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Abstract
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary 
mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for 
ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can 
be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 
macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, 
while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit 
the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by 
inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation 
of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state 
of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of 
macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in 
clinical settings.

Keywords Pulmonary fibrosis · Macrophage polarization · Classically activated (M1) macrophages phenotypes · 
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MyD88  Myeloid differentiation factor 88
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caspase
APAF1  Apoptotic protease activating factor 1
Asp  Aspartic acid
Fas  CD95
FasL  Fas ligand
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cFLP  Cellular FLICE-inhibitory protein
IAP  Inhibitor of apoptosis protein
DISC  Death-inducing signaling complex
DNase  Deoxyribonuclease
RIPK1  Receptor-interacting protein kinase 1
TRADD  TNFR1-associated death domain
mTOR  Mechanistic target of rapamycin
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Atg  Autophagy-related protein
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mtDNA  Mitochondrial DNA
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USP19  Ubiquitin-specific protease 19
TNFR1  Tumor necrosis factor receptor 1
STING   Stimulator of interferon genes
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Background

Pulmonary fibrosis (PF) is a progressive disease that can 
raise the mortality and the rate of disability of patients 
with lung disease. The clear mechanism of the pathological 
procedure is still unknown, while there lots of advances in 
past decades. Macrophage, with the ability to polarize into 
different phenotypes, is an innate immunological cell that 
plays a contradictory but connected role in pulmonary fibro-
sis. How the dead form of cells participates in fibrosis by 

effect macrophages has attracted researchers a lot whereas 
the association between macrophages and cell death is in 
a mess yet. This review aims to figure out the underlying 
interrelationship between macrophage and cell death form 
and expounds a possible mechanism of pulmonary fibrosis 
from a novel sight.

Introduction

Pulmonary fibrosis (PF) is the most common fibrosing lung 
disease with poor prognosis and no effective treatment [1]. 
It is characterized by the development of excessive ECM 
deposition, leading to decreased static lung compliance, 
disrupted gas exchange and respiratory failure and death 
[2]. The median survival time for patients with idiopathic 
pulmonary fibrosis (IPF), the most classical disease of PF, 
is approximately 3 years after initial diagnosis due to unsat-
isfactory effect of current anti-fibrosis drugs [3].

Previous studies have confirmed that excessive deposition 
of ECM is an important factor in the progression of PF [4]. 
The formation of ECM is a pathological process of abnor-
mal repair after alveolar epithelial cells (AECs) injury [5]. 
Therefore, it is very important to control the inflammatory 
response and carry out normal repair of the damaged tissue. 
In normal tissue repair, macrophages are important cells 
to degrade and absorb ECM [6]. Macrophages are mainly 
involved in tissue damage repair in the immune regulatory 
pathway of the human body [7]. Bone marrow monocytes 
migrate into tissues and become tissue macrophages [8]. At 
this time, the macrophages are in a dormant state, which 
is called resting-state (M0) macrophages [9]. When AECs 
are injured, monocytes gather in the lung interstitium [10]. 
Under the influence of pro-inflammatory factors, M0 mac-
rophages differentiate into classically activated (M1) mac-
rophages [7]. Once activated, M1 macrophages will produce 
tumor necrosis factor-α (TNF-α), L-1β and oxygen free radi-
cals to fight infection or remove foreign substances, thus ter-
minating the damage repair process and preventing excessive 
repair [9]. However, the differentiation of M0 into alterna-
tively activated(M2) macrophages can be over-anti-inflam-
matory and promote abnormal tissue repair [11]. This exces-
sive activity of M2 macrophages may lead to the occurrence 
of various fibrosis diseases [9]. In conclusion, macrophages 
play an important role in maintaining the homeostasis of 
lung tissue, and the maladjustment of the polarization direc-
tion of macrophages can lead to the occurrence of PF.

The direction of macrophage polarization is controlled by 
different cell death forms such as apoptosis, pyroptosis and 
autophagy. These death forms are also closely related to PF 
[12–14]. Pyroptosis is a process of programmed cell death 
mediated by classical inflammasome pathway [15]. The acti-
vation of inflammasome pathway will induce macrophages 
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to gather and produce cascade inflammatory reaction [16]. 
The lysed macrophages will not only promote the secre-
tion of cytokines such as IL-1 and IL-18, but also lead to 
TGF-β1 secreted by M2 macrophages, which promotes the 
ECM deposition and the inflammatory process in PF [9]. 
Autophagy can also regulate the polarization direction of 
macrophages and participate in the regulation of inflam-
matory response [12]. Autophagy is an evolutionarily con-
served and genetically regulated pathway that serves to 
degrade and clear subcellular components [12, 17]. Exces-
sive macrophage autophagy will increase the occurrence 
of apoptosis, promote the transformation from M1 to M2, 
and degrade the activation of NF-κB (nuclear factor-kappa 
B) inflammatory signal pathway, inhibiting the production 
and release of proinflammatory factor TNF-α, IL-6, IL-1β 
and IL-12 [18]. Finally, the above process affected the deg-
radation of ECM and promoted the abnormal repair [12]. 
Therefore, autophagy is involved in PF by regulating the 
direction of polarization of macrophages and regulating 
cytokine secretion.

