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Abstract
Mitochondrial dysfunction and necroptosis are closely associated, and play vital roles in the medical strategy of multiple cardio-
vascular diseases. However, their implications in intracranial aneurysms (IAs) remain unclear. In this study, we aimed to explore 
whether mitochondrial dysfunction and necroptosis could be identified as valuable starting points for predictive, preventive, 
and personalized medicine for IAs. The transcriptional profiles of 75 IAs and 37 control samples were collected from the Gene 
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene co-expression network analysis, 
and least absolute shrinkage and selection operator (LASSO) regression were used to screen key genes. The ssGSEA algorithm 
was performed to establish phenotype scores. The correlation between mitochondrial dysfunction and necroptosis was evaluated 
using functional enrichment crossover, phenotype score correlation, immune infiltration, and interaction network construction. 
The IA diagnostic values of key genes were identified using machine learning. Finally, we performed the single-cell sequencing 
(scRNA-seq) analysis to explore mitochondrial dysfunction and necroptosis at the cellular level. In total, 42 IA-mitochondrial 
DEGs and 15 IA-necroptosis DEGs were identified. Screening revealed seven  key genes invovled in mitochondrial dysfunction 
(KMO, HADH, BAX, AADAT, SDSL, PYCR1, and MAOA) and five genes involved in necroptosis (IL1B, CAMK2G, STAT1, 
NLRP3, and BAX). Machine learning confirmed the high diagnostic value of these key genes for IA. The IA samples showed  
higher expression of mitochondrial dysfunction and necroptosis. Mitochondrial dysfunction and necroptosis exhibited a close 
association. Furthermore, scRNA-seq indicated that mitochondrial dysfunction and necroptosis were preferentially up-regulated 
in monocytes/macrophages and vascular smooth muscle cells (VSMCs) within IA lesions. In conclusion, mitochondria-induced 
necroptosis was involved in IA formation, and was mainly up-regulated in monocytes/macrophages and VSMCs within IA 
lesions. Mitochondria-induced necroptosis may be a novel potential target for diagnosis, prevention, and treatment of IA.
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Abbreviations
DEG	� Differentially expressed gene
GEO	� Gene Expression Omnibus
GO	� Gene Ontology
IA-Mito DEGs	� IA-mitochondria-relatedDEGs
IA-Necroptosis DEGs	� IA-Necroptosis-relatedDEGs
IA	� Intracranial aneurysm
KEGG	� Kyoto Encyclopedia of Genes and 

Genomes
MMP	� Matrix metalloproteinases
Mo/MΦ	� Monocyte/macrophage
PPPM/3PM	� Predictive, preventive,and person-

alized medicine
PPI	� Protein-protein interaction
RF	� Random Forest
ROS	� Reactive oxygen species
SMO	� Sequential MinimalOptimization
scRNA-seq	� Single-cell RNA sequencing
TF	� Transcription factor
VSMC	� Vascular smooth muscle cell
WCGNA	� Weighted gene co-expression 

network analysis

Introduction

 Intracranial aneurysms (IA) are pathologically localized 
dilatations and thinning of the cerebral arterial wall, pref-
erentially forming at the bifurcations of the circle of Willis 
[1]. Based on the shape, IAs can be divided into 3 types: 
saccular, fusiform, and dissecting. Saccular IAs constitute 
the majority, occurring in 1–2% of the population [2]. The 
number of annually detected IAs is continuously increas-
ing with advances in imaging techniques [3]. Subarachnoid 
hemorrhage caused by IA rupture can be life-threatening 
with a mortality rate of approximately 35%, resulting  in 
lasting disabilities and cognitive dysfunction [4]. Current 
treatments for IAs mainly include two approaches: micro-
surgical clipping and endovascular management, both of 
which are invasive, expensive, and exist complications. 
Therefore, early non-invasive prevention and intervention 
(e.g. drugs) are particularly vital for IA patients to decrease 
their health burden and promote health quality. Recently, the 
concept of predictive, preventive, and personalized medicine 
(PPPM/3PM) has been introduced for the management of 
vascular diseases [5] such as arterial stiffness [6], and stroke 
[7]. From the perspective of PPPM/3PM, we need to iden-
tify IA biomarkers for early detection and to understand the 
molecular mechanisms underlying drug development.

