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Abstract

The involvement of necroptosis in the immunosuppressive tumor microenvironment has been established and has been
shown to contribute to the growth of pancreatic ductal adenocarcinoma, indicating its role in promoting tumor development.
However, the relationship between necroptosis and bladder urothelial carcinoma (BUC) has yet to be fully understood. To
shed light on this issue, our study aimed to uncover the impact of necroptosis on immune cell infiltration and immuno-
therapy response in BUC patients. We conducted an analysis of 67 necroptosis genes to assess their expression and genomic
changes across pan-cancer and identified 12 necroptosis genes that are prognostically relevant and associated with immune
subtypes and tumor stemness in BUC. Using a public database of 1841 BUC samples, we then performed Unsupervised
Cluster Analysis and discovered two distinct necroptotic phenotypes in BUC. These phenotypes showed significant differ-
ences in molecular subtypes, immune infiltration patterns, and gene mutation profiles. We confirmed this discovery in BUC
through qPCR and WB experiments. To evaluate the impact of necroptosis on prognosis, chemotherapy sensitivity, and
immunotherapy response (such as anti-PD-L1), we developed a principal component analysis model called NecroScore.
Finally, we validated the effects of RIPK3 and MLKL through a nude mouse transplantation model for BUC. Our study
has uncovered that necroptosis plays a role in shaping the tumor immune microenvironment in BUC. The high necroptosis
phenotype (Cluster B) was characterized by a higher abundance of tumor immunosuppressive cells and more key biological
processes driving tumor progression, while the low necroptosis group (Cluster A) had higher FGFR3 mutations. We found
that the infiltration levels of immune cells, including CD8+ T cells, were significantly different between FGFR3 mutated
and wild-type (WT) samples. Our results confirmed the reliability of NecroScore as a comprehensive assessment tool for
evaluating the immunotherapeutic effect and prognosis of BUC patients, with high NecroScore values favoring basal-like
differentiation and lower FGFR3 alterations. We also observed that high expression of MLKL had a significant inhibitory
effect on tumor growth and increased neutrophil infiltration in vivo. In our study, we uncovered the regulation pattern of
necroptosis in the tumor immune microenvironment of BUC. Additionally, we developed a scoring tool called NecroScore
that can be utilized to predict the most suitable chemotherapy and immunotherapy strategy for bladder urothelial carcinoma
patients. This tool can effectively guide the chemotherapy and immunotherapy regimens for patients with advanced BUC.

Keywords Necroptosis - BUC - Immunotherapy - Chemotherapy - Tumor immune microenvironment - Pan-cancer -
Prognosis - Diagnosis - ICIs

Introduction

Bladder cancer (BCa) is a major health concern, ranking
as the eleventh most common cancer globally, with an esti-
mated 573,000 new cases and 212,000 deaths annually [1].
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Calmette-Guerin (BCG). Muscle-invasive BCa (MIBC)
accounts for the remaining cases and can also occur in 10
to 20 percent of NMIBC patients that progress over time
[2]. Platinum-based chemotherapy is widely accepted as a
first-line treatment strategy for advanced urothelial carci-
noma, with the combination of gemcitabine and cisplatin
being the most common treatment regimen for BUC [3-5].
For patients with advanced/metastatic urothelial carcinoma
that is either platinum-refractory or platinum-ineligible, the
FDA has approved a range of treatment options, including
PD-1/PD-L1-based immune checkpoint inhibitors (ICIs),
FGFR3 inhibitors, and antibody drug conjugates. Pem-
brolizumab and atezolizumab, two checkpoint inhibitors,
have been approved by the FDA and European Medicines
Agency (EMA) for first-line treatment in cisplatin-unsuitable
patients with a positive PD-L1 status [6].

Necroptosis is a form of immunogenic cell death in which
death receptors, such as FAS and tumor necrosis factor
receptor 1 (TNFR1), or pattern recognition receptors, such
as toll-like receptor 3 (TLR3), trigger the death process in
response to adverse signals from the microenvironment [7].
This type of necrosis is heavily dependent on the presence of
RIPK3 and MLKL, with MLKL activation being a defining
characteristic [8]. RIPK3 activates MLKL by phosphorylat-
ing it, causing it to oligomerize and translocate to the cell
membrane, where it forms pores, leading to calcium influx
and the release of danger-associated molecular patterns
(DAMPs). These DAMPs can activate both innate and adap-
tive immune responses and trigger phagocytosis of dying
cells [9]. Necroptosis has been extensively studied in pan-
creatic ductal adenocarcinoma (PDAC) and has been shown
to enhance the tumor microenvironment in a manner depend-
ent on CXCR2- and SAP130-macrophage-induced calcium
(Mincle)-dependent paracrine [10]. In PDAC, upregulation
of RIPK1 in tumor-associated macrophages contributes to
immune tolerance and resistance to immunotherapy [11].
The mechanism by which necroptosis occurs in BUC is not
well understood, though previous studies have shown that
shikonin, a PKM?2 inhibitor, can induce necroptosis in BUC
and overcome cisplatin resistance [12].

In our study, we investigated the impact of necroptosis
on tumor immune infiltration and immunotherapy efficacy.
We started by examining the expression and genetic changes
of 67 necroptosis genes across 33 different cancer types
and then identified two necroptosis modules in 1841 BUC
cases, based on 12 necroptosis genes related to prognosis.
We observed strong differentiation between the two modules
in terms of differences in tumor immune cell infiltration and
gene mutation patterns. Lastly, we developed a scoring sys-
tem, named NecroScore, to assess the level of necroptosis,
which can be used to predict the sensitivity to chemotherapy
and the efficacy of immunotherapy. A recent study has dem-
onstrated that providing first-line maintenance Avelumab

after initial platinum-containing chemotherapy (in the
absence of progressive disease) can significantly enhance the
survival rate of patients diagnosed with advanced BUC [13].
Our scoring tool exhibits high accuracy in evaluating the
sensitivity of chemotherapy and immunotherapy. Therefore,
this tool is of great significance for patients with advanced
bladder urothelial carcinoma.

Materials and methods
Data sources and process

The research design and methodology are briefly illus-
trated in Supplementary Fig. 1. Further information on data
sources can be found in the Supplementary Methods section
[14].

Construction of necroptosis regulator phenotypes

We analyzed the expression levels of 12 necroptosis-related
molecules and summarized the data through univariate Cox
analysis and unsupervised cluster analysis [15, 16]. The
procedure used to carry out this analysis is detailed in the
Supplementary Methods section.

PCA scoring calculation

For gene expression score analysis, we conducted principal
component analysis to extract the first principal component
as the gene feature score. Further details on the procedure
can be found in the Supplementary Methods section [17].

Statistical analysis

All statistical analysis was conducted using R software
(https://www.r-project.org/). A complete rundown of the
procedures can be found in the Supplementary Methods
section.

Additional information on bioinformatics methods and
experimental methods is also available in the Supplementary
Methods.

Results

The genetic characteristics and transcriptional
variations of 67 necroptosis molecules

This study presents the research ideas and processes
through Fig. S1. The study analyzed 67 molecules asso-
ciated with necroptosis from previous studies [18]. A
pan-cancer analysis of necroptosis-related genes was
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carried out, and the mRNA expression levels of necrop-
tosis molecules in 18 cancer types were evaluated. The
analysis was based on the comparison of expression lev-
els between tumor and normal samples obtained from the
TCGA database. The results showed that CDKN2A and
PLK1 were significantly overexpressed in tumor samples
compared to normal samples across the 18 cancer types.
Conversely, KLF9 was significantly overexpressed in
normal samples compared to tumor samples. The expres-
sion levels of MLKL and CASPS in tumor samples were
higher than those in normal tissues in KIRC (Renal Clear
Cell Carcinoma), KIRP (Papillary Renal Cell Carcinoma),
and BLCA (Bladder Urothelial Carcinoma) (Fig. S2A,
S3B, Table S1). Moreover, the study revealed that high
expression of PLK1 had a poor prognosis in 11 tumor
types, including KIRC, KIRP, etc., while high expression
of KLF9 was associated with a better prognosis in KIRC
(Fig. S3E). The study also conducted a correlation analysis
of the expression of the 67 necroptosis-related molecules
among 33 cancer types in the TCGA database. The results
showed that MLKL had a strong positive correlation with
CASPS, ZBP1, FASLG, RIPK1, and RIPK3 in all 33 can-
cer types, and RIPK3 was also strongly correlated with
CASP8, MLKL, and ZBP1 (Fig. S2C). Additionally,
the average expression of TNF-related genes, including
TNFRSF1A, TNFRSF1B, TNFSF10, and TNFRSF21, was
higher than that of most other necroptosis genes in pan-
cancer (Fig. S3A).