Emerging evidence has revealed that macrophages death 
plays important roles in influencing the progression of PF 
[10]. There is increasing recognition that inflammation and 
cell death reciprocally affect each other and form an auto-
amplification loop of these two factors, which in turn exag-
gerates fibrosis [19]. Therefore, pharmacological manipula-
tion of macrophages death signals may potentially serve as a 
logical therapeutic strategy for PF. This review will focus on 
recent advances in the regulation of AM death and underly-
ing mechanisms on the development of PF.

Analysis of macrophages in human PF lungs

The distinction of the composition of macrophages in human 
fibrosis pulmonary lungs, compared with normal people, has 
been reported [20–22]. Researchers analyzed the composi-
tion of macrophages in fibrosis lung, finding that resident 
alveolar macrophages and monocytes-derived macrophages, 
which however now can be further classified into 3 or 4 
populations via single-cell RNA-sequencing(scRNA-seq), 
comprise the major macrophage population [21]. In 2018, 
researchers first described that there were at least 2 distinct 
macrophage populations associated with the process of PF, 
which is both highly expressing genes SPP1 and CHI3L1 
[21]. Furthermore, a study suggested that only the SPPS1hi-
macrophages which notably express MERTK were increased 
in the lung tissues which indicated this subpopulation of 
macrophages would be the potential highlight of a thera-
peutic field in PF [23].

Scholars applied a self-organizing map algorithm 
(FlowSOM) to identify which subsets of myeloid cells 
participate in fibrosis, revealing that the myeloid lineage 

cells in IPF can be divided into functional six subsets: 
monocyte-like cells, monocyte-derived macrophages, 
monocyte-derived dendritic cells, interstitial mac-
rophages, dendritic cells and alveolar macrophages [24]. 
Amid them, monocyte-like cells, monocyte-derived mac-
rophages (CD206-subsets) and interstitial macrophages 
(CD206-subsets) are decreased in IPF lungs. In addition, 
researchers observed that the AMs from patients with IPF 
over-expressed a range of regulative genes like ITGB1, 
ITGB2, S100A8, and FN1 [24]. Collectively, by analysis, 
the diversity of macrophages in IPF, and specific patho-
logical mechanisms of PF would be deeply clarified in 
the future.

Role of macrophages in PF

Macrophage‑derived secretory proteins and PF

In any phase of PF, macrophages mediate different immu-
nocytes to participate in the process of fibrosis via releas-
ing a variety of proteins, like growth factors, chemokines, 
and enzymes [25]. TGF-β, some of which is released by 
macrophages, as the most major effective profibrotic factor 
is widely researched [26]. It is positive feedback that cells 
exposed to TGF-β secrete more of this cytokine, interest-
ingly [25]. Besides, macrophages secrete platelet derived 
growth factor (PDGF), vascular endothelial growth factor 
(VEGF) and insulin like growth factor-1 (IGF-1) to advance 
the proliferation of fibroblasts and the synthesis of colla-
gen [27]. Nintedanib, an intracellular inhibitor of tyrosine 
kinase receptor, has been demonstrated to hinder fibrosis 
by targeting PDGF, VEGF and FGF (fibroblast growth fac-
tor) and is considered as a novel pharmacological treatment 
[28, 29]. Macrophages can release chemokine (C-C motif) 
ligand-2 (CCL2) and chemokine (C-C motif) ligand-18 
(CCL18) to recruit circulation-derived monocyte to aggra-
vate fibrosis, which is similar to IL-1β [30]. Nevertheless, 
macrophages, with the capability of secreting MMPs (matrix 
metalloproteinases) to promote the degradation of ECM, can 
abate fibrosis [31, 32]. Quite a few researches prove that 
the expression of MMP-3 augments in the lung tissue of 
patients with PF, which induces fibroblast activation and 
epithelial interstitial transformation [31, 33, 34]. In contrast, 
MMP-3 can not only activate TGF-β to exacerbate fibrosis 
but show the ability to encumber IGF-1 to execute the role 
of anti-fibrosis [31]. Macrophages rely on those secretory 
proteins, showing distinct functions, some of which even are 
contradictory [7]. This phenomenon may relate to different 
micro-environment to which macrophages exposure and to 
the different subpopulations of macrophages which would 
be further elucidated following.
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Macrophage polarization in PF