Mitochondria are essential regulators of apoptotic cell 
death, including necroptosis, ferroptosis, and pyroptosis [8]. 
Among these, necroptosis is the best-characterized form of 
regulated necrosis, and is mediated by RIPK3 and MLKL 

[9]. The mitochondrial-necroptosis axis involves in multi-
ple disease occurrences and developments [10, 11]. It has 
been highlighted that vascular diseases have potentially ben-
efited from the PPPM/3PM medical strategy targeting mito-
chondrial dysfunction and necroptosis. Previous research 
reported that mitochondrial dysfunction could predict the 
outcome of cardiovascular diseases linked to air pollution 
[12]. Thus, necroptosis may represent a novel therapeutic 
target for inhibiting the progression of cardiovascular dis-
eases [13]. Mitochondrial dysfunction of vascular smooth 
muscle cells (VSMCs) drives the progression of aortic aneu-
rysms [14]. RIPK3-mediated VSMC necroptosis promotes 
the pathogenesis of aortic aneurysms [15]. Both mitochon-
drial dysfunction and necroptosis are potential therapeutics 
for aortic aneurysms [13, 16]. However, studies on mito-
chondria and necroptosis in IAs are lacking. Identifying the 
roles of mitochondrial dysfunction and necroptosis in IAs 
may contribute to the development of  better PPPM/3PM 
medical strategy for IAs.

Bioinformatics is a crucial component of the transition 
from traditional medicine to PPPM/3PM [5]. Through bio-
informatics, this study aimed to investigate the molecular 
regulatory mechanism of the mitochondrial-necroptosis axis 
in IAs, which will contribute to the development of the pre-
dictive/diagnostic tools and targeted prevention and therapy 
from the perspective of PPPM/3PM. In our study, we col-
lected mitochondria-related genes from the MitoCarta3.0 
database [17] and necroptosis-related genes from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
database. Aiming at mitochondrial dysfunction and necrop-
tosis, the signature genes were selected using weighted gene 
co-expression network analysis (WGCNA), and phenotype 
scores were constructed using ssGSEA. We evaluated the 
association between these two phenotypes using functional 
enrichment crossover, correlation analysis, immune infiltra-
tion, and interaction networks. The key genes of these two 
phenotypes were validated by machine learning, including 
Random Forest (RF) and Sequential Minimal Optimiza-
tion (SMO). Single-cell sequencing (scRNA-seq) was per-
formed to investigate these two phenotypes at the cellular 
level. Collectively, with the framework of PPPM/3PM, our 
results elucidate the molecular mechanism of the mitochon-
drial-necroptosis axis in IAs, and provide a potential target 
for IA diagnosis, prevention, and treatment.

Methods

The detailed working flow chart is shown in Fig. 1.

Data acquisition and processing

IA-related datasets were retrieved from the Gene Expres-
sion Omnibus (GEO) database (https://​www.​ncbi.​nlm.​

https://www.ncbi.nlm.nih.gov/geo/
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nih.​gov/​geo/), including bulk-tissue mRNA sequence data 
(GSE75436, GSE15629, and GSE122897) and scRNA-seq 
data (GSE193533). A total of 75 IA samples and 37 con-
trol samples were included, and 4823 cells from the circle 
of Willis in the sham group and 9986 cells of that in the 

IA group were collected. The details of these datasets are 
listed in Table 1. In addition, 1136 human genes encod-
ing proteins that strongly support mitochondrial localiza-
tion were acquired from the MitoCarta3.0 (https://​www.​
broad​insti​tute.​org/​mitoc​arta). One hundred and fifty-nine 

Fig. 1   The flow chart of this study

https://www.ncbi.nlm.nih.gov/geo/
https://www.broadinstitute.org/mitocarta
https://www.broadinstitute.org/mitocarta
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necroptosis-related genes were obtained from the KEGG 
Pathway database (https://​www.​genome.​jp/​dbget-​bin/​www_​
bget?​pathw​ay+​hsa04​217).

Identification of DEGs and IA‑related genes

The training set GSE75436 was analyzed using the R 
package “limma” [18] (P < 0.05 and |log2(FoldChange)| > 
1). Differentially expressed genes (DEGs) were identified 
using heatmaps and volcano plots. WGCNA is a crucial 
tool in bioinformatic analysis, which has been universally 
utilized in trait and gene association analysis [19]. In this 
study, we used the R package “WGCNA” to construct a 
co-expression network with the gene expression data of 
GSE75436 as input data and IA/control as trait data. First, 
the hclust function was used to perform sample cluster-
ing to remove outlier samples, and “method = average” 
was set as the parameter to calculate distance. Second, 
an appropriate soft threshold was identified to obtain a 
standard-scale free network. Third, a dynamic shear tree 
algorithm was employed to segment the modules, and 
Pearson’s correlation analysis was used to identify the 
modules related to IA.

