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Abstract A 1-D biogeochemical reactive transport model with a full set of equilibrium

and kinetic biogeochemical reactions was developed to simulate the fate and transport of

arsenic and mercury in subaqueous sediment caps. Model simulations (50 years) were

performed for freshwater and estuarine scenarios with an anaerobic porewater and either a

diffusion-only or a diffusion plus 0.1-m/year upward advective flux through the cap. A

biological habitat layer in the top 0.15 m of the cap was simulated with the addition of

organic carbon. For arsenic, the generation of sulfate-reducing conditions limits the for-

mation of iron oxide phases available for adsorption. As a result, subaqueous sediment caps

may be relatively ineffective for mitigating contaminant arsenic migration when influent

concentrations are high and sorption capacity is insufficient. For mercury, sulfate reduction

promotes the precipitation of metacinnabar (HgS) below the habitat layer, and associated

fluxes across the sediment–water interface are low. As such, cap thickness is a key design

parameter that can be adjusted to control the depth below the sediment–water interface at

which mercury sulfide precipitates. The highest dissolved methylmercury concentrations

occur in the habitat layer in estuarine environments under conditions of advecting pore-

water, but the highest sediment concentrations are predicted to occur in freshwater envi-

ronments due to sorption on sediment organic matter. Site-specific reactive transport

simulations are a powerful tool for identifying the major controls on sediment- and
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porewater-contaminant arsenic and mercury concentrations that result from coupling

between physical conditions and biologically mediated chemical reactions.

Keywords Sediment cap � Remediation � Reactive transport � Biogeochemical kinetics

1 Introduction

Subaqueous sand caps are a remedial alternative for managing contaminated sediments that

have received considerable attention in recent years (Azcue et al. 1998; Palermo 1998;

Wang et al. 2004; USEPA 2005). This technology involves the placement of clean sedi-

ment or sand over contaminated material to physically isolate chemical constituents from

ecological receptors. Although relatively simple and optimum in low-energy environ-

mental conditions (e.g., lakes, estuaries, low-velocity river reaches), the effectiveness of

capping can be compromised when there are diffusive and/or advective fluxes of chemical

contaminants from underlying groundwater (Liu et al. 2001). Depending on the magnitude

of these fluxes, successful mitigation may require (1) addition of mineral and organic

substrates for adsorption (Moo-Young et al. 2001; Ying and Axe 2005; Viana et al. 2008),

(2) favorable geochemical conditions that promote precipitation (or co-precipitation) of

metals as crystalline and/or amorphous compounds (Sengor et al. 2007), and/or (3) addition

of reactive chemical amendments to facilitate sequestration by adsorption or dissolution/

precipitation (Jacobs and Forstner 1999; Yang et al. 2007; Kumpiene et al. 2008).

To simulate the effectiveness of a sediment cap for mitigating contaminants, it is

important to consider porewater geochemistry and cap mineralogy because these param-

eters ultimately govern the partitioning of metals between the aqueous and solid phases.

Studies indicate that porewater and mineral phases may evolve over time in capped sed-

iments due to the establishment of microbial and macrofaunal populations. Redox strati-

fication associated with biological activity can result in reductive dissolution of iron

oxides, the precipitation of metal sulfides, and/or the formation of methylmercury (Slowey

and Brown 2007; Himmelheber et al. 2008; Johnson et al. 2010).

Within the context of simulating sediment cap performance, geochemical and reactive

transport modeling is a useful tool because it allows laboratory results to be extrapolated to

long timescales. Although a number of models have been developed to understand con-

taminant transport and fate in subaqueous caps (Alshawabkeh et al. 2005; Lampert and

Reible 2009; Viana et al. 2008; Arega and Hayter 2008; Go et al. 2009), most have focused

on describing physical processes such as consolidation, bioturbation, advection, and dis-

persion. Geochemical and biogeochemical processes have generally been simplified in

these models and have often relied on assumed distribution coefficients, rather than

examining a complete set of integrated equilibrium and kinetic chemical reactions, to

represent partitioning and fate.

The objective of the present study was to use a biogeochemical reactive transport model

to simulate the mineralogical evolution and long-term fate of redox-active contaminants in

a subaqueous sediment cap. Arsenic and mercury were selected for analysis because they

are common contaminants in sediment and possess dissimilar geochemistry. Arsenic

predominantly occurs as an oxyanion aqueous species, either arsenite or arsenate, and its

partitioning to sediment is affected by the presence of iron oxide and arsenic sulfide

phases. An important limitation on the effectiveness of capping of arsenic-contaminated

sediment is its potentially high solubility under anoxic conditions (Mucci et al. 2000;

O’Day et al. 2004). Mercury, in contrast, is a siderophile element that most commonly
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occurs in groundwaters and porewaters as dissolved inorganic or organic sulfide com-

plexes. Although mercury can be sequestered in relatively insoluble sulfide phases

[HgS(s) as cinnabar or metacinnabar], mercury can also be stabilized in solution by

complexation with natural organic ligands and sulfide (Skyllberg 2008; Slowey and Brown

2007; Slowey 2010). Mercury may become methylated by sulfate- (and/or iron-) reducing

bacteria that populate sediment caps (Ullrich et al. 2001), which is a key step in the

production of bioavailable methyl mercury species. This work is preceded by similar

studies that have simulated geochemical processes near the sediment–water interface

(Dueri et al. 2003; Canavan et al. 2007; Jung et al. 2009; Couture et al. 2010) but did not

specifically evaluate contaminant transport in sediment caps associated with contaminant

remediation. A comprehensive review and compilation of thermodynamic and kinetic data

were performed to construct the database for the reactive transport model presented here.

Simulations of the 1-D transport of arsenic- and mercury-contaminated porewater into a

clean (quartz) sand cap undergoing biogeochemical reduction near the sediment–water

interface were used to (1) assess the relative effectiveness of an unamended cap for

immobilizing metals and thus protect ecological receptors in the overlying aqueous

environment and (2) identify key factors that should be considered during cap design.

2 Methods

2.1 Model Description

1-D reactive transport simulations were performed using the USGS-supported geochemical

software PHREEQC (Parkhurst and Appelo 1999). Chemical processes included in the

model were heterogeneous and homogeneous equilibrium speciation reactions, kinetic-

based reactions describing biodegradation of organic carbon, reduction–oxidation (redox)

transformations, mercury methylation, and demethylation. Physical processes included

porewater diffusion, with and without porewater advective flow.

The model simulated a 1-meter-thick quartz sand cap emplaced on top of a layer of

contaminated sediment in either an estuarine (salt water) or freshwater setting. The model

domain was discretized into 100 grid cells, and constant concentration boundary conditions

were applied at the ends (Fig. 1). The lower boundary consisted of an anaerobic porewater

with elevated arsenic (10-3.9 M, or 10 mg/L) and mercury (10-7.3 M, or 10 lg/L), and the

upper boundary and initial porewater composition consisted of either salt water or fresh-

water with no contamination (Table 1). The initial conditions within the cap consisted of

entrained water with a chemical composition identical to oxidized surface water (either salt

or fresh). The cap was also assumed to include a maximum of 1 % sediment organic matter

(SOM) at the sediment–water interface, with the SOM concentration decreasing expo-

nentially with depth in the top 0.15 m of the cap to simulate a habitat layer (Canavan et al.