Macrophage activation is periodical which indicates the 
plastic feature of macrophages [35]. In the process of mac-
rophage activation, macrophages can differentiate into two 
functionally distinct sub-phenotypes which differ in inducing 
factors and expression of surface markers (Fig. 1). Firstly, 
the M1 macrophage is involved in PF mainly in the early 
stages of injury to mediate the inflammatory response, basi-
cally induced by lipopolysaccharide (LPS), granulocyte-
macrophage colony stimulating factor (GM-CSF), IFN-γ, 
TNF-α [36]. M2 macrophages can release several profibrotic 
cytokines and newly study points out that M2 can show phe-
notype of M1 by giving LPS and IFN-γ in vitro culture, 
additionally finding that the fibrosis of model mice was alle-
viated [35, 37]. That may be a potential way of treating PF. 
However, researchers tended to consider both M1 and M2 

in the pathogenesis of PF in recent years [10]. Functionally, 
M1 macrophages, which show an excellent ability to medi-
ate tissue injury, contribute to boosting the immunoreaction 
of the host by releasing intracellular and pro-inflammatory 
cytokines and chemokines, like TNF-α, IL-1, IL-6 and 
IL-12 and the removal of pathogens through generating 
the ROS (active oxygen species) [38]. At the early stage of 
inflammation, M0 can transform into M1 induced by induc-
ers like LPS, IFN-γ and GM-CSF [9, 39]. Normally, M1 
macrophages promote an inflammatory response in lung air 
space and then re-transform into M2 macrophages which 
play an important role in wound healing or anti-inflamma-
tion [7]. However, without appropriate termination, M1 will 
cause excessive inflammation and exacerbate the injury of 
the AECs via the cytotoxic and pro-inflammatory effects, 
finally causing aberrant fibroblast proliferation and hyper-
nomic ECM deposition [9]. M2 macrophages are used to be 

Fig. 1  M0 can polarity into 
M1 and M2 by distinct stimuli. 
M1 plays an inflammatory role 
by releasing ROS, IL-1, IL-6, 
and IL-12 while M2 has the 
profibrotic potential with the 
releasing of TGF-β, IL-4, IL-10 
and PDGF in PF
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considered the main effect cell in the repair or fibrosis of 
tissue injury and can release pro-fibrotic cytokines such as 
TGF-β, IL-4, IL-10 and PDGF, which promote transforma-
tion and proliferation of fibroblast and myofibroblast [40]. 
Researchers used to establish an early PF model via bleo-
mycin, finding that the depletion of M2 will abate PF [41]. 
Collectively, the unbalance of the proportion of M1 with M2 
play an important role in the development of PF.

Pyroptosis in macrophage drived PF

Pyroptosis is a form of regulated cell death

Pyroptosis is defined as inflammatory programmed cell 
necrosis which induces DNA damage and chromatin con-
densation, having the ability to protect the host from the 
infection of pathogenic bacteria or other non-infection dam-
age by inducing local inflammation [15]. However, because 
of the fleetly numerous pro-inflammatory cytokines released, 
and the inflammasome dependency, pyroptosis is mechanis-
tically distinct from apoptosis and any other forms of cell 
death [42]. When cells are stimulated by inflammatory or 
injury factors, intracellular Caspase can be activated by the 
corresponding pathway and cleavage pro-gasdermin, pro-
IL-1β and pro-IL-18, ultimately lead to cytomemobrane rup-
ture and release of IL-1β and IL-18 [15, 43]. The assembly 
of inflammasome plays an extraordinarily important role in 
this progression [44]. Inflammasomes are a kind of cytosolic 
multi-protein platform and are constituted by at least three 
main components, including nod-like receptors (NLRs), pro-
caspase-1, and apoptosis-associated spot-like proteins (ACS) 
[16]. The NLRs family, which is prominent basis of the 
classification of the inflammasome, is a cytoplasmic group 
of  pattern recognition receptors (PRRs) and characteris-
tic proteins contained at the N-termini of NLRs subdivide 
these receptors into at least four subfamilies: NLRAs (with 
a trans-activating domain at the end), NAIPS (with apopto-
sis inhibitory repeat at the N terminal), NLRPs (with pyrin 
binding domain at the N terminal) and NLRCs (with Cas-
pase recruitment domain protein, CARD, at the end) [45].

