CORRECTION

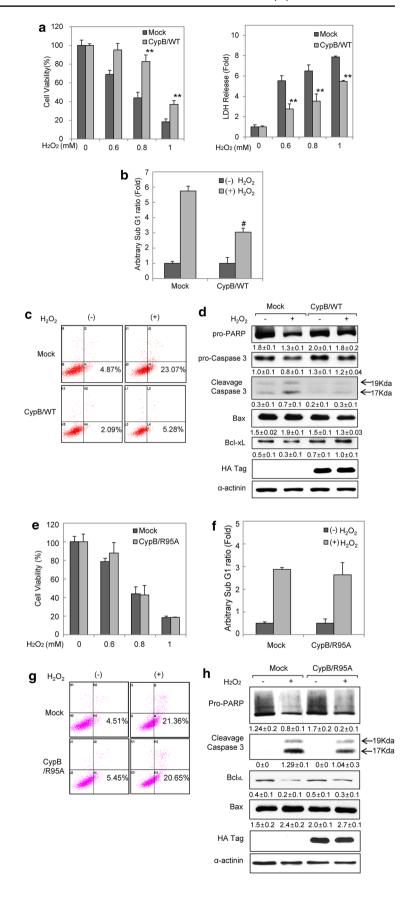
Correction to: Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress

Kiyoon Kim¹ · Hunsung Kim¹ · Kwon Jeong¹ · Min Hyung Jung² · Bum-Soo Hahn^{3,4} · Kyung-Sik Yoon¹ · Byung Kwan Jin⁵ · Geon-Ho Jahng⁶ · Insug Kang¹ · Joohun Ha¹ · Wonchae Choe¹

Published online: 6 October 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Correction to: Apoptosis (2012) 17:784-796 https://doi.org/10.1007/s10495-012-0730-5

The original version of this article contained a mistake. The bands for HA Tag and t-ERK in Figs. 2d, 2h, 3d are incorrect. The author informs that these errors had no influence in the scientific content of the paper. The corrected figures (Figs. 2 and 3) are given below.


The original article can be found online at https://doi.org/10.1007/ \pm 10495-012-0730-5.

- Wonchae Choe wchoe@khu.ac.kr
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, South Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University, Seoul 130-701, South Korea
- National Academy of Agricultural Science, Suwon 441-707, South Korea
- Department of Genetic Engineering, Kyung Hee University, Suwon 446-701, South Korea
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 134-727, South Korea
- Department of Radiology, Kyung Hee University Hospital-Gangdong, School of Medicine, Kyung Hee University, Seoul 134-727, South Korea

708 Apoptosis (2018) 23:707–709

Fig. 2 Overexpression of CypB protects cells against H₂O₂-mediated apoptosis. Huh-7 cells were mock-transfected or transfected with a CypB/WT expression construct and treated with 0, 0.6, 0.8 or 1 mM H₂O₂ for 24 h. After incubation, cell viability was measured by a, left MTT assay and a, right LDH release assay. Apoptotic cells were detected by b PI staining and c annexin V/PI double staining. d Apoptotic markers were analyzed by immunoblotting. Transfected cells were incubated with 0.8 mM H₂O₂ for 24 h. Whole lysates were separated on 12% SDS-PAGE gels and immunoblotted with anti-PARP, anti-pro-caspase-3, anti-cleaved caspase-3, anti-Bax, anti-Bcl-xL, and anti-HA probe. α-Actinin was used as a loading control. Huh-7 cells were mock-transfected or transfected with a CypB/R95A expression construct and treated with 0, 0.6, 0.8 or 1 mM H₂O₂ for 24 h. After incubation, cell viability was measured by e MTT assay. Transfected cells were treated with 0.8 mM H₂O₂. After 24 h of incubation, cells were harvested, and apoptotic cells were detected with f PI staining and g annexin V/PI double staining. h Apoptotic markers were analyzed by immunoblotting. Whole lysates were separated on 10-12% SDS-PAGE gels and immunoblotted with anti-PARP, anti-cleaved caspase 3, anti-Bax, anti-Bcl-xL, and anti-HA probe. α-Actinin was used as a loading control. Data are expressed as mean \pm SD of three independent experiments. **P < 0.05 versus mock-transfected cells treated with H₂O₂; $^{*}P < 0.01$ versus mock-transfected cells treated with H2O2