2006). Porewater was allowed to diffuse and/or advect through the cap for a period of

50 years (Table 2). In some model simulations, the effect of background iron oxide con-

centrations on contaminant transport and fate was investigated by assuming an initial

coating of goethite on the quartz sand in the cap (0.01 mol goethite/kgsediment) (Table 2).

Model simulations were also performed using influent porewater with a low concentration

of arsenic (10-5.2 M, or 0.5 mg/L) and mercury (10-8.6 M, or 0.5 lg/L) to examine model

response to input concentration (Table 3 summarizes the five different estuarine and

freshwater model scenarios).
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2.2 Thermodynamic Database

Equilibrium speciation calculations in PHREEQC utilized the default LLNL thermody-

namic database (Delany and Lundeen 1990) with the following modifications. (1) Addition

of an internally consistent thermodynamic database for arsenic aqueous species and

minerals (Nordstrom and Archer 2003; Vlassopoulos et al. 2010), (2) inclusion of recently

compiled thermodynamic values for inorganic (Powell et al. 2005) and organic mercury

aqueous species (Skyllberg 2008), and (3) inclusion of equilibrium constants for FeS(s) and

FeS(aq) (Rickard and Luther 2007).

2.2.1 Arsenic

Equilibrium constants for arsenic used in this study are reported in ‘‘Appendix 1.’’ Values

for arsenic hydroxide and oxyanion species were taken from Nordstrom and Archer (2003),

after adjusting the reported values for consistency with the LLNL database (Delany and

Lundeen 1990). The sulfide speciation scheme and corresponding equilibrium constants of

Vlassopoulos et al. (2010) were used for dissolved arsenic sulfide complexes. Adsorption

of dissolved arsenate and arsenite to iron oxide phases was modeled using surface com-

plexation constants and default surface site concentrations reported in the LLNL database

for ferrihydrite from Dzombak and Morel (1990). Because model results indicated that

goethite and magnetite were thermodynamically stable rather than ferrihydrite, the con-

centration of surface sites was reduced by a factor of 10 to account for differences in

Cap-Water Interface
(Freshwater or Estuary)

m
Habitat
Layer

Quartz0.85 m

Porewater

(Qz + SOM)
0.15 

Fig. 1 PHREEQC model
domain showing grid
discretization, upper and lower
boundary conditions, and
sediment cap composition
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reactive surface area of the crystalline iron oxides (Dixit and Hering 2003). No adsorption

to iron sulfide minerals was included in the model because prior studies indicated that

precipitation of a realgar-type mineral phase is the dominant mode of arsenic attenuation in

the presence of mackinawite (Gallegos et al. 2007) and because of a lack of surface

complexation constants for sorption on sulfides consistent with the database. Realgar and

orpiment were allowed to precipitate at thermodynamic equilibrium using the solubility

constants reported in Vlassopoulos et al. (2010).

2.2.2 Mercury

Equilibrium constants for reactions with mercury are reported in ‘‘Appendix 2.’’ Prior

studies have discussed the uncertainty in the value of the equilibrium constant for HgS(aq)

(written as the species HOHgSH0 in ‘‘Appendix 2’’). As discussed in Skyllberg (2008),

experimental conditions designed to measure the formation constant for this species likely

included colloidal mercury, which results in an overestimation of the equilibrium constant

for dissolved mercury sulfide. Although the equilibrium formation constant for this species

has also been estimated theoretically (Dyrssen and Wedborg 1986), this value has been

shown to underestimate methylmercury concentrations in the presence of HgS(s) (Drott

et al. 2007). Model results of this study predicted that metacinnabar was a stable phase.

Table 1 Chemical composition of aqueous solutions used in cap model

Parameter Estuary Freshwater Groundwater Units Comment

pH 8.0 7.0 7.0 Log activity (H?)

Pe 12.6 13.6 -2.5 Log activity (e-) a

As 0.0 0.0 -5.2 or -3.9 Log M b

C -3.1 -4.2 -4.5 Log M

Ca -2.0 -3.6 -3.6 Log M

Cl -1.0 -3.0 -3.0 Log M a

CO2 (g) -3.5 -3.5 -3.5 Log SI c

O2 (g) -0.75 -0.75 – Log SI c

DOM -4.7 -4.7 -3.7 Log M d

Fe -6.3 -6.3 -5.6 Log M e

Hg 0.0 0.0 -8.6 or -7.3 Log M f

N -5.0 -6.0 -8.0 Log M

Na -1.0 -3.3 -3.3 Log M

S -2.0 -5.0 -5.0 Log M g

Si -4.0 -4.0 -4.0 Log M h

a Groundwater at iron-reducing conditions is charge balanced by chloride
b Initial As(III)/As(V) speciation based on thermodynamic equilibrium; range is 0.5–10 mg/L
c Set by saturation index (SI)
d DOM equivalent to a dissolved organic carbon concentration of 1–10 mg/L with concentrations of thiol
sites of 4.7 9 10-8–4.7 9 10-7 M
e Fe(II)/Fe(III) includes a goethite buffering phase for surface water (undersaturated for groundwater)
f Reported as total Hg(II) concentration with no methylmercury initially present; range is 0.5–10 lg/L
g S(-II)/S(VI) speciation based on thermodynamic equilibrium; no elemental sulfur included in the model
h Solution assumed to be in equilibrium with quartz

Aquat Geochem (2012) 18:297–326 301

123



Therefore, the experimentally derived value of Skyllberg (2008) was used for HOHgSH0 in

order to obtain a more accurate representation of methylmercury concentrations.

Sorption of mercury and methylmercury on SOM was included in the model by mod-

ifying equilibrium reactions for the formation of dissolved mercury-organic complexes

(‘‘Appendix 2’’). This modification was accomplished by converting the aqueous com-

plexation reactions reported in Skyllberg (2008) to exchange constants that conform to the

Table 2 Physical and chemical description of quartz sand cap

Parameter Value Units Comment

Chemical composition

Quartz 11.1 mol/kg

Fe(III)-oxide 0 or 0.01 mol/kg a

SOM 0–0.3 mol/kg b

Flow model parameters

Column height 1 m

Porosity 0.4 –

Hydraulic conductivity 1 9 10-6 m/s

Diffusion coefficient 3 9 10-10 m2/s c

Longitudinal dispersivity 0 m

Groundwater flowrate 0–0.1 m/year

a Simulations performed with no Fe(III)-oxide, or with Fe(III)-oxide modeled as goethite coatings on quartz
at 0.01 molgoethite/kgquartz based on Kent and Fox (2004), Knapp et al. (2002)
b Maximum SOM value occurs at the sediment–water interface with concentrations reduced exponentially
as a function of depth using bioturbation equations of Canavan et al. (2006) and an assumed maximum depth
of OM of 0.15 m
c Composite diffusion coefficient for all aqueous species (Appelo and Postma 2005)

Table 3 Description of model scenarios

Model scenario Asinp Hginp Comments
Log M Log M

Estuarine

E1: diffusion, high concentration -3.9 -7.3 Base scenario

E2: diffusion ? advection -3.9 -7.3 Groundwater advection at a rate
of 0.1 m/year

E3: diffusion ? goethite -3.9 -7.3 Goethite coating on quartz in cap
(0.01 molgoethite/kg)a

