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Abstract
ERK1/2 inhibitors are new promising anticancer drugs. The aim of this study was to investigate the effect of the combination 
of ERK2 inhibitor VX-11e and voreloxin on MOLM-14, K562, REH and MOLT-4 leukemia cell lines. We found that VX-
11e alone and in combination with voreloxin significantly decreased ERK activation in all cell lines tested. To evaluate the 
interactions of the drugs, cells were treated for 24 h with VX-11e or voreloxin alone and in combination at fixed ratios based 
on  IC50 values. The combinatorial effects of both drugs were synergistic over a wide range of concentrations in MOLM-14, 
REH and MOLT-4 cell lines. In K562 cells, three effects were found to be additive, one antagonistic and only one synergistic. 
The results showed that incubation with both VX-11e and voreloxin inhibited the growth of leukemia cells, affected cell cycle 
and induced apoptosis. Furthermore, the molecular mechanism of these effects might be attributed to an increased expres-
sion of p21 and a decreased expression of survivin and NF-κB in all cell lines tested except from K562 cells. In conclusion, 
combination of VX-11e and voreloxin can exert a synergistic anticancer effect in leukemia cells.
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Introduction

Extracellular signal-regulated kinases (ERKs) participate in 
the downstream signaling of Ras/Raf/mitogen-activated pro-
tein kinase (MEK)/ERK (Ras/Raf/MEK/ERK) pathway as 
key regulators that control proliferation, differentiation and 
cell survival. ERK1/2 phosphorylates a number of down-
stream transcription factors, including nuclear factor-κB 
(NF-κB) and alters the expression of many proteins regulat-
ing cell cycle and apoptosis, such as p21 and survivin. [1–4]. 
Dysregulated signaling of the Ras/Raf/MEK/ERK cascade 
has been observed in many malignancies, including leuke-
mias [2, 5–7], and these findings have stimulated an inter-
est in developing specific inhibitors of this pathway [8–11]. 
However, since the proteins of the Ras/Raf/MEK/ERK 
pathway are involved in many cellular processes, it might 
be more effective to directly inhibit ERK protein bypassing 

upstream signaling components. Moreover, ERK inhibitors 
could be less sensitive to drug resistance mechanism than 
other inhibitors of the upstream molecules in Ras/Raf/MEK/
ERK pathway [12]. Thus, targeting ERK isoforms directly 
is considered to be more advantageous in cancer treatment.

VX-11e is a potent and selective ERK2 inhibitor that has 
been shown to reduce tumour growth in melanoma xenograft 
models and to decrease proliferation and viability in various 
human cancer cell lines [13–15]. Furthermore, VX-11e has 
been found to exert synergistic effect when used in combi-
nation with megestrol in T cell prolymphocytic leukemia 
cells [16].

Voreloxin is a first-in-class topoisomerase II inhibitor 
which causes cell cycle arrest and apoptosis in leukemia 
cells [17–19]. It has been studied as single agent and in com-
bination with other targeted drugs in the treatment of acute 
myeloid leukemia (AML) [18, 20, 21]. In our previous study, 
we have demonstrated that voreloxin acts in synergy with 
MEK inhibitor TAK-733 in HL60 cells [11].

The aim of the present study was to investigate whether 
the combination of VX-11e, an ERK2 inhibitor, with vore-
loxin exerts synergistic effects on human leukemia cells, and 
to examine possible mechanisms for such synergy.
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Materials and methods

Drugs

VX-11e and voreloxin were purchased form Selleck Chem-
icals (Selleckchem, Houston, TX, USA). Stock solutions 
of drugs were dissolved in DMSO, aliquoted and kept fro-
zen at − 80 °C until use.

Cell culture

MOLT-4 (human acute T-cell lymphoblastic leukemia, 
ALL), REH (human acute B-cell lymphoblastic leukemia, 
ALL) and MOLM-14 (human acute myeloblastic leuke-
mia, AML) cell lines were obtained from the German 
Collection of Microorganisms and Cell Cultures (DSMZ, 
Braunschweig, Germany). K562 (human chronic myeloid 
leukemia, CML) cells were purchased from the European 
Collection of Cell Cultures (ECACC, Salisbury, UK). 
All cell lines were maintained in RPMI-1640 GlutaMax 
medium supplemented with 10% fetal bovine serum (FBS) 
containing 100 U/ml penicillin, and 100 µg/ml streptomy-
cin (all reagents from Life Technologies, Carlsbad, CA, 
USA). Cells were cultured at 37 °C in a humidified 5% 
 CO2 atmosphere.