Selection of IA‑necroptosis‑related DEGs 
(IA‑Necroptosis DEGs) and IA‑mitochondria‑related 
DEGs (IA‑Mito DEGs)

IA-Mito DEGs were acquired by intersecting the mito-
chondrial-localization protein-encoding genes, IA-related 
genes, and DEGs. IA-necroptosis DEGs were identified 
by intersecting necroptosis-related, and IA-related genes, 
and DEGs. To decrease the high false discovery rates 
reported in previous research [20], these genes were further 
screened using the Wilcox test between the IA and control 
samples (P < 0.05). Potential biological functions were 
identified by Gene Ontology (GO) and KEGG enrichment.

Phenotype scoring of mitochondrial dysfunction 
and necroptosis

IA-Mito DEGs and IA-Necroptosis DEGs were further 
screened to acquire key genes using the LASSO regression 
of the R package “glmnet” [21]. Response type was set as 

binomial and alpha was set as one. The phenotype scores of 
mitochondrial dysfunction and necroptosis were calculated 
using the ssGSEA algorithm of the R package “GSVA” [22]. 
The disparity of phenotype scores between the two groups 
and the correlation of phenotype scores were analyzed. 
Furthermore, according to the median values of phenotype 
scores, the IA and control samples were separately divided 
into high- and low-groups, and then GSEA analysis [23] was 
performed for all genes.

Immune infiltration analysis

Based on a gene set of 28 immune-related cells [24], the 
immune activity of each sample was evaluated by the ssGSEA 
algorithm of the R package “GSVA” [22]. The disparity of 
immune infiltration between the two groups and their correla-
tions were analyzed. Furthermore, the association between the 
level of immune infiltration and the expression of mitochon-
drial dysfunction/necroptosis was investigated.

Construction of interaction networks

The protein-protein interaction (PPI) network between IA-
Mito DEGs and IA-necroptosis DEGs was visualized using 
the STRING website (https://​string-​db.​org) and Cytoscape 
software (version 3.9.1). The key genes screened from 
LASSO regression were set as the core of the PPI network, 
and the confidence level was set to 0.4. To explore the 
upstream regulation of key genes, we constructed the gene-
microRNA-transcription factor (TF) interaction network 
through the online tool NetworkAnalyst [25]. The parameter 
of the minimum network was selected.

Validation of key genes

The expressions of key genes were extracted from the vali-
dating sets GSE15629 and GSE122897, and the Wilcoxon 
test was used to calculate and visualize the expression 
difference between IA and control samples. We also per-
formed machine learning to evaluate the IA diagnosis value 
of key genes. To evaluate the classification performance, 
the 10-fold cross-validation of the RF algorithm was used 
in dataset GSE75436. The SMO algorithm was employed 
in the validating sets GSE15629 and GSE122897 with the 
training set GSE75436.

Table 1   Descriptions of 
datasets used in this study

Accession Platform Type Species Sample

GSE75436 GPL570 mRNA profile Homo sapiens IA:control = 15:15
GSE15629 GPL6244 mRNA profile Homo sapiens IA:control = 14:5
GSE122897 GPL16791 mRNA profile Homo sapiens IA:control = 44:16
GSE193533 GPL30172 scRNA-seq Mus musculus IA: sham = 2:1

https://www.genome.jp/dbget-bin/www_bget?pathway+hsa04217
https://www.genome.jp/dbget-bin/www_bget?pathway+hsa04217
https://string-db.org
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scRNA‑seq analysis

For single-cell characteristics investigations, we analyzed 
the scRNA-seq dataset GSE193533, following the “Seu-
rat” standard procedure [26]. Cells with less than 200 
genes, more than 7000 counts in total, and more than 20% 

mitochondria genes were filtered out according to the pre-
vious reports [27]. The batch effect among samples was 
reduced using the R package “harmony” [28]. The top 2000 
variably expressed genes were identified using the function 
“FindVariableFeatures”. The annotation of cell clusters was 
conducted according to the prior research [29]. Next, the 

Fig. 2   Identification of DEGs and IA-related genes in IA. A The PCA 
results of GSE75436. B Volcano plot showing DEGs in the IA and 
the normal samples. C Heat map of DEGs. D Sample clustering dia-

gram of WGCNA. E Soft-thresholding filtering. F Clustering dendro-
gram of genes. G Correlation heatmap of gene modules and clinical 
features
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level of mitochondrial dysfunction and necroptosis in each 
cell was quantified through the ssGSEA algorithm and key 
genes previously acquired. The expression disparity of these 
phenotypes was compared between IA and sham groups in 
each cell cluster.

