Skip to main content
Log in

Role of ferroptosis in food-borne mycotoxin-induced toxicities

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Contamination by toxic substances is a major global food safety issue, which poses a serious threat to human health. Mycotoxins are major class of food contaminants, mainly including aflatoxins (AFs), zearalenone (ZON), deoxynivalenol (DON), ochratoxin A (OTA), fumonisins (FBs) and patulin (PAT). Ferroptosis is a newly identified iron-dependent form of programmed or regulated cell death, which has been found to be involved in diverse pathological conditions. Recently, a growing body of evidence has shown that ferroptosis is implicated in the toxicities induced by certain types of food-borne mycotoxins, which provides novel mechanistic insights into mycotoxin-induced toxicities and paves the way for developing ferroptosis-based strategy to combat against toxicities of mycotoxins. In this review article, we summarize the key findings on the involvement of ferroptosis in mycotoxin-induced toxicities and propose issues that need to be addressed in future studies for better utilization of ferroptosis-based approach to manage the toxic effects of mycotoxin contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, McArdle HJ, Raiten DJ (2018) Biomarkers of nutrition for development (BOND)-iron review. J Nutr 148:1001S-1067S

    PubMed  PubMed Central  Google Scholar 

  2. Koleini N, Shapiro JS, Geier J, Ardehali H (2021) Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest 131:e148671

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison BR, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang D, Minikes AM, Jiang X (2022) Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 82:2215–2227

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Venkataramani V (2021) Iron homeostasis and metabolism: two sides of a coin. Adv Exp Med Biol 1301:25–40

    CAS  PubMed  Google Scholar 

  6. Kerins MJ, Ooi A (2018) The Roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal 29:1756–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20:689–709

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, Yu C (2021) Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 17:4266–4285

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H (2020) Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5:e132747

    PubMed  PubMed Central  Google Scholar 

  11. Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X (2020) Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 384:121390

    CAS  PubMed  Google Scholar 

  12. Wu Y, Wang J, Zhao T, Chen J, Kang L, Wei Y, Han L, Shen L, Long C, Wu S, Wei G (2022) Di-(2-ethylhexyl) phthalate exposure leads to ferroptosis via the HIF-1α/HO-1 signaling pathway in mouse testes. J Hazard Mater 426:127807

    CAS  PubMed  Google Scholar 

  13. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282

    PubMed  PubMed Central  Google Scholar 

  14. Ding W, Lin L, Yue K, He Y, Xu B, Shaukat A, Huang S (2023) Ferroptosis as a potential therapeutic target of traditional chinese medicine for mycotoxicosis: a review. Toxics 11:395

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu M, Zhang L, Mo Y, Li J, Yang J, Wang J, Karrow NA, Wu H, Sun L (2023) Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. J Anim Sci Biotechn 14:1–10

    Google Scholar 

  16. Yang X, Huang T, Chen Y, Chen F, Liu Y, Wang Y, Song W, Zhang J, Jiang Y, Wang F, Zhang C (2023) Deoxynivalenol induces testicular ferroptosis by regulating the Nrf2/System Xc(-)/GPX4 axis. Food Chem Toxicol 175:113730

    CAS  PubMed  Google Scholar 

  17. Hou Y, Wang S, Jiang L, Sun X, Li J, Wang N, Liu X, Yao X, Zhang C, Deng H, Yang G (2022) Patulin induces acute kidney injury in mice through autophagy-ferroptosis pathway. J Agric Food Chem 70:6213–6223

    CAS  PubMed  Google Scholar 

  18. Chen H, Cao L, Han K, Zhang H, Cui J, Ma X, Zhao S, Zhao C, Yin S, Fan L, Hu H (2022) Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo. Food Chem Toxicol 166:113255

    CAS  PubMed  Google Scholar 

  19. Sun WC, Wang NN, Li R, Sun XC, Liao JW, Yang G, Liu S (2023) Ferritinophagy activation and sideroflexin1-dependent mitochondrial iron overload contribute to patulin-induced cardiac inflammation and fibrosis. Sci Total Environ 892:164472

    CAS  PubMed  ADS  Google Scholar 

  20. Wang G, Qin S, Zheng Y, Xia C, Zhang P, Zhang L, Yao J, Yi Y, Deng L (2021) T-2 Toxin induces ferroptosis by increasing lipid reactive oxygen species (ROS) and downregulating solute carrier family 7 member 11 (SLC7A11). J Agric Food Chem 69:15716–15727

    CAS  PubMed  Google Scholar 

  21. Ma J, Han Y, Yang H, Liu L, Wei Z, Wang F, Wan Y (2023) Melatonin protects Leydig cells from HT-2 toxin-induced ferroptosis and apoptosis via glucose-6-phosphate dehydrogenase/glutathione -dependent pathway. Int J Biochem Cell Biol 159:106410

    CAS  PubMed  Google Scholar 

  22. Li Y, Zhu Z, Cui H, Ding K, Zhao Y, Ma X, Adetunji AO, Min L (2022) Effect of zearalenone-induced ferroptosis on mice spermatogenesis. Animals (Basel) 12:3026