E4: diffusion, low concentration -5.2 -8.6 Lower groundwater contaminant
concentrations

Freshwater

F1: diffusion, high concentration -3.9 -7.3 Base scenario

F2: diffusion ? advection -3.9 -7.3 Groundwater advection at a rate
of 0.1 m/year

F3: diffusion ? goethite -3.9 -7.3 Goethite coating on quartz in cap
(0.01 molgoethite/kg)a

F4: diffusion, low concentration -5.2 -8.6 Lower groundwater contaminant
concentrations

a Kent and Fox (2004), Knapp et al. (2002)
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Gaines-Thomas convention (Appelo and Postma 2005). This conversion depends on the

concentration of total thiol (–SH) surface sites on SOM and, to a lesser extent, the pro-

tonated fraction of these sites. The reported values in ‘‘Appendix 2’’ are conditional

stability constants assuming a concentration of thiol sites associated with SOM of

1.9 9 10-3 mol/L water. The abundance of thiol-type functional sites associated with

organic matter was set to 0.047 meq/g organic matter (meq/gOM) for both dissolved

organic matter (DOM) and solid-phase SOM (Skyllberg 2008).

Mercury polysulfide complexes were not included in the model because (1) elemental

sulfur was not predicted to form in the cap and (2) formation of these complexes is very

weak compared with HgS(aq) in the presence of metacinnabar (Benoit et al. 1999; Jay et al.

2000; Drott et al. 2007). Mercury adsorption to iron sulfide minerals was excluded because

the predominant mode of mercury attenuation in the presence of mackinawite is the

precipitation of a HgS mineral (in this case, metacinnabar) rather than sorption (Skyllberg

and Drott 2010).

2.3 Biogeochemical Reactions and Rates

Biodegradation of two organic carbon fractions was included in the model: (1) DOM,

originating in both surface water and porewater, and (2) SOM, originating from surface

water and mixed within the top 0.15 m of the sediment cap by bioturbating organisms

(Boudreau 1998; Canavan et al. 2006). Concentrations are given in Tables 1 and 2,

respectively.

The Monod-type description of biogeochemical reactions and rates in the model,

including both primary reduction and secondary oxidation reactions (Table 4), was based

on prior studies (Van Cappellen and Wang 1996; Hunter et al. 1998; Canavan et al. 2006).

The overall degradation rate of organic matter (OM), including either SOM or DOM, is the

sum of individual reaction rates [Ri] of successive terminal electron acceptors (EAi):

Ri ¼ kOM 1�
Xi�1

0

fi

 !
EAi½ �

x
and

x ¼ 1 for EAi½ �[ KEA;i

x ¼ KEA for EAi½ �\KEA;i

� � ð1Þ

where kOM is the rate constant for OM degradation, fi is the fraction of electrons consumed

by the ith primary reduction half-reaction, [EAi] is the concentration of the ith terminal

electron acceptor species [EA], and KEA,i is the limiting concentration for the respective

electron acceptor. As shown in Eq. 1, when the concentration of [EA] is below its limiting

value KEA, the corresponding primary reduction rate is reduced. Rate constants (ki) and

limiting concentrations (KEA) used in the model are reported in Table 5. The biodegra-

dation rate constants for SOM and DOM were set to 0.002 and 0.0001 year-1, respectively,

based on literature review (Canfield et al. 1993; Hulthe et al. 1998; Fossing et al. 2004;

Arzayus and Canuel 2005; Wallmann et al. 2006; Komada et al. 2004). Although the

biogeochemical rate constants used in this study were not explicitly calibrated, all model

parameters were selected to be within the range of values observed at field sites in order to

be generally applicable.

Arsenate reduction and secondary arsenite oxidation reactions were added to the suite of

reactions compiled from prior studies (Table 4). Arsenate reduction was assumed to pre-

cede reduction of ferrous to ferric iron in the sequence of terminal EA based on a larger
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Table 5 Parameter values for kinetic reactions (shown in Table 4)

Parameter Value Units Reported range Comment

Primary redox reactions

kSOM 0.002 year-1 0.0003–0.02 a

kDOM 0.001 year-1 0.001 b

Accel 10 25 c

fEA 0–1 d

Limiting concentrations for electron acceptor species (KEA)

KO2 10 lM 8–24 e

KNO3 10 lM 10–16 e

KAs(V) 10 lM f

KFeOOH 1,000 lM 800–1,000 e

KSO4 100 lM 100 c

Secondary redox reactions

k7 10 lM-1 year-1 5–79 g

k8 10 lM-1 year-1 h

k9 10 lM-1 year-1 0.35–16,000 g

k10 1 lM-1 year-1 0.19–20 g

k11 1 lM-1 year-1 i

k12 100 lM-1 year-1 0.16–1,600 g

k13 10,000 lM-1 year-1 10,000 g

k14 1 lM-1 year-1 j

k15 1 lM-1 year-1 k

k16 1 lM-1 year-1 k

k17 0.01 lM-1 year-1 0.008–0.095 g

k18 1 lM-1 year-1 0.01–10,000 g

Other kinetic processes

k19 3.3 9 10-3 lM-1 year-1 c

k20 4.2 9 103 M MSO4
-1 MHgS

-1 year-1 l

k21 3 9 10-4 year-1 1–14 9 10-4 m

a Reported range for SOM from Arzayus and Canuel (2005), Canfield et al. (1993), Fossing et al. (2004),
Hulthe et al. (1998), Wallmann et al. (2006)
b Reported range for DOM from Komada et al. (2004)
c Canavan et al. (2006)
d Calculated by the model
e Reported range from Canavan et al. (2006) (KFeOOH approximated)
f Set equal to nitrate
g Reported range from Canavan et al. (2006), which included the studies of Berg et al. (2003), Fossing et al.
(2004), Van Cappellen and Wang (1995, 1996)
h Set equal to rate constant for Fe2? oxidation (k9)
i Set equal to rate constant for FeS(s) oxidation (k10)
j Estimated from reported rate for arsenate reduction by dissolved sulfide of Rochette et al. (2000)
k Set equal to rate constant for FeS(s) oxidation (k14)
l See text for explanation of terms
m Reported range from Hintelmann et al. (2000), Kim et al. (2004), Marvin-Dipasquale and Oremland
(1998), Drott et al. (2008)
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(more negative) change in the Gibbs free energy of the half-reaction for arsenate reduction

compared with goethite reduction. Values for the limiting concentrations and secondary

reaction rates for iron sulfide oxidation by arsenate were estimated (Table 5) from rates

reported for arsenate reduction by sulfide (Rochette et al. 2000).

The rate of methylmercury formation was calculated using the following equation

developed by Gilmour et al. (2008):

rateCH3Hgþ ¼ k� cells½ � � C1½ � � OHHgSH½ � þ Hg SHð Þ2
� �� �

ð2Þ

where the parameter k represents the fraction of sulfate-reducing bacteria that methylate

mercury at the same rate as Desulfobulbus propionicus (a value of 0.2 was used both in

Gilmour et al. (2008) and here); [cells] is the number of cells of sulfate-reducing bacteria

calculated from the model-determined sulfate reduction rate (MSO4 year-1, Table 4) and a

reported cell density corresponding to this rate (1.63 9 1012 cells year MSO4
-1 ) (King et al.