Statistical analysis

All statistical analyses were performed using the R soft-
ware (version 4.1.2). The difference of continuous variables 
was compared using the Wilcoxon test. The correlation of 
continuous variables was evaluated by the Pearson correla-
tion. Data were visualized using the R package “ggplot2”. 
All tests were   two-sided, and P < 0.05 was considered 
statistically significant. The significance level is denoted 
as follows: NS, not significant; *P < 0.05, **P < 0.01, and 
***P < 0.001.

Result

Identification of DEGs and IA‑Related genes

Based on the expression profile of GSE75436, IA and control 
groups were dramatically distinguished by PCA (Fig. 2A). 
Differential expression analysis showed that a total of 2508 
DEGs between the IA and control groups, including 1310 
genes upregulated and 1198 genes downregulated (Fig. 2B, 
C). Next, we performed the WGCNA analysis. The sample 
clustering diagram was shown in Fig. 2D. The correlation 
coefficient greater than 0.85 (the soft threshold β is 5) was 
highly correlated and suitable for constructing gene modules 
(Fig. 2E). The dynamic tree cut algorithm identified 13 gene 
modules (Fig. 2F). Among them, the darkorange, green, and 
darkseagreen modules were highly correlated with IAs (|R| 
> 0.6 and P < 0.01) (Fig. 2G). Therefore, the genes in these 
three modules were regarded as IA-related genes.

Function crossover of gene between IA‑Mito DEGs 
and IA‑necroptosis DEGs

We first intersected the DEGs and IA-related genes, and then 
intersected with mitochondria-related genes and necroptosis-
related genes respectively. In total, 44 IA-Mito DEGs and 

15 IA-necroptosis DEGs were identified (Fig. 3A, and B). 
In addition, we screened these genes through the Wilcoxon 
test between IA and control groups. Two genes ALAS2 and 
CYP27B1 failed to show significant expression differences 
and therefore were eliminated, while the remaining 57 genes 
were used for subsequent analysis (Fig. 3C). Next, the gene 
functions were explored by GO and KEGG enrichment. In 
terms of IA-Mito DEGs, the most enriched GO terms were 
mitochondrial transport, apoptotic mitochondrial changes, 
T cells homeostasis, leukocyte homeostasis, and the like 
(Fig. 3D). The most overrepresented KEGG pathways were 
apoptosis, necroptosis, and so on (Fig. 3F). These results 
suggest that mitochondrial dysfunction may be related to 
apoptosis and immunity in IAs. As for IA-Necroptosis 
DEGs, GO analysis showed that programmed necrotic cell 
death, apoptotic mitochondrial changes, interleukin-1 beta 
production, and cytokine production involved in immune 
response were notable (Fig. 3E). KEGG analysis revealed 
that necroptosis, neutrophil extracellular trap formation, and 
inflammatory mediator regulation of TRP channels were 
enriched (Fig. 3G). These results suggest that necroptosis 
may be related to mitochondrial dysfunction and immunity 
in IAs. Overall, the enrichment results showed the gene 
function of IA-Mito DEGs and IA-necroptosis DEGs existed 
some level of crossover.

Function crossover of phenotype scores 
between mitochondrial dysfunction and necroptosis

LASSO regression was used to identify key genes with 
the strongest capacity to predict IA occurrence (Fig. 4A, 
B). Seven key genes were obtained from 42 IA-Mito 
DEGs, including AADAT, BAX, HADH, KMO, MAOA, 
PYCR1, and SDSL. Five key genes were acquired from 
15 IA-Necroptosis DEGs, including BAX, CAMK2G, 
IL1B, NLRP3, and STAT1. These key genes were applied 
to construct the phenotype scores by the ssGSEA algo-
rithm. As shown in Fig. 4C, IA had a significantly higher 
level of phenotype scores of mitochondrial dysfunction 
and necroptosis (P < 0.001). The correlation between these 
two types of phenotype scores was highly close (R = 0.51) 
(Fig. 4D). Next, we divided the phenotype scores into 
high- and low-groups, performed the differential analy-
sis, and conducted the GSEA enrichment analysis for 
the DEGs. Results showed that both the high mitochon-
drial dysfunction group and the high necroptosis group 
had increased levels of mitochondrial pathways (e.g. the 
release of cytochrome c from mitochondria, mitochondrial 
depolarization), necroptosis pathways, and immune path-
ways (e.g. T cell activation) (Fig. 4E, F). These crosso-
ver results further suggested the close correlation among 
mitochondrial dysfunction, necroptosis, and immunocyte 
infiltration in IAs.

