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Abstract More than half of the initially-formed neurons are
deleted in certain brain regions during normal development.
This process, whereby cells are discretely removed without
interfering with the further development of remaining cells,
is called programmed cell death (PCD). The term apopto-
sis is used to describe certain morphological manifestations
of PCD. Many of the effectors of this developmental cell
death program are highly expressed in the developing brain,
making it more susceptible to accidental activation of the
death machinery, e.g. following hypoxia-ischemia or irra-
diation. Recent evidence suggests, however, that activation
and regulation of cell death mechanisms under pathological
conditions do not exactly mirror physiological, developmen-
tally regulated PCD. It may be argued that the conditions
after e.g. ischemia are not even compatible with the execu-
tion of PCD as we know it. Under pathological conditions
cells are exposed to various stressors, including energy fail-
ure, oxidative stress and unbalanced ion fluxes. This results
in parallel triggering and potential overshooting of several
different cell death pathways, which then interact with one
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another and result in complex patterns of biochemical man-
ifestations and cellular morphological features. These types
of cell death are here called “pathological apoptosis,” where
classical hallmarks of PCD, like pyknosis, nuclear conden-
sation and caspase-3 activation, are combined with non-PCD
features of cell death. Here we review our current knowledge
of the mechanisms involved, with special focus on the po-
tential for therapeutic intervention tailored to the needs of
the developing brain.
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Irradiation

Abbreviations
AIF apoptosis-inducing factor
AMPA alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid
APAF-1 apoptosis protease-activating factor-1
BDNF brain-derived neurotrophic factor
CREB cAMP-response element-binding protein
DG dentate gyrus
EE early elimination
ERK extracellular signal-regulated protein kinase
HI hypoxia-ischemia
IL interleukin
JNK jun N-terminal kinase
MAP kinase mitogen-associated protein kinase
mtPT mitochondrial permeability transition
NOS nitrogen oxide synthase
NGF nerve growth factor
NMDAR N-methyl-D-aspartate receptor
P7 postnatal day 7
PCD programmed cell death
ROS reactive oxygen species
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SGZ subgranular zone (of the dentate gyrus)
SOD2 superoxide dismutase 2
SVZ subventricular zone (of the lateral

ventricular wall)
TRX 2 thioredoxin 2
XIAP X-linked inhibitor of apoptosis protein

Physiological cell death of developing neurons

Strictly controlled cell death is an essential feature of normal
development and homeostasis in multi-cellular organisms,
in order to maintain the normal function of different organs
and tissues, including the brain. A plethora of neurons is
produced in the developing brain, many of which will be
removed during embryonal and postnatal refinement of the
central nervous system. This process of physiological cell
death, whereby cells are discretely removed without inter-
fering with the further development of remaining cells, is
called programmed cell death (PCD). The term apoptosis
is used to describe certain morphological manifestations of
PCD [1]. The masterful work of A. Glücksmann has pro-
vided one of the best descriptions of physiological cell death
during development regarding morphogenesis, phylogene-
sis, and histiogenesis [2]. In the nervous system, Hamburger
and Levi-Montalcini described more specifically the devel-
opmental cell death of motoneurons and its regulation by fac-
tors located within the innervating region [3]. This pioneer-
ing work laid the ground for the concept that neuron precur-
sors are produced in excess and later selected for survival or
cell death depending on extracellular (“the neurotrophic hy-
pothesis”) [4] and intracellular processes [5]. In some brain
regions more than half of the initially-formed neurons are
lost during normal development but the extent and charac-
teristics of PCD of developing neurons varies greatly at dif-
ferent stages of development and among different neuronal
populations [6–8]. In many different species, two waves of
neuronal cell death have been described during development
[9]. The first wave consists of a large number of dividing
neurons being eliminated during the peak of neurogenesis at
mid-embryogenesis, here called early elimination (EE). The
second wave consists of differentiated neurons dying while
migrating toward their target locations or while connecting
to target cells during the early postnatal period. The latter
process is often referred as classical PCD [10]. These two
waves likely serve two different purposes: to regulate the
neuronal precursor pool size and to ensure the proper wiring
of developing neuronal networks, respectively. In this first
section of the review we intend to schematically describe
the main pathways leading to physiological cell death, from
the extracellular effectors to the intracellulars actors. Recent
findings that shed new light on the PCD process are par-
ticularly emphasized and obvious differences between the

developmental physiological PCD and pathological cell
death are pointed out.

Cell death during development: extracellular effectors

From the establishment of the neurotrophic hypothesis, sev-
eral key additional extracellular effectors have been shown
to be instrumental in developmental PCD. Among these are
neurotransmission in general, including the activation of N-
methyl-D-aspartate receptors (NMDAR), extracellular nu-
cleotides, the glial sheet development, the guidance clues
and the adhesive molecules (Fig. 1). It is then obvious that
developmental PCD is a highly regulated process that de-
pends on the input/output neuronal activity, controlled both
by distant target cells and by local intercellular interactions
(e.g. synapse formation).