2000); the methylation rate parameter [C1] was assumed to be 8.54 9 10-8 MMeHg L

cell-1 MRHgSneutral
-1 year-1 (Gilmour et al. 2008); and the total concentration of dissolved

neutral mercury sulfide complexes ([OHHgSH] ? [Hg(SH)2]) (MHgS L-1) was computed

by PHREEQC. The equivalent expression re-written as Eq. 20 in Table 4 by combining

terms in Eq. 2 is:

rateCH3Hgþ ¼ k20 � R5 � HOHgSH½ � þ Hg SHð Þ2
� �� �

ð3Þ

where the rate constant [k20] is 4.2 9 103 M MSO4
-1 MHgS

-1 year-1 (MHgS represents the total

concentration of the two neutral mercury sulfide complexes) (Table 5), R5 is the rate of

sulfate reduction (Table 4), and [HOHgSH] and [Hg(SH)2] are the concentrations of the

two neutral mercury sulfide aqueous complexes included in the model (‘‘Appendix 2’’).

Demethylation was modeled by using a first-order rate constant with respect to the total

MeHg concentration (dimethylmercury plus monomethylmercury species).

Performance of the model in determining mercury methylation was evaluated by sim-

ulating the controlled microcosm experiments of Johnson et al. (2010). Concentrations of

methylmercury were calculated by the model based on the chemical description of the

sediment and porewater from Johnson et al. (2010), the estimated organic carbon bio-

degradation rate from that study, and methylation/demethylation implemented in the

PHREEQC model with the parameters given in Table 5. The model predicted a total MeHg

concentration in the sediment after a 120-day simulation period of 230 pg/g, which is

equivalent to 0.07 % of the total mercury concentration. This concentration compares

favorably with reported concentrations of 215–232 pg/g (equivalent to 0.06–0.08 % of

total mercury present as methylmercury) at the deepest measurement point in the sediment

microcosms (0.03 m) (Johnson et al. 2010).

3 Results

Model results were assessed for the following: (1) the evolution of solid-phase contaminant

sequestration, either by mineral precipitation or surface adsorption, in the subaqueous

sediment cap (reported as total moles of solid/L of water to facilitate direct comparison

with the aqueous concentrations), (2) the flux of contaminants to surface water over time,

and (3) geochemical environments where capping would be most effective based on model

outcomes. The latter criterion was assessed by comparing simulated aqueous and solid-
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phase concentrations with water and sediment quality screening values that might be

employed during remedial design. Table 3 summarizes the model scenarios.

3.1 Arsenic

The simulated evolution of cap mineralogy and porewater geochemistry for the case of

estuarine boundary conditions and diffusion-only porewater flux (scenario E1) are shown

as a function of time and depth in Fig. 2a. The first 30 years of simulation results are

illustrated, after which steady-state conditions are established. After the first decade, pH

(*6.5–6.7) and dissolved oxygen (DO * 10-8 M) are constant within the sediment cap,

with the exception of a thin oxidized zone (*0.02 m) at the sediment–water interface.

Dissolved arsenic is highest at the base of the cap from porewater influx and decreases

toward the sediment–water interface. The concentration of As(V) decreases with time in

the lower half of the cap and dissolved arsenic is dominated by As(III) at steady state.
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Goethite precipitates at the oxidized sediment–water interface as a result of dissolved

Fe(II) oxidation by diffusion of oxygen from surface water. Goethite also precipitates at the

base of the cap, where more oxidized porewater (due to surface water initially entrained in

the cap) mixes with influent, anaerobic porewater containing Fe(II) (Table 1). Goethite

precipitation near the base of the cap (0.9–1.0 m depth) decreases upward as Fe(II)

introduced by porewater is depleted. A zone of reduced iron sulfide minerals (mackinawite

and pyrite) forms between *0.02 and 0.3 m depth from the reduction of sulfate supplied

by diffusion of seawater. These minerals replace goethite with time as the primary iron

solid phases in the upper part of the cap. However, arsenic sulfide minerals do not form

under these conditions. For the diffusion-only scenario, the total dissolved arsenic con-

centration in equilibrium with goethite in the top 0.1 m at the end of the model simulation

(50 years) is 10-5.5 M (0.26 mg/L) (Table 6).

In the freshwater scenario (F1) (Fig. 2b), steady-state concentrations are not established

in most of the cap until after *20 years. Similar to the estuarine case, reduced conditions

are established throughout the cap, but the steady-state pH is lower (*6) in the freshwater

than in the estuarine simulation. Dissolved arsenic is dominated by As(III) at steady state,

but As(V) is elevated from the base of the cap to *0.15 m below the surface in the habitat
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layer. Arsenic sequestration by solid phases in the freshwater scenario is distributed

between adsorption by goethite and a zone of realgar (AsS) precipitation at 0.1–0.15 m

depth. Greater quantities of both minerals are precipitated in the upper part of the cap

compared with the estuarine scenario. For goethite, this outcome is directly related to lower

total sulfur concentration, and therefore lower sulfide levels, in freshwater. Lower total

sulfur affects goethite precipitation in two ways: (1) no pyrite or mackinawite forms in

freshwater, which increases the concentration of dissolved Fe(II) available for oxidation by

surface water, and (2) less sulfide is available to reduce Fe(III) (and thereby dissolve

goethite). As a result, an interval of goethite forms between *0.15 and 0.3 m below the

surface in addition to zones above the base of the cap and at the sediment–water interface

(Fig. 2b). For realgar, the effect of lower sulfide in the freshwater scenario is to decrease

the concentration of As-sulfide complexes and thus increase the concentration of dissolved

As(OH)3�, exceeding reaglar solubility. Realgar precipitation, however, does not greatly

decrease dissolved arsenic concentrations in the cap because of its higher equilibrium

solubility compared with other sulfide minerals. At 50 years, the total dissolved arsenic

concentration at the top of the cap is predicted to be the same (10-5.5 M) as for the

estuarine scenario (Table 6), although the distribution of arsenic species is different

throughout the simulation period.

Model outcomes for arsenic with advective transport in addition to diffusion in both

estuarine (scenario E2) and freshwater (scenario F2) systems are shown in Fig. 3a and b,

respectively. One effect of advection is to decrease the time required for the establishment

of steady-state dissolved profiles to a period of\10 years for most species. A second is to

Table 6 Depth-averaged results (from 0 to 0.1 m) for cap simulations after 50 years

Model scenarioa Input As
(aq)tot

As (tot)b Hg
(aq)tot

Hg
(tot)b

MeHg
(aq)tot

MeHg
(tot)b

As Hg
Log M Log M Log M Log

(mol g-1)
Log M Log

(mol g-1)
Log M Log

(mol g-1)

Estuarine

E1: diff, high
conc.

-3.9 -7.3 -5.5 -9.0 -11.2 -14.5 -13.1 -16.3

E2:
diff ? advection

-3.9 -7.3 -4.5 -8.1 -10.6 -13.8 -12.4 -15.5

E3:
diff ? goethite

-3.9 -7.3 -6.8 -9.5 -11.1 -12.9 -12.6 -15.0

E4:
diff, low conc

-5.2 -8.6 -6.8 -10.3 -11.6 -14.9 -13.5 -16.7

Freshwater

F1: diff, high
conc.