Cell proliferation assay

The Muse Ki67 Proliferation Kit was used to assess cell 
proliferation according to the manufacturer’s instructions 
(Merck Millipore, Billerica, MA, USA). Briefly, 5 × 105 
cells were fixed, permeabilized and stained with an antibody 
against Ki-67-PE for 30 min at room temperature in the dark 
and quantified using Muse Cell Analyzer. The proliferating 
(Ki67-positive) cells were quantified using Muse analysis 
software. The concentrations of drugs required to inhibit 
50% of cell growth  (IC50) were calculated using Prism 5.0 
software (GraphPad Software, Inc. La Jolla, CA, USA). 
The relative cell growth was calculated as the percentage 
of untreated cells.

Drug interaction experiments

To evaluate the interactions of the drugs, cell lines were 
treated for 24 h with VX-11e or voreloxin alone and in com-
bination at fixed ratios based on  IC50 values. The potential 
synergistic effect of drugs was analyzed by calculating the 
combination index (CI) and fraction affected (Fa) based on 
the Chou–Talalay method [22] using CompuSyn software 
(CompuSyn Inc. Paramus, NJ, USA). CI values ˂ 0.9 were 

considered as synergistic, values ˃ 1.1 as antagonistic, and 
values 0.9–1.1 as additive.

ERK activity assay

The Muse MAPK Activation Dual Detection Kit (Merck 
Millipore), including phospho-specific anti-phospho-
ERK1/2 (Thr202/Tyr204,Thr185/Tyr187)-Phycoerythrin 
and anti-ERK1/2-PECy5-conjugated antibodies, was used 
to measure ERK expression in cells. Briefly, 10 ×  105 cells 
were washed with PBS and fixed for 5 min on ice. Then, the 
cells were treated with permeabilization buffer for 5 min on 
ice and incubated with solution of antibodies for 30 min at 
room temperature in the dark. Cells were quantified using 
Muse Cell Analyzer. ERK activation was calculated as the 
percentage of ERK phosphorylation relative to the total ERK 
expression in the cell population.

Cell‑cycle analysis

Cell cycle distribution was determined using the Muse Cell 
Cycle Kit (Merck Millipore) according to the manufacturer’s 
instructions. The assay is based on the measurement of DNA 
content in nuclei labeled with propidium iodide (PI). Briefly, 
5 × 105 cells were harvested and fixed with 70% ice cold 
ethanol at − 20 °C for 18 h. After washing with PBS, cell 
pellets were resuspended in 200 μl of Cell Cycle Reagent 
and incubated for 30 min at room temperature in the dark. 
Cells were analyzed by Muse Cell Analyzer and the cell 
cycle phase distribution was quantified using Muse analysis 
software.

Apoptosis assay

Apoptotic cells were analyzed using Muse Annexin V and 
Dead Cell Kit (Merck Millipore) according to the previously 
described protocol (11). This assay utilizes Annexin V to 
detect phosphatidylserine on the external membrane leaf-
let of apoptotic cells and dead cell marker, 7-AAD, as an 
indicator of cell membrane integrity. Briefly, 1 ×  105 cells 
were resuspended in culture medium containing 1% FBS and 
incubated with Muse Annexin V and Dead Cell Reagent for 
20 min at room temperature in the dark. Cells were quanti-
fied using Muse Cell Analyzer and Muse analysis software.