Positive regulators—death by neglect

As described above, two waves of neuronal cell death have
been described during development, EE and PCD. Schemat-
ically, it is proposed that both processes result in part from
competition between neurons for a limited supply of neu-
rotrophic factors, and PCD is considered to be the de-
fault pathway. Among the neurotrophic factors, the nerve
growth factor (NGF) family (e.g. NGF itself, brain de-
rived neurotrophic factor (BDNF) and neurotrophin 3), the
glial cell-derived neurotrophic factor (GDNF), and the neu-
rotrophic cytokines (e.g. ciliary neurotrophic factor (CNTF)
and interleukin-6) have attracted the most attention [11, 12].
Although both EE and PCD are modulated by neurotrophic
factors, the source of the factors involved seem to differ
significantly, such that the factors are produced locally dur-
ing early cell death and distally during PCD [13]. More-
over, the same neuronal population can respond differently
to the same neurotrophic factors depending on its matura-
tional stage. For instance, GDNF has been shown to rescue
dopaminergic neurons against PCD in vitro [14] and in vivo
[15], but GDNF-/-mice that die perinatally exhibit normal
numbers of nigral dopaminergic neuron precursors [16], in-
dicating that early cell death (throughout EE) is insensitive
to GDNF. Ret, a member of the receptor tyrosine kinase
superfamily that transduces GDNF signaling, is required in
vivo for the survival of dopamine neurons [17]. Along the
same lines, chick retinal ganglion cells require NGF and
BDNF to survive during early neural development whereas
neither of these factors have any effect later during PCD
[18]. The proneurotrophins that bind with high affinity to
the p75 neurotrophin receptor (p75NTR) but lack the ca-
pacity to bind Trk receptors (e.g. NGF family receptor) can
elicit apoptosis via p75NTR in neurons expressing survival-
promoting Trk receptors. However, this process seems to
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Fig. 1 Schematic
representation of the
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be mostly activated under pathological conditions [19]. In
the retina, p75NTR and TrkA receptor regulate the num-
ber of retinal ganglion cell number in the EE phase but not
at later stages, although their respective roles in triggering
cell death remain unclear [20]. Moreover, during a defined
developmental period trophic factors can have antagonistic
effects on neurons. For instance, transforming growth factor
(TGF)-beta and insulin display opposite effects in regulat-
ing postnatal apoptosis since TGF-beta induces apoptosis
whereas insulin has a well-described anti-apoptotic effect
[21]. In all, the regulation of neuronal death during develop-
ment by neurotrophic factors relies on a finely tuned balance
between numerous partners, which can be disrupted under
pathological conditions.

Recently, it has been shown that neurotransmission plays
a key role in controlling developmental cell death (Fig. 1).
An obvious difference between EE and PCD is the influence
of neurotransmission and synaptic activity [22]. Suppression
of synaptic activity during embryonic development does not
have any obvious effects on brain, neuronal or synaptic mor-
phology [23]. In contrast, during the postnatal period, when
synaptogenesis is at its peak, massive neuronal cell death
can be triggered by an acute blockade of glutamate receptors
[24–29]. Demonstrating the pivotal role of the glutamatergic
NMDA receptor in controlling developmental cell death has
been a major recent advance in our understanding of death
induction in developing neurons. Blockade of NMDA re-
ceptors induces cell death during the early postnatal period
in rodents and monkeys [24, 26, 30–32]. The localization
of the NMDA receptors, i.e. in the synaptic or extrasynap-

tic membranes, influences the survival balance of neurons.
Indeed, calcium influx through synaptic or extra-synaptic
NMDA receptors produced opposite effects on CREB func-
tion, BDNF gene regulation, neuron survival [33] and Akt
phosphorylation [34]. There are even situations where in-
creased intracellular concentrations of calcium can foster
neuronal survival [35] and calcium depletion may induce
cell death [36]. Peripheral sympathetic and sensory neurons
are strictly dependent on NGF for survival directly after iso-
lation and have intracellular calcium levels of about 100 nM,
rising to 250 nM after 3 weeks in culture, concomitantly
losing their requirement for NGF to prevent apoptosis. Ar-
tificially raising the intracellular calcium levels early dur-
ing culture abolishes the NGF requirement, indicating that
at least some neuronal populations have a developmentally
regulated set-point, and that intracellular calcium concen-
trations determine their dependence on trophic factors and
control neuronal survival [37, 38].

The activation of synaptic NMDARs that are present at
the surface of neurons at early stages [39] has a trophic ef-
fect on neuronal survival. An elegant recent study has even
shown that the survival of new neurons is competitively reg-
ulated by their own NMDA receptors during a short, criti-
cal period soon after birth [40]. Such a role for glutamate
during physiological cell death stands in contrast to its po-
tent cell death-inducing effect under pathological conditions,
where massive release of glutamate induces spill-over from
the synapse, activation of extrasynaptic NMDA receptors
and cell death [41] and the NMDAR antagonist MK-801 is
highly protective in models of ischemia in the developing
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brain [42–44]. Furthermore, the AMPA type (alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamater-
gic receptor, does not appear to play a role in developmen-
tal cell death, whereas changes in AMPA signaling have
been reported in pathological models of glutamate/NMDA-
mediated cell death [24–26, 44, 45]. Hence, during neu-
ronal network formation most neurotransmission has trophic
effects and, conversely, insufficient activity is likely pro-
apoptotic. Further investigations are clearly needed to clar-
ify, for instance, the role of different neurotransmitters in this
process [46], the role of synaptic components [28, 47] and
whether neurotransmitter-induced neuronal survival simply
requires depolarization [48], which can be achieved by both
glutamate and GABA at early stages, or whether it is ligand
specific. Other extracellular molecules acting on gated chan-
nels, such as nucleotides (e.g. ATP), also modulate neuronal
survival during development [49, 50], further suggesting that
the neuronal activity status is a key control point for neuronal
survival.

Negative regulators—death by murder

In contrast to the cell death mechanism induced by lack
of survival signaling, some extracellular molecules have
been shown to act as direct inducers of neuronal death dur-
ing development. For instance, the proneurotrophins that
bind with high affinity to the p75 neurotrophin receptor
(p75NTR) can directly induce neuronal death. These recep-
tors are often referred as “death receptors” and are cou-
pled to specific apoptotic effectors (e.g. caspase-8). Fas, a
member of the TNF-alpha receptor family, is expressed dur-
ing development in the spinal cord, hippocampus, and cor-
tex [51] and is involved in the death of motoneurons [52].
However, convincing evidence from in vivo studies is still
lacking [53, 54].

Interestingly, over the last years, several molecules in-
volved in various steps of neuronal development were un-
expectedly found to regulate physiological neuronal death.
Glial cells have emerged as key regulators of neuronal de-
velopment, regulating for instance the number of neurons at
early stages by dynamically influencing neural precursors di-
visions, and at later stages by promoting neuronal cell death
by engulfment [55]. Moreover, the chemorepellent netrin-1
receptors, UNC5 proteins and the axonal guidance molecule
semaphorin 3A mediate neuronal cell death [56, 57]. Al-
though it still needs to be firmly established, it is possible
that glial cells and the guidance molecules actively remove
neurons that are mislocated, where cell density is too high,
or neurons that send their axons to inappropriate target areas.
Consistently, molecules from the extracellular matrix com-
ponent family, integrin and ephrin, that ensure proper cell
adhesion and cell recognition, play a role in developmental
apoptosis [58, 59].