-3.9 -7.3 -5.5 -8.4 -11.0 -12.6 -13.5 -15.8

F2:
diff ? advection

-3.9 -7.3 -4.5 -7.9 -10.6 -12.1 -13.1 -15.1

F3: diff ? goethite -3.9 -7.3 -7.5 -9.9 -12.3 -13.2 -14.7 -16.2

F4: diff, low
conc.

-5.2 -8.6 -6.8 -8.9 -11.2 -12.7 -13.7 -16.0

a See Table 3 for scenario conditions
b Total solid-phase concentration in log (mol g-1 sediment)
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introduce greater quantities of arsenic into the cap and therefore generate higher dissolved

arsenic concentrations throughout the cap and near the sediment–water interface. As shown in

Table 6, dissolved arsenic concentrations at the top of the cap are *10 times higher than in

the diffusion-only scenarios. The introduction of higher arsenic concentrations into the

habitat layer (where sulfide is generated from the reduction of sulfate) causes more precip-

itation of realgar where the upward-propagating arsenic flux meets the downward-propa-

gating sulfide flux. Arsenic is also sequestered in higher amounts by the thin goethite layer at

the sediment–water interface. The advection scenarios highlight the competition between

arsenic sequestration by adsorption to goethite and precipitation of arsenic sulfide minerals.

In order to examine model sensitivity to iron concentration in the cap and to contam-

inant flux from upwelling porewater, additional scenarios were examined for the case of an

initial coating of goethite on quartz in the sand cap (scenarios E3 and F3) (Knapp et al.

2002; Kent and Fox 2004) and for lower influent contaminant concentrations (scenarios E4

and F4). As shown in Table 6, the effect of goethite coatings is to reduce the mass flux of

arsenic through the cap and thus the dissolved and solid concentrations at the top of the
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Fig. 3 Concentrations of As mineral and dissolved species (in log moles/L of water) as a function of depth
and time in the sediment cap for the case of advecting groundwater, log [As]tot = -3.9, log [Hg]tot = -7.3
in influent porewater, and the following environments. a Estuarine (scenario E2), and b freshwater (scenario
F2). Rows 1 and 2 (left–right): total dissolved As(III); total dissolved As(V); As adsorbed to goethite; realgar
and/or orpiment
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cap. Lower influent porewater arsenic concentrations result in concentrations at the top of

the cap similar to those observed with more goethite coatings because attenuation is

primarily controlled by arsenic adsorption to goethite in these scenarios.

3.2 Mercury

For the estuarine, diffusion-only sediment cap (scenario E1) (Fig. 4a), dissolved mercury

concentrations are highest at early times and near the base of the cap as Hg complexed to

DOM. Mercury speciation changes to complexation with dissolved sulfide within the first

5–10 years as reduced conditions are established and sulfate reduction produces dissolved

sulfide. The primary solid-phase sequestration mechanism for mercury is precipitation as

metacinnabar [HgS(s)] once its solubility is exceeded with sufficient sulfide production.

Metacinnabar precipitation initially occurs in two areas of the cap: (1) near the base where
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Fig. 4 Concentrations of S and Hg mineral and dissolved species (in log moles/L of water) as a function of
depth and time in the sediment cap for the case of diffusion-only, log [As]tot = -3.9, log [Hg]tot = -7.3 in
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a metacinnabar front propagates upward and (2) a depth between 0.4 and 0.6 m where a

metacinnabar front propagates downward. Dissolved sulfide concentrations build over time

in the upper third of the cap, which results in higher concentrations of dissolved Hg–sulfide

complexes and shifts the depth of the precipitation front for metacinnabar downward. In

the upper habitat layer (0–0.15 m), Hg is attenuated in the cap by sorption to SOM.

Dissolved and solid-phase mercury profiles in freshwater (scenario F1) are generally similar

to the estuarine scenario (E1) except for (1) the occurrence at a shallower depth of the metac-

innabar precipitation front and (2) greater mercury complexation to SOM in the top 0.15 m of

the cap (Fig. 4b). Differences in mercury speciation and partitioning can be attributed to less

total sulfur, and therefore less sulfide, in freshwater versus estuarine systems. In the freshwater

case, more time is required for sulfide concentrations to build to levels where metacinnabar

precipitates in the cap. Thus, the concentration of Hg–sulfide complexes is lower at the top of the

cap, resulting in a shallower depth of precipitation of metacinnabar and greater partitioning to

SOM. The steady-state total dissolved mercury concentration in the top 0.1 m in the estuarine

sediment cap is slightly less than in the freshwater cap (Table 6) because metacinnabar pre-

cipitation occurs closer to the sediment–water interface in the latter case.

The effect of porewater advection (scenarios E2 and F2) is to shift the metacinnabar

precipitation front upwards in the cap, which increases dissolved mercury concentrations at
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shallower depths (Fig. 5a, b). For estuarine systems, steady-state dissolved concentrations

in the top 0.1 m of the cap increase from 10-11.2 M (1.2 ng/L) to 10-10.6 M (5.0 ng/L)

(Table 6). For freshwater, steady-state concentrations increase from 10-11.0 M (1.9 ng/L)

to 10-10.6 M (5.5 ng/L). These concentrations are generally within the range reported for

estuarine surface water (10-9.8–10-12.4 M) (Fitzgerald et al. 2007). Unlike arsenic, an

initial coating of goethite in the cap causes little change in dissolved mercury concen-

trations because mercury adsorption to iron oxide minerals was not included in the model

and is expected to be less important than sorption to OM (Feyte et al. 2010).

3.3 Methylmercury

Methylmercury formation is predicted to occur within the upper 0.15 m of the cap in

both estuarine and freshwater scenarios (E1 and F1) (Fig. 4a, b). Dissolved
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Fig. 5 Concentrations of Hg mineral and dissolved species (in log moles/L of water) as a function of depth
and time in the sediment cap for the case of advecting groundwater, log [As]tot = -3.9, log [Hg]tot = -7.3
in influent porewater, and the following environments. a Estuarine (scenario E2), and b freshwater (scenario
F2). Rows 1 and 2 (left–right): total dissolved Hg; metacinnabar (HgS); total dissolved methylmercury;
methylmercury adsorbed to SOM
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methylmercury concentrations are approximately 1–4 % of the total mercury, which is

typical for sediment environments (Ullrich et al. 2001). The primary attenuation

mechanisms for methylmercury are demethylation and adsorption of methylmercury to

SOM. In these model scenarios, the mass of adsorbed methylmercury generally exceeds

the dissolved mass (Figs. 4, 5). Dissolved methylmercury concentrations are slightly

lower at the top of the freshwater cap than the estuarine cap because the concentrations

of neutral mercury sulfide complexes available for methylation are lower (owing to

lower total sulfur) (Table 6). In contrast, methylmercury concentrations in sediment are

higher in fresh than salt water because concentrations of dissolved methylmercury-

sulfide complexes are lower and more methylmercury is available for sorption to

SOM.

Advective transport increases the steady-state concentration of methylmercury in both

estuarine and freshwater systems (Fig. 5). The highest dissolved concentrations occur in

the estuarine sediment cap with advection, and the highest sediment-bound methyl-

mercury levels occur in freshwater. Concentrations are predicted to be lower than those

typically reported for contaminated sediments (Bloom et al. 1999) and are within the

range of estuarine and riverine systems (Conaway et al. 2003; Marvin-DiPasquale et al.