Figure S2B illustrates the genetic variation of 67
necroptosis-related molecules in 3907 samples from 32
cancer types in the TCGA pan-cancer database. The 10
most frequently mutated necroptosis molecules are shown
through a pan-cancer single nucleotide variant (SNV) anal-
ysis using a waterfall diagram. Out of the 3907 cases, 2679
samples (68.57%) had a necroptosis mutation. The muta-
tion with the highest frequency was observed in BRAF
(19%), followed by ATRX (15%), IDH1 (13%), CDKN2A
(10%), and EGFR (9%), with missense mutation being
the most common type. The highest mutation frequency
of BRAF, ATRX, IDH1, CDKN2A, and EGFR was seen
in melanoma (SKCM), thyroid carcinoma (THCA), brain
lower-grade glioma (LGG), head and neck squamous cell
carcinoma (HNSC), and glioblastoma multiforme (GBM),
respectively (Figs. S2B, S4C). Our analysis of DNA meth-
ylation in tumor and normal tissues revealed that KLF9
and GATA3 were significantly higher in tumor tissues
compared to normal tissues [Lung squamous cell carci-
noma (LUSC), Lung adenocarcinoma (LUAD), Colon
adenocarcinoma (COAD), etc.]. Conversely, MLKL and
CASPS were significantly lower in tumor tissues compared
to normal tissues (KIRC BLCA LUSC LUAD, etc.) (Fig.
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S2D). Hypermethylation of KLF9 was associated with
lower survival rates in several cancer types such as LGG,
thymoma (THYM), and uterine carcinosarcoma (UCS), but
hypermethylation of KLF9 in KIRC was associated with
a better prognosis in KIRC (Fig. S3F). The results of the
spearman correlation analysis between gene methylation
and gene expression showed that gene methylation was
negatively correlated with gene expression in most of the
necroptosis-related genes in 33 cancer types. Interestingly,
methylation levels of ALK and BCL2 were positively cor-
related with mRNA expression levels of ALK and BCL2
in most cancer types, as well as the positive correlation
between methylation level of APP and mRNA expression
level of APP in liver hepatocellular carcinoma (LIHC) and
the positive correlation between methylation level of CD40
and mRNA expression level of CD40 in esophageal car-
cinoma (ESCA) (Fig. S2E). Our findings confirmed that
copy number variation (CNV) is an important factor affect-
ing the expression of necroptosis molecules. The mutation
rates of copy number variations (CNV) and the expression
levels of mRNA were found to be positively correlated in
most necroptosis-related genes in 33 cancer types, espe-
cially in the cases of FADD and USP22. Conversely, in the
cases of RIPK3 and FASLG, between the CNV mutation
rates and the expression levels, showed a negative correla-
tion in THYM and pancreatic adenocarcinoma (PAAD)
(Fig. S2F). Heterozygous CNV mutations in necroptosis-
associated genes were more prevalent in most tumor types
(Fig. S3C, S3D).

In this study, we analyzed the differences in gene expres-
sion among the subtypes of necroptosis and investigated
the characteristics of the associated signaling pathways.
Our findings showed that many important necroptosis mol-
ecules in the pan-cancer, including PLK1, MLKL, FASLG,
and ZBP1, demonstrated a high level of activation in the
apoptosis signaling pathway. Meanwhile, PLK1, DNMT],
TARDBP, and HAT1 showed high activation in the cell
cycle. On the other hand, TNFRSF21, TNFRSF1A, STATS3,
RIPK1, KLF9, EGFR, and AXL showed high levels of
inhibition in both the cell cycle and DNA damage response
(Figs. S2G, S4A). Moreover, both MLKL and RIPK3 play
a role in inhibiting the cell cycle signaling pathway in
BUC and also in inhibiting the DNA damage repair sign-
aling pathway, but only MLKL can promote the apoptosis
signaling pathway. In prostate adenocarcinoma (PRAD),
both the hormone ER and EMT signaling pathways are
activated by MLKL and RIPK3 (Fig. S4B). In our study,
we placed a significant emphasis on necroptosis in BUC.
Of the 412 samples in BUC, TSC1 and CDKN2A had the
highest mutation frequencies of 8% and 6%, respectively,
in the TCGA database (Fig. S2H). Our results showed
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significant co-mutations between CDKN2A and STAT3,
CDKN2A and TNFRSF21, CDKN2A and RNF31, ZBP1
and BRAF, FASLG and PLK1, and FASLG and PANX1 in
BUC (P <0.05, Fig. S2I). These findings suggest that the
occurrence of BUC is strongly related to the imbalanced
regulation of necroptosis-related genes.

A B . .

Characteristics of the relationship between 12
prognosis related necroptosis genes and immunity,
tumor stemness

Next, we performed a univariate Cox regression analysis
on 67 necroptosis-related genes in BUC and identified 12
prognosis-related genes (P <0.05, Figs. 1A, S5). These 12
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genes play different roles in 33 cancer types (Fig. 1B). Our
analysis of the correlation between these 12 necroptosis-
related genes and different immune subtypes in Pan-cancer
showed significant differences in gene expression among
subtypes. The FASLG, MLKL, and HAT genes showed the
highest expression in the IFN-y Dominant (C2) and TGF-
beta Dominant (C6) subtype, but the lowest expression in
the Immunologically Quiet (C5) subtype. Conversely, the
EGFR, APP, and TNFRSF21 genes had the highest expres-
sion in the C5 subtype (Fig. 1C, Table S12.1). In BUC, the
FASLG, MLKL, HAT1, MYC, PANX1 and EGFR gene
expression levels were significantly higher in the C2 subtype
compared to other immune subtypes including Wound Heal-
ing (C1), Inflammatory (C3) and Lymphocyte Depleted (C4)
subtypes (Fig. 1D, Table S12.2). The MYC and SLC39A7
gene expressions were lower in stage I compared to stage
IV, whereas the IMPK gene expressions were higher in
stage I compared to stage IV (Fig. 1E, Table S12.3). We
performed an EstimateScore analysis of the 12 prognosis
necroptosis genes in Pan-cancer and found that FASLG and
MLKL were strongly positively correlated with the Stro-
malScore and ImmuneScore in 33 cancer types, while ID1,
GATA3, and TNFRSF21 showed a negative correlation
with the StromalScore and ImmuneScore in BUC (Fig. 1F,
G, J). The correlation between gene expression and tumor
StemnessScore was evaluated to determine the correla-
tion between a necroptosis gene and the degree of tumor
differentiation. The StemnessScore was calculated using
RNA stemness indices assessed by RNA gene expression
and DNA stemness indices assessed by DNA methylation.
The StemnessScores in both RNAss and DNAss were nega-
tively correlated with FASLG and MLKL expressions in
cancers such as Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma (DLBC), GBM, KICH, and LUSC (Fig. 1H, I).
Interestingly, we found that the expression of MLKL and
APP in BUC was positively correlated with immune cell
infiltration, but negatively correlated with tumor stemness
(Fig. 1J). Our findings indicate that the 12 necroptosis genes,
particularly MLKL, play a crucial role in tumor immune cell
infiltration and tumor cell stemness.

Two different patterns of necroptosis were
identified by unsupervised cluster analysis
in a cohort of 1841 BUC samples

The chromosome circle diagram and network diagram were
constructed to visually display the chromosomal position
and the interdependence between the expression of 12
prognosis-related necroptosis genes. In the TCGA database,
HAT1 and PANX1 showed greater loss of copy number vari-
ation (CNV) compared to gain of CNV, unlike the other 10
genes (Fig. 2A). In the TCGA database, the expression lev-
els of HAT1 and SLC39A7 in tumor tissues were higher than
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those in adjacent normal tissues, while the expression level
of MYC in tumor tissues was lower than that in adjacent
normal tissues (Fig. S6A). MLKL, FASLG, ID1, GATA3,
and TNFRSF21 were key contributors to the favorable
prognosis of BUC patients, compared to the other seven
necroptosis-related genes (Figs. 2B, S5). However, unlike
the positive correlation between the expression of most of
the 12 necroptosis genes, GATA3 displayed a negative cor-
relation with FASLG, APP, MLKL, MYC and PANX1, and
similarly, ID1 showed a negative correlation with FASLG
and APP (Fig. 2B).