Cell death during development: intracellular effectors

Over the last decade, the number of molecules involved in
cell death has increased dramatically. In this section, we
mainly focus on the intracellular molecules that are acti-
vated during cell death of developing neurons, with special
emphasis on the difference between EE and PCD and be-
tween physiological and pathological cell death. The molec-
ular cascades will be discussed in the next sections. The
morphological characteristics of dying immature neurons
during development have revealed heterogeneity in the cell
death process. Schematically, three types of cell death have
been described [60]. The first is characterized by shrinkage
of the nucleus with condensed chromatin (internucleosomal
DNA cleavage), cytoplasmic condensation and fragmenta-
tion of the neurons in “cellular bodies”. This cell death type,
called apoptosis [1], is by far the most abundant during PCD
[60]. The second type is characterized by the appearance of
autophagic vesicles within the cytoplasm. The third type ex-
hibits swelling of cellular organelles, resembling a necrotic
morphology. The significance of this morphological hetero-
geneity is still unclear and apoptosis remains by far the most
studied of these processes. Schematically the pathways that
lead to apoptosis can be subdivided into external and inter-
nal signals, as described above. Studies from knockout mice
have provided essential information on the effectors [6, 61,
62]. Activation of the caspase-9/APAF-1 complex, which in
turn activates caspase-3, is a central pathway for PCD, and
to some extent EE. The suppression of these effectors by
genetic targeting produced severe brain malformations dur-
ing brain development (including hyperplasia), indicating
insufficient removal of neuronal precursors and postmitotic
neurons [6, 63–68]. However, none of these mutations pro-
duced alterations in the spinal cord or brainstem structures
[66], or in other organs where extensive PCD occurs, such
as the thymus [63], indicating that involvement of specific
caspases may be brain region, neuronal type, and matura-
tional stage dependent. Consistently, apoptosis of prolifer-
ating cerebellar granule cells and young pre-migratory cells
occurs in the absence of caspase-3 cleavage, whereas cell
death of post-mitotic migratory neurons is directly linked to
caspase-3 activation [69]. Other caspases, such as caspase-2,
which is an early checkpoint for apoptosis initiation in cor-
tical neurons [70], have been involved and further investiga-
tions will shed light on additional apoptotic effectors during
developmental cell death of neurons. Upstream of caspase
activation, the Bcl-2 family constitutes a critical intracellular
checkpoint in the intrinsic pathways of neuronal apoptosis
during development [62]. Genetic mutations of the Bcl-2
family members do not produce hyperplasia or the mas-
sive brain malformations that were observed in, for instance,
caspase-3-deficient mice, but neuronal cell death of post-
natal motoneurons, sensory, retinal, cortical and cerebellar
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neurons is affected [6, 71–78]. The commitment for develop-
ing neurons toward survival or cell death would then depend
on the ratio between anti-apoptotic (e.g. Bcl-2 and Bcl-XL)
and pro-apoptotic (e.g. Bax) factors [62]. Upon receipt of
a neuronal death signal Bax/Bak is a gateway to the intrin-
sic pathway operative at the mitochondrial level, which is a
critical organelle for developmental apoptosis. In addition to
mitochondria, proteins from the endoplasmic reticulum and
the endosomal system also activate the apoptotic machinery
during developmental cell death of neurons [79–81]. Further-
more, the PI3K-Akt signaling pathway plays a critical role
in mediating survival signals in a wide range of neuronal cell
types. The identification of a number of substrates for the
serine/threonine kinase Akt suggests that it blocks cell death
by both impinging on the cytoplasmic cell death machinery
and by regulating the expression of genes involved in cell
death and survival [82]. It should also be mentioned that ad-
ditional molecules such as the kinesin superfamily protein
4 (KIF4) and poly (ADP-ribose) polymerase-1 (PARP-1)
[83], the notch signaling pathway [84, 85], the p53 family
member p63 [86], survivin, an inhibitor of apoptosis pro-
tein (IAP) [87], have been involved in EE and PCD. A dis-
tinct difference in the apoptotic mediators between EE and
PCD is that EE involves a reentry into the cell cycle [88,
89]. For instance, the neurotrophin-3 withdrawal-induced
developmental cell death of dorsal root ganglia neuron pre-
cursors was regulated by cell cycle molecules such as the
cyclins D3 and E [90]. However, during PCD of postmitotic
motoneurons [91], cerebellar [92, 93] and nigral dopamine
neurons, cell cycle pathways are not activated, suggesting
a specific role for cell cycle regulation in EE of neuronal
precursors.

Excessive oxidative stress in neurons, mainly mediated
by reactive oxygen species (ROS) [94], has been highlighted
as a candidate pathway to trigger PCD [95–101]. For in-
stance, the apoptotic death of cultured sympathetic neurons
or motoneurons can be blocked by ROS scavengers or over-
expression of antioxidant enzymes [96, 102]. A particularly
interesting model to study the role of oxidative stress during
PCD is the dopaminergic system. Nigral dopamine neurons
are highly sensitive to oxidative stress under pathological
conditions, such as models of Parkinsons disease [98, 103].
Antioxidants protect cultured dopamine neurons from death
due to serum deprivation [104–108], suggesting that devel-
oping dopamine neurons undergo oxidative stress and subse-
quently PCD. However, in vitro models are not always read-
ily translated into physiological PCD since important differ-
ences between cultured and in vivo dopaminergic neurons
have been observed. For instance, cultured nigral dopamine
neurons do not express functional NMDA receptors [109]
whereas nigral dopamine neurons from postnatal brains do
display functional NMDA signaling [110]. It is unclear to
what extent the in vitro mechanisms of oxidative stress can

be applied to physiological conditions. Moreover, studies on
the physiological cell death of postnatal nigral dopaminergic
neurons [111, 112] clearly showed that the in vivo PCD is not
dependent on oxidative stress [113–116]. Nitric oxide (NO)
was found not to be involved in the PCD of dopamine neurons
[108, 115], although there may exist differences between
brain areas [117]. How can initial reports of high neuronal
ROS contents during cell death be reconciled with a negative
role for oxidative stress in PCD? A recent finding indicated
that ROS accumulation in neurons accompanies the differ-
entiation of progenitors into neurons, indicating that ROS
play a role in the development of the neuronal phenotype
and that high ROS contents for a neuron may not neces-
sarily be a sign of cell death [118]. Based on these studies,
it seems unlikely that the highly reactive and non-specific
ROS involved in pathological cell death would control
the highly coordinated PCD under physiological conditions
[119, 120].