Western blotting

Cells were lysed in radioimmunoprecipitation assay 
(RIPA) buffer (Sigma-Aldrich, Poznan, Poland) containing 
1% Protease Inhibitor Coctail (Roche Diagnostic, Basel, 
Switzerland) followed by centrifugation at 20,000×g for 
15 min at 4 °C. Protein concentration was determined by 
the bicinchoninic acid (BCA) method using BCA Protein 
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Assay Kit (Thermo Scientific/Pierce Biotechnology, Rock-
ford, IL, USA) with bovine serum albumin (Merck Mil-
lipore) as a standard. Equal amounts of proteins (40 µg) 
were separated by sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (SDS-PAGE) on 4–20% Mini-Protean 
TGX precast gels (Bio-Rad Laboratories, Hercules, CA, 
USA) and transferred to polyvinylidene-fluoride mem-
branes (PVDF) (Bio-Rad) at 100 V for 2 h. After incuba-
tion with blocking reagent (Bio-Rad), the membranes were 
probed with the following primary antibodies: anti-sur-
vivin (1:1000, Cell Signaling Technology (CST), Danvers, 
MA, USA), anti-p21 (1:1000, CST), anti-NF-κB p105/p50 
(1:400, Abcam, Cambridge, UK) and anti-β-actin (1:1000, 
CST) overnight at 4 °C. After washing, the membranes 
were incubated at room temperature for 1 h with second-
ary goat anti-rabbit antibody conjugated with horseradish 
peroxidase (1:10,000, Bio-Rad). The protein bands were 
visualized with the Amplified Opti-4CN substrate kit (Bio-
Rad) according to the manufacturer’s instructions. The 
relative optical density of blotting bands was quantified 
using ChemiDoc MP Imaging System (Bio-Rad). β-actin 
was used as the internal control.

Confocal microscopy

Cytospin smears of control and treated cells were fixed 
with 4% buffered paraformaldehyde for 5 min at room 
temperature. After washing with PBS, cells were pre-
incubated in primary antibody dilutor (PAD) comprising 
10% normal goat serum, 0.1% bovine serum albumin, 0.1% 
Triton X-100, 0.05% thimerosal and 0.01% sodium azide 
(all reagents from Sigma) for 30 min at room tempera-
ture. Primary rabbit anti- NF-κB p105/p50 monoclonal 
antibody (Abcam; diluted 1:200 in PAD) was applied for 
an overnight incubation at room temperature. Following a 
wash with PBS, cells were incubated with secondary Cy3-
conjugated goat anti-rabbit IgG antibody (Jackson Immu-
noResearch, West Grove, PA, USA; diluted 1:500 in PAD) 
for 1 h in the dark. Cells were then rinsed with PBS and 
stained with Hoechst 33342 (Sigma; 2.5 μg/ml in PBS) 
for 5 min. Images were obtained by confocal microscopy 
(Olympus FluoView 1200 on inverted stand IX83; Olym-
pus, Tokyo, Japan). Sixty-times magnification immersion 
objective (NA = 1.4) was used and helium-neonium laser 
(453 nm) and diode laser (405 nm) were applied to excite 
red (Cy3) and blue (Hoechst) fluorescence, respectively. 
The stacks of optical sections were acquired and further 
processed with Olympus FV10 software. For quantifi-
cation, fields were chosen arbitrarily and the number of 
NF-κB positive dots per nucleus was determined in 50 
cells per line/treatment using NIH ImageJ software (http://
rsb.info.nih.gov/ij/).

Statistical analysis

The results are expressed as mean ± standard deviation (SD) 
of three independent experiments. Statistical analysis for dif-
ferences among groups was performed by Mann–Whitney 
test, followed by Tukey’s tests for multiple comparisons, 
with p < 0.05 considered as statistically significant. Data 
were analyzed using the Prism 5.0 software.

Results

VX‑11e and voreloxin inhibited leukemia cell 
proliferation

MOLM-14, K562, REH and MOLT-4 cell lines were 
exposed to increasing concentrations of VX-11e (0.625 to 
40 µM) and voreloxin (3.75 to 250 nM) for 24 h. The cell 
proliferation was inhibited in a dose-dependent manner. 
The  IC50 values ranged from 1.7 ± 0.2 µM in K562 cells 
to 5.7 ± 0.5 µM in MOLT-4 cells for VX-11e and from 

Fig. 1  VX-11e (a) and voreloxin (b) inhibited leukemia cell prolif-
eration. MOLM-14, K562, REH and MOLT-4 cells were incubated 
for 24 h with increasing concentrations of VX-11e (VX) or voreloxin 
(VOR). The percentages of proliferating cells and the  IC50 values of 
each drug were determined by the Muse Ki67 Proliferation Kit. Each 
value is the mean ± SD of three independent experiments

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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22.2 ± 2.6 nM in REH cells to 74.4 ± 12.7 nM in MOLT-4 
cells for voreloxin (Fig. 1). These results show that K562 
cells were the most sensitive to VX-11e and REH cells to 
voreloxin while MOLT-4 cells were the least sensitive to 
both drugs.