Fig. 3   The function crossover of gene between IA Mito DEGs and 
IA-Necroptosis DEGs. A Venn diagram showing the overlap of 
DEGs, IA-related genes, and mitochondria-related genes. B Venn dia-
gram showing the overlap of DEGs, IA-related genes, and Necrop-
tosis-related genes. C Expression of 44 IA-Mito DEGs and 15 IA-
Necroptosis DEGs in GSE75436. D and E GO enrichment results 
of 42 IA-Mito DEGs (D) and 15 IA-Necroptosis DEGs (E). F and 
G KEGG enrichment results of 42 IA-Mito DEGs (F) and 15 IA-
Necroptosis DEGs (G)

◂
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Fig. 4   The function crossover of phenotype scores between mito-
chondrial dysfunction and necroptosis. A LASSO regression screened 
out key genes of mitochondrial dysfunction from the 42 IA-Mito 
DEGs. B LASSO regression screened out key genes of necroptosis 
from the 15 IA-Mito DEGs. C Boxplot of phenotype scores of mito-

chondrial dysfunction and necroptosis between IA and normal sam-
ples. D The correlation matrix of phenotype scores of mitochondrial 
dysfunction and necroptosis. E GO enrichment analysis is based on 
the GSEA  algorithm in key genes. F  KEGG enrichment analysis 
is based on the GSEA algorithm in key genes
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Correlation of immune infiltration to mitochondrial 
dysfunction and necroptosis

Considering the vital role of immune cells in IA development, 
we also estimated the level of immune infiltration. Among 
the 28 immune cells, there were 22 cell types with signifi-
cant differences between IAs and the controls, and all of them 
showed higher expression in the IA group (Fig. 5A, B). The 
expression level of these types of immune cells showed a 
significantly strong association with each other (Fig. 5C). In 
addition, the correlation of immune infiltration to mitochon-
drial dysfunction and necroptosis was evaluated. The phe-
notype scores of mitochondrial dysfunction and necroptosis 

were positively correlated to the expression of the 22 types 
of immune cells. Among them, macrophage was top rank-
ing, with its close relationship to mitochondrial dysfunc-
tion (R = 0.675, P < 0.001) and to necroptosis (R = 0.636, 
P < 0.001) (Fig. 5D).

Construction of interaction network and validation 
of key genes

After identifying the correlation between mitochondrial dys-
function and necroptosis, we constructed the PPI network 
between them. The PPI network included a total of 33 IA-Mito 
DEGs and 13 IA-Necroptosis DEGs, with the core of 7 key 

Fig. 5   The ssGSEA algorithm for analyzing immunocyte infiltration A Heatmap of 28 immune cell types. B The boxplot plot of 28 immune 
gene-sets content. C The correlation matrix of immune cells. D Correlation diagram for phenotype scores and immunocyte expression
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Fig. 6   Construction of interaction network and validation of key 
genes. A The construction of PPI network among IA-Mito DEGs, IA-
Necroptosis DEGs, and key genes. B  Prediction of TFs and micro-
RNAs for key genes of mitochondrial dysfunction and necroptosis. 

C  Expression of 11 key genes in the validating datasets GSE15629 
and GSE122897. D Evaluation of IA diagnosis value of key genes by 
the RF and SMO algorithms



1462	 Apoptosis (2023) 28:1452–1468

1 3

IA-Mito DEGs and 5 key IA-Necroptosis DEGs (Fig. 6A). In 
addition, the NetworkAnalyst tool was applied to predict the 
interaction network of key genes, microRNAs, and TFs. JUN, 
TP53, FOS, EGR1, MYC, MXI1, and USF1 were the common 
TFs targeting at least 3 key genes. Key genes AADAT and 
STAT1 had the most predicted microRNAs, including has-
miR-129-5p, has-miR-203, and has-miR-199a-5p (Fig. 6B).

Moreover, we used the datasets GSE15629 and 
GSE122897 to perform the validation of key genes. Most 
genes exhibited significant expression disparities between IA 
and control samples. The gene expression trends in the vali-
dating set were completely consistent with those in the train-
ing set GSE75436 (Fig. 6C). The machine learning showed 
the high IA diagnosis value of key genes in GSE75436 and 
GSE122897 (P < 0.05). However, their predictive capability 
in GSE15629 was unsatisfactory with P > 0.05, which may 
be influenced by the small samples (Fig. 6D). The predict-
ing IA precisions of key genes were 0.774, 0.902, and 0.811 
in GSE15629, GSE75436, and GSE122897. F-measures of 
the prediction were 0.770, 0.900, and 0.798 in GSE15629, 
GSE75436, and GSE122897.