In conclusion, depending on the trigger (see Fig. 1) several
cell death cascades can lead developing neurons to apopto-
sis. The EE and PCD of neurons seem to have distinct main
molecular pathways but common effectors are observed (e.g.
caspases). Comparing the molecular pathways of physiolog-
ical and pathological cell death of developing neurons, e.g.
the oxidative stress, it appears that pathological cell death
does not replicate the physiological one, although effectors
may be shared.

Pathological apoptosis

Why “pathological” apoptosis?

There are reasons to consider PCD occurring after a patho-
logical insult, such as hypoxia-ischemia (HI) or irradiation
(IR), as different from the normal physiological, develop-
mentally regulated PCD. The reasons for this will be dis-
cussed in this second part of the review. An ischemic insult
will affect fully differentiated neurons more than immature
precursors, whereas IR will affect predominantly precursor
cells. Mature, post-mitotic neurons require much energy to
maintain ionic gradients and cellular processes up to 40,000
times longer than their cell bodies and are therefore more
susceptible to HI and subsequent energy depletion [121].
Neuronal precursors in the neurogenic regions of the postna-
tal brain, mainly the dentate gyrus subgranular zone (SGZ) in
the hippocampus and the subventricular zone (SVZ) of the
lateral ventricular wall, proliferate and are therefore more
susceptible to the DNA damage caused by IR [122]. Mor-
phological characteristics of both apoptosis and necrosis may
be present after HI in the immature brain, even in the same
cell [123, 124], and the relative appearance of these features
is age-dependent [125].
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Under pathological conditions several cell death pathways
are activated simultaneously

A: The classical apoptosis pathway based on the specific
release of protein factors from the mitochondrial inter-
membrane space. These factors include cytochrome c
and AIF and their respective effectors can interact with
one another and trigger either apoptosis (when caspases
predominate) or apoptosis-like death (when AIF predom-
inates) (Fig. 2).

B: Excessive elevation of intracellular calcium, which can
lead to the activation of hydrolytic enzymes and trigger
mitochondrial permeablity transition (Fig. 3).

C: Ionic imbalances and intracellular edema due to exces-
sive Na and Cl influx.

D: Oxidative stress resulting in depletion of glutathione and
increased levels of unbuffered ROS (Fig. 3).

Interactions between pathways

Multiple interactions between these pathways take place. For
example, caspase activation (pathway A) can be modulated
by all the other three pathways in different ways. ATP is
required for apoptosome formation and subsequent caspase
activation, but within a couple of minutes after the onset of
HI the tissue will suffer from complete loss of ATP, interfer-
ing with caspase activation. Very soon after the drop in ATP,
ionic gradients can no longer be maintained and intracellular
Ca, Na and Cl concentrations increase, triggering mitochon-
drial dysfunction and activation of many enzymes, including
phospholipases and calpains. Formation of the apoptosome
is also sensitive to the ionic composition of the cytosol and
excessive influx of sodium would also block the process.
Finally, cysteine proteases, including caspases are sensitive
to the redox balance of the cell and can be inactivated un-
der oxidative conditions. These are just a few examples out
of many possible pathway interactions. Sometimes one of
the pathways can be partially activated before another one
takes over, explaining the mixed morphologies with features
of both apoptosis and necrosis found under such conditions.
For example, a cell may activate the apoptotic program and
half way down the road experience a severe lack of ATP,
resulting in disruption of membrane potential, influx of ions
with subsequent swelling and protease activation, resulting
in morphological signs of necrosis being added to the apop-
totic morphology already partially established. The reverse
may also occur. Neurons in the penumbral border zone of
an infarct area will initially experience complete ATP deple-
tion, activating mechanisms of necrosis and, upon restora-
tion of blood flow, energy levels will be restored, interrupting
the necrotic pathways and enabling activation of apoptotic
mechanisms.

Delayed, “secondary” energy failure

The onset of HI results in depletion of oxygen in the is-
chemic tissue within seconds, resulting in impaired mito-
chondrial oxidative phosphorylation. ATP levels are pre-
served for a couple of minutes through anaerobic glycol-
ysis and through reaction of ADP with phosphocreatine cat-
alyzed by creatine kinase [126]. Restoration of blood flow
within 20–30 min in rodent models results in substantial
recovery of metabolic activity of all cells within the first
20 min and survival of most cells [127, 128]. The near
complete restoration of ATP and phosphocreatine after is-
chemia is not associated with restored mitochondrial oxida-
tive metabolism to pre-ischemic levels. The mitochondrial
respiration is depressed after neonatal HI and, after a par-
tial transient recovery, a secondary decrease occurs [129]
coinciding with decreased tissue utilization of glucose and
activation of apoptosis-related mechanisms, including ac-
tivation of caspase-3 and DNA fragmentation [130, 131].
This secondary energy failure develops in most brain re-
gions 6–48 h after the insult in immature animal models
[129–131].