To uncover the regulatory pattern of 12 necroptosis
genes, we collected 1841 samples from BUC. We cor-
rected for batch effects by using the 'combat' formula in
the SVA package of R language. By performing unsuper-
vised cluster analysis with the ‘ConsensusClusterPlus’
package of R language, we identified two necroptosis-
related modules, named Cluster A (1163 cases) and
Cluster B (678 cases) (Figs. 2C, S6B-S6E). Principal
component analysis showed that the two clusters were
differentiated by the expression of the 12 necroptosis
genes (Fig. 2D). A differential expression analysis of the
12 genes between the two clusters revealed significant
differences in all genes except SLC39A7, with the excep-
tion of ID1 and GATA3, which were expressed higher
in Cluster B than in Cluster A (Fig. 2E). We used the
R packages ‘consensusMIBC’, ;BLCAsubtyping’, and
‘classifyNMIBC’ to determine the molecular subtype
of the 1841 BUC samples based on the gene expression
matrix. Furthermore, we visualized the gene expression
level, clinical features, and molecular typing of the 12
necroptosis genes in 1841 BUC samples using heatmap
package (Table S2, Fig. 2F). The proportion of class_1/3
was significantly higher in Cluster A than that in Cluster
B in NMIBC.subtype, whereas compared to Cluster A, the
proportion of class_2b was significantly higher in Cluster
B in NMIBC.subtype (Fig. S6F1-7, Table S13.1). Fur-
thermore, the luminal subtype mainly occurred in Cluster
A, while the basal subtype was more prevalent in Cluster
B when compared across the 6 typing methods: Baylor.
subtype, UNC.subtype, MDA.subtype, MIBC.subtype,
and TCGA.subtype (Fig. S6F1-5, Table S13.1). Similarly,
in lund.subtype, Cluster A was predominantly composed
of UroA-Prog, UroC and GU, while Cluster B was mainly
made up of Ba/Sq, Ba/Sqg-inf and Mes-like (Fig. S6F6,
Table S13.1). In CIT.subtype, MC1 type was predomi-
nant in Cluster A, while MC7 type was more abundant
in Cluster B (Fig. S6F7, Table S13.1). We also compared
the clinical characteristics between the two clusters and
found that the proportion of patients with Ta-T1 stage was
significantly higher in Cluster A compared to Cluster B,
while the proportion of patients with stage T3 was higher
in Cluster B compared to Cluster A (Figs. 2F, S6F9,
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Fig.2 Unsupervised learning to identify two classification of necrop-
tosis. A Chromosome circle map accurately shows chromosomal
locations and gene copy number changes of 12 necroptosis genes.
B The network map accurately shows the correlation between the
12 necroptosis genes. The association of 12 genes with prognosis
was determined by univariate COX regression analysis. Circle size
correlates with P value; green represents prognostic favorable fac-
tors; purple represents prognostic risk factors. The red line indicates
the positive correlation between the gene expression levels of the
two, and vice versa. C Unsupervised cluster learning divides 1841
BLCA cohorts into two clusters. D Principal component analysis

Table S13.1). Finally, by analyzing the overall survival
and progression-free survival curves in the TCGA dataset
and the GEO dataset and the EMATB dataset, we found
that the survival status and time of Cluster A and Cluster

results for two clusters. E Expression comparison of 12 necroptosis
genes between the two clusters. F Composite heatmap shows corre-
lations between two types of necroptosis and molecular subtypes of
BUC, and differential expression of 12 necroptosis-related molecules.
G-I Kaplan—Meier curves show significant differences in survival
between the two necroptotic phenotypes in the TCGA, GEO and
E-MTAB-4321 databases. G and H show overall survival rates for
patients with TCGA and GEO databases respectively, while I shows
disease progression survival rates for E-MTAB-4321 datasets (Color
figure online)

B were significantly different (Fig. 2G-I). These results
demonstrate that our necroptosis model is successful and
highlights the significant correlation between molecular
subtype and disease prognosis between the two clusters.
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Differences in signaling pathways, single nucleotide
variants and copy number variants in two
necroptosis modules

To identify the molecular features, we first conducted a dif-
ferential analysis of gene expression between the two groups
(Table S3). Results from gene set enrichment analysis
showed that metabolism-related gene sets such as 'FATTY_
ACID_CATABOLIC_PROCESS' and 'MONOCARBOX-
YLIC_ACID_CATABOLIC_PROCESS' were primarily
enriched in Cluster A, while immune-related gene sets such
as 'GRANULOCYTE_CHEMOTAXIS,' MYELOID_LEU-
KOCYTE_MIGRATION,' and 'NEUTROPHIL_MIGRA-
TION' were primarily enriched in Cluster B (Fig. 3A). This
result was consistent with the findings from KEGG gene set
variation analysis (GSVA), which also showed that metab-
olism-related gene sets were primarily enriched in Cluster
A, while Cluster B was not only enriched in immune cell-
related signaling pathways, but also in cytokine-related sign-
aling pathways (Fig. 3B). Additionally, hallmark gene set
enrichment analysis (GSEA) revealed that Cluster B was
enriched in apoptosis-related and hypoxia-related gene sets,
as well as cytokine-related signaling pathways such as TL2_
STATS_SIGNALING," 'IL6_JAK_STAT3_SIGNALING'
(Fig. 3C, Table S4). We further collected gene sets of key
molecular features of BUC and identified two subgroups of
molecular characteristics through GSEA (Table S5.1). Our
findings aligned with the previous analysis results, show-
ing that the enrichment fraction of luminal differentiation
was significantly higher in Cluster A, while that of basal
differentiation and immune cell differentiation was signifi-
cantly higher in Cluster B (Fig. 3D, Table S5.2). This sug-
gests that Cluster A is primarily characterized by luminal
differentiation and tumor metabolism, while Cluster B is
primarily associated with immune cell infiltration and stro-
mal differentiation.

Subsequently, we examined the characteristics of gene
mutations between the two groups in the TCGA database.
Our analysis revealed that Cluster A had a significantly
higher gain of CNVs on chromosomes 1, 12, 17, and 19,
and a higher loss of CN'Vs on chromosomes 4, 5, and 6,
compared to Cluster B (Fig. S7). Furthermore, Cluster A had
a significantly higher tumor mutational burden (TMB) than
Cluster B. Visualizing the SNVs between the two groups
using differential genes, we found that most of the SNVs
were missense mutations. The waterfall chart indicated that
the mutation frequency of FGFR3 and ELF3 was signifi-
cantly different between the two groups, with higher muta-
tion frequency of FGFR3 and ELF3 in Cluster A compared
to Cluster B (Fig. 3F, G, Table S13.2). To understand the dif-
ferences in gene mutations of FGFR3 and ELF3 between the
two groups, we conducted differential analysis on the gene
expression levels of WT and mutated samples of FGFR3
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and ELF3, respectively. The results showed that the expres-
sion levels of EGFR, FASLG, HAT1, MYC, PANX1 and
SLC39A7 were higher in WT FGFR3 samples than that
in mutated FGFR3 samples, while the expression levels of
GATA3, ID1 and TNFRSF21 were lower in WT FGFR3
samples than that in mutated FGFR3 samples (Fig. S8A).
Furthermore, in WT ELF3 samples, the expression level
of MYC was higher than that in mutated ELF3 samples,
while the expression levels of GATA3 and ID1 were lower
in WT ELF3 samples than that in mutated ELF3 samples
(Fig. S8B). The co-mutation analysis of necroptosis-related
differential genes between the two groups screened out sig-
nificant co-occurrence and mutually exclusive genes, with
MUCI16 co-occurring with ERBB3, FREM2, FBN1, FNI1,
and FRY in Cluster A, whereas MUC16 co-occurred with
ASPM and DSP in Cluster B. In Cluster A, FGFR3 was
found to co-occur with COL6A3, whereas in Cluster B, this
co-occurrence was absent. In addition, ERBB2 was observed
to co-occur with DSP in Cluster A, whereas ERBB2 was co-
occurring with SACS in Cluster B (Fig. 3E). Since the two
necroptotic modules are capable of distinguishing immune
patterns, we conducted a simultaneous differential analysis
of immune cell infiltration levels between WT and mutated
samples of genes including FGFR3 and ELF3. The results
showed that samples with different genotypes of FGFR3
and ELF3 had different levels of immune cell infiltration,
with significantly lower levels of immune cell infiltration
in mutated FGFR3 samples than that in WT FGFR3 sam-
ples, including CD8+T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells (Fig. S8C). Only dendritic
cells showed different levels of immune cell infiltration in
WT and mutated samples of ELF3 (Fig. S8D). These find-
ings suggest that the single nucleotide variant of FGFR3 is
strongly related to the necroptosis patterns in BUC.