Depending on the distinction between the activated 
enzyme and the main procedure, pyroptosis can be divided 
into two pathways [15]. Firstly, the canonical inflamma-
some pathway characteristically requires the activation of 
the enzyme of caspase-1 [42, 43, 46, 47]. However, the acti-
vation of capcase-1 depends on the assembly of inflamma-
some which is activated by different upstream pathways [45]. 
Different types of stimuli, including double-stranded DNA, 
and bacterial LPS act on NLRs (like the NOD-like recep-
tor thermal protein domain associated protein 3, NLRP3) 
and spark downstream procedure, those phosphorylated 
NLRP3 recruit CARD-containing ACSs, which further 
recruit pro-caspase-1 through their CARDs and the three of 

them assemble to form the inflammasome, which converts 
the pro-caspase-1 into caspase-1 [43]. Converted caspase-1 
can simultaneously cleavage pro-IL1β, IL-18 and gasdermin 
D (GSDMD), producing bioactive IL1β, IL-18 and two snip-
pets of GSDMD (N-terminal and T-terminal GSDMD) [47]. 
And the NT-GSDMD oligomerizes and forms plasma-mem-
brane pores which leads to the fatal release of proinflamma-
tory intracellular contents in the end [15, 42, 47]. Differing 
from the canonical pathway of pyroptosis, the upstream 
PRRs are unnecessary for the non-canonical pathway [15, 
48]. Recent studies further indicated that both caspase-4 and 
caspase-5 in humans can be directly triggered via binding 
to cytosolic LPS [49, 50]. Caspase-11/4/5 cannot directly 
mature pro-IL-1β and IL-18, unexpectedly, they can mediate 
the secretion of IL-1β/ IL-18 via NLRP3/caspase-1 pathway 
and can cleave GSDMD, resulting in pyroptosis eventually 
[51, 52].

Pyroptosis‑derived cytokines in macrophage

Pyroptosis happening in macrophages can cause the release 
of intracellular cytokines which have an extraordinary ability 
on leading to inflammation [43]. Those cytokines including 
IL-1β and IL-18 both exist in macrophages in precursor form 
and will be cleaved once the caspase is mature [53].

IL-1β, which shows robust relevance to inflammation, 
participates in a variety of immune phenomena like the 
migration of monocyte, fever of a host and expression of 
various chemokines [53, 54]. As to IL-18, it plays an impor-
tant role in the expression of IFN-γ and activation of Th cells 
and other immune cells [55]. Dimeric caspase on the inflam-
masome can cleave the pro-IL-1β, pro-IL-18 and gasdermin 
meanwhile, and the N-terminal from the cleaved gasdermin 
form a pore on the cell membrane which leads to k + efflux 
and cell swelling and result in the releasing of IL-1β and 
IL-18 [47]. New research has suggested that LPS can bind 
with and directly activate caspase-4/5/11 without the need 
for PPRs, while caspase-4/5/11 cannot cleave the pro-IL-1β 
and pro-IL-18 but via the NLRP3 pathway to activate the 
caspase-1 to mature those cytokines [47, 56]. Additionally, 
researchers reported that LPS activates caspase-1-dependent 
pyroptosis by binding to toll-like receptor-4 (TLR4) expres-
sion on the macrophage surface, subsequently upregulating 
IL-1RI expression on macrophages through NF- kB sign-
aling pathway, increasing macrophage sensitivity to IL-1β 
and promoting assemble of the inflammasome, thus further 
promoting pyroptosis [57]. Differing from those pathways 
mentioned above, high mobility group box 1 (HMGB1), 
which is released from cells in the injury area, binds to the 
receptor for advanced glycation end products the receptor 
for advanced glycation end products (RAGE), inducing the 
endocytosis of HMGB1 and formation of ACS which acti-
vates the caspase-1 later [58–60]. Significantly, some studies 
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showed that the assembly of inflammasome and activation 
of caspase not consequentially induce pyroptosis but cause 
necroptosis and the mechanism of this phenomenon is still 
in the mist [61, 62].

