Skip to main content

Advertisement

Log in

Unveiling the hidden role of disulfidptosis in kidney renal clear cell carcinoma: a prognostic signature for personalized treatment

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The role of disulfidptosis in kidney renal clear cell carcinoma (KIRC) remains unknown. This study investigated disulfidptosis-related biomarkers for KIRC prognosis prediction and individualized treatment. KIRC patients were clustered by disulfidptosis profiles. Differential expression analysis, survival models, and machine learning were used to construct the disulfidptosis-related prognostic signature (DRPS). Characterizations of the tumor immune microenvironment, genetic drivers, drug sensitivity, and immunotherapy response were explored according to the DRPS risk stratification. Markers included in the signature were validated using single-cell, spatial transcriptomics, quantitative RT-qPCR, and immunohistochemistry. In the discovery cohort, we unveiled two clusters of KIRC patients that differed significantly in disulfidptosis regulator expressions and overall survival (OS). After multiple feature selection steps, a DRPS prognostic model with four features (CHAC1, COL7A1, FOXM1, SHOX2) was constructed and validated. Combined with clinical factors, the model demonstrated robust performance in the discovery and external validation cohorts (5-year AUC = 0.793 and 0.846, respectively). KIRC patients with high-risk scores are characterized by inferior OS, less tumor purity, and increased infiltrations of fibroblasts, M1 macrophages, and B cells. High-risk patients also have higher frequencies of BAP1 and AHNAK2 mutation. Besides, the correlation between the DRPS score and the chemotherapy-response signature indicated the potential effect of Gefitinib for high-risk patients. Among the signature genes, FOXM1 is highly expressed in cycling tumor cells and exhibits spatial aggregation, while others are expressed sparsely within tumor samples. The DRPS model enables improved clinical management and personalized KIRC therapy. The identified biomarkers and immune characteristics offer new mechanistic insight into disulfidptosis in KIRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This study did not generate any original sequencing data. The utilized data sources are cited where appropriate throughout the manuscript. All other relevant data is contained within the article and Supplementary Files or available from the authors upon reasonable request. The datasets analyzed in this study can be found in the following public repositories: The TCGA-KIRC RNA, SNP, and clinical data are available on the Genomic Data Commons portal (https://portal.gdc.cancer.gov). The expression matrix and metadata for the E-MTAB-1980 validation cohort are available in the Supplementary Files of the original publication. The single-cell transcriptomic data was obtained from the Single Cell Portal (https://singlecell.broadinstitute.org) under the study "Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma". The spatial transcriptomic data is available on the Gene Expression Omnibus database under accession number GSE175540.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E et al (2018) The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 23(1):313-326.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T et al (2018) Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173(3):611-623.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359(6377):801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakraborty S, Balan M, Sabarwal A, Choueiri TK, Pal S (2021) Metabolic reprogramming in renal cancer: events of a metabolic disease. Biochim Biophys Acta Rev Cancer 1876(1):188559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A et al (2016) An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29(1):104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M et al (2023) Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 25(3):404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao S, Wang L, Ding W, Ye B, Cheng C, Shao J et al (2023) Crosstalk of disulfidptosis-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in bladder cancer based on a machine learning survival framework. Front Endocrinol (Lausanne) 14:1180404

    Article  PubMed  Google Scholar 

  9. Wang T, Guo K, Zhang D, Wang H, Yin J, Cui H et al (2023) Disulfidptosis classification of hepatocellular carcinoma reveals correlation with clinical prognosis and immune profile. Int Immunopharmacol 120:110368

    Article  CAS  PubMed  Google Scholar 

  10. Qi C, Ma J, Sun J, Wu X, Ding J (2023) The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma. Aging (Albany NY) 15(11):5075–5095

    CAS  PubMed  Google Scholar 

  11. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T et al (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45(8):860–867

    Article  CAS  PubMed  Google Scholar 

  12. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2(3):100141

    CAS  PubMed  PubMed Central  Google Scholar 

  14. The Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ et al (2023) The gene ontology knowledgebase in 2023. Genetics 224(1):iyad031

    Article  Google Scholar 

  15. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  17. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  18. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  Google Scholar 