2000; Marvin-Dipasquale and Oremland 1998; Goulet et al. 2007; Fitzgerald et al.

2007).

3.4 Comparison with Screening Levels for Water and Sediment Quality

Model outcomes at 50 years were compared with two quality criteria: criterion continuous

concentration (CCC) for dissolved contaminants in saltwater and freshwater (USEPA

2009), and sediment quality guidelines (SQG) using the effects range-low (ERL) values

from (NOAA 1999). The CCC is an estimate of the highest concentration of a material in

surface water to which an aquatic community can be exposed indefinitely without resulting

in an unacceptable effect. The ERL guidelines are intended to represent sediment con-

centrations of a contaminant below which adverse effects on biota rarely occur and are

derived from the 10th percentile values of compiled studies below which adverse effects

occurred. Comparison of model outcomes (Table 6) showed that for all high influent

arsenic concentration scenarios, dissolved arsenic concentrations at the top of the cap

(depth-averaged from 0 to 0.1 m) exceeded CCC levels for both freshwater (10-5.7 M) and

saltwater (10-6.3 M) (Fig. 6a). When influent arsenic concentration was reduced (20 times

lower, scenarios E4 and F4), depth-averaged concentrations in both estuarine and fresh-

water sediment caps were below CCC levels (36, and 150 lg/L, respectively). In the

presence of iron oxyhydroxides (as goethite) on quartz (scenario E3), concentrations

approached but did not exceed the CCC in the top 0.1 m of the cap (Fig. 6a). Dissolved

mercury concentrations (Table 6) were several orders-of-magnitude below the CCC for all

scenarios (data not shown).

Sediment arsenic concentrations were below ERL levels for both high and low

concentration scenarios (Fig. 6b). For mercury, sediment ERL concentrations were

exceeded only within the lower 0.2 m of the cap where high concentrations of

HgS(s) were precipitated and were below screening levels at the top (Fig. 6c). Meth-

ylmercury concentrations in sediments (not shown) are predicted to be below regulatory

screening levels.
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4 Discussion

4.1 Factors Controlling Cap Effectiveness

The analysis of mineralogical and porewater changes within a sediment cap by reactive

transport modeling highlights primary factors that control the migration of dissolved

contaminants from the cap into surface waters. An important observation from this analysis

is that different but interrelated factors are responsible for arsenic or mercury attenuation in

the cap. From the standpoint of (bio)geochemical reactions, controlling processes are (1)

the concentration of DOM and SOM in the system, which influences (a) the amount of iron

and sulfate reduction, and (b) the extent of mercury and methylmercury complexation with

DOM in solution and sorption to SOM in sediments. (2) The total amount of iron in the

system from either sediment Fe(III) oxyhydroxides or groundwater influx of dissolved

Fe(II). Total iron controls (a) the precipitation of Fe(III)-oxide minerals and thus arsenic

sorption in more oxidized zones, and (b) the concentration of dissolved Fe(II) in more

reduced zones. (3) The total amount of sulfur in the system, examined in this study by the

difference between typical estuarine and freshwater systems. Total sulfur determines the

maximum amount of sulfate reduction and thus, (a) the precipitation of iron, arsenic, and

mercury sulfide phases and (b) the concentration of aqueous sulfide complexes. In addition,

the amount of porewater advection, compared with diffusion only, will determine the flux

of contaminants moving through the cap and thus the ability of (bio)geochemical processes

to attenuate them.

In estuarine systems, total sulfur is in excess because of diffusion of sulfate from

overlying surface water and from porewater influx of sulfate (Table 1). Because dissolved

sulfide is generally higher throughout the cap than in the freshwater case, iron sulfide

minerals (mackinawite and pyrite) form in the upper part of the cap, and the formation of

iron oxide minerals (modeled here as goethite) is less important and limited to the bottom

of the cap. Therefore, arsenic sorption to iron oxides is lower overall. No precipitation of

arsenic sulfide minerals (realgar or orpiment) is observed because of the higher solubility

of arsenic sulfides compared with iron sulfides or metacinnabar at the pH of these systems.

In the freshwater simulations with lower total sulfur, iron sulfide minerals do not form, a

small amount of realgar precipitates within the top 0.15 m, and goethite is stable below the

top 0.15 m. Arsenic sorption to goethite occurs within the cap and at the oxidized sedi-

ment–water interface. However, dissolved arsenic concentrations in the top 0.1 m are

similar to the estuarine case because the sorption capacity of iron oxides is the limiting

factor for arsenic attenuation. Thus, dissolved arsenic flux from the cap for scenarios with

high porewater concentration or with advection is higher than water quality screening

levels because of insufficient attenuation by sorption to iron oxides and higher solubility of

arsenic sulfide minerals compared with mercury sulfide.

In real systems, metastable Fe(III)-oxide phases such as ferrihydrite, or metastable

Fe(II, III) oxides such as green rust-type phases, may form instead of the thermodynam-

ically stable phases of goethite and magnetite used in this model. These metastable iron

phases generally have higher surface areas than their stable counterparts and thus may be

more effective sorbents of arsenic. On timescales longer than those modeled, continued

precipitation of iron oxides may create a natural sorption barrier for arsenic (Jung et al.

2009), but only if the rate of oxide precipitation and generation of reactive surface sites

exceeds the rate that arsenic is introduced into the system. Because sorption is generally

more effective for arsenic attenuation than sulfide precipitation, cap performance depends
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on arsenic concentration and flux through the cap, the concentration and type of iron oxide

minerals and their sorption sites, and porewater pH within the cap.

Mercury and methylmercury concentrations are predicted to remain below water and

sediment quality criteria levels in both estuarine and freshwater systems once sulfide

concentrations increase after the first 5–10 years because of precipitation of metacinnabar

in the lower parts of the cap. Due to the very low solubility of mercury sulfide minerals,

equilibrium dissolved mercury concentrations are low. In the upper part of the cap without

metacinnabar, predicted methylmercury concentrations are slightly higher in the estuarine

than the freshwater setting because of higher rates of sulfate reduction. The distribution of

mercury and methylmercury between aqueous and solid phases in this zone is controlled by

sorption to SOM, aqueous complexation with DOM, and aqueous complexation with

sulfide. Therefore, the amount and distribution of OM are the primary controlling factors

for mercury and methylmercury flux from the top of the cap. The concentration of thiol

sites associated with SOM is the primary factor for mercury attenuation by sorption in

sediments, which competes with sulfur binding sites in DOM as a possible mode of

mercury transport in the aqueous phase.