Characteristics in immune infiltration
and checkpoint of the tumor immune
microenvironment in necroptosis phenotypes

We conducted a detailed investigation into the immune
cell infiltration and immune checkpoint characteristics
of the two necroptotic modules, as they exhibit different
immune patterns. Using seven different scoring methods,
including ssGSEA, MCPimmunescore, Timer, Epic, CIB-
ERSORT, Quantiseq, and Xcellimmunescore, we analyzed
the immune cell infiltration levels in 1841 BUC samples
using R language based on gene expression characteristics.
Additionally, we evaluated the samples for ImmuneScore
and StromalScore using the 'estimate’ R package and for
signs of T cell dysfunction and exclusion (TIDE) to predict
immunotherapy response (Table S6). Our results revealed
that the level of macrophage infiltration in BUC was sig-
nificantly higher in Cluster B compared to Cluster A, as
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ment analysis of KEGG gene set, and the top 20 enriched signaling
pathways are displayed. C The circle plot shows the enrichment of
the two clusters on the hallmark gene set. LogFC represents the dif-
ference between the gene expression level of Cluster A and Cluster
B. If it is negative, it means that the gene expression level in Cluster
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B is higher than that in Cluster A. D All samples were subjected to
GSVA enrichment analysis of important signaling pathways in BUC.
Ridge plot shows the distribution of enrichment scores of important
signaling pathway in two clusters of BUC samples. We explored the
gene mutational landscape of the two clusters by using the “maftools”
package. E The correlation heatmap shows the co-mutation of the
two groups of differentially expressed genes, and highlights the top
20 genes of gene mutation frequency. Green indicates co-occurrence,
and yellow indicates co-exclusion. F and G Waterfall chart shows the
gene mutation frequency and mutation type of the two clusters. The
upper part of the figure shows the TMB, and the lower part of the fig-
ure shows the patient's clinical information and molecular subtypes. F
displays the gene mutation information of Cluster A, while G displays
that of Cluster B (Color figure online)
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seen in all seven immune cell scoring methods. Specifically,
the infiltration level of tumor-associated macrophages M2
was significantly higher in Cluster B (Fig. 4A). The tumor
immune microenvironment also showed a high concentra-
tion of myeloid-derived suppressor cells (MDSCs), myeloid
dendritic cells, and monocytes in Cluster B (Figs. SOA4,
4A). Furthermore, a substantial accumulation of T cells,
including CD4+ and CD8+ T cells, was observed in Clus-
ter B, resulting in significantly higher ImmuneScore and

A
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Fig.4 Characteristics in immune infiltration and checkpoint of the
tumor immune microenvironment in necroptosis phenotypes. A Heat-
map shows frequency and immune score of TME infiltrating cells
(Kruskal-Wallis test) in the two necroptotic phenotypes. Asterisks
indicate P-values (*****P <(.00001). B Heatmap shows correlation
between MCP-immunescore and 12 necroptosis genes. C Circle map
shows connections between tumor immune-infiltrating cells assessed
by MCP method. Red represents positive correlation and blue repre-
sents negative correlation between different immune cell. The darker
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StromalScore compared to Cluster A, despite lower tumor
purity (Fig. S9B). The higher scores for T cell dysfunction
and exclusion in Cluster B indicated a severe impairment
of T cell immunity (Fig. S9A). In conclusion, although
Cluster B has a higher T cell infiltration, its T cell function
is severely compromised due to a large presence of tumor
immunosuppressive cells, such as MDSCs, carcinoma-asso-
ciated fibroblasts (CAFs), and macrophages. This may con-
tribute to a lower overall survival rate for patients in Cluster
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Radar plots show differences in immune checkpoints and core sign-
aling pathways between two necroptotic phenotypes (Wilcoxon test).
G The heatmap shows variations in mRNA expression of antigen
processing and presentation, BCR signaling pathway, TCR signal-
ing pathway, natural killer cells, chemokines, interleukins, and other
cytokines in the two necroptosis modules (Wilcoxon test). Asterisks
indicate P values (*****P <(0.00001) (Color figure online)
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B (Fig. 4A). To further understand the impact of necroptosis
on the tumor microenvironment, we analyzed the correla-
tion between tumor immune cells and necroptosis genes.
Our findings showed positive correlations between FASLG
and MLKL and most immune cells using the seven immune
scoring methods, while GATA3 ID1 and TNFRSF21 showed
negative correlations (Figs. 4B, S10B—C). With the excep-
tion of a few immune infiltration cells between each other
that showed negative correlation, such as between CD4+ T
cells and CD8+T cells, most tumor immune cells exhibited
mutual promotion (Figs. 4C, S9C).

Given the distinct patterns of immune cell infiltra-
tion between the two necroptotic modules, we compared
the expression differences in key biological processes,
cytokines, and immune checkpoints between the two Clus-
ters. We utilized PCA to obtain 17 core biological path-
way scores of all samples based on related gene expression
(Table S7). Interestingly, the core biological pathway scores,
particularly the CD8+ T cell effector scores, were signifi-
cantly higher in Cluster B than in Cluster A, encompassing
processes such as antigen presentation, immune checkpoint
regulation, epithelial-mesenchymal transition (EMT), cell
cycle, DNA damage repair, tumor immune cell infiltration,
and angiogenesis. On the other hand, the score of FGFR3-
related genes was higher in Cluster A compared to Cluster
B, which could be attributed to the higher rate of FGFR3
mutations in cluster A as depicted in Fig. 3F (Figs. 4D, 3F).
Furthermore, by examining the expression of 44 immune
checkpoint-related genes, we discovered that the expres-
sion of most immune checkpoint genes in Cluster B was
significantly higher than that in Cluster A, particularly in the
case of co-inhibitory immune checkpoints like PD1, PD-L1,
PD-L2, and CTLA4 (Fig. 4E, F). Additionally, the expres-
sion levels of cytokine genes revealed the distinct differ-
ences between the two necroptotic modules. The cytokines
analyzed mainly covered areas such as antigen processing
and presentation, BCR signaling, TCR signaling, natural
killer cells, chemokines and their receptors, interleukins and
their receptors, and other cytokines. Most cytokines were
expressed at higher levels in Cluster B than in Cluster A,
particularly in the case of the HLA family and the CC and
CXC families of chemokines (Figs. 4G, S10A).

Validation of expression of necroptosis genes
in bladder tissues

Initially, we detected the mRNA expression of 12 prog-
nostic necroptosis-related genes and CDS in eight samples
(Table S14). Based on the expression level of CD8 mRNA,
we divided the samples into two groups: high and low, using
the median value as a cutoff. To investigate the relationship
between CD8 and the remaining 12 genes, we randomly
paired the high CDS group samples with the low CD8 group

samples, resulting in four pairs for comparison. Our find-
ings, presented in Fig. 5, indicate that BUC tissues with high
CDS8 expression exhibited higher expression levels of genes
such as FASLG, MLKL, MYC, IPMK, PANX1, HATI,
and EGFR, and lower expression levels of genes such as
ID1, GATA3, and TNFRSF21 compared to those with low
CD8 expression. Furthermore, we confirmed the relation-
ship between EGFR, MLKL, TNFRSF21, GATA3, MYC
and CDS8 in the protein expression levels, and the results
were consistent with the above findings (Fig. 5). Regretta-
bly, we did not identify any significant relationship between
the expression of CD8 and clinicopathological indicators
(Table S15). The correlation between the expression of these
genes and CDS8 expression was consistent with the correla-
tion between the expression of necroptosis genes and the
infiltration level of CD8+ T cells.