Young brains have more apoptotic machinery and neurons
often display mixed apoptotic/necrotic morphology after
ischemic injury

Some of the apoptotic effectors, such as caspase-3 [132, 133],
APAF-1 [134], Bcl-2 [135] and Bax [136], are expressed at
higher levels in the developing brain and apoptotic mecha-
nisms seem to be more important in the development of brain
injury in the immature than in the adult brain [132, 133, 137–
142]. Even AIF, where the expression level remains constant
during postnatal brain development, is activated to a greater
extent in the immature than in the juvenile and adult brain
after HI [142, 143]. This seems reasonable in light of the
extensive apoptosis taking place during brain development
and the large numbers of cells that need to be discretely
removed, supporting the notion that embryonic and early
postnatal neurons have a greater capacity and readiness to
undergo apoptosis. Based on morphological criteria, the ini-
tial injury (within a few hours) in the striatum and cortex
of neonatal rats was found to be necrosis, but in thalamus
the delayed neurodegeneration (within hours to days) was
primarily apoptosis, indicating that the morphology of neu-
ronal death is determined by time, region, and potentially
by patterns of neuronal connectivity [123]. There are several
studies describing dying cells with a mixed morphology, dis-
playing characteristics of both apoptosis and necrosis [144],
including after neonatal HI [123–125, 145], further support-
ing the concept of cross-talk between pathways. The concept
of continuum cell death was coined to emphasize that the
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Fig. 2 Schematic representation of the three mechanisms converging
on caspase-3, which is the major execution caspase in the brain, particu-
larly in the developing brain. Activated caspase-3 will cleave a number

of target proteins, including ICAD/DFF45 and PARP, as indicated in
the figure. Also indicated is release of the caspase-independent AIF
from mitochondria

morphology of dying neurons in the immature brain after
HI displayed the full range from necrotic to apoptotic [146].
In Fig. 4 cortical neurons displaying different morphologies
after HI can be seen, including necrosis, apoptosis and the
mixed pathological apoptosis (Fig. 4).

Extracellular effectors

Death receptor pathway

Evidence for involvement of the Fas/CD95 receptor and its
ligand in ischemic brain injury has been obtained from both
the adult and developing brain. After transient focal ischemia
in adult rats Fas expression was increased and mice carrying
a deficient Fas gene (lpr mice) were less injured than wild
type animals (Martin-Villalba 1999). After neonatal rat HI
both Fas (Felderhoff-Mueser et al., 2000) and its receptor
were upregulated after the insult, in concert with cleavage
of procaspase 8 to its active form [147]. Furthermore, mice
lacking functional Fas death receptors were protected from

HI brain damage in cortex, striatum, and thalamus [148].
The hippocampus was the only region not protected in these
mice, and the selective vulnerability of the hippocampus
correlated with lower basal expression of [Fas-associated
death-domain-like IL-1beta-converting enzyme]-inhibitory
protein (FLIP), and indications of necrosis, as judged by
calpain activation and a higher percentage of non-apoptotic
morphology was present after HI [148].

Neurotrophins/Cytokines

Neurotrophins have attracted much attention as potential
therapeutic agents after ischemia. BDNF, for example, pro-
vided impressive neuroprotection after neonatal (P7) HI
[149, 150], but not in older (P21) animals. BDNF treat-
ment produced robust phosphorylation of Trk receptors in
P7 but not P21 rats, indicating either that the trkB receptors
are downregulated with age, or that another factor is missing
to mediate the BDNF effects [149]. From the wide range of
cytokines only one will be mentioned here, erythropoietin.
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Fig. 3 Mitochondria are a major source of oxygen free radicals, but
also a target for free radical attack, promoting mitochondrial permeabil-
ity transition and release of pro-apoptotic proteins from mitochondria.
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Fig. 4 Microphotographs from neonatal mouse brains after hypoxia-
ischemia (HI), demonstrating different morphologies in cortical
neurons. The upper panels show light microscopic pictures after
thionin/fuchsin staining, demonstrating cortical neurons with a mor-
phology typical for (A) a normal cell, (B) necrosis, (C) apoptosis and
(D) pathological apoptosis. The lower panels show electron microscopic

pictures, demonstrating neurons with a morphology typical for (E)
necrosis, (F) apoptosis and (G) pathological apoptosis. Panels A–D:
courtesy of Dr. Changlian Zhu, Göteborg University, Sweden. Panels
E–G: courtesy of Dr. Frances Northington, Johns Hopkins University,
Baltimore, MD, USA
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It has been shown that erythropoietin and non-erythrogenic
derivatives by signaling through a non-hematopoietic recep-
tor in the central nervous system afford neuroprotection in
various models of brain injury [151–153], including the de-
veloping brain [154–156]. Erythropoietin did not, however,
prevent radiation-induced loss of precursor cells in the DG
or SVZ [122].

Potassium and chloride ion homeostasis

A universal characteristic of apoptosis is the loss of cell
volume or cell shrinkage. While cell shrinkage has tradi-
tionally been viewed as a passive event during apoptosis,
recent work has shown that the flux of ions associated with
the change in cell size plays a critical role in the regula-
tion of the cell death machinery [157]. Apoptotic volume
decrease (AVD) has even been shown to be an early pre-
requisite of apoptosis [158]. Physiological concentrations of
potassium prevent death receptor activation, cytochrome c
release, apoptosome formation, caspase activation and apop-
totic nuclease activity [159–161], at least in lymphocytes,
and conversely, loss of intracellular potassium provided con-
ditions compatible with activation of caspases and apoptotic
nucleases. Cortical neurons exposed to NMDA in medium
containing reduced Na+ and Ca2+ (resembling the condi-
tions in ischemic brain tissue) lost substantial intracellular
K+ and underwent apoptosis. Both K+ loss and apoptosis
were attenuated by increasing extracellular K+, indicating
that NMDA receptor-mediated K+ efflux may contribute to
neuronal apoptosis after brain ischemia [162]. Furthermore,
the K+ channel blockers tetraethylammonium (TEA) and
clofilium attenuated murine cortical neuronal apoptosis in-
duced by hypoxia in vitro and infarct volume induced by
focal ischemia in vivo [163]. In another study, however, nei-
ther increased extracellular K+ nor the K+ channel blocker
could prevent staurosporine-induced apoptosis in cultured
cortical neurons [164]. The main inhibitory amino acids
gamma-aminobutyric acid (GABA) and glycine are exci-
tatory in the developing brain by depolarizing developing
neurons that have high intracellular Cl− concentrations and
a depolarized Cl− equilibrium potential. GABA becomes in-
hibitory as net outward neuronal transport of Cl− develops
in a caudal-rostral progression. This seems to be of major
importance for the wiring of neuronal circuits [165]. Prena-
tal or neonatal stress, for example hypoxia, can affect the
programming of neurotransmitter and receptor expression,
which can lead to long-term behavioral effects [166]. The
Na+-K+-2Cl− co-transporter (NKCC1) facilitates the accu-
mulation of Cl− in neurons and therefore facilitates seizures
in the developing brain, indicating that NKCC1 inhibitors
like bumetanide could be useful in the treatment of neonatal
seizures [167].