    PubMed  Google Scholar 

  23. Zhao L, Feng Y, Xu ZJ, Zhang NY, Zhang WP, Zuo G, Khalil MM, Sun LH (2021) Selenium mitigated aflatoxin B1-induced cardiotoxicity with potential regulation of 4 selenoproteins and ferroptosis signaling in chicks. Food Chem Toxicol 154:112320

    CAS  PubMed  Google Scholar 

  24. Lin J, Zuo C, Liang T, Huang Y, Kang P, Xiao K, Liu Y (2022) Lycopene alleviates multiple-mycotoxin-induced toxicity by inhibiting mitochondrial damage and ferroptosis in the mouse jejunum. Food Funct 13:11532–11542

    CAS  PubMed  Google Scholar 

  25. Søderstrøm S, Lie KK, Lundebye AK, Søfteland L (2022) Beauvericin (BEA) and enniatin B (ENNB)-induced impairment of mitochondria and lysosomes-Potential sources of intracellular reactive iron triggering ferroptosis in Atlantic salmon primary hepatocytes. Food Chem Toxicol 161:112819

    PubMed  Google Scholar 

  26. Ganesan AR, Mohan K, Karthick RD, Pillay AA, Palanisami T, Sathishkumar P, Conterno L (2022) Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem 378:131978

    CAS  PubMed  Google Scholar 

  27. Yang X, Chen Y, Song W, Huang T, Wang Y, Chen Z, Chen F, Liu Y, Wang X, Jiang Y, Zhang C (2022) Review of the role of ferroptosis in testicular function. Nutrients 14:5268

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vidal A, Ouhibi S, Ghali R, Hedhili A, De Saeger S, De Boevre M (2019) The mycotoxin patulin: an updated short review on occurrence, toxicity and analytical challenges. Food Chem Toxicol 129:249–256

    CAS  PubMed  Google Scholar 

  29. Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Stela M, Bijak M (2021) T-2 toxin-the most toxic trichothecene mycotoxin: metabolism, toxicity, and decontamination strategies. Molecules 26:6868

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rai A, Das M, Tripathi A (2020) Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 60:2710–2729

    CAS  PubMed  Google Scholar 

  31. Rushing BR, Selim MI (2019) Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol 124:81–100

    CAS  PubMed  Google Scholar 

  32. Frangiamone M, Lozano M, Cimbalo A, Font G, Manyes L (2023) AFB1 and OTA promote immune toxicity in human lymphoblastic T cells at transcriptomic level. Foods 12:259

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan Q, Jiang Y, Fan Y, Ma Y, Lei H, Su J (2019) Fumonisin B(1) induces oxidative stress and breaks barrier functions in pig iliac endothelium cells. Toxins (Basel) 11:387

    CAS  PubMed  Google Scholar 

  34. Liu X, Fan L, Yin S, Chen H, Hu H (2019) Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon 167:1–5

    PubMed  Google Scholar 

  35. Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12:599–620

    CAS  PubMed  Google Scholar 

  36. Forcina GC, Dixon SJ (2019) GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 19:e1800311

    PubMed  Google Scholar 

  37. Ngo V, Duennwald ML (2022) Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants (Basel) 11:2345

    CAS  PubMed  Google Scholar 

  38. Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD (2020) Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 27:436–447

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JY, Kim WK, Bae KH, Lee SC, Lee EW (2021) Lipid Metabolism and Ferroptosis. Biology (Basel), 10

  40. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R, Zhang Z (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321

    CAS  PubMed  Google Scholar 

  41. Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, Sell A, Wei S, Grove S, Johnson JK, Kennedy PD, Gijón M, Shah YM, Zou W (2022) CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40:365–378

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y, Yue C, Cui X, Zhao Q, Liu S, Yang Y, Zhang D, Cao Q, Gao X (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 51:102262

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramakrishnan M, Arivalagan J, Satish L, Mohan M, Samuel SCJ, Chandran SA, Ju HJ, John LA, Ramesh T, Ignacimuthu S, Kalishwaralal K (2022) Selenium: a potent regulator of ferroptosis and biomass production. Chemosphere 306:135531

    CAS  PubMed  Google Scholar 

  44. Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, Selamoglu Z, Hasan M, Kumar M, Alshehri MM, Sharifi-Rad J (2021) Lycopene: food sources, biological activities, and human health benefits. Oxid Med Cell Longev 2021:2713511

    PubMed  PubMed Central  Google Scholar 

  45. Foster, R. G., 2021.Melatonin.Curr Biol, 31, R1456-R1458.

Download references

Funding

This work was supported by the Ministry of Science and Technology of China, the National Key Research and Development Program of China (2022YFF1100205).

Author information

Authors and Affiliations

Authors

Contributions

HH, LF and LC wrote the main text of the manuscript; LC prepared the figures and tables; CZ and SY help to revise and edit the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chong Zhao or Hongbo Hu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Fan, L., Zhao, C. et al. Role of ferroptosis in food-borne mycotoxin-induced toxicities. Apoptosis 29, 267–276 (2024). https://doi.org/10.1007/s10495-023-01907-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01907-4

Keywords

Navigation