the world’s oceans: determining local inputs of alkalinity and of dissolved and particulate organic carbon. In Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 323:1007–1014

  • Marlier JF, O’Leary MH (1984) Carbon kinetic isotope effects on the hydration of carbon dioxide and the dehydration of bicarbonate ion. J Am Chem Soc 8:5054–5057. doi:10.1021/ja00330a003

    Article  Google Scholar 

  • Merz-Preiß M, Riding R (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126:103–124. doi:10.1016/S0037-0738(99)00035-4

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical-weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428. doi:10.2475/ajs.287.5.401

    Article  Google Scholar 

  • Mook WG (1970) Stable carbon and oxygen isotopes of natural waters in the Netherlands. In: IAEA (ed) Isotope hydrology: proceedings of a symposium on use of isotopes in hydrology. IAEA, Vienna, pp 163–189

  • Parkhurst DL, Appelo CA (1999) User’s guide to PHREEQC (version 2)–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259. 312

  • Pawellek F, Frauenstein F, Veizer J (2002) Hydrochemistry and isotope geochemistry of the upper Danube River. Geochim Cosmochim Acta 66:3839–3853. doi:10.1016/S0016-7037(01)00880-8

    Article  Google Scholar 

  • Pleničar M, Premru U (1970) Osnovna geološka karta SFRJ 1: 100 000, list Novo mesto

  • Pleničar M, Premru U (1977) Tolmač lista Novo mesto, Osnovna geološka karta SFRJ 1: 100 000 (in Slovene)

  • Repe B (2004) Vegetation of Slovenia. In: Orožen Adamič M (ed) Slovenia: a Geographical overview. Association of the Geographical Societies of Slovenia, Ljubljana, pp 57–62

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430. doi:10.1016/0016-7037(92)90142-6

    Article  Google Scholar 

  • Roy S, Gaillardet J, Allegre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292. doi:10.1016/S0016-7037(99)00099-X

    Article  Google Scholar 

  • Schulte P, Van Geldern R, Freitag H et al (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth-Sci Rev 109:20–31. doi:10.1016/j.earscirev.2011.07.003

    Article  Google Scholar 

  • Shin WJ, Chung GS, Lee D, Lee KS (2011) Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and δ13CDIC. Hydrol Earth Sys Sci 15:2551–2560. doi:10.5194/hess-15-2551-2011

    Article  Google Scholar 

  • Sun H, Han J, Li D et al (2010) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci Total Environ 408:4749–4760. doi:10.1016/j.scitotenv.2010.06.007

    Article  Google Scholar 

  • Szramek K, Walter LM (2004) Impact of carbonate precipitation on riverine inorganic carbon mass transport from a mid-continent, forested watershed. Aquat Geochem 10:99–137. doi:10.1023/B:AQUA.0000038960.63501.5b

    Article  Google Scholar 

  • Szramek K, Walter LM, Kanduč T, Ogrinc N (2011) Dolomite versus calcite weathering in hydrogeochemically diverse watersheds established on bedded carbonates (Sava and Soča Rivers, Slovenia). Aquat Geochem 17:357–396. doi:10.1007/s10498-011-9125-4

    Article  Google Scholar 

  • Tan FC, Strain PM (1983) Sources, sinks and distribution of organic carbon in the St. Lawrence Estuary, Canada. Geochim Cosmochim Acta 47:125–132. doi:10.1016/0016-7037(83)90096-0

    Article  Google Scholar 

  • Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86. doi:10.1016/S0009-2541(99)00034-0

    Article  Google Scholar 

  • Tipper ET, Bickle MJ, Galy A et al (2006) The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochim Cosmochim Acta 70:2737–2754. doi:10.1016/j.gca.2006.03.005

    Article  Google Scholar 

  • Vogel JC, Grootes PM, Mook WG (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Z Phys 203:225–238. doi:10.1007/BF01394688

    Google Scholar 

  • Wachniew P (2006) Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland. Chem Geol 233:293–308. doi:10.1016/j.chemgeo.2006.03.012

    Article  Google Scholar 

  • Williams EL, Szramek KJ, Jin L et al (2007) The carbonate system geochemistry of shallow groundwater-surface water systems in temperate glaciated watersheds (Michigan, USA): significance of open-system dolomite weathering. Geol Soc Am Bull 119:515–528. doi:10.1130/B25967.1

    Article  Google Scholar 

  • Yao G, Gao Q, Wang Z et al (2007) Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376:255–266. doi:10.1016/j.scitotenv.2007.01.080

    Article  Google Scholar 

  • Zeng F-W, Masiello CA, Hockaday WC (2010) Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. Biogeochemistry 104:275–291. doi:10.1007/s10533-010-9501-y

    Article  Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114. doi:10.1016/0016-7037(95)91550-D

    Article  Google Scholar 

  • Zhang S, Lu XX, Sun H et al (2009) Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci Total Environ 407:2796–2807. doi:10.1016/j.scitotenv.2008.12.036

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Slovenian Research Agency, contract PR-02497 of the Young Researchers Programme, research project J1-9498 and research programme P1-0143. The authors thank Mr. Stojan Žigon and Dr. Martina B. Šturm for analytical support. Special thanks are given to Mr. Anthony Byrne for linguistic corrections and two anonymous reviewers for the critical and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša Zavadlav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavadlav, S., Kanduč, T., McIntosh, J. et al. Isotopic and Chemical Constraints on the Biogeochemistry of Dissolved Inorganic Carbon and Chemical Weathering in the Karst Watershed of Krka River (Slovenia). Aquat Geochem 19, 209–230 (2013). https://doi.org/10.1007/s10498-013-9188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-013-9188-5

Keywords

Navigation