Synergistic anti‑proliferative effects of VX‑11e 
and voreloxin

For combination studies, VX-11e and voreloxin were used 
at the fixed ratio of their  IC50 values. The combination index 
(CI) and fraction affected (Fa) were calculated to analyze 
the drug interaction (synergistic, additive or antagonistic). 

The combinations were synergistic over the wide range of 
concentrations in MOLM-14, REH and MOLT-4 cell lines, 
with the lowest CI of 0.27 and Fa of 0.95 in MOLM-14 
cells (Fig. 2a, c and d). In K562 cells, three combinations 
were found to be additive (CI ranged from 0.96 to 1.45), one 
slight antagonistic (CI 1.07) and one synergistic (CI 0.74, 
Fa = 0.72) (Fig. 2b). Our data suggest that the combinato-
rial effects of VX-11e and voreloxin could be synergistic, 
additive or antagonistic, depending on drug concentration 
and cell line used. Since our aim was to achieve maximal 
effect of the drugs tested on leukemia cells, the combina-
tions which generated the lowest CI values with Fa > 0.7 
were used in further experiments: 20 µM of VX-11e and 

Fig. 2  Synergistic anti-proliferative effects of VX-11e and voreloxin. 
a MOLM-14, b K562, c REH and d MOLT-4 cells were incubated for 
24 h with the constant ratio dose at the  IC50 values of VX-11e (VX) 

and voreloxin (VOR). The CI and Fa values were calculated using the 
Chou-Talalay method described in ″Materials and methods″. Each 
value is the mean ± SD of three independent experiments
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160 nM of voreloxin in MOLM-14 cells, 1.5 µM of VX-11e 
and 50 nM of voreloxin in K562 cells, 4 µM of VX-11e and 
22 nM of voreloxin in REH cells, and 24 µM of VX-11e and 
300 nM of voreloxin in MOLT-4 cells.

VX‑11e alone and in combination with voreloxin 
decreased ERK activation

Leukemia cell lines were treated with VX-11e and voreloxin 
alone or in combination for 24 h.

After treatment with VX-11e alone and in combination 
with voreloxin, percentages of ERK activated cells were 
significantly reduced and reached the lowest relative level 
in REH cells (28.4% ± 7.1%). Voreloxin alone had no sig-
nificant effect on ERK activation levels compared to control 
cells (Fig. 3a and b). These results indicate that VX-11e is 
highly effective for inhibition of ERK in leukemia cells.

Combination of VX‑11e and voreloxin induced 
cell‑cycle arrest and apoptosis

To further determine the potential synergistic effect of drug 
combination, we also analyzed the effect of drugs on the cell 
cycle and apoptosis. After treatment with VX-11e alone, 
the percentage of cells in G0/G1 phase was significantly 
increased in K562 cells, with a corresponding decrease of 
cells in the S and G2/M phases (Fig. 4b). Voreloxin alone 
did not significantly influence the cell cycle in studied cell 
lines, however, in K562 cells it caused an accumulation of 
cells in G2/M phase and a concomitant decrease in G0/G1 
phase. The combination of VX-11e and voreloxin signifi-
cantly induced cell cycle arrest in G0/G1 phase in all cell 
lines compared with the untreated control except K562 cells 
(Fig. 4d). As compared to the effect of voreloxin alone, the 
combined treatment caused further increase in the percent-
age of cells in G0/G1 phase in all cell lines except REH 
cells (Fig. 4c), while the percentage of cells in G2/M phase 
was significantly decreased in MOLM-14 and K562 cells 
(Fig. 4a and b).

Treatment with VX-11e and voreloxin alone induced 
apoptosis in all cell lines (Fig. 5). The total apoptotic rate 
(early and late apoptosis) increased from 10% ± 3.3% in 
K562 cells to 18.2% ± 5.5% in MOLT-4 cells for VX-11e 
and from 38.7% ± 8.8% in MOLT-4 cells to 49.7% ± 16.2% 
for voreloxin. The combined treatment with VX-11e and 
voreloxin markedly potentiated apoptosis and the percentage 
of apoptotic cells ranged from 69.5% ± 14.2% in MOLM-14 
cells to 86.2% ± 5.9% in MOLT-4 cells. This effect, however, 
was not observed in K562 cells (Fig. 5a and b). Hence, these 
results demonstrate that the induction of apoptosis may be 
related to cell cycle perturbations after combined treatment 
with VX-11e and voreloxin.