Single‑cell level expression of mitochondrial 
dysfunction and necroptosis

To better characterize mitochondrial dysfunction and 
necroptosis at the single-cell level, we performed scRNA-
seq analysis in the circle of Willis of the mouse IA model. 
After data screening and integration as described in the 
Methods, we obtained the gene expression profiles of 4823 
cells from the sham sample (GSM5813881), and 9986 
cells from IA samples (GSM5813883, and GSM5813885) 
(Fig. 7A). Ten types of cell clusters were annotated and visu-
alized, including VSMC, monocyte/macrophage (Mo/MΦ), 
and others (Fig. 7B). For ease of comparison, we divided the 
UMAP figure into 2 pieces: IA and sham (Fig. 7C). The IA 
samples had dramatically higher proportions of Mo/MΦ and 
lower percentages of VSMC than sham samples (Fig. 7D).

Next, we quantified the expression of mitochondrial 
dysfunction and necroptosis, through ssGSEA algorithms 
and key genes. These two phenotypes were differentially 
expressed in Mo/MΦ, VSMCs, and neutrophils between 
IA and sham samples. Compared with sham samples, IA 
had a significantly higher level of mitochondrial dysfunc-
tion and necroptosis in Mo/MΦ and VSMCs. However, the 
tendency of expression disparity of the two phenotypes was 
opposite in neutrophils (Fig. 7E–H). Since previous studies 
have reported a positive correlation between mitochondrial 
dysfunction and necroptosis [10, 11], we chose to focus 
on Mo/MΦ and VSMCs, rather than neutrophils. The GO 
enrichment of the previously obtained PPI network indicated 
that the reactive oxygen species (ROS) metabolic process 

was enriched in IA-Mito DEGs (Fig. 7I). Accordingly, com-
bined with the literature review, we proposed the hypothesis 
that mitochondrial dysfunction (e.g. ROS) may induce the 
necroptosis of VSMCs and Mo/MΦ in IAs (Fig. 7J).

Discussion

Mitochondria are important organelles located in the cyto-
plasm of eukaryotic cells. Besides their roles in cellular 
metabolism and ATP generation, mitochondria also regulate 
multiple types of apoptotic cell death, such as necroptosis 
[8]. Necroptosis is not only caspase-independent but also 
inhibited by caspase activation, and its morphological fea-
tures resemble necrosis, including cell swelling, organelle 
dysfunction, and plasma membrane rupture [30]. Although 
some studies have elucidated the promoting effects and ther-
apeutic value of mitochondrial dysfunction and necroptosis 
in aortic aneurysms [14, 15], the relationship between these 
two phenotypes and IAs remains unclear.

This study focused on the roles of mitochondria dys-
function and necroptosis in IA formation and progression 
as diagnostic factors and therapeutic targets from the view-
point of PPPM/3PM. We first used the WGCNA, differential 
gene analysis, and Wilcoxon test to identify signature genes, 
including 42 IA-Mito DEGs and 15 IA-necroptosis DEGs. 
Next, seven mitochondrial key genes and five necroptosis 
key genes were screened out using the LASSO algorithm. 
The phenotype scores were quantified through the ssGSEA 
algorithm. The close relationship between these two phe-
notypes was identified by function enrichment crossover, 
correlation analysis, immune infiltration, and interaction 
network. Subsequently, machine learning verified the high 
diagnostic value of key genes in IA. The scRNA-seq analysis 
revealed the concentrated expression of the mitochondrial-
necroptosis axis in VSMCs and Mo/MΦ.

Accumulating evidence has demonstrated that mitochon-
dria and necroptosis play crucial roles in aneurysm forma-
tion and progression. In our study, IA lesions were associ-
ated with  significantly higher mitochondrial dysfunction 
and necroptosis rates. Key genes of these two phenotypes 
can well predict IA occurrence. Similarly, previous research 
found that mice with abnormal mitochondrial calcium uni-
porter channel complexes were prone to fatal abdominal 
aortic aneurysms [31]. Sustained increases in mitochon-
drial dysfunction and oxidative stress have been reported in 
VSMCs of abdominal aortic aneurysm [32]. RIP3-mediated 
VSMC necroptosis was actively involved in abdominal aor-
tic aneurysm progression [33]. This preliminary evidence 
has layed  the foundation for subsequent in-depth analysis.