  19. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  21. Racle J, Gfeller D (2020) EPIC: a tool to estimate the proportions of different cell types from bulk gene expression data. Methods Mol Biol 2120:233–248

    Article  CAS  PubMed  Google Scholar 

  22. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S et al (2018) Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun 9(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  25. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28(11):1747–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12(4):R41

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S et al (2012) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(D1):D955–D961

    Article  PubMed  PubMed Central  Google Scholar 

  28. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME et al (2015) Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov 5(11):1210–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171(6):1437-1452.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maeser D, Gruener RF, Huang RS (2021) oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 22(6):bbab260

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J et al (2021) Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39(5):649-661.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8(4):281-291.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young MD, Behjati S (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9(12):giaa151

    Article  PubMed  PubMed Central  Google Scholar 

  34. McInnes L, Healy J, Melville J (2020) UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. http://arxiv.org/abs/1802.03426

  35. Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A et al (2022) Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55(3):527-541.e5

    Article  CAS  PubMed  Google Scholar 

  36. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A et al (2021) Integrated analysis of multimodal single-cell data. Cell 184(13):3573-3587.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. di Meo NA, Lasorsa F, Rutigliano M, Loizzo D, Ferro M, Stella A, Bizzoca C, Vincenti L, Pandolfo SD, Autorino R, Crocetto F, Montanari E, Spilotros M, Battaglia M, Ditonno P, Lucarelli G (2022) Renal cell carcinoma as a metabolic disease: an update on main pathways, potential biomarkers, and therapeutic targets. Int J Mol Sci 23(22):14360

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, Bettocchi C, Ditonno P, Battaglia M (2019) Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 19(5):397–407

    Article  CAS  PubMed  Google Scholar 

  39. Bianchi C, Meregalli C, Bombelli S, Di Stefano V, Salerno F, Torsello B, De Marco S, Bovo G, Cifola I, Mangano E, Battaglia C, Strada G, Lucarelli G, Weiss RH, Perego RA (2017) The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 8(69):113502–113515

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, Maiorano E, Ribatti D, Giglio A, Serino G, Vavallo A, Bettocchi C, Selvaggi FP, Battaglia M, Ditonno P (2015) Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 6(15):13371–13386

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zheng P, Zhou C, Ding Y, Duan S (2023) Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res 42(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li D, Liu S, Xu J, Chen L, Xu C, Chen F et al (2021) Ferroptosis-related gene CHAC1 is a valid indicator for the poor prognosis of kidney renal clear cell carcinoma. J Cell Mol Med 25(7):3610–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chernov AV, Baranovskaya S, Golubkov VS, Wakeman DR, Snyder EY, Williams R et al (2010) Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer. J Biol Chem 285(25):19647–19659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koca D, Séraudie I, Jardillier R, Cochet C, Filhol O, Guyon L (2023) COL7A1 expression improves prognosis prediction for patients with clear cell renal cell carcinoma atop of stage. Cancers (Basel) 15(10):2701

    Article  CAS  PubMed  Google Scholar 

  45. Xue YJ, Xiao RH, Long DZ, Zou XF, Wang XN, Zhang GX et al (2012) Overexpression of FoxM1 is associated with tumor progression in patients with clear cell renal cell carcinoma. J Transl Med 10:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou J, Li P, Feng J, Wu Q, You S (2023) MiR-24–1–5p hinders malignant phenotypes of clear cell renal cell carcinoma by targeting SHOX2. Biochem Genet 61:2004–2019

    Article  CAS  PubMed  Google Scholar 

  47. Lucarelli G, Rutigliano M, Ferro M, Giglio A, Intini A, Triggiano F, Palazzo S, Gigante M, Castellano G, Ranieri E, Buonerba C, Terracciano D, Sanguedolce F, Napoli A, Maiorano E, Morelli F, Ditonno P, Battaglia M (2017) Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol Oncol 35(7):461.e15-461.e27

    Article  CAS  PubMed  Google Scholar 

  48. Li K, Tan L, Li Y, Lyu Y, Zheng X, Jiang H, Zhang X, Wen H, Feng C (2022) Cuproptosis identifies respiratory subtype of renal cancer that confers favorable prognosis. Apoptosis 27(11–12):1004–1014