Immune characteristics of key necroptosis genes
RIPK3 and MLKL in BUC

We analyzed the association between the CN'Vs of necrop-
tosis key genes, RIPK3 and MLKL, and the level of immune
infiltration of various immune cells using the Tumor
Immune Estimation Resource (TIMER) database. The
results revealed a correlation between arm-level deletion of
MLKL and the infiltration levels of B cells and CD4+T cells
(Fig. S11A). Furthermore, arm-level deletion of RIPK3 was
strongly linked to the infiltration levels of CD8+T cells,
CD4+T cells, neutrophils, and dendritic cells. In contrast,
arm-level gain of RIPK3 showed an association with the
immune infiltration levels of B cells, CD4+ T cells, neutro-
phils, and dendritic cells (Fig. S11B).

Next, we evaluated the relationship between the copy
number variations of RIPK3 and MLKL, the key genes of
necroptosis in pan-cancer, and the levels of immune infiltra-
tion of different immune cells using the TIMER database.
Our findings showed that MLKL was positively correlated
with the expression of immune checkpoints such as PD1,
PD-L1, PD-L2, and CTLA4 in most cancer types, except
for ICOSLG, CD200, CEACAM1, HHLA2, and VTCN1
in BUC. Additionally, MLKL expression was positively
correlated with the level of all immune cell infiltration in
most cancer types (Fig. S11C, Table S8.1 and Fig. S11D,
Table S8.2). On the other hand, the expression of RIPK3
showed a positive correlation with most immune check-
points, only in nine cancer types such as KIRC, KIRP,
PRAD, SARC, SKCM, and TCGT. However, in BUC,
RIPK3 expression was not significantly related to impor-
tant immune co-inhibitory checkpoints like PD1, PD-L1,
PD-L2, and CTLA4 (Fig. S11E, Table S8.3). The expression
of RIPK3 was positively correlated with the level of immune
cell infiltration in cancers like ACC and GBM, but in BUC,
it was not strongly correlated with the level of immune cell
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Fig.5 The experimental validation of necroptosis genes in four pairs BUC tissues by RT-qPCR (A-M) and Western Blot (N). The asterisks rep-

resent the P value (*P<0.05; **P<0.01; ***P<0.001)

infiltration (Fig. S11F, Table S8.4). In conclusion, our find-
ings showed that MLKL promotes the infiltration of vari-
ous immune cells and co-expression of immune checkpoints,
especially in BUC, while the type of copy number variation
of RIPK3 has a significant effect on the level of immune
cell infiltration.

Clinical and immunological characteristics
of NecroScore

To predict the prognosis and immunotherapy effect of BUC
patients, we created a PCA model named NecroScore using
the differential genes between two necroptosis modules that
showed significant survival differences and immune correla-
tions. We applied the NecroScore scoring formula to 1841
BUC samples based on gene expression data (Table S10).
Our analysis revealed that the NecroScore of Cluster B was
significantly higher than that of Cluster A (Fig. 6A). Of the
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12 necroptosis genes that make up the necroptosis mod-
ule, 11 genes were found to be strongly correlated with the
NecroScore (Fig. S12A). The genes PANX1, MYC, FASLG,
and MLKL had a positive correlation with NecroScore,
while ID1, TNFRSF21, and GATA3 were negatively cor-
related. The gene SCL39A7 had no significant correlation
with NecroScore. Furthermore, our investigation into the
relationship between NecroScore and the clinical molecular
typing of BUC showed that as the NecroScore increased,
the molecular typing of BUC tended to shift from non-mus-
cle-related molecular typing and luminal molecular typing
to basal molecular typing (Fig. S12B, Table S13.4). The
overall survival rates of the BUC samples with high and
low NecroScore scores were significantly different in the
TCGA and GEO datasets and the progression survival rates
in the EMTAB dataset also differed significantly (Figs. 6B,
C, S14A).
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Fig.6 Clinical significance and immune characteristics of Necro-
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The TCGA dataset reveals similarities between the SNV
mutations in the high and low NecroScore groups and the
necroptosis module, as evidenced by the waterfall plot and
correlation pheatmap of gene co-mutation (Fig. S13A-C,
Table S13.3). In particular, the high NecroScore group is
comparable to Cluster B, while the low NecroScore group is

Necroscore:7.894171

Hypotype:Lymphocytes

Necroscore:-11.3593

Hyptype:Abset

< 1) <

LU0

S 3
Correlation Value

Inflammatory Infiltrate
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Necroscore
o

Absent Lymphocytes
Inflammatory Infiltrate

pathways. Brown bubbles indicate positive correlations, and blue
indicate negative correlations. Color depth and bubble size indicate
the strength of the correlation (***P<0.001). G Images represent
pathological HE staining changes between high and low NecroScore
groups in the TCGA database. H The Wilcoxon test measures Necro-
Score differences between pathological immunophenotypes. The
points represent the NecroScore value for each sample, with the upper
and lower ends representing the interquartile range for that value.
Lines in boxes represent median values; black dots represent outliers
(Color figure online)

comparable to Cluster A in the TCGA mutation data (Tables
S13.2, S13.3). Furthermore, the molecular typing of BUC
shows improved accuracy in differentiating the high and low
NecroScore groups. The low NecroScore group is primarily
comprised of class_1, class_2a and class_3 molecular typ-
ing in NMIBC_subtype, while the high NecroScore group
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primarily consists of basal-related subtypes in MIBC_sub-
type, MDA _subtype, TCGA_subtype, Lund_subtype, UNC_
subtype, and Baylor_subtype. The luminal-like subtype and
other subtypes are predominantly found in the low NecroScore
group. Of utmost significance, the NecroScore can effectively
identify patients with defective toxic T lymphocytes (CTL.
flag). Furthermore, a higher level of defective cytotoxic T lym-
phocyte infiltration may be one of the reasons for the lower
survival rate observed among patients in the high NecroScore
group. In the CIT_subtype, the MC7 subtype is primarily
found in the high NecroScore group, while the MC1 subtype is
mostly located in the low NecroScore group (Figs. 6D, S13D,
Table S13.4).

To further evaluate the role of NecroScore, we investi-
gated its ability to predict immune cell infiltration levels and
its relationship with core biological pathways. In 1841 BUC
samples, it was found that all co-inhibitory and co-stimu-
latory immune checkpoints, except for TMIGD2, CD160,
ICOSLG, BTN2A1, and TNFRSF25, were significantly dif-
ferent between the high and low NecroScore groups. The high
NecroScore group exhibited significantly higher expression
of co-suppressive immune checkpoints, such as PD1, PD-L1,
PD-L2, and CTLA4, compared to the low NecroScore group
(Fig. S12C-D). The correlation analysis between NecroScore
and the level of immune cell infiltration revealed that most
immune cell infiltration levels increased with the increase of
NecroScore, particularly in natural killer T cells, regulatory
T cells, neutrophils, and macrophages. In contrast, there was
a strong negative correlation between NecroScore and tumor
purity (Figs. 6E, S13E). NecroScore had a positive effect on
most core pathways and showed a positive correlation with
CDS8 T effector, immune checkpoint, and EMT. The negative
correlation between NecroScore and FGFR3-related genes was
consistent with the previously observed low mutation rate of
FGFR3 in the high NecroScore group (Figs. 6F, S13B). To
validate the role of NecroScore in predicting immune infiltra-
tion levels, we selected BUC HE samples from the TCGA
database. The results showed that HE samples with high levels
of lymphocyte infiltration also had high NecroScore, while HE
samples lacking immune cell infiltration had low NecroScore
(Fig. 6G, H). This confirms the efficacy of NecroScore as a
model for analyzing immune infiltration levels and its accuracy
in predicting important immune checkpoints such as PD1 and
PD-L1.