Intracellular effectors

Caspases

As mentioned above in the paragraph on secondary en-
ergy failure, the mitochondrial respiration is depressed after
neonatal HI and, after a partial transient recovery, a sec-
ondary decrease occurs [129] parallel to the decrease of tis-
sue utilization of glucose, loss of MAP-2 immunostaining,
activation of caspase-3 and DNA fragmentation [130, 131].
This mitochondrial dysfunction may contribute to or fa-
cilitate the release of proapoptotic factors from the inter-
membrane space of the mitochondria, such as cytochrome c,
AIF, endonuclease G, SMAC/Diablo and HtrA2/Omi [168].
Subsequently, caspase-dependent and caspase-independent
mechanisms will ensue. Release of Cytochrome c interacts
with APAF-1 and dATP/ATP to form the apoptosome, lead-
ing to activation of procaspase-9 [169], which in turn cleaves
and activates pro-caspase-3, the most abundant effector cas-
pase in the brain. As mentioned above, caspase-3 expression
is strongly regulated with age. Caspase-3 protein and mRNA
in control rat brains decreased more than 80% from postna-
tal day 10 to 21 [132], corresponding to when brain growth
levels out. The role of the inflammatory caspases (mainly
caspase-1, also called IL-1 converting enzyme) in apoptosis
is not clear, but they do seem to contribute to brain injury
after ischemia through their pro-inflammatory actions. Adult
mice lacking the caspase-1 gene (Schielke et al., 1998) or
expressing a gene acting as a dominant negative caspase-1
inhibitor under a neuronal promoter (Friedlander et al., 1997)
displayed reduced injury after focal ischemia, indicating that
neuronal caspase-1 may participate in the cell death process.
Similarly, neonatal caspase-1-deficient mice also displayed
reduced injury compared with wild type animals, but only if
the injury was mild (Liu et al., 1999). Caspase-1 cleaves and
activates both IL-1 and IL-18, and neonatal IL-18-deficient
mice also showed less brain injury after HI (Hedtjärn et al.,
2002).

Differential effects of the endogenous caspase inhibitor
XIAP under normal and pathological conditions

Another finding supporting the concept of pathological apop-
tosis is that the endogenous caspase inhibitor X-linked In-
hibitor of Apoptotosis (XIAP) protein apparently has dif-
ferent effects under physiological and pathological condi-
tions. For example, over-expression of XIAP in neurons
did not interfere with physiological neuronal apoptosis, as
judged by the normal brain morphology of these mice [122,
170, 171]. In the dentate gyrus (DG), where there is con-
stant neurogenesis and turnover of neurons throughout life,
the size and appearance of the DG was not different be-
tween wild type and XIAP over-expressing mice. However,
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Fig. 5 A schematic diagram
showing the balancing effects of
X-linked inhibitor of apoptosis
protein (XIAP) under
pathological conditions. XIAP
can inhibit caspase-3 and
caspase-9 by direct binding to
these proteases, but XIAP may
also be cleaved by for example
caspase-3. HtrA2 and
Smac/diablo are released from
mitochondria and inhibit XIAP,
as does XAF-1. A recently
discovered function of XIAP is
down-regulation of oxidative
stress through up-regulation of
the anti-oxidant enzymes SOD2
and TRX2, via NF-κB. The final
outcome depends on the relative
strength of the cell death
mechanisms

XIAP over-expression did prevent the activation of caspase-9
and caspase-3 observed after HI [172] and provided signifi-
cant neuroprotection. Activation of caspase-9 and caspase-3
was prevented also in the DG after irradiation [122], but
in this paradigm no reduction of cell loss could be ob-
served, so the effects of XIAP were not secondary to tis-
sue protection. Similarly, XIAP was demonstrated to protect
against oxidative stress by up-regulating the mitochondrial
antioxidant enzymes SOD2 and TRX2 through NF-κB ac-
tivation after HI and after irradiation, but not under normal
condition, in the absence of an insult (unpublished obser-
vations) (Fig. 5). This supports the notion that the same
effector can be involved in different pathways and that dif-
ferent regulatory mechanisms are utilized during normal and
pathological apoptosis.

Calpains and caspases

Cross-talk between caspase-3 and calpains, calcium-
activated cysteine proteases with a neutral pH optimum, has
been demonstrated. Calpains are cytosolic proteases mainly
implicated in excitotoxic cell death and necrosis [173], and