Mitochondria are essential regulators of cellular necrop-
tosis [9]. The mitochondrial-necroptosis axis is involved in 
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multiple disease occurrences and developments [10, 11]. 
Chen et al. reported that RIPK1-mediated mitochondrial 
dysfunction contributed to compression-induced rat pul-
posus cell necroptosis [34]. Yang et al. found that MiR-7 
mediated mitochondrial dysfunction triggered necroptosis 
in rhabdomyosarcoma [35]. The present study revealed 
that mitochondrial dysfunction and necroptosis existed the 
function crossover, high correlation, and network interac-
tion, indicating that  the mitochondrial-necroptosis axis 
may mediate IA pathogenesis. Among the factors inducing 
mitochondrial dysfunction, ROS (reactive oxygen species) 
accounts for a significant proportion [36, 37]. Mitochon-
drial-generated ROS can promote RIPK1 autophospho-
rylation to initiate necroptosis, ultimately leading to the 
formation of necrosomes [38, 39]. There has been a strong 
association between ROS and IA pathogenesis [40]. Cer-
ebral macrophages and VSMCs utilized the main enzymatic 
sources of ROS to produce O2

•− and H2O2 in response to 
hemodynamic stress, growth factors, and cytokines [41]. Our 
study indicated that key genes of mitochondrial dysfunction 
focus on ROS, implying a potentially induced role of ROS 
in the IA mitochondria-necroptosis axis.

The key genes of the IA mitochondrial-necroptosis axis 
were identified, including mitochondria genes of seven and 
necroptosis genes of five. These genes presented a strong 
interaction in the PPI network. Among them, IL1B[42], 
BAX [43], STAT1[44], and NLRP3[45] have been consid-
ered as potential biomarkers for IA formation and develop-
ment. BAX, one of the BCL2 protein family members, is an 
apoptosis regulator. Under stress conditions, BAX would 
accumulate at the mitochondrial membrane, which results 
in the release of cytochrome c and triggers cell death [46]. 
However, the role of BAX in mitochondria-induced necrop-
tosis has not been realved [47]. Moreover, NLRP3 acts as a 
sensor component of the NLRP3 inflammasome. Previous 
studies found that NLRP3 inflammasome could be activated 
by mitochondrial dysfunction [48], and contributes to the 
necroptosis occurence [49]. Notably, our machine learning 
analysis revealed that these key genes have a high diagnostic 

value for IA, which can assist clinicians in identifying early-
stage patients.

TFs and microRNAs were involved in the regulation of 
mitochondrial-necroptosis axis [35]. We drew a microRNA-
TF-gene regulatory network on mitochondrial dysfunction 
and necroptosis in IAs. Seven TFs (JUN, TP53, FOS, MYC, 
EGR1, MXI1, and USF1) regulated at least three key genes 
involved  in mitochondrial dysfunction and necroptosis. 
Of them, c-JUN activation is linked to both mitochondrial 
dysfunction and necroptosis [50, 51]. MYC can increase 
mitochondrial oxidative phosphorylation and also impede 
mitophagy-dependent necroptosis [52, 53]. Additionally, 
JUN [54], TP53[55], FOS [56], SPI1[57], MYC [58], and 
HNF4A [59] have been proven to participate in IA patho-
genesis. In terms of microRNA, we identified hsa-miR-610, 
hsa-miR-129-5p, hsa-miR-495, hsa-miR-203, and hsa-miR-
199a-5p, all of which target the two or more key genes 
on the mitochondrial dysfunction and necroptosis in IAs. 
Among these, miR-199a-5p was significantly decreased in 
IA patients with poor prognosis and vasospasm [53]. MiR-
199a-5p was also found to regulate mitochondrial function 
[60]. Altogether, these TFs and microRNA are promising 
targets for developing small molecular drugs and novel diag-
nostic tools in IAs.