Prediction of prognosis of BUC patients
by NecroScore

Based on the results of our analysis, we found that the
prognosis of BUC patients in the high and low NecroScore
groups was significantly different. To determine the impact
of NecroScore on BUC patient prognosis, we performed
a multivariate Cox regression analysis. Five factors were
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considered in the analysis, including Age, Gender, Grade,
TMB, and NecroScore. Of these, Age, Grade, TMB, and
NecroScore had a significant impact on BUC patient survival
rate (Fig. 7A). It was observed that TMB was positively
associated with survival in BUC patients, unlike NecroScore
and Stage (Fig. S14B). To further understand the impact of
NecroScore and TMB, we divided the TCGA BUC dataset
into four groups based on these two factors and found that
there were significant differences in survival rate among the
groups, with the highest survival rate in the low-NecroScore-
high-TMB group and the lowest in the high-NecroScore-
low-TMB group (Fig. 7B). To predict the prognosis of BUC
patients, we developed a comprehensive evaluation model
that took into account Age, Stage, TMB, and NecroScore
(Fig. 7C). This model was effective in predicting 1-year and
3-year survival rate but less accurate in predicting 5-year
survival rate [Fig. 7D). The model was verified by the ROC
curve, which showed that the AUC value increased with
increased survival time. However, the use of a single index,
such as Stage or TMB, is not considered reliable enough for
predicting BUC patient prognosis. To evaluate the prediction
accuracy of the model, we used the C index and found that
the evaluation model is reliable (Figs. 7E, S14C-H).

NecroScore predicts sensitivity of BUC patients
to anti-tumor therapy

Based on the drug response data from the public phar-
macogenomics databases, Genomics of Drug Sensitiv-
ity in Cancer (GDSC) and Therapeutics Response Portal
(CTRP), we analyzed the relationship between necrop-
tosis-related molecules and the efficacy of clinical treat-
ment for BUC. The genomic drug resistance analysis data
were obtained from GDSC/CTRP IC50 drug data, and the
correlation between gene expression and drug efficacy
was analyzed using the Spearman correlation method.
A negative correlation indicates that high gene expres-
sion makes a patient more sensitive to the drug, while
a positive correlation indicates the opposite. Our results
demonstrate that most genes exhibit high resistance to
these drugs, but EGFR, TNFRSF21, and ID1 display
significant synergistic effects against ERBB therapeutic
drugs, including lapatinib, gefitinib, erlotinib, cetuximab
and afatinib. Additionally, we observed synergistic effects
of multiple genes on drugs such as 17-AAG (Tanespimy-
cin, an Hsp90 inhibitor), trametinib (a MEK inhibitor),
and docetaxel (a paclitaxel antineoplastic drug). Patients
with high MLKL expression were found to be sensitive
to 17-AAG, Trametinib, RDEA119 (Refametinib, MEK
inhibitors), and CI-1040 (MEK inhibitors) (Fig. SI5A). To
our surprise, nearly all antineoplastic drugs in the CTRP
database were found to be strongly sensitive to patients
with high MYC expression (Fig. S15B). To gain a more



Apoptosis (2023) 28:892-911

905

A Multivariate Cox(OS)

100 &
Characteristic Number(%) HR(95%CI) P value = H-Necroscore+H-TMB
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr = H-Necroscore+L-TMB
Age(continuous) 402(100.0%) 1.035[1.017,1.053] 0.00008 $ 075 - L ™E
> L-Necroscore+L-TMB
Gender 5
8
Female 104(25.87%) 0.947[0.660,1.360] 0.76872 e— g 0.50
]
Male 298(74.13%) 1.056[0.735,1.516] 0.76872 e s
a2 p<0.001
Stage 0.25] HH-LH:HR=1.772
LL-LH:HR=2.102
Stage I-1l vs. IV 130(32.50%) 0.329[0.210,0.515] <0.00001 gl HL-LH:HR=3.748
HL-HH:HR=2.116
Stage ll vs. I-11 137(34.25%) 1.641[1.007,2.640] 0.04673 —e——I 0.00 [‘tﬁhﬁﬁﬂ%
Stage IV vs. I-II 133(33.25%) 3.040[1.942,4.760] <0.00001 —e—— 123 40 5Tim7e(y:ars)9 10/ a4, 12" 43 14 16
™B Number at risk
L 258(64.18% 2.093{1.431,3.060 0.00014 —o——f N el s s e B 83711588808
-Necroscore+L-
ow (64.18%) .093[1.431,3.060] i L-Necroscore+H-TMB{ 90 71 32 21 177 10 6 6 3 3 1 0 0 0 0 0
14310039 23 16 15 8 6 4 1 0 0 0 0 0 0
High 144(35.82%) 0.478[0.327,0.699] 0.00014 3] 5 1 2 5 4 % 5 7 @ b0 i1 3203 17 15
Time(years)
Necroscore D
Low 233(57.96%) 0.583[0.423,0.805] 0.00103 fo- S g T Y
High 169(42.04%) 1.715[1.243,2.366] 0.00103 ——
LI 1 T T 1 w |
0.20.6 1 2 3 4 5 S
C Hazard Ratio =
3
. ool ©
Survival nomogram 8 oS
Points 5
0 20 40 60 80 100 % <+ |
7] o T
Age™ g
T
3 35 @0 45 50 E3 60 6 70 75 80 E3 90 N ]
S 1-year
Stage*** Stage I-1 Stage IV — 3-year
o _| — 5-year
. o
T T T T T T
Sage ! 0.0 0.2 0.4 0.6 0.8 1.0
T™MB*** High
l:| E Nomogram-predicted OS (%)
Low 0.87
Necroscore** Low
|:| @ Nomogram
High
Total points A TVMB
0.7
¥ Age
256 g A 4
140 160 180 200 220 240 260 280 300 320 340 2
0.68
P futime < 5) 0.6+
0.08 0.12 0.2 04 06 08 09 0.97 0.995
0.601
Pr( futime < 3) v
0.8 012 02 04 ols 08 053 058
0.248 0. T T T T T
Pr( futime < 1) [] 1 2 3 4 5
0.03 005 08 015 025 035 0’5 o7

Fig.7 Prediction of prognosis of BUC patients by NecroScore. A We
performed a multivariate COX analysis of the TCGA cohort using
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Meier curve analysis of survival for patients in the TCGA cohort
using NecroScore and TMB. C Use the "regplot" package to score
four prognostic indicators (Age Stage TMB NecroScore) to estab-
lish a new prognostic model. Survival nomogram shows scoring and
prognostic results for the first patient in the TCGA BUC cohort. D

comprehensive understanding of the relationship between
necroptosis-related molecules and antitumor drug sensitiv-
ity, we analyzed the correlation between gene expression
and drug sensitivity in various cancer cell lines using the
CellMiner database. A positive correlation implies that
a drug is more sensitive to higher gene expression. The
results revealed that several drugs had synergistic effects
on necroptosis genes, including AMG-900 (pan-Aurora
kinase inhibitor), BLU-667 (Pralsetinib, RET inhibitor),

Time(years)

Calibration curve plot showing the relationship between the patient
prognosis predicted by the survival nomogram and the actual patient
prognosis. The closer the curve is to the central axis, the more accu-
rate the prediction results. E We tested model sensitivity and speci-
ficity using ROC curves for Nomogram, Stage, TMB, and Age. The
abscissa represents survival time, and the ordinate represents the area
under the curve (AUC). The higher AUC value indicates the higher
the authenticity of the detection method

BOS-172722 (MPS1 inhibitor), CH5132799 (PI3K inhibi-
tor), Dexrazoxane (cardioprotective), IDH-C227 (IDH1
inhibitor), Irofulven (DNA alkylating agents), P529 (Palo-
mid 529, mTORC1 and mTORC?2 complex inhibitors), and
PQRS530 (PI3K/mTORC1/2 dual inhibitor) etc. Drugs such
as AMG900, BOS-172722, and Dexrazoxane were found
to be strongly sensitive to several necroptosis-related mol-
ecules, including MLKL (Fig. S15C, Table S11).
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The significance of necroptosis-related molecules in
chemotherapy prompted us to evaluate the accuracy of
NecroScore in predicting chemotherapy outcomes in BUC
patients. We examined gene expression differences between
high and low NecroScore groups of BUC with common
drug targets, including Chemotherapy, Immune-therapy,
ERBB-therapy, FGFR-therapy, and antiangiogenic-therapy.
The results showed that most common drug targets were
highly expressed in the high NecroScore group, except for
Afatinib (ERBB2, ERBB4), Trastuzumab (ERBB2), Lapat-
inib (ERBB2), Infigratinib (FGFR2, FGFR3), and Sorafenib
(BRAF, RAF1) (Fig. S16A). To further validate the thera-
peutic effect of chemotherapy drugs in BUC patients, we uti-
lized the GDSC database and the “pRRophetic” R package
to predict the response of common chemotherapy drugs in
patients with high and low NecroScore. The results showed
that the IC50 values of cisplatin, doxorubicin, gemcitabine,
and other chemotherapeutics were lower in the highNecro-
Score group, indicating that patients with high NecroScore
may be more sensitive to these drugs (Fig. S16B-I).