4.2 Model Uncertainties

Important sources of uncertainty in any chemical model are the values of equilibrium

constants for reactions assumed to reach thermodynamic equilibrium, and in the rate con-

stants for reactions assumed to be controlled by kinetic processes. For the majority of

equilbrium reactions in the LLNL database and those that were added in this study (see

‘‘Appendices 1 and 2’’), equilibrium constants are generally accepted and robust, with the

following notable exceptions. As discussed above, there is a large uncertainty regarding

equilibrium constants for aqueous mercury complexation (Skyllberg 2008), which affects

model-predicted methylmercury levels (Drott et al. 2007). There is considerable uncertainty

regarding both the identities and stability constants of arsenic and mercury mono- and poly-

sulfide complexes, which may be important in high sulfide systems where elemental sulfur

is stable (Rickard and Luther, 2006). Although mercury and mercury-DOM complexes may

adsorb to quartz and iron oxides (Tiffreau et al. 1995; Backstrom et al. 2003), sorption to

oxides is likely secondary to complexation with dissolved sulfide and DOM, and sorption to

SOM, and therefore was not included. Another simplifying assumption was the use of an

average diffusion coefficient for all aqueous species, which neglects the effects of porosity

and tortuosity on the diffusion rates of specific ions or complexes. A greater source of

uncertainty, however, probably results from the kinetic model and rate constants selected

for abiotic and biotic chemical reactions. The mechanisms and rates of mercury methylation

and demethylation are complex because (1) iron-reducing bacteria may contribute to

methylmercury concentrations (particularly in freshwater caps; see Fitzgerald et al. 2007;

Fleming et al. 2006), and (2) methylmercury production and degradation depends on

temperature, pH, and other environmental variables (Ullrich et al. 2001). Uncertainties in

these model parameters highlight the need for site-specific concentrations and rates in order

to model remediation scenarios at contaminated sites.

Physical processes not included in the model may additionally affect contaminant

distribution and fate within the cap. For example, this study did not explicitly include

processes such as consolidation, bioturbation, bioirrigation, and sedimentation. Consoli-

dation can temporarily increase the porewater flux through the cap, particularly at early

times, thereby requiring a thicker cap to maintain low contaminant concentrations at the

cap-water interface. Also, bioturbation and bioirrigation at the cap surface can affect the
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concentrations of both arsenic and mercury by creating a more diffuse zone of oxygenated

conditions within the bioturbated layer, which could shift the sulfate/sulfide redox

boundary deeper into the sediment (Dueri et al. 2003; Benoit et al. 2006). Inclusion of

bioturbation and bioirrigation would likely increase the zone of Fe(III) oxide precipitation

at the sediment–water interface, and thus the amount of iron oxide available for arsenic

adsorption. The impact on arsenic breakthrough over long timescales would depend on the

amount of Fe(II) available for oxidation and the arsenic flux. For mercury, greater intro-

duction of oxygen into the habitat zone may decrease methylmercury production by

slowing the rate of sulfate and/or iron reduction (Benoit et al. 2006). Finally, uncertainty is

introduced by the imposed boundary conditions. For example, the constant concentration

boundary conditions employed in this study give rise to sharp fronts of metacinnabar and

goethite precipitation near the base of the cap. These sharp fronts are model artifacts that

occur because of the prescribed boundary conditions. In reality, dissolved species may also

migrate to some extent into the underlying contaminated sediment, thereby shifting the

zone of precipitation downward.

4.3 Cap Design Implications

The sediment cap simulations illustrate the fate of arsenic and mercury in various con-

taminated sediment–water environment scenarios and highlight some of the key factors to

be considered for cap design. Unamended subaqueous sand caps are not expected to be

effective for reducing porewater dissolved arsenic concentrations below ecological

screening levels when concentrations in upwelling porewater are high (Fig. 6a). As shown

in Fig. 6b, there is a potential over time for the habitat layer of the sediment cap to become

contaminated in excess of SQG by either adsorption to iron oxides or precipitation of

arsenic sulfides under sulfate-reducing conditions. The former is expected to be a feature of

the uppermost few millimeters of the cap near the sediment–water interface where

exposure to oxygenated water promotes formation of iron oxides. Arsenic sorption may be

enhanced if the rate of ferrihydrite or goethite precipitation exceeds the arsenic flux into

the cap, or if there is a pre-existing pool of iron oxyhydroxides in the sediment cap material

(scenarios E3 and E4, respectively). Precipitation of arsenic sulfides, on the other hand, is

more likely in estuarine/marine porewater environments where the downward diffusive

flux of sulfate and the upward flux of arsenic provide dissolved reactants and bacterial

sulfate reduction promotes the precipitation of solid-phase sulfides. The depth and extent of

the zone of accumulation depends on the porewater upwelling velocity and the competitive

precipitation of iron sulfide minerals. Due to the modest solubility of arsenic sulfides, they

may occur closer to the top of the active sulfate-reducing zone where dissolved sulfide

concentrations are greatest (Fig. 6b).

In contrast, capping with unamended sand is a potentially viable option for reducing

mercury flux under all of the conditions modeled. The effectiveness is a function of (1) the

rate of sulfate reduction, (2) porewater upwelling rates, and (3) cap thickness. As shown in

Fig. 6c, mercury contamination is restricted to the base of the cap due to precipitation of

insoluble mercury sulfide. Therefore, cap thickness appears to be a key design parameter

for preventing mercury contamination of the habitat layer for a given flow regime because

the upper depth limit of mercury accumulation is enhanced by porewater advection. The

minimum thickness will need to be greater than the depth of the habitat layer in order to

create a zone of separation between ecological receptors and mercury accumulation

(Simpson et al. 2002). For the range of conditions examined in our study, the maximum

thickness is expected to be\1 m, which is consistent with field studies (Moo-Young et al.
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2001). The effectiveness of a sand cap for limiting mercury exposure to biota will depend

on a number of site-specific physical, hydrologic, and biogeochemical factors that can be

examined with reactive transport modeling as illustrated here.

5 Conclusions

Reactive transport simulations show that the effectiveness of sand caps for remediating

arsenic and mercury in subaqueous sediments, as measured by solid and aqueous-phase

concentrations in the habitat layer, depends on (1) the rate of biologically mediated sulfate

reduction, (2) dissolved contaminant concentrations and flux, (3) porewater advection

rates, and (4) cap thickness. Arsenic attenuation depends primarily on pH-dependent

sorption by iron oxide minerals and secondarily on arsenic sulfide precipitation. Therefore,

prediction of cap performance with time depends on arsenic concentration and flux through

the cap, the concentration and type of iron oxide mineral sorption sites, and pH. The

primary controlling factor for mercury attenuation within the cap is mercury sulfide pre-

cipitation. In the habitat layer, however, attenuation of mercury and methylmercury are

controlled by the amount and distribution of DOM and SOM, and in particular the con-

centration of thiol (–SH) groups associated with OM. Unamended caps are expected to be

more effective for mercury attenuation than for arsenic attenuation in estuarine settings

because of the lower solubility of mercury sulfide solid phases compared with arsenic

sulfide phases. Dissolved and solid-phase contaminant concentrations are higher in cases

where advective transport is important because introduction of additional contaminant

mass can overwhelm attenuation mechanisms, particularly for arsenic sorption to iron

oxides. The depth of mercury sulfide precipitation relative to the sediment–water interface

can be partially controlled by changing cap thickness. The minimum thickness to reduce

exposure to ecological receptors will be the depth of the habitat layer; however, the

maximum required thickness may be as little as one meter. Site-specific quantification of

the potential impact of biota on organic carbon is an important consideration during cap

design, as are other physical processes such as compaction, sedimentation, bioturbation,

and bioirrigation that influence the depth of the redox front below the sediment–water

interface. Given the complex interplay between chemical, physical, and biological pro-

cesses, reactive transport modeling provides a quantitative framework that can guide site-

specific cap design, as well as lend insight into coupled physical-biogeochemical processes

in subaqueous sediment systems.
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See Table 7.
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Table 7 Thermodynamic equilibrium constants for arsenic added to default LLNL database