VX‑11e in combination with voreloxin increased p21 
and reduced survivin and NF‑κB protein levels

To elucidate the mechanism responsible for the anti-prolif-
erative effects of VX-11e and voreloxin combination, we 
investigated proteins involved in the regulation of cell cycle 
and apoptosis by Western blotting. The amount of p21, an 
important checkpoint protein in G1 phase of the cell cycle, 
was markedly increased, whereas the level of anti-apoptotic 
survivin was significantly decreased in cells upon combined 
treatment with VX-11e and voreloxin, compared to untreated 
control and cells treated with either compound alone. West-
ern blot analysis also showed a significant decrease in the 
level of NF-κB p105/p50 protein, a key regulator of pro-
survival factors, compared to untreated control and cells 
treated with VX-11e or voreloxin alone. These effects were 
observed in all cell lines except from K562 cells (Fig. 6a–d). 
They might provide an explanation for the involvement of 
p21, survivin and NF-κB proteins in the synergistic anti-
proliferative effect of VX11e and voreloxin combination.

VX‑11e in combination with voreloxin inhibited 
NF‑κB translocation into the nucleus

In untreated control cells and in those treated with VX-11e 
and voreloxin alone, NF-κB was found to be distributed 
mainly in the nuclei, showing punctuated immunofluores-
cent pattern. Combinatorial treatment of cells with VX-11e 
and voreloxin showed significant decrease in the number 
of red fluorescent dots localized in the nuclei compared to 
untreated control and cells treated with either drug alone 
(Fig. 7a, c and d). These observations suggest that combina-
torial treatment of cells with VX-11e and voreloxin inhibited 
nuclear translocation of NF-κB. However, this effect was not 
observed in K562 cells (Fig. 7b).

Discussion

Combination of drugs directly targeting ERK kinases with 
traditional chemotherapeutics may provide new potential 
tools for cancer treatment. We recently reported that prein-
cubation of HL60 myeloid leukemia cells with MEK inhibi-
tor TAK-733 synergistically potentiated voreloxin-induced 
apoptosis [11]. In the present study, we have shown that 
ERK2 inhibitor VX-11e demonstrates a potent synergy with 
voreloxin in leukemia cell lines and that this effect is associ-
ated with the inhibition of proliferation, cell cycle arrest and 
induction of apoptosis.

We have found that both drugs, either alone or in combi-
nation, can inhibit cell growth and the level of this inhibition 
was dose dependent. The combinations of VX-11e and vore-
loxin were synergistic over a wide range of concentrations 
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in MOLM-14, REH and MOLT-4 cell lines. In K562 cells, 
three combinations were found to be additive, one antago-
nistic and only one synergistic. We have demonstrated that 
the most synergistic effect of VX-11e and voreloxin combi-
nations occurred in large cell fraction (Fa > 0.7). It has been 
postulated, that for better therapeutic effect a threshold at 
Fa = 0.8 (80% of cells affected) should be commonly used 
when investigating anticancer drugs [23]. In all cell lines 
tested, ERK has been found to be at high basal level, which 
is in accordance with the previous data showing that ERK 
may be strongly activated in leukemia cells [11, 24]. We have 
shown that only VX-11e significantly reduces ERK activa-
tion in leukemia cells and this effect can be still observed 
after combined treatment with VX-11e and voreloxin.