Macrophage pyroptosis in PF

The fact that macrophage polarization does have a great 
effect on PF is generally proven [6]. Similarly, macrophage 
pyroptosis, because of the release of pro-inflammatory 
cytokines and regulating polarization, is considered to 
relate to PF (Fig. 2). CCL2, the classical inflammatory cell 
chemokines, not only plays an important role in boosting 
inflammation in the early period of PF but has a profibrotic 
capacity [63]. Growth evidence proved the notion that CCL2 
can rise the expression of ECM and promote the TGF-β 
released by fibroblasts in the pulmonary, stimulating the 
deposition of collagen [63]. Additionally, CCL2, by acti-
vating the ERK1/2 pathway, contributes to the release of 
IL-6 which efficaciously restrains the death of fibroblasts 
via the IL-6/STAT3 pathway [30, 64]. The conception that 
the NLRP3-inflammasome which participates in mac-
rophage pyroptosis is associated with PF is widely accepted 
[16, 65–67]. On the one hand, NLRP3-inflammasome, as 
the most classical inflammasome of pyroptosis, induce the 
inflammatory death of macrophages. On the other hand, it 
has been demonstrated that this inflammasome promoted the 
epithelial interstitial transformation in bleomycin-induced 

fibrosis by regulating levels of TGF-β [68–72]. NOD-like 
receptors are widely expressed in the cytoplasm of immune 
cells such as monocytes, lymphocytes and NK cells and have 
the function of identifying damage associated molecular pat-
terns (DAMPs) and pathogen associated molecular patterns 
(PAMPs) and participating in the pyroptosis and the polari-
zation of macrophages [73, 74]. Research in 2022 reported 
that the expression level of M1 macrophage and the NLRP-
related protein casp-1 are decreased by applying discoidin 
domain receptor-1 inhibitor (DDR1-I) in Raw264.7 mac-
rophages in vitro [75]. Additionally, researchers found that 
oleamide shows the capacity of activation of NLRP3-inflam-
masome, consequently promoting polarization of M0 into 
M1 [76]. And the activation of NLRP3-inflammasome is one 
of the most important procedures of pyroptosis [44]. Also, 
the TLR4/NK-κB pathway working as a classical inflam-
matory pathway is not only associated with macrophage 
polarization but participating in macrophage pyroptosis 
[57]. TLR4 which is classically activated by DAMPs recruits 
downstream myeloid differentiation factor (88MyD88) by 
homophile interaction [77]. MyD88 is a type of cytosolic-
soluble protein, which has the ability to phosphorylate 
IKKβ and further phosphorylate I-κB leading to the forfeit 
of bioactivity of suppression κB [78]. The final effect of this 
course is the release of the P65 / P50 NF- κ B dimer and 
the promotion of the transcription of NLRP3-inflammasome 
as well as other inflammatory factor precursors [79]. After 
completion of transcription of NLRP3-inflammasome, it 

Fig. 2  Pyroptosis has two main pathways: canonical pathway and 
non-canonical pathway. The canonical pathway is regulated by 
inflammasome assembly which is mainly activated by PAMPs and 
DAMPs. Active NLRP3 binds pro-caspase-1 via ACS to form the 
NLRP3-inflammasome, further hydrolyzing and activating pro-cas-
pase-1. Caspase-1 of dimerization cleaves GSDMD and pro-IL-1β 

and pro-IL-18, forming an unselective pore on the cytomembrane, 
secreting IL-1β and IL-18 and influx of water, causing cell death. 
Non-canonical pathway initialed by caspase-4/5/11 which is acti-
vated by LPS. Active caspase-4/5/11 activates caspase-1 and cleaves 
GSDMD directly, leading to pyrotosis
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will mediate the pyroptosis of macrophages [80]. Pyrop-
totic macrophages will release inflammatory cytokines IL-1β 
which is an important regulatory factor in polarization [53, 
74]. With pretreated with low concentrate of Pirfenidone 
for 24 h, researchers found that the polarization of M2 was 
inhibited in Raw264.7 cells because of downregulation of 
NF-κB p50 [81].

A conclusion that can be drawn from those researches 
is that there is a potential association between macrophage 
polarization and pyroptosis, and both of their effect on fibro-
sis of pulmonary. A deeper mechanistic understanding of 
this relationship which needs to be further researched would 
offer an innovative and more precise targeted therapy strat-
egy for PF.

The macrophage of other death forms in PF

Macrophage apoptosis in PF

Macrophage apoptosis is associated with PF (Fig. 3). Com-
pared with pyroptosis, apoptosis, which is mediated by 
two certain pathways: the intrinsic and the extrinsic path-
way, is traditionally considered as a non-immunologically 
linked form of cell death [19]. Research in 2016 reported 
that Grp78 as the major unfolded protein response regulator 
shows the ability to suppress macrophage apoptosis, conse-
quently exacerbating bleomycin-induced PF [82]. Moreo-
ver, after being disposed of by LPS, researchers found that 
PF in a mouse model of silicosis was aggravated because 
of promoted apoptosis and inflammation in AMs [83]. Of 
note, apoptosis-relating caspase-3/-7 can hinder pyroptosis 
in the way of cleaving the non-inflammatory site Asp87 of 
GSDMD [46]. Postponed apoptosis of macrophages con-
versely induces pathological inflammation and continu-
ously boosts pro-inflammatory cytokines release [45, 84]. 