To further elucidate the mechanism at the cellular 
level, we performed the scRNA-seq analysis. Results indi-
cated that both mitochondrial dysfunction and necropto-
sis expression were significantly higher in Mo/MΦ and 
VSMC. Macrophages are known to be critical compo-
nents of immune infiltration and can promote the expres-
sion of proteases that disrupt the internal elastic lamina 
and collagen matrix, leading to the initiation of IA [61]. 
The mitochondrial-necroptosis axis has been previously 
reported in macrophages. CIRP has induced mitochondrial 
DNA fragmentation and regulated macrophage necropto-
sis [62]. LRRK2 mutations have perturbed mitochondrial 
homeostasis and reprogrammed necroptosis pathways in 
macrophages [63]. The close correlation between the mito-
chondrial-necroptosis axis and immune infiltration in IAs 
has also been revealed through our functional enrichment 
and correlation analysis. Additionally, VSMC phenotypic 
switching from a contractile state to a synthetic state drove 
the IA formation and rupture [64]. Recent research has 
reported that mitochondrial DNA damage in VSMCs acti-
vated STING signaling and induced cellular necroptosis 
[65], suggesting the presence of the mitochondria-necrop-
tosis axis in VSMCs. Collectively, mitochondria-induced 
necroptosis in macrophages and VSMCs may drive IA 
formation.

This study has some limitations. First, our data came 
from the GEO database, and the specific clinical data of 

Fig. 7   The expression of mitochondrial dysfunction and necroptosis 
at the cellular level. A Integration of multiple sample data using the 
R package harmony. B UMAP plot is colored by different cell types. 
C UMAP plot is colored by different cell types and divided by IA and 
sham groups. D Bar chart showing the percentage of different types 
of cells between IA and sham groups. E UMAP plot is  colored by 
the expression of mitochondrial dysfunction. F Bar chart showing the 
expression disparity of mitochondrial dysfunction between IA and 
sham groups. G UMAP plot is colored by the expression of necrop-
tosis. H Bar chart showing the expression disparity of necroptosis 
between IA and sham groups. I GO enrichment results of IA-Mito 
DEGs in the previously obtained PPI network. J Mechanism diagram 
of mitochondria-induced necroptosis in IAs

◂
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each sample, such as gender, age, and complications, can-
not be obtained, therefore it is not included in our research 
scope. Second, the sample size obtained from the database 
was limited. Therefore, studies with a large sample size 
are needed to thoroughly understand the specific roles of 
mitochondria and necroptosis in IA. Third, we did not per-
form in vitro experiments due to the difficulty of obtaining 
IA samples.

Conclusions and expert recommendations

In conclusion, our results strongly suggested that mito-
chondria-induced necroptosis was involved in IA forma-
tion. Its key genes had extremely high diagnostic values 
for IA occurrence. Furthermore, we demonstrated that 
this mechanism is mainly located in VSMCs and Mo/
MΦ within IA tissues. The upregulation of mitochondria-
induced necroptosis could be a novel potential target for 
predictive diagnosis, targeted prevention, and personalized 
treatment of IAs, which might promote the development 
of PPPM/3PM in IAs.

Predictive diagnosis and targeted prevention

From the perspective of PPPM/3PM, mitochondria-
induced necroptosis may be a suitable genetic marker 
for the predictive diagnosis and targeted prevention of IA. 
The present study screened eleven key biomarker genes of 
mitochondria-induced necroptosis in IA through integra-
tive bioinformatic approaches (mitochondrial dysfunction: 
KMO, HADH, BAX, AADAT, SDSL, PYCR1, MAOA; 
necroptosis: IL1B. CAMK2G, STAT1, NLRP3, BAX). 
Accordingly, phenotype scores were constructed. Individu-
als with higher phenotype scores of mitochondria dysfunc-
tion and necroptosis are more susceptible to IA. Machine 
learning further identified their high diagnosis value for 
IA occurrence. Actually, previous studies had reported that 
the genes on the mitochondria-induced necroptosis can be 
a precise method for the diagnosis and prevention of dis-
eases [66]. This is the first time to correlate mitochondria-
induced necroptosis with IA. Considering the genetic sus-
ceptibility of IAs, we recommend more genetic sequencing 
studies in terms of mitochondria-induced necroptosis, like 
exome and intron, to assess the risk of IA occurrence and 
rupture.

Personalized medicine

Although growing evidence suggested that both mitochon-
drial dysfunction and necroptosis are potential therapeutics 

for aortic aneurysm [13, 16], no study noted the applica-
tion of these two phenotypes in IA treatment. Therefore, 
we recommend focusing on mitochondria-induced necrop-
tosis in IAs. These eleven key biomarker genes can help 
researchers to design and develop novel small molecular 
drugs, which may inhibit IA formation and progression. 
The key gene-miRNA-TF regulatory network would also 
provide a unique benefit to developing new approaches 
in IA treatment. Of note, since the mitochondria-induced 
necroptosis is mainly located in Mo/MΦ, we strongly rec-
ommend developing customized immunotherapy in IAs 
from the perspective of PPPM/3PM.
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