NecroScore predicts immunotherapy response
in BUC patients

We conducted NecroScore analysis on patients in the
IMvigor210 cohort and divided them into high and low
NecroScore groups. The results showed that patients in
the high NecroScore group had better outcomes after anti-
PD-L1 treatment compared to those in the low NecroScore
group. (Figs. 8A, S17A, B). Our analysis revealed a sig-
nificant correlation between NecroScore and the effective-
ness of anti-PD-L1 treatment, with a higher proportion of
complete responses (CR) observed in the high NecroScore
group compared to the low NecroScore group (Fig. 8B, C).
Interestingly, we discovered that as NecroScore increased,
the proportion of positive cells (PD-L1 expression > 1%)
also increased in both immune cells and tumor cells in the
IMvigor210 cohort, especially in the TC2+ (TC >5%) and
IC2+ (IC > 5%) ratios, which were significantly higher in
the high NecroScore group compared to the low Necro-
Score group (Figs. 8D, E, S17C, D). Furthermore, the
expression levels of PD1 and PD-L1 were significantly
higher in the high NecroScore group compared to the low
NecroScore group (Fig. S17F, G). The immune phenotype
of BUC patients in the high NecroScore group was more
inclined towards an inflamed phenotype, while the low
NecroScore group was more inclined towards a desert phe-
notype (Figs. 8F, S17E). Our evaluation of the relationship
between gene copy number alterations and NecroScore in
the IMvigor210 cohort showed that short variants (<49 bp
long) of FGFR3 were more prevalent in patients with lower
NecroScore, while the opposite was true for short variants

@ Springer

of TP53. Deletions of the cell cycle-related genes CDKN2A
and CDKN2B were the main form of mutation (Fig. 8G).
Previous studies have shown that TMB is a key factor
in determining the effectiveness of immunotherapy [19].
By combining NecroScore with TMB, we found that the
prediction of CR improved significantly compared to using
a single factor (Fig. 8H). The combination of NecroScore
and TMB provided a more accurate prognostic prediction
compared to using a single factor in the IMvigor210 cohort
(Figs. 8, I, S17H). Additionally, using the submap module,
we predicted the immunotherapy response to anti-PD1 and
anti-CTLA4 in both the high and low NecroScore groups.
Results showed that the high NecroScore group had a better
response to anti-PD1 treatment (Fig. 8J). Our NecroScore
model also demonstrated high accuracy in predicting the
immunotherapy effects of anti-PD-L1 and anti-PD1.

RIPK3 and MLKL can regulate the tumor growth rate
and the degree of tumor immune cell infiltration
in vivo

We successfully established a subcutaneous BUC model
in nude mice using control, shRIPK3, shMLKL, and over-
expressed MLKL T24 cells. The growth rate of subcuta-
neous BUC tumors with knockout of RIPK3 and MLKL
was significantly faster compared to the ordinary T24 cell-
transfected nude mice. On the other hand, the growth rate of
subcutaneous BUC tumors with overexpression of MLKL
was the reverse (Fig. 9A, B). Our results showed that the
expression of the corresponding phosphorylated proteins
of RIPK3 and MLKL decreased in the knockout groups,
while the expression of phosphorylated MLKL increased
in the overexpressed group (Fig. 9C-E). Furthermore, the
proliferation capacity of subcutaneous BUC tumors with
overexpressed MLKL was significantly lower, while that
with knockout of RIPK3 and MLKL improved (Fig. 9D).
The subcutaneous tumor tissues with MLKL overexpression
displayed a large number of neutrophil infiltrations, while
the subcutaneous tumor tissues with knockout MLKL had
virtually no neutrophil infiltration. This is consistent with
previous findings that higher RNA expression of MLKL
leads to more neutrophil infiltration (Figs. 9D, S11D).

Discussion

The impact of necroptosis on tumor immunity is not fully
understood, despite evidence suggesting that it plays a
crucial role in inducing antitumor immunity [20]. In this
study, we analyzed the genetic and transcriptomic diver-
sity of 67 necroptosis genes in normal and tumor tissues
across 33 cancer types. Our findings suggest that imbal-
ances in the expression of necroptosis molecules may be
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Fig.8 NecroScore predicts immunotherapy response in BUC Wallis test. The upper and lower bounds represent the interquartile

patients. A Kaplan—-Meier curves show a significant difference
in survival between the high and low NecroScore groups of the
IMvigor210 dataset. B The stacked histograms show differences in
anti-PD-L1 responses between high and low NecroScore. CR (com-
plete response), PR (partial response), SD (stable disease), PD (pro-
gressive disease). C Boxplots show the anti-PD-L1 reactivity of
NecroScore variables, using the Wilcoxon test between pairs. The
upper and lower bounds represent the interquartile range of values,
and the lines in the boxes represent the median. D and E Boxplots
show NecroScore variables for immune cells (D) and tumor cells (E)
with different PD-L1 expression levels, using the Kruskal-Wallis
test between pairs. The upper and lower ends represent the interquar-
tile range of the value, and the lines in boxes indicate the median. F
NecroScore was tested in three immune subtypes using the Kruskal—

linked to gene methylation modifications, genetic muta-
tions, and key signaling pathways such as EMT and the cell
cycle. By using univariate COX regression analysis, we

range of values, and the lines in boxes indicate the median. G Corre-
lation between NecroScore and gene copy number variation in BUC.
Histograms represent NecroScore, with each column representing one
patient, red for copy number amplification, green for copy number
loss, purple for copy number short mutation, and grey for no muta-
tion. H ROC curve analysis of NecroScore and TMB predictive value
of CR in patients with anti-PD-L1 immunotherapy. I Kaplan—-Meier
curve analysis of survival in patients receiving anti-PD-L1 immuno-
therapy using NecroScore and TMB. J Probabilities of anti-PD1 and
anti-CTLA4 immunotherapy responses in high and low NecroScore
groups were predicted using the submap algorithm. The high Necro-
Score group may have a better response on anti-PD-1 treatment (Bon-
ferroni-corrected P=0.04). R: Respond, noR: no Response

screened 12 necroptosis genes that have a significant impact
on prognosis and found that they play a crucial role in the
immune subtypes of BUC, particularly MLKL. Through a
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Fig.9 Effects of RIPK3 and MLKL on tumor growth and tumor
immune cell infiltration in vivo. A Four groups of cells constructed
using T24 cell lines were implanted subcutaneously in nude mice,
including negative control cells, sh-RIPK3 and sh-MLKL cells,
and MLKL-OE cells. B The tumor volume was calculated using

comprehensive analysis of 1841 BUC samples, we identi-
fied two subtypes of necroptosis and observed significant
differences in clinical characteristics, gene mutation pat-
terns, and immune cell infiltration between the two clusters.
While previous research has shown that RIPK3-dependent
necroptosis of pancreatic cancer cells leads to the recruit-
ment of immunosuppressive cells such as MDSCs to create
an immunosuppressive tumor microenvironment [10], our
study highlights a strong association between necroptosis
subtypes and the tumor immune microenvironment in BUC.