TREM-1 knockout mice show diminishing inflammation in 
the LPS-induced pulmonary injury model [85]. Mice are 
protected from bleomycin-induced PF once c-FLIP, an anti-
apoptotic protein, is deleted from CD11bhi macrophages 
[86]. In conclusion, excessive infiltration of macrophages 
promotes PF and suitable repression of this effect would be 
a novel research direction in treating PF in the future.

Macrophage autophagy in PF

Autophagy, which is mediated by the mechanistic target 
of Rapamycin (mTOR), the ER stress, the insulin path-
way, and a variety of other pathways, features as a form 
of catabolic cellular components that is highly conserved 
and autophagosome-dependent (Fig. 4.) [87, 88]. In addi-
tion, to contribute in sustain the metabolic balance of cells, 
autophagy has also been shown a relationship with mac-
rophage pyroptosis in PF [89–91]. Recent research reported 
that Resolvin D2 (RvD2), an anti-innate-immune mediator, 
promoted the degradation of NLRP3-inflammasome with the 
indeterminate mechanism, however [92]. Moreover, the loss 
of autophagy-related proteins was observed in the capacity 
of augmenting the release of IL-1β and pyroptosis in 2008 
[93]. PAMPs and DAMPs activated autophagy by PRRs 
signaling pathway downregulates pyroptosis via eliminat-
ing the cleaved GSDMD produced by caspase which may be 
related to the AMPK-eEF-2 K pathway [18]. DAMPs, like 
HMGB1 and interleukin, initial and promote local inflam-
mation in the early stage of fibrosis and ROS, reactive nitro-
gen species (RNS), and mitochondrial DNA (mtDNA) have 
the ability to induce autophagy by causing mitochondria 
damage [94, 95]. Damaged or dysfunctional mitochondria 
can release ROS and mtDNA, forming a cascade of pro-
pyroptotic factors, resulting in NLRP3-inflammasome exces-
sive activation. However, those factors initial mitophagy 

Fig. 3  Apoptosis is mediated by 
intrinsic and extrinsic pathways. 
a Intrinsic pathway; b Extrinsic 
pathway
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meanwhile, activating the mitochondrial autophagosome, 
following decomposing the damaged mitochondrial, leading 
inhibition of pyroptosis. RNS, similar to ROS, is responsible 
for the promotion of pyroptosis, whose clearance may abate 
macrophage pyroptosis via autophagy [94, 96–98]. After the 
knockout of the autophagy-related protein-7 (Atg7) gene, 
the activity of the inflammasome of macrophage and the 
level of serum IL-1β are raised in mice models of pseu-
domonas aeruginosa-induced sepsis [99]. All these findings 
indicate that autophagy has an excellent ability to eliminate 
inflammation. which may link with suppressing macrophage 
pyroptotic death.

Autophagy mediates PF via multi-pathway on the other 
hand. In the acute inflammatory phase of PF, autophagy is 
widely activated, to clear the invading pathogenic substances 
[100, 101]. However, it had been reported that, in the lung 
tissue of patients with PF, the autophagosomes were remark-
ably decreased [102, 103] and ubiquitinated proteins were 
accumulated in cells [12], which indicated that autophagy 
is inhibited in the fibrotic phase of this disease which 
leads to disability of removing ECM and returning fibro-
sis of pathological pulmonary. Chemokine (C-X3-C motif) 
receptor 1(CX3CR1), expressed on the macrophage, NK 
cells and T lymphocytes, is the receptor for CX3CL1 and is 
important to induce the generation of ROS and macrophage 
autophagy [104]. The overexpression of CX3CL1 promoted 
fibrosis in a mouse model of hyperoxic lung injury, which 
is related to the activation of Akt1-mediated autophagy of 
macrophage. By further using CX3CL1 inhibitor, 3-methy-
ladenine (3-MA), macrophage autophagy, and fibrosis of 
pulmonary were reduced [105]. The classical hypoglyce-
mics metformin is recently found to be able to activate the 
AMPK-mTOR pathway, thereby attenuating PF in silicosis 
[106]. Besides, autophagy exacerbates fibrosis via promoting 

M2 macrophage polarization. DHA (docosahexaenoic acid) 
enhances the transformation of M2 through autophagy and 
the p38-MAPK pathway [107]. Ubiquitin-specific protease 
19 (USP19), as a type of deubiquitinating enzyme, positively 
effect M2-like macrophage polarization by the autophagy-
related response to NLRP3 [108]. However, interestingly, 
researchers found that isoprenaline can down-regulate 
autophagy by activating ROS-ERK and mTOR signaling 
pathways, enhancing M2 macrophage polarization [109].