    Article  CAS  PubMed  Google Scholar 

  49. Kinnaird A, Dromparis P, Saleme B, Gurtu V, Watson K, Paulin R, Zervopoulos S, Stenson T, Sutendra G, Pink DB, Carmine-Simmen K, Moore R, Lewis JD, Michelakis ED (2016) Metabolic modulation of clear-cell renal cell carcinoma with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase. Eur Urol 69(4):734–744

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Yang W, Li Y, Ma L, Ji Z (2023) Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients. Front Immunol 14:1198878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22(8):851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jonasch E, Walker CL, Rathmell WK (2021) Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 17(4):245–261

    Article  CAS  PubMed  Google Scholar 

  53. Kapur P, Christie A, Raman JD, Then MT, Nuhn P, Buchner A et al (2014) BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol 191(3):603–610

    Article  CAS  PubMed  Google Scholar 

  54. Gad S, Le Teuff G, Nguyen B, Verkarre V, Duchatelle V, Molinie V et al (2021) Involvement of PBRM1 in VHL disease-associated clear cell renal cell carcinoma and its putative relationship with the HIF pathway. Oncol Lett 22(6):835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Espana-Agusti J, Warren A, Chew SK, Adams DJ, Matakidou A (2017) Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis. Nat Commun 8(1):2026

    Article  PubMed  PubMed Central  Google Scholar 

  56. Walton J, Lawson K, Prinos P, Finelli A, Arrowsmith C, Ailles L (2023) PBRM1, SETD2 and BAP1—the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol 20(2):96–115

    Article  CAS  PubMed  Google Scholar 

  57. Cossu-Rocca P, Muroni MR, Sanges F, Sotgiu G, Asunis A, Tanca L et al (2016) EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma. Am J Cancer Res 6(1):71–83

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the researchers and study participants for their contributions to this study.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

YY: Data curation, Formal analysis, Writing—original draft, Visualization. SZ: Investigation, Methodology, Writing—original draft, Visualization. XH: Conceptualization, Project administration, Writing—review & editing.

Corresponding author

Correspondence to Xiaopeng Hu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

This study complied with the ethical guidelines outlined in The Code of Ethics of the World Medical Association (Declaration of Helsinki). Informed consent was obtained from all patients participating in this study, and the ethics committees of Beijing Chao-Yang Hospital approved this study.

Consent for publication

After reviewing the manuscript, all authors agreed to its publication in the current form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (XLSX 176 KB)

10495_2023_1933_MOESM3_ESM.jpg

Supplementary file3 (JPG 242 KB)—Supplementary Fig. 1 External validation of the DRPS model in the E-MTAB-1980 cohort. A Nomogram to predict the 1-, 3-, and 5-year survival probability. B Calibration curves of the established nomogram at the given follow-up time. C The decision curve analyses for the established nomogram. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns not statistically significant. ROC Receiver Operating Characteristic. OS Overall Survival. DCA Decision Curve Analysis

10495_2023_1933_MOESM4_ESM.jpg

Supplementary file4 (JPG 232 KB)—Supplementary Fig. 2 Quantifying metabolic reprogramming at pathway level in KIRC bulk samples. A Measuring and comparing metabolic pathway activities in disulfidptosis high-risk and low-risk samples. In the volcano plot, red dots denote pathways that are up-regulated in disulfidptosis high-risk samples. B Bar plot showing the metabolic pathways that are differentially expressed. Terms colored in blue are up-regulated in disulfidptosis high-risk samples, while those in green are down-regulated

10495_2023_1933_MOESM5_ESM.jpg

Supplementary file5 (JPG 189 KB)—Supplementary Fig. 3 Marker validation using in-house samples RT-PCT and public datasets. A Comparison of marker RNA expression between KIRC tumor samples and adjacent normal samples using RT-PCR. B Differential expression of the enrolled markers in TCGA and GTEx samples. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns not statistically significant

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Zeng, S. & Hu, X. Unveiling the hidden role of disulfidptosis in kidney renal clear cell carcinoma: a prognostic signature for personalized treatment. Apoptosis 29, 693–708 (2024). https://doi.org/10.1007/s10495-023-01933-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01933-2

Keywords

Navigation