calpains, like caspase-3, are also more highly expressed
in the immature brain [174]. In mice, calpain-mediated
activation of caspase-3 has been shown to occur by way
of caspase-12, such that calpains cleave and release the
active form of caspase-12 from the endoplasmic reticulum
to the cytosol, where it subsequently can cleave and activate
caspase-3 [175] (Fig. 3). After neonatal HI, activation
of m-calpain (calpain 2), but not µ-calpain (calpain 1)
facilitated the activation of caspase-3 in a synergistic
manner by cleavage in the prodomain of caspase-3, yielding
a 29 kDa intermediate form, which apparently was more
rapidly processed to the fully active forms [132] (Fig. 2).
This is supported by another study demonstrating that CaCl2
triggered nuclear apoptosis and increased caspase-3 activity
in cell-free systems [176], and one study where caspase-3
activation in vivo was decreased in neurons rescued by
treatment with the NMDA receptor antagonist MK-801
after HI [177]. This synergistic enhancement of caspase-3
activation after an excitotoxic insult and calpain activation
is a prime example of pathological apoptosis, i.e. cross-talk
between PCD and mechanisms usually more associated with
necrosis. However, there are other reports demonstrating
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calpain-mediated inactivation of caspase. Calpains were
shown to cleave APAF-1 in neuroblastoma cells challenged
with ionophore, thereby compromising caspase-3 activation
[178]. In one paradigm, non-canonical cleavage of caspase-3
by calcium-dependent proteolysis yielded weak DEVDase
activity, but the truncated caspase-3 thus produced could not
be further activated by the cytochrome c and dATP pathway
[179]. Also, calpain activation in nitric oxide-triggered
excitotoxicity was coupled to execution of caspase-
independent apoptosis in cerebellar granule neurons [180].
Conversely, caspase-3-mediated cleavage of the endogenous
calpain inhibitor calpastatin has been demonstrated in sev-
eral studies [181–183], thereby promoting calpain activation.
Neumar et al. demonstrated a dual role for calpains during
staurosporine-induced neuronal apoptosis in neuroblastoma
cells. In the early execution phase, calpain down-regulated
caspase-3-like activity and slowed progression of apoptotic
nuclear morphology. Subsequent calpain activity, facilitated
by caspase-mediated degradation of calpastatin, contributed
to plasma membrane disruption and secondary necrosis
[184]. These and other studies project a complex picture
of calpain-caspase interaction in cell death, depending on
the cell or tissue type studied and the injury paradigm
used.

Differential effects of the caspase-independent AIF

Unlike caspase-3, the caspase-independent Apoptosis-
Inducing Factor (AIF) does not appear to be significantly
regulated with age. The AIF protein levels in brain were
similar from postnatal day zero to adult [143]. In adult ro-
dents extensive translocation of AIF from mitochondria to
nuclei was detected after trauma [185], hypoglycemia [186],
focal ischemia [187, 188] and neonatal HI [142, 143, 189].
Extensive and rapid (within 30 min) AIF translocation to nu-
clei after irradiation to the immature brain was also detected
in progenitor cells of the dentate gyrus and the subventricular
zone, but not in differentiated neurons or glia [122]. In the
harlequin (Hq) mouse strain the expression of AIF is reduced
to approx. 20% in adults and 40% in P9 mice of the wild type
level due to a retroviral insertion into the first intron of the
AIF gene located on chromosome X [190]. Hq mice dis-
played 43% smaller infarcts after adult focal ischemia [191]
and 53% and 43% infarct volumes in male (YXHq) and fe-
male (XHqXHq) mice, respectively [192]. Interestingly, AIF
activation (as judged by nuclear translocation, was much
more prominent in P5 and P9 mice (corresponding to pre-
mature and term human brains) than in P21 and P60 mice
(corresponding to juvenile and adult human brains), despite
the fact that the concentration of AIF was the same at all ages
[142]. Again, the same effector displays different roles un-
der different conditions, in this case different developmental
levels.

Nitric oxide

Activation of NMDA receptors results in the influx of cal-
cium and subsequent calmodulin-mediated activation of neu-
ronal nitric oxide synthase (nNOS), converting l-arginine to
citrulline and nitric oxide (NO) [193] (Fig. 3). NOS activ-
ity is high in the postnatal brain, with peak levels preceding
the period of maximal synaptogenesis [194]. Both nNOS
and, surprisingly, inducible (or macrophage) NOS (iNOS)
are constitutively expressed at several-fold higher levels dur-
ing early postnatal development [142]. Neuronal nitric oxide
synthase (nNOS) is expressed in a limited number (<4%) of
neurons (quisqualate sensitive), but these cells are capable
of killing neighboring cells. Elimination of nNOS neurons
through injections of quisqualic acid into the cortex of P7
rats rendered these animals resistant to HI [195], and nNOS
deficiency through genetic targeting was also neuroprotec-
tive [196]. Administration of the combined iNOS/nNOS
inhibitor 2-iminobiotin reduced caspase-3 activation [197]
and conferred tissue protection [198]. The iNOS inhibitor
aminoguanidine [199] (IL-1) also reduced brain injury after
HI, further indicating that NO production exerts cytotoxic
effects in the developing brain such insults. NO can also
mediate neuroprotective actions, through vasodilatation, an-
giogenesis, inhibition of platelet aggregation and leukocyte
activation, explaining why endothelial nitric oxide synthase
(eNOS) inhibition resulted in exacerbation of ischemic in-
jury [200]. However, small (or short-lasting) mitochondrial
elevations of NO, and subsequently hydrogen peroxide, can
trigger protective responses, e.g. stabilization of hypoxia in-
ducible factor-1 alpha, which seems to bring about protec-
tive responses also in the immature brain [201]. Also, NO
(contrary to peroxynitrite) may exert anti-apoptotic effects
through inhibition of cytochrome c release [202] and quench-
ing of excess O2. See also the paragraph on oxidative stress
in the section on intracellular effectors below.