In summary, a growing number of researches demonstrate 
the robust relationship between autophagy and pyroptosis in 
PF. It is clear that autophagy participates in process of PF in 
a pyroptosis-dependent or M2 macrophage-dependent way. 
Nevertheless, the question of whether are there more interac-
tion between autophagy and fibrosis is open yet.

The crosstalk between the signaling pathway 
of pyroptosis, apoptosis and autophagy

Growth number of researches have been established a more 
complex mode of cell death and as crosstalk among them 
[18, 46]. To make a deep understanding of those forms of 
cell death in PF, it is necessary to elucidate some essential 
signal pathways and the crosstalk of them (Fig. 5). The term 
inflammasome was first described in 2002 [110]. It had been 
widely proven in past decades that the nod-like receptor fam-
ily and pyrin and HIN domain family were involved in the 
formation of an inflammasome [111–113]. The NLRP3 is 
greatly important for human immune defenses, whose acti-
vation may relate to multifactor. The NLRP3 is mainly com-
posed of 3 domains: C-terminal leucine-rich repeats (LRR), 
a nucleotide-binding oligomerization domain (NACHT) 
domain and the N-terminal pyrin domain (PYD). The 
NLRP3 recruits and activates caspase-1 by binding ASC 

Fig. 4  The main process of 
autophagy is the formation of 
autolysosomes
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[114]. The activation of NLRP3 which includes initial up-
regulation of NLRP3 and the level of pro-IL-1β is essential 
for this procedure [115]. To date, it was thought that k+ out-
flowing, ROS and lysosomal damage are the three major 
hypotheses in the field of activation of NLRP3, however, 
the precise mechanism is in controversial yet [116–118]. In 
fact, some of researches suggest that NK-κB plays a specific 
role in the activation of NLRP3 [119, 120]. Once activated 
by DAMPs or PAMPs, TLRs recruit downstream MyD88 
which phosphorylates IKKβ via the IRAK-TRAF6-NIK 
pathway and then further phosphorylates I-κB, leading to 
the deprivation of bio-activity of inhibiting κB, which final 
causing the transcription of NLRP3-inflammasome and the 
precursor of other inflammatory cytokines [120, 121]. The 
inflammasomes need to undergo several other post-trans-
lational modifications including ubiquitination [122] and 
sumoylation [123] before it is activated. After the assem-
bly of NLRP3-inflammasome is finished, caspase-1 would 
be activated in certain vitro conditions [71, 124]. However, 
new researches also indicated that TLR4/MyD88 signaling 
pathway can initial NLRP3-inflammasome through a non-
transcriptional mechanism which may relate to the produc-
tion of mtROS [125].

Distinct from pyroptosis, caspases that participate in 
apoptosis can be functionally classified as initiator caspases, 

including caspase-8 and -9 and executioner caspases, includ-
ing caspase-3 and -7 [126–128]. Tumor necrosis factor 
receptor 1 (TNFR1) activated by TNF-α recruits the RIPK1 
which is ubiquitinated after the complex-I is formed, and 
RIPK1 will be deubiquitinated if the inhibitor of apopto-
sis proteins are lacking and deubiquitinated RIPK1 forms 
complex-II, then activating pro-apoptotic caspase-8, one 
component of complex-II, finally causing apoptosis [19]. 
Caspase-8 is the major part of the connection between 
pyroptosis and apoptosis. Caspase-8 not only has the ability 
of proteolysis to process caspase-1 but also plays an integral 
role in the transcription of NLRP3 and IL-1β [129]. Fur-
thermore, caspase-8 can directly activate GSDMD whose 
cleavage participates in the formation of NLRP3 and pro-
duction of IL-1β during the infection of Yersinia, following 
the blockade of TAK1 [130]. Caspase-1 also is the evidence 
for the relativity between pyroptosis and apoptosis, in 2008 
when it was observed that caspase-1 can cleave caspase-7 
in macrophages [131]. Researchers found that caspase-1 can 
activate caspase-3 in the condition of deficiency of GSDMD 
[132].