To further investigate the potential mechanisms of the 
combined treatment, cell cycle distribution was evaluated. 
The treatment with VX-11e and voreloxin promoted G0/

G1 cell cycle arrest that was associated with the increased 
expression of cell cycle inhibitor, p21. These results cor-
responded with the effect of the drugs on the induction 
of apoptosis. It has been reported that p21 protein is an 
important regulator of G1 to S phase progression of the 
cell cycle and its expression is usually induced by p53 
protein [25]. Moreover, p21 is considered to play a role 
in the process of apoptosis [26–28]. On the one hand, a 
large number of studies have shown that p21 exerts an 
anti-apoptotic effect in leukemia cells [29–32]. On the 
other hand, there are evidences showing that some drugs 
can promote apoptosis through induction of p21 in can-
cer cells. It was reported that treatment of MCF-7 and 
MDA-MB-23 breast cancer cell lines with taxol induced an 
accumulation of cells in G2/M and sub-G1 phase by induc-
tion of p21 [33]. Another study demonstrated that ectopic 
expression of p21 in MCF-7 and T47D cells decreased 
cell division and promoted apoptosis [34]. Interestingly, 
in our study, the combination of VX-11e and voreloxin 
showed increased percentage of apoptotic K562 cells 
without affecting the G0/G1 arrest and p21 expression. 
On the basis of the above results, we postulate that this 
effect could be at least partially related to the absence of 
p53 protein in K562 cells due to the null mutation [35, 
36], whereas MOLM-14 cells have functional p53 [37]. 
Thus, cells with p53 defect fail to induce p21 expression 

Fig. 3  VX-11e alone and in combination with voreloxin decreased 
ERK activation. MOLM-14, K562, REH and MOLT-4 cells were 
incubated for 24 h with VX-11e and voreloxin alone or in combina-
tion. ERK activity was determined using the Muse MAPK Activation 
Dual Detection Kit. a Representative dot plots and b graph of ERK 
activation in MOLM-14, K562, REH and MOLT-4 cell lines. Each 
value is the mean ± SD of three independent experiments. *(p < 0.05), 
**(p < 0.01) versus control; #(p < 0.05), ##(p < 0.01) versus VX-11e; 
$(p < 0.05), $$(p < 0.01) versus voreloxin

◂

Fig. 4  Combination of VX-11e 
and voreloxin induced cell-cycle 
arrest. a MOLM-14, b K562, 
c REH and d MOLT-4 cells 
were incubated for 24 h with 
VX-11e (VX) and voreloxin 
(VOR) alone or in combina-
tion. Cell cycle distribution was 
determined using the Muse Cell 
Cycle Kit. Each value is the 
mean ± SD of three independ-
ent experiments. *(p < 0.05), 
**(p < 0.01) versus control; 
#(p < 0.05), ##(p < 0.01) versus 
VX-11e; $(p < 0.05), $$(p < 0.01) 
versus voreloxin
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and activate apoptosis. On the contrary, our data indicate 
that the increased expression of p21 did not seem to be 
correlated with p53 status, since p53-mutated REH and 
MOLT-4 cells overexpressed p21 protein after VX-11e and 
voreloxin combined treatment [38, 39]. Thus, it is possible 
that other mechanisms may contribute to the synergistic 
pro-apoptotic effect of VX-11e and voreloxin in K562 cells 
and these surprising findings require further investigation.

Fig. 5  Combination of VX-11e and voreloxin enhanced apoptosis 
in leukemia cells. MOLM-14, K562, REH and MOLT-4 cells were 
incubated for 24 h with VX-11e (VX) and voreloxin (VOR) alone or 
in combinations. a Representative dot plots of Annexin V/7-AAD 
apoptotic assay and b graph showing the percentage of apoptotic 
cells. Each value is the mean ± SD of three independent experiments. 
*(p < 0.05), **(p < 0.01) versus control; #(p < 0.05), ##(p < 0.01) ver-
sus VX-11e; $(p < 0.05), $$(p < 0.01) versus voreloxin

◂

Fig. 6  VX-11e in combina-
tion with voreloxin increased 
p21 and reduced survivin and 
NF-κB p105/p50 protein levels. 
a MOLM-14, b K562, c REH 
and d MOLT-4 cells were 
incubated for 24 h with VX-11e 
(VX) and voreloxin (VOR) 
alone or in combination. The 
expression of p21, survivin, p50 
and p105 proteins was detected 
by Western blot. β-actin was 
used as a loading control. 
Quantification of the proteins 
was performed by densitomet-
ric analysis of the blots and 
normalized to the internal load-
ing control. Each value is the 
mean ± SD of three independ-
ent experiments. *(p < 0.05), 
**(p < 0.01) versus control; 
#(p < 0.05), ##(p < 0.01) versus 
VX-11e; $(p < 0.05), $$(p < 0.01) 
versus voreloxin
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Fig. 7  VX-11e in combination with voreloxin inhibited NF-κB 
translocation into the nucleus. a MOLM-14, b K562, c REH and d 
MOLT-4 cells were incubated for 24 h with VX-11e (VX) and vore-
loxin (VOR) alone or in combination. Cells were immunostained 
for NF-κB (red fluorescence) and the nuclei were stained blue with 
Hoechst 33342. Representative confocal images and box-and-