The validation of transcriptome expression in different
subtypes of necroptosis has been shown to be crucial for
molecular typing of BUC and understanding its impact on
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pared between the two groups using T test (*P<0.05, **P<0.01,
##¥P <(0.001, ****P<(0.0001). C-E Four groups of subcutaneous
tumors of BUC were analyzed by WB, HE (hematoxylin—eosin stain-
ing), IHC (immunohistochemistry), IF (immunofluorescence) assay

MLKL OE

immune-related biological pathways. Our study revealed
an association between necroptosis and BUC molecular
classification: the low necroptosis group (Cluster A) was
found to be related to the luminal-like subtype, while the
high necroptosis group (Cluster B) was linked to the basal-
like subtype. Previous research has shown that necroptosis
signaling pathways play a role in the immunosuppressive
microenvironment of tumors in diseases such as pancreatic
ductal adenocarcinoma (PDAC) and melanoma, leading to
immune tolerance and resistance to immunotherapy [10,
11, 21]. Our study found that necroptosis genes are critical
for promoting tumor immune cell infiltration and leading
to a worse prognosis in BUC. Additionally, our research
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validated a strong correlation between the high necroptosis
group and the hypoxia signaling pathway in BUC. While
the relationship between hypoxia and necroptosis has been
found in non-neoplastic diseases such as retinal neovascular
diseases, hepatic injury, and ischemic heart disease [22-24],
this study extends these findings to BUC. Previous stud-
ies have also shown that SMAC mimetics, which bind and
degrade cIAPs and induce necroptosis, can promote antitu-
mor immune responses [25]. Moreover, SMAC mimetics can
collaborate with immune checkpoint inhibitors to maintain
a durable therapeutic response for glioblastoma [26, 27].
Our study found significant differences in immune check-
point expression, particularly PD1 and PD-L1, between dif-
ferent necroptosis patterns. The high necroptosis modules
(Cluster B) were also found to have higher enrichment in
core tumor progression biological processes such as CDS§
T cell effector and EMT. As a result, the combination ther-
apy of necroptosis-inducing SMAC mimetics and immune
checkpoint inhibitors has great potential for BUC with high
necroptosis modules.

The frequency of FGFR3 alterations in BUC is generally
higher in non-muscle-invasive cases compared to muscle-
invasive cases, with alterations being associated with lower
grades and stages [28]. The frequency of FGFR3 altera-
tions was significantly higher in non-muscle-invasive BUC
(49%) than in muscle-invasive BUC (10-14%) [28-30].
In this study, we analyzed invasive BUCs from TCGA
and identified two necroptotic modules: high and low. We
found that the high necroptotic module had a significantly
lower rate of FGFR3 alterations (6%) compared to the low
necroptotic module (19%). Our results showed a clear rela-
tionship between necroptosis gene expression and FGFR3
mutations, contributing to a more accurate classification of
FGFR3 alterations in muscle-invasive bladder carcinomas
(MIBC). The luminal papillary subtype of urothelial carci-
noma is associated with FGFR3 genetic mutations [31, 32],
which is consistent with the high rate of FGFR3 alterations
observed in the low necroptotic module. Despite FGFR3
inhibiting key components of the adaptive immune response,
including lymphocyte infiltration and CD8A T-cell expres-
sion [33], our findings revealed that WT FGFR3 in BUC tis-
sues promote the infiltration of tumor immune cells such as
CD8+T cells, macrophages, and dendritic cells, compared
to mutated FGFR3.

Subsequently, we examined the relationship between the
two core necroptosis-related genes, RIPK3 and MLKL, and
tumor immune infiltration across different types of cancer.
Surprisingly, in the majority of cancers, both RIPK3 and
MLKL promoted tumor immune cell infiltration, particularly
in BUC where MLKL increased the infiltration of neutro-
phils, which supports previous findings that necroptosis can
boost antitumor immunity [34]. Conventional therapeu-
tic drugs primarily function by inducing tumor cell death

through apoptosis, but this approach often lacks efficacy
due to resistance to drugs and scattered immune responses.
Our study found that high expression of MLKL significantly
inhibited the growth of subcutaneous tumors in BUC, which
could be a promising therapeutic target. There are also sev-
eral therapeutic agents, including doxorubicin and cisplatin,
in classical chemotherapy drugs, that can trigger necroptosis
in tumor cells when combined with other modulators [35].
Our study discovered that several antitumor drugs, such as
17-AAG, AMG900, and BOS-172722, were highly effec-
tive in patients with high expression of cross-necroptosis
genes, particularly MLKL, which may overcome resistance
to classical chemotherapy and enhance the anti-tumor effect.

In view of the crucial role of necroptosis in regulating
BUC immunity and the heterogeneous necroptosis phe-
notype among BUC patients, it is essential to classify the
expression of necroptosis regulators in these patients. To
achieve this, we developed a scoring system, NecroScore, to
evaluate necroptosis patterns in BUC patients. Our findings
confirmed that NecroScore provides a reliable and compre-
hensive assessment of BUC-related molecules, with a high
NecroScore indicating basal-like differentiation and low
FGFR3 alterations. Validation of NecroScore on the prog-
nosis of BUC patients demonstrated its reliability, and we
constructed a prognostic model incorporating NecroScore
to accurately predict the outcome of BUC patients. The
NecroScore was positively correlated with tumor immune
cell infiltration levels including MDSCs, M2 macrophages
and defective toxic T lymphocytes etc., and a higher Necro-
Score was closely linked to higher expression of co-inhibi-
tory immune checkpoints such as PD1 and PD-L1. The vali-
dation of the IMvigor210 cohort showed that NecroScore
can predict the treatment effect of anti-PD-L1, especially
in patients who achieve complete response. Furthermore,
the combination of TMB and NecroScore provided a bet-
ter prediction of anti-PD-L1 treatment response. Our study
also demonstrated that high NecroScore scores had higher
sensitivity to classical BUC chemotherapy drugs, such as
cisplatin and gemcitabine. In conclusion, NecroScore can
be used to assess the expression patterns of necroptosis-
related molecules and corresponding immune cell infiltra-
tion characteristics in BUC patients, thereby guiding their
chemotherapy. Furthermore, NecroScore plays a critical
role in predicting the survival rate of BUC patients and
the therapeutic effect of immune checkpoint inhibitors such
as anti-PD-L1 in advanced and metastatic BUC. A recent
study has shown that administering first-line maintenance
Avelumab following initial platinum-containing chemo-
therapy without PD can significantly increase the survival
rate of patients with bladder urothelial carcinoma [13].
As a predictor of chemotherapeutic drug sensitivity and
anti-PD-L1 treatment effect, NecroScore can be utilized
to guide treatment regimens for advanced and metastatic
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BUC, particularly the combination of PD-L1 inhibitors and
platinum chemotherapy.

Although we attempted to study the heterogeneity of
necroptosis in as many samples as possible, this was a cross-
cohort retrospective study that had limitations such as batch
effects. Despite NecroScore's high accuracy in predicting
immune effects, further validation is needed through the use
of patient data from a multicenter clinical cohort. To confirm
the role of RIPK3 and MLKL in promoting tumor immune
cell infiltration in BUC, large-scale protein analysis is neces-
sary. Our study suggests that some anti-tumor drugs that are
highly sensitive to patients with high expression of necropto-
sis genes could be new and promising therapeutic measures,
especially for those with advanced or chemo-resistant BUC.
However, more research is needed to fully understand and
explore the potential of these findings.

In conclusion, the combination therapy of necroptosis-
inducing SMAC mimetics and immune checkpoint inhibitors
exhibits immense potential for bladder urothelial carcinoma
patients with high necroptosis modules. It is worth noting
that the high necroptotic module was associated with a sig-
nificantly lower rate of FGFR3 alterations (6%) compared
to the low necroptotic module (19%). NecroScore, as a scor-
ing tool, displayed a positive correlation with the infiltration
levels of tumor immune cells, including MDSCs, M2 mac-
rophages, and defective toxic T lymphocytes, among others.
A higher NecroScore was also found to be closely linked to
higher expression of co-inhibitory immune checkpoints such
as PD1 and PD-L1. As a predictor of chemotherapeutic drug
sensitivity and anti-PD-L1 treatment effect, NecroScore can
be utilized to guide treatment regimens for advanced and
metastatic bladder urothelial carcinoma patients, particularly
the combination of PD-L1 inhibitors and platinum chemo-
therapy. We hope to obtain more clinical data to support
our study findings, and NecroScore can play a vital role in
guiding the chemotherapy and immunotherapy of bladder
urothelial carcinoma patients in the future.
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