Reaction Log Ka Referenceb

Aqueous As(III) species

H2AsO3
- ? H? = H3AsO3 9.17 1

H2AsO3
- = HAsO3

-2 ? H? -14.06 1

H2AsO3
- = AsO3

-3 ? 2 H? -29.05 1

3 H2AsO3
- ? 6 HS- ? 8 H? = H2As3S6

- ? 9 H2O 99.8 1

H2AsO3
- ? 2 HS- ? 2 H? = H2AsS2O- ? 2 H2O 27.2 1

Na? ? H2AsO3
- = NaH2AsO3 0.25 2

Ca?2 ? H2AsO3
- = CaH2AsO3

? 1.806 2

Fe?3 ? H2AsO3
- = FeH2AsO3

?2 7.282 2

H3AsO3 ? 3 H2S = H3AsS3 ? 3 H2O 7.75 3

H3AsS3 = H2AsS3
- ? H? -2.14 3

H2AsS3
- = HAsS3

-2 ? H? -7.19 3

H3AsO3 ? H2S = H3AsSO2 ? H2O 4.68 3

H3AsSO2 = H2AsSO2
- ? H? -5.26 3

Aqueous As(V) species

H2AsO4
- = H2AsO3

- ? 0.5 O2 -30.53 1

H2AsO4
- ? H? = H3AsO4 2.29 1

H2AsO4
- = HAsO4

-2 ? H? -6.99 1

H2AsO4
- = AsO4

-3 ? 2 H? -18.79 1

Na? ? H2AsO4
- = NaH2AsO4 -1.775 2

K? ? H2AsO4
- = KH2AsO4 -1.895 2

Ca?2 ? H2AsO4
- = CaH2AsO4

? 1.495 2

Fe?2 ? H2AsO4
- = FeH2AsO4

? 2.795 2

Fe?3 ? H2AsO4
- = FeH2AsO4

?2 4.265 2

Na? ? H2AsO4
- = NaHAsO4

- ? H? -6.286 2

K? ? H2AsO4
- = KHAsO4

- ? H? -6.426 2

Ca?2 ? H2AsO4
- = CaHAsO4 ? H? -4.466 2

Fe?2 ? H2AsO4
- = FeHAsO4 ? H? -3.606 2

Fe?3 ? H2AsO4
- = FeHAsO4

? ? H? 2.975 2

Na? ? H2AsO4
- = NaAsO4

-2 ? 2 H? -13.855 2

K? ? H2AsO4
- = KAsO4

-2 ? 2 H? -13.995 2

Ca?2 ? H2AsO4
- = CaAsO4

- ? 2 H? -12.62 2

Fe?2 ? H2AsO4
- = FeAsO4

- ? 2 H? -11.151 2

Fe?3 ? H2AsO4
- = FeAsO4 ? 2 H? -4.595 2

Arsenic solids

AsS (realgar) ? 2.5 H2O ? 0.25 O2 = H2AsO3
- ? 2 H? ? HS- -7.78 1

As2S3 (orpiment) ?6 H2O = 2 H2AsO3
- ? 3 HS- ? 5 H? -64.70 3

As2S3 (am) ?6 H2O = 2 H2AsO3
- ? 3 HS- ? 5 H? -62.51 3

As2O3 (arsenolite) ? 3 H2O = 2 H? ? 2 H2AsO3
- -19.72 1

As2O3 (claudetite) ? 3 H2O = 2 H? ? 2 H2AsO3
- -19.75 1

As2O5 ?3 H2O = ? 2 H? ? 2 H2AsO4
- 3.64 1

Ca4(OH)2(AsO4)2(H2O)4 ? 6 H? = 4 Ca?2 ? 2 H2AsO4
- ? 6 H2O 33.26 2

Ca5(OH)(AsO4)3 ? 7 H? = 5 Ca?2 ? 3 H2AsO4
- ? H2O 29.28 2
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Appendix 2

See Table 8.

Table 8 Thermodynamic equilibrium constants for mercury added to default LLNL database

Reaction Log Ka Referenceb Comment

Mercury inorganic complexes

Hg?2 ? H2O = HgOH? ? H? -3.4 1

Hg?2 ? 2 H2O = Hg(OH)2 ? 2 H? -5.98 1

Hg?2 ? 3 H2O = Hg(OH)3
- ? 3 H? -21.1 1

Hg?2 ? Cl- = HgCl? 7.31 1

Hg?2 ? 2 Cl- = HgCl2 14 1

Hg?2 ? 3 Cl- = HgCl3
- 14.93 1

Hg?2 ? 4 Cl- = HgCl4
-2 15.54 1

Hg?2 ? Cl- ? H2O = HgOHCl ? H? 4.27 1

Hg?2 ? CO3
-2 = HgCO3 11.46 1

Hg?2 ? OH- ? CO3
-2 = Hg(OH)CO3

- 19.32 1

Hg?2 ? CO3
-2 ? H? = HgHCO3

? 15.79 1

Hg?2 ? SO4
-2 = HgSO4 2.4 1

Mercury sulfide complexes

(DOM)- ? H? = (DOM)H 10 2

2 (DOM)H ? Hg?2 = Hg((DOM))2 ? 2 H? 22 2

H2O ? H2S ? Hg?2 = HOHgSH ? 2 H? 19.4 2 c

2 H2S ? Hg?2 = Hg(SH)2 ? 2 H? 23.7 2

2 H2S ? Hg?2 = HgS2H- ? 3 H? 17.5 2

2 H2S ? Hg?2 = HgS2
-2 ? 4 H? 9.2 2

Methylmercury and dimethylmercury

(DOM)H ? CH3Hg? = CH3Hg((DOM)) ? H? 6.5 2

H2S ? CH3Hg? = CH3HgSH ? H? 7.5 2

Table 7 continued

Reaction Log Ka Referenceb

Ca3(AsO4)2(H2O)2 ? 4 H? = 3 Ca?2 ? 2 H2AsO4
- ? 2 H2O 13.37 2

Ca3(AsO4)2(H2O) ? 4 H? = 3 Ca?2 ? 2 H2AsO4
- ? H2O 15.96 2

CaHAsO4(H2O) ? H? = Ca?2 ? H2AsO4
- ? H2O 13.72 2

Fe3(AsO4)2 (symplesite) = 3 Fe?2 ? 2 AsO4
-3 -31.76 4

FeAsO4:2H2O (scorodite) = Fe?3 ? AsO4
-3 ? 2 H2O -25.89 5

FeAsO4:2H2O = Fe?3 ? AsO4
-3 ? 2H2O -23.16 5

CaAs2O4 ? 2 H2O = Ca?2 ? 2 H2AsO3
- -7.14 6

CaHAsO3:0.5H2O ? H? = Ca?2 ? H2AsO3
- ? 0.5 H2O 4.69 6

a Equilibrium constants at 25 �C, values recalculated for internal consistency
b (1) Nordstrom and Archer (2003), (2) Marini and Accornero (2007), (3) Vlassopoulos et al. (2010), (4)
Johnston and Singer (2007), (5) Langmuir et al. (2006), (6) Nishimura and Robins (1998)
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