Oxidative stress

There are multiple pathways whereby reactive oxygen
species (ROS) are produced in the brain. As mentioned ear-
lier in the preceding paragraph on nitric oxide, NOS activity
is a major contributor to generation of free radicals and ox-
idative stress. Mitochondria are considered to be a major
site of ROS production in mammalian cells through elec-
tron leakage from the electron transport chain [194, 203],
perhaps also after ischemia [204]. Mitochondria also appear
to be a major target of ROS attack and the immature brain
is particularly susceptible to free radical injury because of
its poorly developed scavenging systems and high availabil-
ity of iron for the catalytic formation of hydroxyl radicals
[205]. Formation of ROS in the brain after various insults is
respiration-dependent, mitochondria in vitro are sensitive to
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ROS and peroxynitrite, and most data suggest that oxidative
stress contributes to the post-ischemic impairment of mito-
chondrial respiration [206]. When the ROS levels exceed the
capacity of the cell in general and the mitochondria in par-
ticular to scavenge and render them harmless, the resulting
oxidative stress may initiate mitochondrial permeability tran-
sition (mtPT) [207], which then in turn potentiates the oxida-
tive stress. Proapoptotic factors are too large to pass directly
through the mtPT pore, but opening of the mtPT can trigger
the release of cytochrome-c and other intermembrane pro-
teins. In addition, the release of proapoptotic intermembrane
proteins may also occur mtPT independent [208]. Thus, ox-
idative stress can, directly or indirectly, modulate the release
of proapoptotic proteins [209–211] and drugs that block the
mtPT pore formation, like cyclosporin A, provide neuro-
protection in adult models of ischemia, and prevent release
of proapoptotic proteins [212, 213]. In the developing brain,
mtPT was demonstrated to occur after HI, as indicated by en-
trapment of deoxyglucose in mitochondria, but cyclosporin
A treatment did not provide neuroprotection after HI using
the same, or higher, doses of cyclosporin A as in studies of
adult ischemia [214]. It was not shown, however, whether
cyclosporin A actually blocked mtPT and the reasons for the
lack of protection remain unclear.

Superoxide is dismutated by superoxide dismutase into
H2O2, which is converted to water and oxygen by catalase
or glutathione peroxidase. There are three major superox-
ide dismutases: SOD1 (Cu,Zn-SOD), SOD2 (Mn-SOD) and
SOD3 (EC-SOD). SOD1 is mainly found in the cytosolic
and lysosomal fractions, but also in the mitochondrial in-
termembrane space whereas SOD2 is located in the mito-
chondrial matrix. The neurological outcome and infarctions
are aggravated in SOD2-deficient mice after both transient
[215] and permanent [216] focal ischemia in adult mice.
Conversely, overexpression of SOD2 prevented apoptosis
and reduced tissue damage after focal ischemia [217]. SOD1
overexpression in adult mouse brains also reduced the injury
after transient focal ischemia [218], but in the immature brain
overexpression of SOD1 unexpectedly aggravated the tissue
damage after HI [219]. This was subsequently attributed to
a limited capacity of the immature brain to convert the ac-
cumulated H2O2 into water and oxygen due to lower levels
of catalase and glutathione peroxidase [220], emphasizing
the importance of glutathione peroxidase for downstream
processing of the H2O2 produced by SOD.

Autophagy

Autophagy is a process responsible for the bulk degradation
of intracellular material in double or multiple-membrane
autophagic vesicles and their delivery to and subsequent
degradation by the cell’s own lysosomal system. Just like

the genetically controlled, physiological PCD, autophagy
was demonstrated to be more pronounced during embry-
onic development and tissue remodeling [221]. It has been
suggested that autophagy is a caspase-independent, geneti-
cally controlled cell death [222]. Emerging evidence points
to the importance of autophagy in the protein quality-control
process, a process that may be of particular importance in
post-mitotic brain neurons. Loss of Atg5 or Atg7 (autophagy-
related 5/7), two genes essential for autophagy, leads to pro-
gressive neurodegeneration, behavioral defects, presence of
polyubiquitinated inclusion bodies in neurons and prema-
ture death [223, 224]. Visualization of autophagic vesicles
by electron microscopy is still the golden standard to demon-
strate autophagy. The electrophoretic mobility change of
microtubule-associated protein 1, light chain 3 (LC3) from
the non-autophagic, cytosolic form (LC3-I; 16 kDa) to the
autophagic, membrane-recruited form (LC3-II; 14 kDa) pro-
vides a molecular marker-based method for detection of au-
tophagic activity [225–228]. LC3-II was higher in the devel-
oping, immature mouse brain, compatible with a role for au-
tophagy in brain growth and tissue remodeling [142]. LC3-II
inscreased from 1–3 days after HI, coinciding with the peak
of cell death and subsequent tissue degeneration, and the
LC3-II increase was more pronounced in the adult than in
the immature brain [142]. This was the first evidence for
ischemia-induced autophagy, providing another example of
how cell death mechanisms can be activated by different trig-
gers under normal and pathological conditions. It is unclear
at present to what extent autophagy is a cellular repair pro-
cess, a stress response or actually contributing to cell death.

Challenges for the future

Pathological apoptosis involves numerous other pathways
that could not be addressed here in detail, as this would
be beyond the space limitations and scope and of this con-
cise review. Such key players include MAP kinases, heat
shock proteins and mechanisms controlling phagocytosis.
The challenge for the future will be to unravel whether the
respective pathways and mechanisms are (i) directly involved
in neurodegeneration/neuroprotection, (ii) only epiphenom-
ena, or (iii) elicited to actually counteract the main process.
An illustrative example of the complexity of the issue is the
role of JNK in developmental neuronal death, as this MAP
kinase promotes apoptosis on one side of the neural tube
and blocks it on the other [229]. Another example is the
role of phagocytosis that has until recently been considered
a cleanup process after damage, but now is known to also
take an active part in killing cells during development [230].
The complexity and heterogeneity of brain tissue obviates
the need for new and advanced combinations of histology
and molecular biology to solve these important questions.
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Summary

In summary, we argue that the intra- and extracellular con-
ditions after an insult like ischemia or irradiation are not
compatible with the execution of normal programmed cell
death (PCD). Rather, multiple mechanisms of injury, in-
cluding apoptotic mechanisms, will be activated and interact
on many levels, producing biochemical and morphological
characteristics distinctly different from those observed dur-
ing physiological, developmentally regulated PCD. Often a
mixed morphology is observed, with characteristics of both
necrotic and apoptotic cell death, particularly after injury to
the developing brain, where the apoptotic machinery is more
prominent. In view of the large differences compared with
physiological PCD, we suggest that cell death occurring after
insults like ischemia or irradiation not be called apoptosis.
We propose pathological apoptosis as an alternative term, in-
dicating that classical PCD and other cell death mechanisms
interact and contribute to the demise of cells.
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