Apoptosis (2018) 23:707–709 709

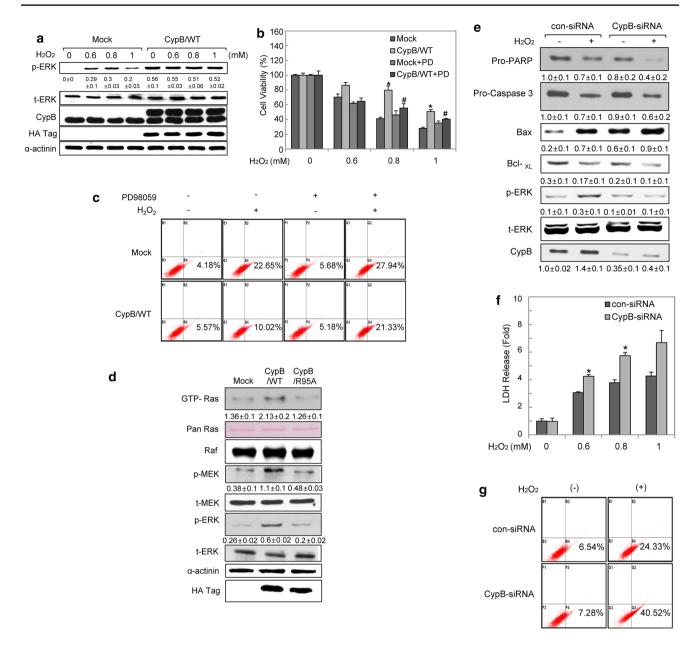


Fig. 3 Overexpression of CypB protects Huh-7 cells though ERK activation. a Transfected cells were treated with 0, 0.6, 0.8 or 1 mM H₂O₂ for 24 h. Protein levels were detected by immunoblotting with anti-phospho ERK, anti-total ERK, abCAM, or anti-HA probe. α-Actinin was used as a loading control. **b** Transfected Huh-7 cells were pre-treated with the ERK inhibitor PD98059 (50 µM). After a 1-h incubation, cells were treated with 0-1 mL H₂O₂ for 24 h. Cell viability was measured by MTT assay. Data are expressed as mean \pm SD of three independent experiments. *P < 0.05 versus mock-transfected cells treated with H_2O_2 ; ${}^\#P < 0.05$ versus mocktransfected cells treated with H2O2 after PD98059 pretreatment. c Apoptotic cells were detected with annexin V/PI double staining. Transfected cells were treated with 0.8 mM H₂O₂ after a 1-h pretreatment with PD98059. After 24 h, cells were harvested and analyzed by flow cytometry. d ERK upstream activation was determined by Ras affinity assay and immunoblotting. Transfected Huh-7 cell lysates were analyzed by Ras affinity assay and separated on 12% SDS-

PAGE gels. Equal protein loading was ensured by Ponceau S staining and pan-Ras immunoblotting of the input. Immunoblotting was performed with antibodies against Raf, phospho-MEK, total-MEK, phospho-ERK, total-ERK, and the HA tag. α-Actinin was used as a loading control. e Huh-7 cells were transfected with con-siRNA or CypB-siRNA and treated with 0.8 mM H₂O₂ for 24 h. After incubation, apoptotic markers were analyzed by immunoblotting. Whole lysates were separated on 10-12% SDS-PAGE gels and immunoblotted with anti-PARP, anti-pro-caspase-3, anti-Bax, anti-Bcl-xL, anti-phospho ERK and anti-total ERK. f Transfected cells were treated with 0, 0.6, 0.8 or 1 mM H₂O₂ for 24 h. After incubation, cell viability was measured by LDH-release assay. Data are expressed as mean \pm SD of three independent experiments. *P < 0.01 versus con-siRNA transfectants treated with $\mathrm{H_2O_2}$. \mathbf{g} Apoptotic cells were detected with annexin V/PI double staining. After siRNA transfection, cells were incubated with 0 or 0.8 mM H₂O₂. After 24 h, cells were harvested and analyzed by flow cytometry