Similar to apoptosis, it has been found that signaling 
pathways regulating autophagy are involved in regulating 
pyroptosis [18]. The mTOR pathway plays a more crucial 
role in the autophagy of cells. Insulin and IGF activate the 

Fig. 5  The crosstalk between the signaling pathway of pyroptosis, 
apoptosis, and autophagy. DAMPs and PAMPs can activate the cor-
responding receptor, recruiting cytosolic MyD88, and starting the 
NK-κB pathway. In the process of post-transcription of NLRP3, pro-
caspase-1 and pro-IL-1β/18, the apoptotic caspase-8 can promote 

the activation of GSDMD and induce the proteolysis of NLRP3 and 
contribute to the transcription of NLRP3, pro-caspase-1 and pro-
IL-1β/18. SESN2 can induce mitophagy which releases the mtROS 
which acts as a PAMP. Adrenomedullin promotes autophagy via 
ROS/AMPL/mTOR pathway, abating pyroptosis of the cell
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RTKs and activate the PI3K-AKT signaling pathway, the 
activated AKT phosphorylates TSC1/2 which dissociates 
from lysosome and subsequently activates Rheb, the activa-
tor of mTORC1 [133, 134]. Interestingly, AKT also partici-
pates in the modulation of the mTORC2 pathway of which 
mechanism is still not completely clear [135]. The overpro-
duction of ROS can not only activate NLRP3 inflammasome 
which has been mentioned above but induces autophagy also 
[136]. Researchers found that the pyroptosis of Leydig cells 
was alleviated after being processed by adrenomedullin by 
promoting autophagy via the ROS/AMPK/mTOR pathway 
[137]. SESN2, a stress-derived protein, inhibits activation 
of NLRP3-inflammasome in macrophage, by inducing 
mitophagy which is a form of autophagy [138]. Cytosolic 
DNA acts as the activator of stimulator of interferon genes 
(STING) via the GMP/cGAMP pathway which is the clas-
sical pathway of inducing autophagy [139].

Collectively, the crosstalk between apoptosis, autophagy 
and pyroptosis has been further studied in recent years but 
some of the mechanisms still are unclear. More researches 
are needed to conduct on the crosstalk between pyroptosis 
and the other two cell death forms, especially in the field of 
PF. In the past, we often take the impact of only one mode 
of cell death into consideration in PF, while simultaneously 
neglecting the potential effect of other forms of cell death. 
An all-inclusive understanding of cell death happening in the 
process of PF will provide a novel direction of research in 
PF which possibly contributes to the treatment and quality 
of life of patients with PF.

Conclusion

Lung M1 and M2 macrophages are distinct cell subtypes 
and are both involved in the pathogenesis of PF. M1 and M2 
macrophages play different roles in the pathogenesis of PF. 
Generally, M1 macrophages are responsible for wound heal-
ing after alveolar epithelial injury, while M2 macrophages 
are determined to over repair the damaged tissue and termi-
nate the degradation of ECM in the lung [9]. A variety of 
regulatory cytokines, chemokines, mediators and immune-
regulatory cells affect macrophage polarization in the lung 
[9]. Studies have provided evidence for a connection between 
cell death and macrophage polarization and understanding 
of the impact of macrophage death on ECM accumulation is 
critical in fully elucidating the mechanisms underlying PF. 
Following an initial event of chronic persistent injury, cell 
death and inflammation can induce each other and drive a 
release of regulatory cytokines, chemokines, mediators that 
lead to exaggerated fibrosis effects [10, 102]. Macrophage 
pyroptosis can activate the release of signaling pathways 
caspase-1 and IL-1 and promote the secretion of TGF-β1 
[43], thus promoting the proliferation and differentiation of 

myofibroblasts and inflammatory response. Apoptosis and 
autophagy were thought to be the form of cell death during 
homeostasis and development and has been heavily studied 
and discussed in numerous pieces of literature on PF [19, 
101, 102]. The gaps in our knowledge of cell death include 
whether different types of cell death signaling developed 
separately as responses to specific triggers or whether they 
represent parts of a signaling network that follow common 
regulatory mechanisms.

Although therapies for PF included a variety of drugs and 
non-pharmacological interventions remain unsolved regard-
ing the exact mechanisms of manipulating the balance of 
M1/M2 phenotype in PF pathogenesis and are unable to 
effectively attenuate PF [3]. Comprehensive understanding 
of the molecular mechanisms that regulate cell death will 
allow the development of strategies that control cell death, 
thereby developing novel interventions for PF.
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