whisker plots representing the number of NF-κB positive dots per 
nucleus from three independent experiments. Bar = 10 μm. The box, 
line and whiskers represent the quartiles, median and range of data 
(minimal and maximal values), respectively. *(p < 0.05), **(p < 0.01) 
versus control; #(p < 0.05), ##(p < 0.01) versus VX-11e; $(p < 0.05), 
$$(p < 0.01) versus voreloxin (Color figure online)
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Survivin, a member of the anti-apoptotic signaling pro-
tein family, plays an important role in cell proliferation and 
survival [40]. Elevated level of survivin has been found 
in hematological malignancies, including leukemias [41]. 
Moreover, it was recently reported that in leukemia cells 
survivin expression was regulated through MEK/ERK-
dependent mechanisms [42]. We have demonstrated in the 
present study that survivin levels are significantly decreased 
in cells after combinatorial treatment with VX-11e and vore-
loxin. As shown in other studies on treatment of AML cell 
lines with inhibitors of MEK/ERK pathway combined with 
other anticancer drugs, the synergistic pro-apoptotic effect 
of drugs was accompanied by decreased expression of sur-
vivin [43]. Furthermore, previous studies have demonstrated 
that transcription factors, such as NF-κB, are important for 
increased survivin transcription activity [44]. It has been 
shown that activation of the NF-κB signaling pathway con-
tributes to tumor progression by blocking apoptosis via 
upregulation of survivin [45, 46]. The NF-κB p50 subunit 
is an active molecule of p105 precursor protein [47]. In the 
present study, we have observed reduced levels of both p50 
and p105 subunits of NF-κB protein in cells treated with 
both drugs. In addition, we assessed the nuclear staining of 
NF-κB p105/p50 in leukemia cell lines because the trans-
location of p50 subunit into the nucleus is one of impor-
tant steps for transcriptional activation of NF-κB [48]. We 
found that nuclear staining of NF-κB p105/p50 was reduced 
after combined VX-11e and voreloxin treatment in all cell 
lines except K562 cells. These results might suggest that 
NF-κB pathway is not involved in the anti-proliferative 
and pro-apoptotic effects in K562 cells. In our study, the 
combination of VX-11e and voreloxin was synergistic in 
K562 cells only at concentrations equal to the IC50 values 
obtained for each drug. The different effectiveness of drugs 
may reflect the variability of cell lines, as leukemia cells 
display diverse phenotypes and chromosomal abnormalities. 
It has been reported that K562 cells carry the Bcr-Abl fusion 
gene which promotes cell growth, inhibits apoptosis and is 
responsible for the resistance to different anticancer drugs 
[49, 50]. Interestingly, NF-κB activation is also dependent 
on downstream targets of Bcr-Abl including MEK kinase-1 
(MEKK1). It has been found that Bcr-Abl enhances MEKK1 
expression and kinase activity and strongly induces NF-κB 
signaling. [51]. Bcr-Abl has been shown to induce activa-
tion of NF-κB in LAMA84 cells, a human CML cell line 
[52]. Furthermore, it has been found, that BCR-ABL fusion 
protein promotes survivin expression in hematopoietic cells 
[53].

In conclusion, our study reveals that VX-11e shows syn-
ergy with voreloxin in the inhibition of leukemia cell prolif-
eration. The combination of both drugs affects cell cycle and 
induce apoptosis by enhancing p21 protein expression and 
decreasing survivin and NF-κB protein levels in leukemia 

cell lines, with the exception of K562 cells. Although the 
synergistic effect of VX-11e and voreloxin could depend on 
the cell type and concentration of drugs, the combination of 
ERK inhibitors with other anticancer agents seems to be a 
promising therapeutic strategy for the treatment of leukemia.
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